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Abstract

This paper considers the problem of simultaneously estimating rare-event
probabilities for a class of Gaussian random fields. A conventional rare-
event simulation method is usually tailored to a specific rare event and
consequently would lose estimation efficiency for different events of interest,
which often results in additional computational cost in such simultaneous
estimation problem. To overcome this issue, we propose a uniformly efficient
estimator for a general family of Hélder continuous Gaussian random fields.
We establish the asymptotic and uniform efficiency of the proposed method

and also conduct simulation studies to illustrate its effectiveness.
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1. Introduction

Consider a continuous Gaussian random field {f(¢) : ¢ € T} with zero mean and unit variance, living
on a d-dimensional compact set T C R%; that is, for every finite subset of {t1,....,t,} C T, (f(t1), ..., f(tn))
is a multivariate Gaussian random vector with Ef(t;) = 0 and Var(f(¢t;)) = 1 for i = 1,--- ,n. We are
interested in estimating the tail probability

We,u(b) = P (sup{a(t)f(t) +p(t)} > b> , as b — oo,

teT

simultaneously for a class of continuous mean and variance functions p(t) and o?(t), where the functions
u(t) and o2(t) may be unspecified and only known to be in certain ranges.

The extremes of Gaussian random fields have wide applications in finance, spatial analysis, physical
oceanography, and many other disciplines [4, 5]. Tail probabilities of the extremes have been extensively

studied in the literature, with its focus mostly on the development of approximations and bounds for the
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suprema [e.g., 3, 7, 9-13, 18, 19, 29-33]. Tail probabilities of other convex functions of Gaussian random

fields have also been studied; see [21, 23, 25, 28].

Most of the sharp theoretical approximations developed in the literature require the evaluation of cer-
tain constants that are hard to estimate, such as the Lipschitz-Killing curvatures and Pickands’ constant.
Moreover, although the asymptotic results may provide good approximations for large tail values as b — oo,
evaluation of the approximation results for finite b may be challenging and it is often unclear how large the
tail values are required to ensure the approximations within an acceptable range relative to the quantity of
interest. Therefore, to evaluate the tail probabilities, rare-event simulation serves as an appealing alternative
from a computational point of view. In particular, the design and the analysis do not require very sharp
approximations of the tail probabilities. Importance sampling based efficient simulation procedures have
been proposed in the literature to estimate the tail probabilities. Numerical methods for rare-event analysis

of the suprema were studied in [1, 2]; see also [8, 20, 24, 26-28, 34] for related studies.

To design asymptotically efficient importance sampling estimator, one needs to construct a change of
measure that is tailored to a specific event. Such construction usually requires detailed information of the
Gaussian random fields, such as u(t) and o(t) whose computations themselves are sometimes intensive.
In addition, the specific form of the change of measure is sensitive to p(t) and o(t) in the sense that the
entire simulation needs to be redone even if there is a tiny change of the system. This often leads to
additional computational overhead especially at the exploratory stage when one often needs to tune different
model parameters. This motivates us to seek for a single Monte Carlo scheme that is efficient for a class
of distributions. An advantage of such uniformly efficient methods is that there is no need to regenerate
samples if there is a change in the original system and one just needs to recompute the importance weights.
This could save substantial computational time. Moreover, this can help researchers efficiently estimate
many probabilities for a certain range of mean and variance parameter values, which are often of practical
importance. For instance, in finance risk analysis, there is often uncertainty surrounding the true population
values for the mean and variance; portfolio credit risk management may require the estimation of the tail
probabilities of extremes for a family of Gaussian processes; in physical system reliability analysis, we may

need to evaluate the failure probability for a range of system parameters.

To address the above issues, this study focuses on the problem of simultaneous efficient estimation of
Wy, (b) for all possible u(t) € [, py) and o2(t) € [0?,02], t € T, where p < py, € R and 0; < 7, € (0,00)
are constants that are prespecified. We propose a mixture type change of measure that yields uniformly
efficient estimation (criterion defined in Section 2). In particular, the uniform efficiency result holds for
general Holder continuous Gaussian random fields and therefore it is applicable to most of the practical
problems.

The remainder of the paper is organized as follows. In Section 2 we introduce some notions of efficiency and
computational complexity under the setting of rare-event simulation. Section 3 provides the construction of

our importance sampling estimator and shows the main properties of our algorithm. Numerical simulations
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are conducted in Section 4 and detailed proofs of our main theorems are given in Section 5.

2. Efficiency Criteria

2.1. Efficiency of rare-event simulation and importance sampling

We first introduce some general notions of rare-event simulations. Given that the tail probability w,,, ()
converges to zero, it is usually meaningful to consider the relative error of a Monte Carlo estimator L(b) with
respect to w,. ,(b). This is because a trivial estimator L*(b) = 0 has an error |L*(b) —w,,,(b)| = wes, . (b) — 0.
In the literature of rare-event simulation (e.g., [2, 6, 17]), one usually employs the concept of polynomially

efficiency as an efficiency criterion.

Definition 1. (Polynomial efficiency.) An estimator L(b) is said to be polynomially efficient with the order
¢ in estimating w, ,(b) if EL(b) = w,,,(b) and there exist constants ¢ > 0 and by > 0 such that

Var(L(b))
. 1
SUPb20 TTog wy o (D) 102 (0) @)

When ¢ =0, L(b) is also called strongly efficient.

To illustrate this efficiency criterion, we compare a polynomially efficient estimator with a standard Monte
Carlo estimator. Suppose that we want to estimate w, ,(b) with certain relative accuracy with a high

probability. That is, we would like to have an estimator Z(b) such that for some prescribed €, > 0,
P(IZ(b)/wou(b) = 1] > €) < &, (2)

If a standard Monte Carlo simulation method is used, then it requires at least n = O(e~26 "w, (b))

ii.d. replicates, according to the central limit theorem. By the Borell-TIS lemma (Lemma 3), we know
e (b) < exp{—(1 + o(1))b*/(2sup,cr 02(t))}. Therefore, n has to grow at an exponential rate in b*>. On
the contrary, suppose that a polynomially efficient estimator of w,,(b) has been obtained, denoted by L(b).
Let {LW(b) : j = 1,..,n} be n iid. copies of L(b). Then the averaged estimator Z(b) = £ 3" | LU)(b)
has a mean squared error (MSE) E(Z(b) — w,,,(b))? = Var(L(b))/n. A direct application of Chebyshev’s
inequality yields

Var(L(b
P(Z(0) ()~ 1] 2 ¢) < Mf((?)

(3)

Thus, if L(b) is a polynomially efficient estimator with the order g, it suffices to simulate n = e 725~ !| log w, ,,(b)|? =
O(e726715%9) i.i.d. replicates of L(b) to achieve the accuracy in (2). Compared with the standard Monte

Carlo simulation, polynomially efficient estimators reduce the computational cost substantially for large b.

Remark 1. In the rare event analysis literature, another widely used efficiency criterion is the weakly
efficient ([6]). An estimator L(b) is said to be weakly efficient in estimating w,. ,(b), if EL(b) = w,,,(b) and

for all positive constants € > 0,
L(b
lim sup L4 L(0)

=0.
bsoo  woi (b)
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It is easy to verify that if L(b) is polynomially efficient, then L(b) is also weakly efficient. That is, polynomial

efficiency is a stronger criterion than the weak efficiency.

To construct polynomially efficient estimators, importance sampling is a commonly used method for the
variance reduction. In particular, we have
B _ LfdP
wou(0) = [T (sup{o(t) (1) + pu(0)) > b) | = B[ S5 1 (sup{ot) (1) + u(0)} > b) .
where I(-) denotes the indicator function, @ is a probability measure that is absolutely continuous with
respect to P on the set {sup,cr{o(t)f(t) + u(t)} > b}, and we use E and E? to denote the expectations
under the measures P and @), respectively. Then, the random variable defined by
Lou(8) = 521 (sup{o(t) () + (1)} > b) ()
Q \ter
is an unbiased estimator of w, ,(b) under the measure Q). To have an efficient estimator, we want to
choose @ such that the variance Var@(L, (b)) is small. It is straightforward to show that the optimal
change of measure is the conditional probability Q*(-) = P(- | sup,er{o(t)f(t) + p(t)} > b) = P(-N
{sup;er{co(t)f(t) + pu(t)} > b})/we . (b), for which the corresponding importance sampling estimator has a
zero variance. However, @* cannot be implemented in practice because w,. ,,(b), the probability of interest,
is unknown beforehand. Therefore, constructing an efficient change of measure usually involves analysis and

approximation of the optimal change of measure Q*.

2.2. Non-uniformly efficient issue and an example

Various importance sampling estimators for rare-event analysis of the suprema of Gaussian random fields
have been studied in [1, 2, 8, 20]. As the measure @* depends on the mean and variance function o(-) and
u(+), the designed measures usually depend on the u(-) and o(-) as well. As a consequence, a measure @ that
gives an efficient estimator L, ,(b) = %I(supteT{a(t)f(t) + u(t)} > b) for we,,(b) may not be efficient any
more for estimating wy s (b), where o’ (t) and p'(t) are two different variance and mean functions. That is,
the corresponding importance sampling estimator based on @
= o1l OF(0) + (0} > b

may not be an efficient estimator for wgy /() .

Lo”,p/ (b) :

To illustrate the non-uniform efficiency issue, we take the estimator proposed in [2] as an example. For
simplicity, we consider the case when T' contains finite points and write T := {t1,--- ,tpr}-
For known p and o, [2] proposed the following simulation procedure in Algorithm 1. Let Q' be the

corresponding change of measure. We have

dQt M (o (t:) f(t:) + u(t;) > b)

dP M Plo(t)f(t:) + () > b))
[2] showed that L, ,(b) = %I(snpteT{a(t)f(t) + p(t)} > b) is a polynomially efficient estimator for w,, ()
with the order ¢ = 0. We explain intuitively why this estimator is efficient. First, Algorithm 1 samples a
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Algorithm 1: Sampling procedure proposed by [2]
Input: T = {t1, - ,tm}.

1 Simulate a random variable 7 € {t1,--- ,tp} according to the following probability measure:

P(r =t;) P(o(t;) f(t:) + p(t;) > b)

TS Pt () + plt) > b)) (5)

2 Given the realized 7, simulate f(7) conditional on o(7)f(7) + p(r) > b;

3 Given (7, f(7)), simulate the rest {f(¢) : t # 7,¢t € T'} from the original conditional distribution under
P.

Output: f(t) fort €T

random index 7 whose distribution is approximating that of ¢* := argmaxy, (o(¢;) f(t;) + p(t;)). Second, it
simulates f(7) approximately from the conditional distribution P(f(t*) € -|f(¢*) > b). Third, Algorithm 1
simulates the f(t) at ¢t # 7 according to the original conditional distribution given (f(7),7). Combining the
three steps, the entire sample path {f(¢) : t € T} generated from Algorithm 1 approximately follows the
conditional distribution {f(¢) : t € T'| maxy, (o (¢;) f(t;) + u(t;)) > b}. According to the discussion on page 4,
this conditional probability measure is the optimal change of measure. See [2] for rigorous justifications of
the above statements.
Let ¢/ and ¢’ be a different mean and variance function. We have Proposition 1 for the estimator

Lo (8) = s (5up{o'(O0F(0) + (0} > b).

Proposition 1. Let p/(t) = p(t) =0 for allt € T.

(i) If o' (t) < o(t) for allt € T and maxy,er o' (¢;) < maxy,er o(t;), then for some constant € > 0,

B [ (42, () f(t:) > b

{ (dQT) yMmaxe,eTo ( i) f( i) > C
2—e - .
o",M(b)

lim
b— 00 w

(i) If maxy,er o' (t;) > maxy,er o(t;), then % is not well defined on the event {maxy,cro’ (t;)f(t;) >

b}.

According to the definition of weakly efficient estimator in Remark 1, the first part of the above proposition
implies that L, ,(b) is not weakly efficient for estimating wy- v/ (b) if maxy,cr o’(t;) > maxy,er o(t;), and is
therefore not polynomially efficient. The second part of the above proposition implies that the estimator
L, ,(b) is not well defined when maxy,er o' (t;) > maxy,er o(t;). Therefore, for each L, ,(b) there always
exist mean and variance functions p/(-), o’(-) such that p'(t) € [, pul, 0’ (t) € [07,04] and Ly, (b) is not

(weakly) efficient for estimating w, v (b). We use a simple numerical study to further illustrate this.
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Example 1. Consider i.i.d. standard normal random variables {f(¢),t = 1,---,100}. For simplicity, we
take pu(t) = 0 and o(t) = o for all t. The probability of interest is P(c max; f(t) > b) for o € [0.3,1] and
b = 3. This is equivalent to simulating P(max; f(t) > b) for all b € [3,10]. Table 1 displays the simulation
results for o = 0.3,0.6 and 1, from Algorithm 1, where the change of measure is constructed based on o = 1.
The results are based on 10* independent simulations. We report the estimated tail probability (est.), the
estimated standard deviation (sd.) of L, (), and the coefficient of variation (CV), which is the ratio sd. /est..
We also give the theoretical values of the tail probabilities, that is, P(max; f(t;) > b/o) = 1 — ®(b/c)1?
where ®(z) = [*_ \/%e‘ﬁ/ 2dt denotes the left tail probability of the standard Gaussian distribution. We
can see that the estimator is more efficient when o value is equal to the designed value 1 and less for other

o values. In particular, when o = 0.3, it gives 0 estimated value.

o est. sd. CV Theoretical Value
0.3 0 0 NA 7.62e-22
0.6 1.35e-05 1.35e-03 1.00e+02 2.87e-05

1 1.26e-01 2.32e-02 1.84e-01 1.26e-01

TABLE 1: Estimates based on Algorithm 1

The above non-uniform efficiency result can be extended, with similar techniques, to the importance sampling
estimators in [2] when {f(t),t € T} is a continuous Gaussian random field. It can also be extended to the
case when other change of measures are used such as [20]. In general, if the construction of a rare-event
change of measure relies heavily on the mean and variance functions, then it would not be efficient for another

set of functions.

2.3. Uniform Efficiency

In applications, one is often interested in estimating many probabilities for a certain range of mean and
variance parameter values, such as evaluating the tail probabilities of a loss distribution for a range of loss
thresholds in portfolio credit risk management (e.g., [15, 16]). This motivates us to construct a change of
measure such that the corresponding importance sampling estimator L, ,(b) is polynomially efficient for a

family of functions p and o. In particular, this paper considers p and o satisfying the following condition:

Cl. Forallt € T, u(t) € [, pru] and o2(t) € [07, 02]. Moreover, p and o are Holder continuous in the sense
that there exists positive constants kg and 3 > 0 such that for all s, € T' |o(t) —o(s)| + |u(t) — p(s)] <

kls —t|P.

Denote by C(u, i, 01,04, 8, ki) the class of functions o(-) and p(-) that satisfy Assumption C1. We

introduce the following uniform efficiency criterion.

Definition 2. (Uniform polynomially efficient change of measure.) We say that a change of measure Q

is uniformly polynomially efficient with the order ¢ > 0 if there exists a constant by > 0 such that the
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importance sampling estimator

Lay(b) = G (suplo)1(0) + (0} > b)

teT

satisfies

sup Var(Lou(b)) < o0. (6)
b>bo 1,0 €C (s 01,00, o) | 108 Wo (D) 102 (D)

Similar to the previous discussion, we consider the relative accuracy of a class of the importance sampling
estimators corresponding to a uniformly polynomially efficient change of measure. Let the @) be uniformly
polynomially efficient for o (-), u(-) € C(p, fin, 01, 0w, B, £1r). Then, according to (3), there exists some £, > 0,
such that the averaged estimator Z, ,(b) = 237" LEfL(b) based on n = k,b*6~te~? i.i.d. Monte Carlo

samples satisfies

sup P (|Z5,,(b) — we,u(b)| > ewg, (b)) < 6.

(0,1) EC(11 s 01,0 u, By K 1)

Remark 2. Although the current paper focuses on rare-event simulation for the extremes of Gaussian
random fields, the uniform efficiency criterion as well as the proposed method can be easily extended to
other Gaussian-related rare-event problems, such as the exponential integrals of Gaussian random fields
[e.g., 27, 28], where the mean and variance functions are unspecified and we are interested in estimating
a family of tail probabilities. Moreover, the proposed method can be extended to the estimation of non-
Gaussian tail probabilities. For instance, in statistical hypothesis testing with data generated independently
from certain distribution with unknown parameters that are of interest, it often needs to evaluate the test

power/error probabilities for a range of model parameters as the sample size increase; see [22] for an example.

Remark 3. In the literature, a similar uniform efficiency definition has been proposed in [16] to design
an algorithm that is asymptotically efficient uniformly for a family of probability sets when estimating the
tail probabilities of sums of light tailed random variables. Differently from this study, the random variable

parameters are assumed to be known in their case.

3. Uniformly Efficient Estimation

3.1. Discrete case

We start with the case when T contains finite points and propose a new change of measure which gives a
uniformly efficient estimator. We assume T := {t1,--- ,tpr}. We describe the new measure @) in two ways.

First, we specify the sampling scheme of f under @) and then provide its Radon-Nikodym derivative with
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respect to P. Under the measure @, f(t) is generated according to the following algorithm.
Algorithm 2: Simulating f(-) under @
Input: T = {t1,--- ,tap}, 0 = ab~! for some constant a > 0.

1 Simulate a random variable ¢ with respect to some positive continuous density function g on
[o1, 005 + 02];

2 Simulate a random variable v with respect to some positive continuous density function h on
(11, o + S5

3 Simulate a random variable 7 uniformly over T' = {t1,- -+ ,tn};

4 Given the realized ¢, v and 7, simulate f(7) conditional on ¢f(7) + v > b;

w

Given (7, f(7)), simulate the Gaussian process {f(t) : t # 7,t € T} from the original conditional
distribution under P.

Output: f(t) fort €T

For the measure @Q defined above, it is not hard to verify that P and @ are mutually absolutely continuous

with the Radon-Nikodym derivative being

aQ _ ”“Mb/oﬁéb Sty I(sf(t) +v > b)
P J, MP(sf(t1) +v > b)

g(s)h(v)dsdu.

This gives the importance sampling estimator
SN Vil (ORI B
Lo, =1 h(v)dsd
</ / MP(f() v > ) SO
xI(supy.;, ero(ti) f(ti) + p(ti) > b). (7)

Note that under @, if maxs,cro(t;)f(t;) + p(t;) > b, then ¢f(¢;) + v > b holds for all 4, ¢ > maxy,er o(t;)
and v > maxy,er p(t;). Therefore, the change of measure is well defined.

We take a closer look at the proposed change of measure Q by comparing it with the measure Q' discussed
in Section 2.2. We can see that steps 1 and 2 of Algorithm 1 requires the knowledge of the mean and variance
function g and . When p and o are unknown, running Algorithm 1 with a misspecified ¢’ and ¢’ may
cause inefficiency. The proposed Algorithm 2 avoids this inefficiency by introducing prior probability density
functions g and h. Intuitively, the proposed algorithm explores each possible values of mean and variance
of the random field at a random index (steps 1-3), and is a hybrid scheme for all o(-) and u(-) that take
values in the support of g and h. The next proposition states the uniform efficiency of the proposed change

of measure.

Proposition 2. Let L, ,(b) be defined in (7), then there exist constants by and kp, independent of o(-), pu(-)

and b and for b > by,
E(L (b))
M2b6w2 u(0) —
for all p and o satisfying C1.

Note that |log(wg,,(b))| = O(b?). Therefore, the above proposition gives the uniformly polynomial efficiency
of @) with the order ¢ = 3 for the discrete case.
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Remark 4. The parameter §, in Algorithm 2 is introduced to control the second moment of the importance
sampling estimator. Otherwise, consider the case of constant variance o € [0}, 0,] and zero mean pu = 0.
Then for o taking the value of oy, denote the corresponding estimator by L,, n(b) and the second moment

of Ly, n(b) is lower bounded by

2
POz 0] = B2 |(G5)  maxourie) > b o w1 >

[d
dQ dQ’
_ (/ " [ R ()>b>g<<>h<v>d<d”> i mexouf(t) > b

. MP §f(t1) > b)
> P(ouf(0) > b)P(maxoyf(ti) > b)

(/ﬂi /(,l ](mZaXf(ti)><_1b)g(<)h(u)d<du) ’maxf( ) > on b]

However, the conditional expectation cannot be controlled and we have the estimator L, n(b) is not efficient

for o = o,

Remark 5. To evaluate the Radon-Nikodym derivative in (7), we need to calculate the integral

i B (S (1) +v > )
/Mz / MP gf(tl) T > b) g(g)h(’/)dgdu.

Define

Putdy  poutdy gz + v > b)
/ / =gl () (s)

— 2
where ®(x) = f:o \/%e_%dt is the right tail probability of a standard Gaussian distribution, then we have

putdy  poutoE Zz 1 gf( )+ v > b)
/ / MP(f() v > b SO =5 Zl

Therefore, we only need to evaluate I(f(¢;)) for all f(¢;) simulated by Algorithm 2. We use the following

simplification for the function I(z). Let s = b_T”, then

Z) - / /b§5611,§612,8<z C/(I)(S)g(g)h(b - Sg)dCds - /s<z 1/‘1)(8) »ZG(Zih)ﬂ[g gh(b - Sg)g(g)dgds (9)

where Iy = [y, iy, + 6], and I = [0y, 04, + 62]. We can then choose h(-) and g(-) so that the inner integral
in (9) has a closed form expression. In particular, in the numerical examples in this paper, we choose g(-)
and h(-) to be the density functions of uniform distributions. In this case, let 7(s) = (o + 07 — 07) ™ (pu +

T fce(g—éh)mz ds?, then [(2) can be further simplified as

which is a one-dimensional integral and can be evaluated numerically.
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3.2. Continuous case

Direct simulation of a continuous random field is typically not a feasible task, and the change of measure
proposed in the previous subsection is not directly applicable. Thus, we use a discrete object to approximate
the continuous fields for the implementation. In particular, we create a regular lattice covering T in the
following way. Let G q be a countable subset of R4 Gnag= {(%, iﬁz, . lﬁd) T < Z} . That is, Gnq

is a regular lattice on R?. Furthermore, let
In =GnanT, (10)

which is the sub-lattice intersecting with 7. Since T is compact, Ty is a finite set. We enumerate the
elements in Ty = {t1, -+ ,tar}. Because T is compact, we have M = O(N?). Let
ruox®) = P sup o(0)1(0) + (e > ).
t;€Tn
We use we,,,n(b) as a discrete approximation of w,,,(b). We estimate w,,, n(b) by importance sampling,
which is based on the change of measure proposed in Section 3.1. In particular we define @)y and Py as the
discrete versions (on Tx) of @ and P respectively. Then dQy/dPy takes the form:

ae puton oo S (s () + v > b)
dP]]\\I] /A;l / MP gf(tl) +u> b) g(§)h(V)d§d1/ (11)

Note that here M depends on N and goes to infinity as N — co. This gives importance sampling estimator

putos poutdl M F(t) + v > b) o
Lot </u / MP(f(t) +v>b) ¢ (g)h(”dgd”)

XI(supy.y,ery o (i) f (t:) + p(ti) > b).

The discretization usually introduces bias. The next two theorems control the bias and variance of the

estimator L, , n(b) under the following assumptions.

C2 There exists a positive constant x,, such that sup,c, minger, [t —t'| < 52 for all N.
C3 The Gaussian random field f is almost surely continuous.

C4 Define the correlation function r(s,t) = E(f(s)f(t)). There exists 8/ > 0 and x; > 0 such that
[r(t,s) = r(t',s")] < Kyllt =117 + |s = 5|7 (12)

for all s, t,s',t' € T.

Theorem 1. Let * = min(S3,8’) and Ny(e,b) = p2/B" (5% +2-e0) —2/B 20 Upder Assumptions C1-C/, for
any g0 > 0, there exist constants ko and by such that for any e € (0,1), if N > No(e,b) and b > by, then

W, (b) = Wo,u(B)]

<e€
We,u (D)

umformly fOT’ M, o€ C(ul7uu70—l70—u767’%H)'



Uniformly Efficient Simulation for Gaussian Fields 11

Theorem 2. Let Ny(g,b) be defined in Theorem 1. Under Assumptions C1-C4, if N > Ny(e,b), then there

exist constants by > 0 (depending on €o) and k. > 0 such that

EQN Lg,,u,N(b)
sup

— DR L <k,
5 — :
b>bg,e€(0,1) bqwa,/,L(b)E o

uniformly for p,o € C(uy, fhu, 01, 0w, B, Kar) with ¢ = 4d/6*(g—il +2+¢9)+6 and g1 = 4d/5* + 2dey.

We consider the relative accuracy of the importance sampling estimator based on Q. Let Lff)u N (D) be

i.i.d. copies of L, ,(b) for i =1,..,n. Let

n

1 i
Zaun(®) = — 3 L5, n(b). (13)
=1

With the aid of Chebyshev’s inequality, we have

E(Zo,u,n(b) — wop (0)* )

5211)(2,7#({))

P(|Zop,n (0) = wo,u(b)] > ew,,,(b)) <
The mean squared error E(Z,, ,, n(b) — w,,,(b))? can be written as
E(Zg,u,n (b) — wo,u(b))Q = [EZy N (b) — wa,u(b)]Z + Var(Zou,n(b)).

The first and second terms on the right-hand side of the above display is the squared bias and the variance
of the estimator Z, , n(b), respectively. If we choose N = No(£6'/2,b) according to Theorem 1 and let
n = 2keble~1 255 1 where q and ¢; are defined in Theorem 2, then the MSE is well controlled relative

to w,,,(b) and so is the relative accuracy. We summarize this result in the next corollary.

Corollary 1. Under the Assumption C1-C4, let Z, ,, n(b) be defined in (13). If we choose n = Ueble =025~ 5 ~
and N = Ny(£6'/2,b), then
P (|Zo,,n(b)/we,u,(b) — 1] > €) < 0. (14)

Remark 6. The computational complexity for generating Z, , n(b) is n multiplied by the cost for generating
one copy of Ly, n(b). The cost for generating L, , v (b) is of order O(M?3) = O(N3?), which is mainly the
cost of generating a multivariate Gaussian vector (line 5 of Algorithm 2). The overall computational cost
is also a polynomial in €, and b. Algorithm with such a computation cost to achieve (14) is sometimes

referred to as a fully polynomial randomized approximation scheme (FPRAS), see [2] for more details.

4. Simulation Studies

In this section, we present numerical examples to show the performance of the proposed algorithm. All
the results are based on n = 10* independent simulations. The discretization size is chosen as M = 40 in
Example 2-5. In each numerical example, we report the estimated tail probabilities, which will be referred to
as “est.”, along with the estimated standard deviations, that is sd?{L, ,(b)} = \/Var9{L, ,(b)}, which will
be referred to as “sd.”. The standard error of the estimator with 10* Monte Carlo samples is sd./100. We

also report the coefficient of variation (CV) of the estimators, which is the ratio sd./est. of the estimators.
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We start with the discrete setting in Example 1, where T' = {1,--- ,100} and {f(¢),t = 1,---,100} are
iid. standard normal random variables. We take u(t) = 0 and o(t) = o with o € [0.3,1] for all t € T,
and the probability of interest is P(omax; f(t) > b) for b = 3. Table 2 displays the simulation results
for ¢ = 0.3,0.6 and 1 using the proposed method. For different o values, the estimates are close to the

true values. Compared with the result of Algorithm 1 in Table 1, the proposed method gives better overall

performance.
o est. sd. CV  Theoretical Value
0.3 7.55e-22 5.33e-21 7.05 7.62e-22
0.6 2.93e-05 1.33e-04 4.52 2.87e-05
1 1.26e-01  5.92e-01 4.69 1.26e-01

TABLE 2: Estimates of w,(b), sd9 (Lo, (b)), and sd?(Ls,.(b))/we(b). All results are based on 10* independent

simulations and thus the standard errors of the estimates are sd (Lo, (b))/100.

We proceed to an example of a continuous Gaussian random field, whose tail probability of the supremum

is in a closed-form.

Example 2. Consider the Gaussian random field f(¢) = X cost+Y sint, , where X and Y are independent
standard Gaussian variables and T = [0,3/4]. We let b = 4 and consider the class of constant variance and

mean functions: o(t) = o and p(t) = p, with o € [0.5,1] and p € [—0.5,0.5].

For constant mean and variance functions considered in this example, the probability P(sup,c(of(t) +

p) > b) is known to be in a closed form [3]:

P ( sup (of(t)+p) > b) =®((b—p)/o)+ i67(177”)2/(2‘72). (15)

0<t<3/4 8w
The simulation results for Example 2 are summarized in Table 3. Similar to Example 1, we report the
estimated probability, the standard deviation of the estimator, and its coefficient of variation. The theoretical
value is computed according to (15). We can see that for all combinations of o and p in Table 3, the estimated
probabilities are close to the theoretical values. We also see that as the probability of interest decrease from
8.18 x 1076 to 4.01 x 10~ '2, the CV of the estimator does not increase substantially (from 2.7 to 6.2). This
finding is consistent with our theoretical efficiency analysis of the proposed estimator.

We proceed to examples where the mean and variance functions are not constants. We consider a

continuous and centered Gaussian random field {f(¢) : 0 <t < 1}, whose covariance function is

r(s,t) = E(f(s)f(t)) = e 1"~ (16)

In particular, in Example 3 we consider a Gaussian random field with nonconstant mean and constant
variance; in Example 4 we consider a Gaussian field with constant mean and nonconstant variance; and in

Example 5, both mean and variance functions are nonconstant.
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o n est. sd. CV  theoretical value
0.5 0.5 4.18E-12 259E-11 6.2 4.01E-12
06 0.3 1.03E-09 4.38E-09 4.2 1.01E-09
0.7 0.1 3.34E-08 1.18E-07 3.5 3.43E-08
0.8 -0.1 3.68E-07 1.19E-06 3.2 3.85E-07
09 -0.3 210E-06 5.97E-06 2.8 2.20E-06
1  -0.5 8.11E-06 2.20E-05 2.7 8.18E-06

TABLE 3: Simulation result for Example 2 with b = 4 and 6, = %. Theoretical values are computed according to (15).

Example 3. Consider the Gaussian random field f(¢) defined in (16), and the class of variance and mean
functions o(t) = 1 and u(t) = pit, for f1 € [—0.5,0.5]. The probability of interest is P (supte[m] f(t)+ bt > b)
for b=717.

We summarize the simulation results for Example 3 in Figure 1. Figure 1(a) shows the scatter plot of the
estimated probability (y-axis) against 8; (x-axis). Figure 1(b) shows the scatter plot of the CV (y-axis)
against 81 (x-axis). We see that the probability of interest is an increasing function in ;. Moreover, when
the estimated probability is within the range from 1 x 107 to 2 x 1071%, the CV of the estimator is always

controlled within 3.2, showing the good performance of the proposed estimation method.

2e-10

est
Se-11 1e-10

2e-11

1e-11

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

beta beta
(a) Estimates as a function of 1 (b) CV as a function of 81

FIGURE 1: Simulation results for Example 3, where b = 7 and §, = 1/b.

Example 4. Consider the Gaussian random field {f(¢),t € T} defined in (16) and the class of variance
and mean functions o(t) = 1 — 0.5(t — 82)? and u(t) = 0, where 85 € [0,1]. The probability of interest is
P (supte[o,l][l — 0.5t — B2)2)f(t) > b) for b= 1.

For Example 4, the scatter plot of estimated probability and the CV of the estimator are presented in Figure 2.
Note that in Example 4, the maximum variance max;cr Var(o(t) f(t)) = Var(o(B82)f(B2)) = 1. Therefore,
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for all 3, € [0, 1] the probability of interest has the same exponential decay rate P(sup;cjo 1 o(t)f(t) > b) =

¢~ oM rmaer ‘Ef”(”(”f(t)) = e*(1+"(1))b2/2, as b — oco. In Figure 2(a), we see that the estimated probability
is relatively small when f3; is close to the boundary values 0 or 1, compared to the case when (5 € [0.2,0.8]
and is far away from the boundary values. For 35 € [0.2,0.8] the estimated probability stays around 9 x 10712
and does not fluctuate much. For all 85 € [0, 1], the maximum CV of the estimator is controlled within 10.

This is again consistent with our theoretical results.

8e-12 9e-12
cv
7.0 75

7e-12
6.5
I

6e-12
6.0

55

beta beta
(a) Estimates as a function of 82 (b) CV as a function of B2

FIGURE 2: Simulation results for Example 4, where b = 7 and §, = 1/b.

Example 5. Consider the Gaussian random field {f(¢),t € T} defined in (16), and the class of variance
and mean functions o(t) = 1 — 0.5(x — 32)? and u(t) = Bit, where 51 € [—0.5,0.5] and B2 € [0,1]. The
probability of interest is P(sup,co {[1 — 0.5 x (t — B2)] f(t) + f1t} > b), for b= 7.

Table 4 shows the simulated results for different choices of 51 and B5. We see that the estimated probabilities
range from 4.2 x 1072 to 1.16 x 10~1°, The maximum CV in Table 4 is 9.9. This means that the standard

error of the averaged Monte Carlo estimator with 10* samples is controlled within 9.9% x E9L, ,(b).

5. Proofs of main results

Throughout the proof, we write a(b) = O(c(b)) if there exists a positive constant x, independent of
b,o(-), u(+), such that |a(b)|/|c(b)| < k. We also write a(b) = o(c(b)) if |a(b)|/|c(b)] — 0 as b — oo, uniformly
in o(-) and p(-) satisfying Assumption C1. We will use % as a generic notation to denote large and not-so-
important constants (independent of p, o and b) whose value may vary from place to place. Similarly, we

use € as a generic notation for small positive constants.

Proof of Proposition 1. We start with the proof of Proposition 1 (i). We can see that if maxy,ero’(¢;) f(¢:)+
w(t;) > b, then maxy,er o(t;) f(¢;) + p(t;) > b always happens and the change of measure is well defined. We
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51 B2 est. sd. CV
-0.50 0.00 4.20E-12 4.03E-11 9.6
-0.33 0.17 5.60E-12 3.69E-11 6.6
-0.17 0.33 5.69E-12 3.29E-11 5.8
0.00 0.50 8.78E-12 5.09E-11 5.8
0.17 0.67 2.09E-11 1.27E-10 6.1
0.33 0.83 5.82E-11 4.04E-10 6.9
0.50 1.00 1.16E-10 1.15E-09 9.9

TABLE 4: Simulation results for Example 5, where b = 7 and d, = 2/b.
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2
= F ) smaxy,ero’ (6) f(t:) + p(ts) > b]

_E ;maxtiem'w(ti)+u<ti>>b]

= I

maxy,ero’ (t:) f(t:) + p(t;) > b] :

(o (t:) f(t) + p(ts) > b)) X W, (D)
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5
5
ga|
S)
=
=
=
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=
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=
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%
=

I
SN
PO
[P
g

9 2
= exp{(1+o(1))b)2(1+o(1)) ' 2}’

2maxy, e o(t; 2maxy, e o’ (t;)

where we used the following lemma, whose proof is given in Section 5.1, to obtain that

war (b) = exp {—(1 +o(1) b’ } .

2 maXg, eT O'/(tz‘)Q

Lemma 1. Let {f(t) : t € T} be a centered, unit variance and continuous Gaussian random field living on
a compact set T. Assume that o(t) > 0 and u(t) are continuous functions. Then, there exists positive € such

that

2

b _ (—p)?
2maxcer 220 g P(SUP a(t)f(t) + u(t) > b) > & 'maxe 270

P(Supa(t)f(t) +u(t) > b) = ¢ (o)

teT teT teT
Under the assumption that max;,er o’ (t;) < maxy,er o(t;), we know that for e < £(1 — %)

o' [( ;5)2 maxy o’ (1) (1) + plts) > )

— >w_ (b)),
wg",u,(b> H
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which tends to infinity as b — co.

We proceed to the proof of part (ii). Let ¢, = argmaxiero’(¢). We consider the event F =
{0/0" (tax) < [(thax) < ming er[b/o(t;)]}. Because maxy,er o’ (t;) > maxy,er o(t;), F is non-empty and
F C {maxy,er o' (t;) f(t;) + p/'(t;) > b}. Moreover, according to the sampling scheme in Algorithm 1, we
have Qf(F) > 0. On the other hand, when the event I happens, Zi\il I(o(t;) f(t:) > b) = 0, therefore

QT( o7 =00) = Q' (F) > 0. In other word, 4 W is not well-defined. O

Proof of Proposition 2. Define the random index ¢* := argmaxier[o(¢) f(t) + p(t)]. We restrict our
analysis to the integral over the region [u(t*), u(t*) + 0] x [o(t*), o(t*) + 67] and arrive at

EC[LY ,(b)]

o +0p /ou—i-éb Zz L §f( )+V> b)
MP(cf(t) +v > b)

-2
=F%

o(S)dsdr) s er o(6)(8) + ult) > ]

T S 1S (t) + v > b)

()
cpe ([ [ B i) s en ot st0) + ) > 1
([ ]

()48, U(t )+07 Z ( f(t;) +v>b)

=E<
o(t*) M(I)(bTy)

—2
g(c)h(u)dcdu) masxe.er ot [(t) + ults) > b]

(%)

(17)

Note that for all (¢,v) € [u(t*), u(t*)+0] x [o(t*), o(t*) +0%], we have ¢ f(t*) +v > maxy, et o(t;) f(t:) +p(ts).
f(t:)+u(t;) > bimplies ¢ f(¢t*) +v > b. Consequently, Z A f(t) +v >
b) > 1 on the event maxy,cro(t;)f(t;) + p(t;) > b. Therefore, (17) is further bounded from above by

M?E® K/j(t o /U(t e g( ))d§du> - smaxy, ero(t;) f(t) + p(ts) > b}

(%)

t
Therefore, the event maxy, e o (¢;)

IN

IN

n(t)+oy  po(t” )+5b -2
M2EQ[ / / S)h( V)be == dgdz/) smaxy, ero(t;) f(t:) + p(t;) > b}
n(t*)

(18)

(b—1)2 (b—p(t*))?
2¢

= O(1)be 27" . Therefore,

Note that for all (¢,v) € [u(t*), u(t*)+ 8] x [o(t*), o (t*) + 7], we have be
(18) is bounded from above by

n(t*)+0  po(t™)+65 (b=nu(t*)? -2
< O(l)MQEQ{(/ / g(S)h(v)be 272G d(du) smaxy, ero(t;) f(t:) + p(ts) > b
() o(t*)
%< 672 10 _ (b—p(t*))?
= OMM?, 2R [ HEE maxy, cro(t) (1) + plti) > b
6 _ (b—p())?
< O(1)M?5,°b?maxe ¢ . (19)

t; €T

On the other hand, according to Lemma 1 we have

_b—u(ty)
P( sup o(t;) f(t:) + p(te,) > b) > éb 'maxe 277,
t;eT €T
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Combining this and (19), we have that there exists by sufficiently large such that for b > by

EQ[Lg,u(b);maxtiETU(ti)f(ti) + p(t) >0
M2b6w(2,,#(b) = 0.

This completes our proof. O

Proof of Theorem 1. Note that sup,cr o(t)f(t) 4+ p(t) > sup,er, o(t)f(t) + pu(t), we have

‘P(?gg(t)f(t) +ou(t) > b) - P(tsg;a o) f (1) + p(t) > b)‘

= P(supo()f(t) + put) > b, sup a(t)f(t) + u(t) < b).
teT teTn

We split the above probability into two parts.

P(supo(t)f(t) + u(t) > b, sup o(t)f(£) + pu(t) <)
teT teTn

- P(b <supa(t)f(t) + pu(t) <b+ % sup o(t)f(t) + p(t) < b)
teT teTn

+P(sup () f(£) + u(t) > b+ 7, sup o(t)f (1) + pu(t) <b),
teT b teTn

which is further bounded from above by
g 7
P(b < supo(t)f(t) + p(t) < b+ 7) + P(supa(t)f(t) Fult) > b+ 2 sup o(8)f(£) + p(t) < b), (20)
teT b teT b tery

where we will choose y later. We proceed to upper bounds of the above two terms separately. For the first

term, we apply the following Lemma.

Lemma 2. (Proposition 6.5 of [2].) Under Assumptions C1,C3 and C4, for any v > 0, let f* = min(f, 5')
and p = ;—ff + dv + 1, where d is the dimension of T. There exists constants by, A € (0,00) so that for all
b > bO > 17

P((maxo(t) £ (1) + plt) < b+ % \ max o (6)/(t) + () > b) < Aab. (21)

teT

With the aid of the above lemma with v = [317*’ we have for b > by

P(b < fgIT)U(t)f(t) +u(t) <b+ %)

= P(maxo()f () +pt) > b) P(maxo(®)f(t) +u(t) <b+ 7 | maxa(®)f(t) + pult) > b)
< )\vpr(I?ang(U(t)f(t) + p(t) > b)

with p = g—f + 1. We choose v := 27A\71b= "¢, then the above display gives the following upper bound for
the first term in (20)

P(b < i‘g;)a(t)f(t) +u(t) <b+ %) < %wo',,u(b).
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We proceed to the second term in (20). According to Assumption C2, we have

P(supo(®)f(t) +u(t) > b+ 7., sup o(t)f(t) + u(t) < b)
teT teTn

< P(sw Jo(OF() +ult) — (0()f(s) + (s > 1)

t,s€T,|t—s|<Kpm /N

which is further bounded from above by

P s W@ -of@+  sp ) - p(s)] > D). (22)
t,s€T,|t—s|<Km /N t,s€T,|t—s|<Km /N

According to Assumption C1, we have

s |ult) — pls)] = O NP,
t,s€T,|t—s|<km /N

Plugging this into (22), we have

P sup  o(®f(1) +u() = o(s)f(s) + uls)] > 1)
t,s€T,|t—s|<km /N (23)
<P s Jo(Of() —als)f(s)] > 1 — ki /N,

t,s€T,|t—s|<km /N

We choose N > &AV/F"p(rt1)/5°2=1/8" for f; sufficiently large, then ¥ — k, <L+ > 2. Therefore, we further

have

P s o(®f(t) + u(t) = o(s)f(s) + uls) > 1)

t,8€T,|t=s|<km /N

<P(sw o) () f(s)] > )

£,5ET [t—5| <k /N 2b

(24)

To control the above probability, we use the following lemma known as the Borell-TIS lemma, which is

proved independently by [10] and [33].

Lemma 3. (Borell-TIS.) Let {f(t);t € U}, where U is a compact set, be a mean zero Gaussian random field.
f is almost surely bounded on U. Then, Elsup, f(t)] < oo, and P (sup,cy f(t) — E[sup,ey f (t)] > b) <

exp (—%) , where o, = sup,¢y Varlf(t)].
u
We define a new Gaussian random field

§(s,t) = o(s)f(s) = o(t) f (1) (25)
The next lemma, whose proof will be provided in Section 5.1, characterizes ESup; e j1—s|<s,, /nS(5, 1)

Lemma 4. For all o, and f satisfying Assumptions C1, C3 and C4, there is a uniform constant kg > 0
such that

E sup €(s,t)] < ke NP /2log N
t,s€T,|t—s|<km /N
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Furthermore, the variance of £(s,t) is bounded from above by
Var(&(s,t)) = (a(s) — a(t)? + 20(s)o(t)(1 — (s, 1)) < k%|s — 1|7 +202[s —t|7 <O(]s —t[*").  (26)

According to Assumption C1 and C4, the above display is further bounded from above by

Var(&(s,1) < O(N~7) (27)
We choose N such that k¢ N -5 log N < Z. Then according to the Borell-TIS lemma and Lemma 4, we
have
P( sup  |&(s,t)] > l) < exp 76772 . (28)
lt—s|< =g 7 ab/ = N=F"p?

The above display is of order o(cw, (b)) if N%ib? > %" max(—loge, b?), for a large enough and possibly
different constant &. Therefore, it is sufficient to choose N > &max(—loge,b?)'/8 b2/ =2/8" (log b)F.
Combining this with our choice of 7, and recall our choice of p in Lemma 2 it is sufficient to choose N >
R max(—loge, b2)1/ﬂ*b2/ﬁ*+2/6*(%+1)5_2/'8*(log b)*, which is bounded by Ny = b2/ 07 (G 24200 g=2/8" ~e0 o

any o > 0 and b sufficiently large. This completes our proof. |

Proof of Theorem 2. According to Proposition 2 with M = O(N4), we have

E°[L?

2 (0)] = ONZ16,wl (D).

o,u,N
According to the choice of Ny in Theorem 1, we have

ER[L2, (b)] = O(1)p*¥/F" (FEt2te0)+0,—dd/5"—2deo 2 0 (p)

uniformly for u,o € C(uy, o, 01, 0w, B, k). This completes our proof. a

Proof of Corollary 1. The mean squared error of Z, , n(b) is decomposed as the sum of its bias and

E(Zgu, 5 (0)=wou(b)]* = [EZo .5 ()= wou (0)]*+V ar(Zo o, v () = [Wo 0, (0) ~weu (0)*+Var (Lo i, n (b)) /1.

Setting & := £6/? in Theorem 1, we have [wo,,,n (b) — we,.(b)]? < e26w?2 ,(b)/2 for N > N(£6/2,b). Fur-
thermore, according to Theorem 2, we have Var(Le,, v (b))/n < 26w ,(b)/2 for n > Qkieble= 12551,
Consequently, for such N and n we have E[Z, , n(b) — w, ,(b)]* < £25. Thanks to Chebyshev’s inequality,
we have

EZyun(b) — wa,u(b)P
o2

P(|Zsu,n(b) —wo (D) > €) < <.

Therefore, Z, ,, v (b) satisfies (14). O
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5.1. Proofs of supporting lemmas

Proof of Lemma 1. First, according to Lemma 3, we have

P(sup o(t)f(t) + p(t) > b) <P <sup o(t)f(t) > b— max pu(t )> <e ~e M) 2@ (29)
teT teT teT

On the other hand, for each ¢t € T we have

P(supo(t) (1) + pu(t) > b) > P(o() (1) + pu(t) > b) = P(f(t) > b- “(t)),

teT

which is further bounded from below by

1 ot o3(t Y CETCS) A I
P(supo)f(®) +(t) > 1) = mau)(b—(u)(t) - (b—%))ﬁ)e IO =@l w0,

To obtain the last equation in the above display, we used the fact that u(t) € [, ] and o(¢) € [0y, 04] with

oy > 0. Taking the maximum of the right-hand side of the above display, we have

_(b—p@)?
P(sup o(t)f(t) + p(t) > b) > & 'maxe 270 . (30)
teT teT
Combining the above expression with (29), we complete the proof. O

Proof of Lemma 4. To prove this lemma, we will need the following entropy bound ([14]).

Lemma 5. Let f be a centered Gaussian field living on a metric space U. Define the pseudo-metric

df(s,t) = VE(f(s) = f(1))*.

Assume that U is a compact space under the metric dy and for each € > 0. Denote by N(e) the smallest

number of balls with radius € under the metric dy. Then there exists a universal constant K such that

diam (U )
E[igg ) <K /0 (log N (c))? de. (31)

Let U = {(s,t) : s,t € T,|s — t| < ki~ } and
dg((s,1), (s',1)) = E[€(s. 1) — &(s,1)]* = Elé(s,s") — €(t, )]
We first investigate the metric de. We have
dZ((s,1), (s',1)) < 2Var(&(s,s") + 2Var(&(t,t')). (32)

Applying (26) to the above display, we have that there is a & uniformly for all o, u satisfying Assumption
C1, such that

de((5.1), (s, 1')) < Ay fls — /19" + [t — 1], (33)

According to the relationship between the [, norms, we have (|s—s'|#" +[t—#'|8") 7 <di \/|s s+ |t —
The result, together with (33), implies that B((s,t),esﬂ*) C By ((s,t),e) for some constant € that only
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depends on d, 3* and K, where B and B¢ denote balls under the Euclidean norm and d¢ metrics respec-
tively. Note that the set T' x T can be covered by R B* many B (Esf%*) balls with a possibly different &.

Consequently, the set ¢ can be covered by the same number of By, (¢) balls. Therefore, we have
4d
log(N(e)) < logk + 7 loge™!

On the other hand, we have d¢((s,t), (s',t')) < 2Var({(s,t)) + 2Var(§(s',t')). Also according to (26), we
have dZ((s,t), (s',1')) = O(|s — t B" 4 |s" — t'|%"). Therefore, for |s — t| < ki, /N we have dg((s,t), (s, 1)) =
O(N—F"/2). Consequently, diam(U) < &KN—P"/2. According to Lemma 5, we have

4d RN
E sup < R(—*)l/Q/ (loge™1)/2de = O(N=P"/21og N).
t,5€T [t—s| <k B 0
This completes our proof. O
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