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Abstract

This paper considers the problem of simultaneously estimating rare-event

probabilities for a class of Gaussian random fields. A conventional rare-

event simulation method is usually tailored to a specific rare event and

consequently would lose estimation efficiency for different events of interest,

which often results in additional computational cost in such simultaneous

estimation problem. To overcome this issue, we propose a uniformly efficient

estimator for a general family of Hölder continuous Gaussian random fields.

We establish the asymptotic and uniform efficiency of the proposed method

and also conduct simulation studies to illustrate its effectiveness.
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1. Introduction

Consider a continuous Gaussian random field {f(t) : t ∈ T} with zero mean and unit variance, living

on a d-dimensional compact set T ⊂ Rd; that is, for every finite subset of {t1, ..., tn} ⊂ T , (f(t1), ..., f(tn))

is a multivariate Gaussian random vector with Ef(ti) = 0 and V ar(f(ti)) = 1 for i = 1, · · · , n. We are

interested in estimating the tail probability

wσ,µ(b) = P

(

sup
t∈T

{σ(t)f(t) + µ(t)} > b

)

, as b → ∞,

simultaneously for a class of continuous mean and variance functions µ(t) and σ2(t), where the functions

µ(t) and σ2(t) may be unspecified and only known to be in certain ranges.

The extremes of Gaussian random fields have wide applications in finance, spatial analysis, physical

oceanography, and many other disciplines [4, 5]. Tail probabilities of the extremes have been extensively

studied in the literature, with its focus mostly on the development of approximations and bounds for the
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suprema [e.g., 3, 7, 9–13, 18, 19, 29–33]. Tail probabilities of other convex functions of Gaussian random

fields have also been studied; see [21, 23, 25, 28].

Most of the sharp theoretical approximations developed in the literature require the evaluation of cer-

tain constants that are hard to estimate, such as the Lipschitz-Killing curvatures and Pickands’ constant.

Moreover, although the asymptotic results may provide good approximations for large tail values as b → ∞,

evaluation of the approximation results for finite b may be challenging and it is often unclear how large the

tail values are required to ensure the approximations within an acceptable range relative to the quantity of

interest. Therefore, to evaluate the tail probabilities, rare-event simulation serves as an appealing alternative

from a computational point of view. In particular, the design and the analysis do not require very sharp

approximations of the tail probabilities. Importance sampling based efficient simulation procedures have

been proposed in the literature to estimate the tail probabilities. Numerical methods for rare-event analysis

of the suprema were studied in [1, 2]; see also [8, 20, 24, 26–28, 34] for related studies.

To design asymptotically efficient importance sampling estimator, one needs to construct a change of

measure that is tailored to a specific event. Such construction usually requires detailed information of the

Gaussian random fields, such as µ(t) and σ(t) whose computations themselves are sometimes intensive.

In addition, the specific form of the change of measure is sensitive to µ(t) and σ(t) in the sense that the

entire simulation needs to be redone even if there is a tiny change of the system. This often leads to

additional computational overhead especially at the exploratory stage when one often needs to tune different

model parameters. This motivates us to seek for a single Monte Carlo scheme that is efficient for a class

of distributions. An advantage of such uniformly efficient methods is that there is no need to regenerate

samples if there is a change in the original system and one just needs to recompute the importance weights.

This could save substantial computational time. Moreover, this can help researchers efficiently estimate

many probabilities for a certain range of mean and variance parameter values, which are often of practical

importance. For instance, in finance risk analysis, there is often uncertainty surrounding the true population

values for the mean and variance; portfolio credit risk management may require the estimation of the tail

probabilities of extremes for a family of Gaussian processes; in physical system reliability analysis, we may

need to evaluate the failure probability for a range of system parameters.

To address the above issues, this study focuses on the problem of simultaneous efficient estimation of

wσ,µ(b) for all possible µ(t) ∈ [µl, µu] and σ2(t) ∈ [σ2
l , σ

2
u], t ∈ T , where µl ≤ µu ∈ R and σl ≤ σu ∈ (0,∞)

are constants that are prespecified. We propose a mixture type change of measure that yields uniformly

efficient estimation (criterion defined in Section 2). In particular, the uniform efficiency result holds for

general Hölder continuous Gaussian random fields and therefore it is applicable to most of the practical

problems.

The remainder of the paper is organized as follows. In Section 2 we introduce some notions of efficiency and

computational complexity under the setting of rare-event simulation. Section 3 provides the construction of

our importance sampling estimator and shows the main properties of our algorithm. Numerical simulations
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are conducted in Section 4 and detailed proofs of our main theorems are given in Section 5.

2. Efficiency Criteria

2.1. Efficiency of rare-event simulation and importance sampling

We first introduce some general notions of rare-event simulations. Given that the tail probability wσ,µ(b)

converges to zero, it is usually meaningful to consider the relative error of a Monte Carlo estimator L(b) with

respect to wσ,µ(b). This is because a trivial estimator L∗(b) ≡ 0 has an error |L∗(b)−wσ,µ(b)| = wσ,µ(b) → 0.

In the literature of rare-event simulation (e.g., [2, 6, 17]), one usually employs the concept of polynomially

efficiency as an efficiency criterion.

Definition 1. (Polynomial efficiency.) An estimator L(b) is said to be polynomially efficient with the order

q in estimating wσ,µ(b) if EL(b) = wσ,µ(b) and there exist constants q ≥ 0 and b0 ≥ 0 such that

supb≥b0

V ar(L(b))

| logwσ,µ(b)|qw2
σ,µ(b)

< ∞. (1)

When q = 0, L(b) is also called strongly efficient.

To illustrate this efficiency criterion, we compare a polynomially efficient estimator with a standard Monte

Carlo estimator. Suppose that we want to estimate wσ,µ(b) with certain relative accuracy with a high

probability. That is, we would like to have an estimator Z(b) such that for some prescribed ε, δ > 0,

P (|Z(b)/wσ,µ(b)− 1| > ε) < δ. (2)

If a standard Monte Carlo simulation method is used, then it requires at least n = O(ε−2δ−1w−1
σ,µ(b))

i.i.d. replicates, according to the central limit theorem. By the Borell-TIS lemma (Lemma 3), we know

wσ,µ(b) ≤ exp{−(1 + o(1))b2/(2 supt∈T σ2(t))}. Therefore, n has to grow at an exponential rate in b2. On

the contrary, suppose that a polynomially efficient estimator of wσ,µ(b) has been obtained, denoted by L(b).

Let {L(j)(b) : j = 1, ..., n} be n i.i.d. copies of L(b). Then the averaged estimator Z(b) = 1
n

∑n
j=1 L

(j)(b)

has a mean squared error (MSE) E(Z(b) − wσ,µ(b))
2 = V ar(L(b))/n. A direct application of Chebyshev’s

inequality yields

P (|Z(b)/wσ,µ(b)− 1| ≥ ε) ≤ V ar(L(b))

nε2w2
σ,µ(b)

. (3)

Thus, if L(b) is a polynomially efficient estimator with the order q, it suffices to simulate n = ε−2δ−1| logwσ,µ(b)|q =

O(ε−2δ−1b2q) i.i.d. replicates of L(b) to achieve the accuracy in (2). Compared with the standard Monte

Carlo simulation, polynomially efficient estimators reduce the computational cost substantially for large b.

Remark 1. In the rare event analysis literature, another widely used efficiency criterion is the weakly

efficient ([6]). An estimator L(b) is said to be weakly efficient in estimating wσ,µ(b), if EL(b) = wσ,µ(b) and

for all positive constants ε > 0,

lim sup
b→∞

V ar(L(b))

w2−ε
σ,µ (b)

= 0.
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It is easy to verify that if L(b) is polynomially efficient, then L(b) is also weakly efficient. That is, polynomial

efficiency is a stronger criterion than the weak efficiency.

To construct polynomially efficient estimators, importance sampling is a commonly used method for the

variance reduction. In particular, we have

wσ,µ(b) = E
[

I
(

sup
t∈T

{σ(t)f(t) + µ(t)} > b
)]

= EQ
[dP

dQ
I
(

sup
t∈T

{σ(t)f(t) + µ(t)} > b
)]

,

where I(·) denotes the indicator function, Q is a probability measure that is absolutely continuous with

respect to P on the set {supt∈T {σ(t)f(t) + µ(t)} > b}, and we use E and EQ to denote the expectations

under the measures P and Q, respectively. Then, the random variable defined by

Lσ,µ(b) =
dP

dQ
I
(

sup
t∈T

{σ(t)f(t) + µ(t)} > b
)

(4)

is an unbiased estimator of wσ,µ(b) under the measure Q. To have an efficient estimator, we want to

choose Q such that the variance V arQ(Lσ,µ(b)) is small. It is straightforward to show that the optimal

change of measure is the conditional probability Q∗(·) := P (· | supt∈T {σ(t)f(t) + µ(t)} > b) = P (· ∩
{supt∈T {σ(t)f(t) + µ(t)} > b})/wσ,µ(b), for which the corresponding importance sampling estimator has a

zero variance. However, Q∗ cannot be implemented in practice because wσ,µ(b), the probability of interest,

is unknown beforehand. Therefore, constructing an efficient change of measure usually involves analysis and

approximation of the optimal change of measure Q∗.

2.2. Non-uniformly efficient issue and an example

Various importance sampling estimators for rare-event analysis of the suprema of Gaussian random fields

have been studied in [1, 2, 8, 20]. As the measure Q∗ depends on the mean and variance function σ(·) and
µ(·), the designed measures usually depend on the µ(·) and σ(·) as well. As a consequence, a measure Q that

gives an efficient estimator Lσ,µ(b) =
dP
dQI(supt∈T {σ(t)f(t) + µ(t)} > b) for wσ,µ(b) may not be efficient any

more for estimating wσ′,µ′(b), where σ′(t) and µ′(t) are two different variance and mean functions. That is,

the corresponding importance sampling estimator based on Q

Lσ′,µ′(b) :=
dP

dQ
I(sup

t∈T
{σ′(t)f(t) + µ′(t)} > b)

may not be an efficient estimator for wσ′,µ′(b) .

To illustrate the non-uniform efficiency issue, we take the estimator proposed in [2] as an example. For

simplicity, we consider the case when T contains finite points and write T := {t1, · · · , tM}.
For known µ and σ, [2] proposed the following simulation procedure in Algorithm 1. Let Q† be the

corresponding change of measure. We have

dQ†

dP
=

∑M
i=1 I(σ(ti)f(ti) + µ(ti) > b)

∑M
i=1 P (σ(ti)f(ti) + µ(ti) > b)

.

[2] showed that Lσ,µ(b) =
dP
dQ† I(supt∈T {σ(t)f(t) + µ(t)} > b) is a polynomially efficient estimator for wσ,µ(b)

with the order q = 0. We explain intuitively why this estimator is efficient. First, Algorithm 1 samples a
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Algorithm 1: Sampling procedure proposed by [2]

Input: T = {t1, · · · , tM}.
1 Simulate a random variable τ ∈ {t1, · · · , tM} according to the following probability measure:

P (τ = ti) =
P (σ(ti)f(ti) + µ(ti) > b)

∑M
j=1 P (σ(tj)f(tj) + µ(tj) > b)

; (5)

2 Given the realized τ , simulate f(τ) conditional on σ(τ)f(τ) + µ(τ) > b;

3 Given (τ, f(τ)), simulate the rest {f(t) : t 6= τ, t ∈ T} from the original conditional distribution under

P .

Output: f(t) for t ∈ T

random index τ whose distribution is approximating that of t∗ := argmaxti(σ(ti)f(ti) + µ(ti)). Second, it

simulates f(τ) approximately from the conditional distribution P (f(t∗) ∈ ·|f(t∗) > b). Third, Algorithm 1

simulates the f(t) at t 6= τ according to the original conditional distribution given (f(τ), τ). Combining the

three steps, the entire sample path {f(t) : t ∈ T} generated from Algorithm 1 approximately follows the

conditional distribution {f(t) : t ∈ T |maxti(σ(ti)f(ti) + µ(ti)) > b}. According to the discussion on page 4,

this conditional probability measure is the optimal change of measure. See [2] for rigorous justifications of

the above statements.

Let µ′ and σ′ be a different mean and variance function. We have Proposition 1 for the estimator

Lσ′,µ′(b) :=
dP

dQ† I
(

sup
t∈T

{σ′(t)f(t) + µ′(t)} > b
)

.

Proposition 1. Let µ′(t) = µ(t) = 0 for all t ∈ T .

(i) If σ′(t) ≤ σ(t) for all t ∈ T and maxti∈T σ′(ti) < maxti∈T σ(ti), then for some constant ε > 0,

lim
b→∞

EQ†
[ (

dP
dQ†

)2

; maxti∈Tσ
′(ti)f(ti) > b

]

w2−ε
σ′,µ(b)

= ∞.

(ii) If maxti∈T σ′(ti) > maxti∈T σ(ti), then
dP
dQ† is not well defined on the event {maxti∈Tσ

′(ti)f(ti) >

b}.

According to the definition of weakly efficient estimator in Remark 1, the first part of the above proposition

implies that Lσ,µ(b) is not weakly efficient for estimating wσ′,µ′(b) if maxti∈T σ′(ti) > maxti∈T σ(ti), and is

therefore not polynomially efficient. The second part of the above proposition implies that the estimator

Lσ,µ(b) is not well defined when maxti∈T σ′(ti) > maxti∈T σ(ti). Therefore, for each Lσ,µ(b) there always

exist mean and variance functions µ′(·), σ′(·) such that µ′(t) ∈ [µl, µu], σ
′(t) ∈ [σl, σu] and Lσ,µ(b) is not

(weakly) efficient for estimating wσ′,µ′(b). We use a simple numerical study to further illustrate this.
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Example 1. Consider i.i.d. standard normal random variables {f(t), t = 1, · · · , 100}. For simplicity, we

take µ(t) = 0 and σ(t) = σ for all t. The probability of interest is P (σmaxt f(t) > b) for σ ∈ [0.3, 1] and

b = 3. This is equivalent to simulating P (maxt f(t) > b) for all b ∈ [3, 10]. Table 1 displays the simulation

results for σ = 0.3, 0.6 and 1, from Algorithm 1, where the change of measure is constructed based on σ = 1.

The results are based on 104 independent simulations. We report the estimated tail probability (est.), the

estimated standard deviation (sd.) of Lσ,µ(b), and the coefficient of variation (CV), which is the ratio sd./est..

We also give the theoretical values of the tail probabilities, that is, P (maxi f(ti) > b/σ) = 1 − Φ(b/σ)100

where Φ(x) =
∫ x

−∞
1√
2π

e−t2/2dt denotes the left tail probability of the standard Gaussian distribution. We

can see that the estimator is more efficient when σ value is equal to the designed value 1 and less for other

σ values. In particular, when σ = 0.3, it gives 0 estimated value.

σ est. sd. CV Theoretical Value

0.3 0 0 NA 7.62e-22

0.6 1.35e-05 1.35e-03 1.00e+02 2.87e-05

1 1.26e-01 2.32e-02 1.84e-01 1.26e-01

Table 1: Estimates based on Algorithm 1

The above non-uniform efficiency result can be extended, with similar techniques, to the importance sampling

estimators in [2] when {f(t), t ∈ T} is a continuous Gaussian random field. It can also be extended to the

case when other change of measures are used such as [20]. In general, if the construction of a rare-event

change of measure relies heavily on the mean and variance functions, then it would not be efficient for another

set of functions.

2.3. Uniform Efficiency

In applications, one is often interested in estimating many probabilities for a certain range of mean and

variance parameter values, such as evaluating the tail probabilities of a loss distribution for a range of loss

thresholds in portfolio credit risk management (e.g., [15, 16]). This motivates us to construct a change of

measure such that the corresponding importance sampling estimator Lσ,µ(b) is polynomially efficient for a

family of functions µ and σ. In particular, this paper considers µ and σ satisfying the following condition:

C1. For all t ∈ T , µ(t) ∈ [µl, µu] and σ2(t) ∈ [σ2
l , σ

2
u]. Moreover, µ and σ are Hölder continuous in the sense

that there exists positive constants κH and β > 0 such that for all s, t ∈ T |σ(t)−σ(s)|+ |µ(t)−µ(s)| ≤
κH |s− t|β .

Denote by C(µl, µu, σl, σu, β, κH) the class of functions σ(·) and µ(·) that satisfy Assumption C1. We

introduce the following uniform efficiency criterion.

Definition 2. (Uniform polynomially efficient change of measure.) We say that a change of measure Q

is uniformly polynomially efficient with the order q ≥ 0 if there exists a constant b0 ≥ 0 such that the
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importance sampling estimator

Lσ,µ(b) =
dP

dQ
I
(

sup
t∈T

{σ(t)f(t) + µ(t)} > b
)

satisfies

sup
b≥b0,µ,σ∈C(µl,µu,σl,σu,β,κH)

V ar(Lσ,µ(b))

| logwσ,µ(b)|qw2
σ,µ(b)

< ∞. (6)

Similar to the previous discussion, we consider the relative accuracy of a class of the importance sampling

estimators corresponding to a uniformly polynomially efficient change of measure. Let the Q be uniformly

polynomially efficient for σ(·), µ(·) ∈ C(µl, µu, σl, σu, β, κH). Then, according to (3), there exists some κu > 0,

such that the averaged estimator Zσ,µ(b) = 1
n

∑n
i=1 L

(i)
σ,µ(b) based on n = κub

2qδ−1ε−2 i.i.d. Monte Carlo

samples satisfies

sup
(σ,µ)∈C(µl,µu,σl,σu,β,κH)

P (|Zσ,µ(b)− wσ,µ(b)| > εwσ,µ(b)) < δ.

Remark 2. Although the current paper focuses on rare-event simulation for the extremes of Gaussian

random fields, the uniform efficiency criterion as well as the proposed method can be easily extended to

other Gaussian-related rare-event problems, such as the exponential integrals of Gaussian random fields

[e.g., 27, 28], where the mean and variance functions are unspecified and we are interested in estimating

a family of tail probabilities. Moreover, the proposed method can be extended to the estimation of non-

Gaussian tail probabilities. For instance, in statistical hypothesis testing with data generated independently

from certain distribution with unknown parameters that are of interest, it often needs to evaluate the test

power/error probabilities for a range of model parameters as the sample size increase; see [22] for an example.

Remark 3. In the literature, a similar uniform efficiency definition has been proposed in [16] to design

an algorithm that is asymptotically efficient uniformly for a family of probability sets when estimating the

tail probabilities of sums of light tailed random variables. Differently from this study, the random variable

parameters are assumed to be known in their case.

3. Uniformly Efficient Estimation

3.1. Discrete case

We start with the case when T contains finite points and propose a new change of measure which gives a

uniformly efficient estimator. We assume T := {t1, · · · , tM}. We describe the new measure Q in two ways.

First, we specify the sampling scheme of f under Q and then provide its Radon-Nikodym derivative with
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respect to P . Under the measure Q, f(t) is generated according to the following algorithm.

Algorithm 2: Simulating f(·) under Q
Input: T = {t1, · · · , tM}, δb = ab−1 for some constant a > 0.

1 Simulate a random variable ς with respect to some positive continuous density function g on

[σl, σu + δ2b ];

2 Simulate a random variable ν with respect to some positive continuous density function h on

[µl, µu + δb];

3 Simulate a random variable τ uniformly over T = {t1, · · · , tM};
4 Given the realized ς, ν and τ , simulate f(τ) conditional on ςf(τ) + ν > b;

5 Given (τ, f(τ)), simulate the Gaussian process {f(t) : t 6= τ, t ∈ T} from the original conditional

distribution under P .

Output: f(t) for t ∈ T

For the measure Q defined above, it is not hard to verify that P and Q are mutually absolutely continuous

with the Radon-Nikodym derivative being

dQ

dP
=

∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν.

This gives the importance sampling estimator

Lσ,µ(b) =

(

∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν

)−1

×I(supi:ti∈Tσ(ti)f(ti) + µ(ti) > b). (7)

Note that under Q, if maxti∈Tσ(ti)f(ti) + µ(ti) > b, then ςf(ti) + ν > b holds for all i, ς > maxti∈T σ(ti)

and ν > maxti∈T µ(ti). Therefore, the change of measure is well defined.

We take a closer look at the proposed change of measure Q by comparing it with the measure Q† discussed

in Section 2.2. We can see that steps 1 and 2 of Algorithm 1 requires the knowledge of the mean and variance

function µ and σ. When µ and σ are unknown, running Algorithm 1 with a misspecified µ′ and σ′ may

cause inefficiency. The proposed Algorithm 2 avoids this inefficiency by introducing prior probability density

functions g and h. Intuitively, the proposed algorithm explores each possible values of mean and variance

of the random field at a random index (steps 1-3), and is a hybrid scheme for all σ(·) and µ(·) that take

values in the support of g and h. The next proposition states the uniform efficiency of the proposed change

of measure.

Proposition 2. Let Lσ,µ(b) be defined in (7), then there exist constants b0 and κp, independent of σ(·), µ(·)
and b and for b ≥ b0,

EQ(L2
σ,µ(b))

M2b6w2
σ,µ(b)

≤ κp

for all µ and σ satisfying C1.

Note that | log(wσ,µ(b))| = O(b2). Therefore, the above proposition gives the uniformly polynomial efficiency

of Q with the order q = 3 for the discrete case.
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Remark 4. The parameter δb in Algorithm 2 is introduced to control the second moment of the importance

sampling estimator. Otherwise, consider the case of constant variance σ ∈ [σl, σu] and zero mean µ = 0.

Then for σ taking the value of σu, denote the corresponding estimator by Lσu,N (b) and the second moment

of Lσu,N (b) is lower bounded by

EQ[L2
σu,N (b)] = EQ

[

(

dP

dQ

)2

; max
i

σuf(ti) > b

]

= E

[

dP

dQ
; max

i
σuf(ti) > b

]

= E





(

∫ µu

µl

∫ σu

σl

∑M
i=1 I(ςf(ti) > b)

MP (ςf(t1) > b)
g(ς)h(ν)dςdν

)−1

; max
i

σuf(ti) > b





≥ P (σlf(0) > b)P (max
i

σuf(ti) > b)

×E

[

(
∫ µu

µl

∫ σu

σl

I(max
i

f(ti) > ς−1b)g(ς)h(ν)dςdν

)−1
∣

∣

∣
max

i
f(ti) > σ−1

u b

]

.

However, the conditional expectation cannot be controlled and we have the estimator Lσu,N (b) is not efficient

for σ = σu.

Remark 5. To evaluate the Radon-Nikodym derivative in (7), we need to calculate the integral

∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν.

Define

l(z) =

∫ µu+δb

µl

∫ σu+δ2b

σl

I(ςz + ν > b)

Φ̄((b− ν)/ς)
g(ς)h(ν)dςdν, (8)

where Φ̄(x) =
∫∞
x

1√
2π

e−
t2

2 dt is the right tail probability of a standard Gaussian distribution, then we have

∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν =

1

M

M
∑

i=1

l(f(ti)).

Therefore, we only need to evaluate l(f(ti)) for all f(ti) simulated by Algorithm 2. We use the following

simplification for the function l(z). Let s = b−ν
ς , then

l(z) =

∫ ∫

b−ςs∈I1,ς∈I2,s<z

ς/Φ̄(s)g(ς)h(b− sς)dςds =

∫

s<z

1/Φ̄(s)

∫

ς∈( b
s− 1

s I1)∩I2

ςh(b− sς)g(ς)dςds (9)

where I1 = [µl, µu + δb], and I2 = [σl, σu + δ2b ]. We can then choose h(·) and g(·) so that the inner integral

in (9) has a closed form expression. In particular, in the numerical examples in this paper, we choose g(·)
and h(·) to be the density functions of uniform distributions. In this case, let r(s) = 1

2 (σu + δ2b − σl)
−1(µu +

δb − µl)
−1
∫

ς∈( b
s− 1

s I1)∩I2
dς2, then l(z) can be further simplified as

l(z) =

∫ z

−∞
r(s)/Φ̄(s)ds,

which is a one-dimensional integral and can be evaluated numerically.
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3.2. Continuous case

Direct simulation of a continuous random field is typically not a feasible task, and the change of measure

proposed in the previous subsection is not directly applicable. Thus, we use a discrete object to approximate

the continuous fields for the implementation. In particular, we create a regular lattice covering T in the

following way. Let GN,d be a countable subset of Rd: GN,d =
{(

i1
N , i2

N , ..., id
N

)

: i1, ..., id ∈ Z
}

. That is, GN,d

is a regular lattice on Rd. Furthermore, let

TN = GN,d ∩ T, (10)

which is the sub-lattice intersecting with T . Since T is compact, TN is a finite set. We enumerate the

elements in TN = {t1, · · · , tM}. Because T is compact, we have M = O(Nd). Let

wσ,µ,N (b) = P

(

sup
ti∈TN

σ(ti)f(ti) + µ(ti) > b

)

.

We use wσ,µ,N (b) as a discrete approximation of wσ,µ(b). We estimate wσ,µ,N (b) by importance sampling,

which is based on the change of measure proposed in Section 3.1. In particular we define QN and PN as the

discrete versions (on TN ) of Q and P respectively. Then dQN/dPN takes the form:

dQN

dPN
=

∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν. (11)

Note that here M depends on N and goes to infinity as N → ∞. This gives importance sampling estimator

Lσ,µ,N (b) :=

(

∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν

)−1

×I(supi:ti∈TN
σ(ti)f(ti) + µ(ti) > b).

The discretization usually introduces bias. The next two theorems control the bias and variance of the

estimator Lσ,µ,N (b) under the following assumptions.

C2 There exists a positive constant κm such that supt∈T mint′∈TN
|t− t′| ≤ κm

N for all N .

C3 The Gaussian random field f is almost surely continuous.

C4 Define the correlation function r(s, t) = E(f(s)f(t)). There exists β′ > 0 and κ′
H > 0 such that

|r(t, s)− r(t′, s′)| ≤ κ′
H [|t− t′|β′

+ |s− s′|β′

] (12)

for all s, t, s′, t′ ∈ T .

Theorem 1. Let β∗ = min(β, β′) and N0(ε, b) = b2/β
∗( 3d

β∗ +2−ε0)ε−2/β∗+ε0 . Under Assumptions C1-C4, for

any ε0 > 0, there exist constants κ0 and b0 such that for any ε ∈ (0, 1), if N ≥ N0(ε, b) and b > b0, then

|wσ,µ,N (b)− wσ,µ(b)|
wσ,µ(b)

< ε

uniformly for µ, σ ∈ C(µl, µu, σl, σu, β, κH).
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Theorem 2. Let N0(ε, b) be defined in Theorem 1. Under Assumptions C1-C4, if N ≥ N0(ε, b), then there

exist constants b0 > 0 (depending on ε0) and κc > 0 such that

sup
b≥b0,ε∈(0,1)

EQNL2
σ,µ,N (b)

bqw2
σ,µ(b)ε

−q1
< κc

uniformly for µ, σ ∈ C(µl, µu, σl, σu, β, κH) with q = 4d/β∗( 3dβ∗ + 2 + ε0) + 6 and q1 = 4d/β∗ + 2dε0.

We consider the relative accuracy of the importance sampling estimator based on QN . Let L
(i)
σ,µ,N (b) be

i.i.d. copies of Lσ,µ(b) for i = 1, .., n. Let

Zσ,µ,N (b) =
1

n

n
∑

i=1

L
(i)
σ,µ,N (b). (13)

With the aid of Chebyshev’s inequality, we have

P (|Zσ,µ,N (b)− wσ,µ(b)| > εwσ,µ(b)) ≤
E(Zσ,µ,N (b)− wσ,µ(b))

2

ε2w2
σ,µ(b)

.

The mean squared error E(Zσ,µ,N (b)− wσ,µ(b))
2 can be written as

E(Zσ,µ,N (b)− wσ,µ(b))
2 = [EZσ,µ,N (b)− wσ,µ(b)]

2 + V ar(Zσ,µ,N (b)).

The first and second terms on the right-hand side of the above display is the squared bias and the variance

of the estimator Zσ,µ,N (b), respectively. If we choose N = N0(εδ
1/2, b) according to Theorem 1 and let

n = 2κcb
qε−q1−2δ−

q1
2 −1 where q and q1 are defined in Theorem 2, then the MSE is well controlled relative

to wσ,µ(b) and so is the relative accuracy. We summarize this result in the next corollary.

Corollary 1. Under the Assumption C1-C4, let Zσ,µ,N (b) be defined in (13). If we choose n = 2κcb
qε−q1−2δ−

q1
2 −1

and N = N0(εδ
1/2, b), then

P (|Zσ,µ,N (b)/wσ,µ(b)− 1| > ε) < δ. (14)

Remark 6. The computational complexity for generating Zσ,µ,N (b) is nmultiplied by the cost for generating

one copy of Lσ,µ,N (b). The cost for generating Lσ,µ,N (b) is of order O(M3) = O(N3d), which is mainly the

cost of generating a multivariate Gaussian vector (line 5 of Algorithm 2). The overall computational cost

is also a polynomial in ε, δ and b. Algorithm with such a computation cost to achieve (14) is sometimes

referred to as a fully polynomial randomized approximation scheme (FPRAS), see [2] for more details.

4. Simulation Studies

In this section, we present numerical examples to show the performance of the proposed algorithm. All

the results are based on n = 104 independent simulations. The discretization size is chosen as M = 40 in

Example 2-5. In each numerical example, we report the estimated tail probabilities, which will be referred to

as “est.”, along with the estimated standard deviations, that is sdQ{Lσ,µ(b)} =
√

V arQ{Lσ,µ(b)}, which will

be referred to as “sd.”. The standard error of the estimator with 104 Monte Carlo samples is sd./100. We

also report the coefficient of variation (CV) of the estimators, which is the ratio sd./est. of the estimators.
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We start with the discrete setting in Example 1, where T = {1, · · · , 100} and {f(t), t = 1, · · · , 100} are

i.i.d. standard normal random variables. We take µ(t) = 0 and σ(t) = σ with σ ∈ [0.3, 1] for all t ∈ T ,

and the probability of interest is P (σmaxt f(t) > b) for b = 3. Table 2 displays the simulation results

for σ = 0.3, 0.6 and 1 using the proposed method. For different σ values, the estimates are close to the

true values. Compared with the result of Algorithm 1 in Table 1, the proposed method gives better overall

performance.

σ est. sd. CV Theoretical Value

0.3 7.55e-22 5.33e-21 7.05 7.62e-22

0.6 2.93e-05 1.33e-04 4.52 2.87e-05

1 1.26e-01 5.92e-01 4.69 1.26e-01

Table 2: Estimates of wσ(b), sdQ(Lσ,µ(b)), and sdQ(Lσ,µ(b))/wσ(b). All results are based on 104 independent

simulations and thus the standard errors of the estimates are sdQ(Lσ,µ(b))/100.

We proceed to an example of a continuous Gaussian random field, whose tail probability of the supremum

is in a closed-form.

Example 2. Consider the Gaussian random field f(t) = X cos t+Y sin t, , where X and Y are independent

standard Gaussian variables and T = [0, 3/4]. We let b = 4 and consider the class of constant variance and

mean functions: σ(t) = σ and µ(t) = µ, with σ ∈ [0.5, 1] and µ ∈ [−0.5, 0.5].

For constant mean and variance functions considered in this example, the probability P (supt∈T (σf(t) +

µ) > b) is known to be in a closed form [3]:

P

(

sup
0≤t≤3/4

(σf(t) + µ) > b

)

= Φ̄((b− µ)/σ) +
3

8π
e−(b−µ)2/(2σ2). (15)

The simulation results for Example 2 are summarized in Table 3. Similar to Example 1, we report the

estimated probability, the standard deviation of the estimator, and its coefficient of variation. The theoretical

value is computed according to (15). We can see that for all combinations of σ and µ in Table 3, the estimated

probabilities are close to the theoretical values. We also see that as the probability of interest decrease from

8.18× 10−6 to 4.01× 10−12, the CV of the estimator does not increase substantially (from 2.7 to 6.2). This

finding is consistent with our theoretical efficiency analysis of the proposed estimator.

We proceed to examples where the mean and variance functions are not constants. We consider a

continuous and centered Gaussian random field {f(t) : 0 ≤ t ≤ 1}, whose covariance function is

r(s, t) = E(f(s)f(t)) = e−|s−t|. (16)

In particular, in Example 3 we consider a Gaussian random field with nonconstant mean and constant

variance; in Example 4 we consider a Gaussian field with constant mean and nonconstant variance; and in

Example 5, both mean and variance functions are nonconstant.
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σ µ est. sd. CV theoretical value

0.5 0.5 4.18E-12 2.59E-11 6.2 4.01E-12

0.6 0.3 1.03E-09 4.38E-09 4.2 1.01E-09

0.7 0.1 3.34E-08 1.18E-07 3.5 3.43E-08

0.8 -0.1 3.68E-07 1.19E-06 3.2 3.85E-07

0.9 -0.3 2.10E-06 5.97E-06 2.8 2.20E-06

1 -0.5 8.11E-06 2.20E-05 2.7 8.18E-06

Table 3: Simulation result for Example 2 with b = 4 and δb =
1

b
. Theoretical values are computed according to (15).

Example 3. Consider the Gaussian random field f(t) defined in (16), and the class of variance and mean

functions σ(t) = 1 and µ(t) = β1t, for β1 ∈ [−0.5, 0.5]. The probability of interest is P
(

supt∈[0,1] f(t) + β1t > b
)

for b = 7.

We summarize the simulation results for Example 3 in Figure 1. Figure 1(a) shows the scatter plot of the

estimated probability (y-axis) against β1 (x-axis). Figure 1(b) shows the scatter plot of the CV (y-axis)

against β1 (x-axis). We see that the probability of interest is an increasing function in β1. Moreover, when

the estimated probability is within the range from 1× 10−11 to 2× 10−10, the CV of the estimator is always

controlled within 3.2, showing the good performance of the proposed estimation method.
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Figure 1: Simulation results for Example 3, where b = 7 and δb = 1/b.

Example 4. Consider the Gaussian random field {f(t), t ∈ T} defined in (16) and the class of variance

and mean functions σ(t) = 1 − 0.5(t − β2)
2 and µ(t) = 0, where β2 ∈ [0, 1]. The probability of interest is

P
(

supt∈[0,1][1− 0.5(t− β2)
2]f(t) > b

)

for b = 7.

For Example 4, the scatter plot of estimated probability and the CV of the estimator are presented in Figure 2.

Note that in Example 4, the maximum variance maxt∈T V ar(σ(t)f(t)) = V ar(σ(β2)f(β2)) = 1. Therefore,
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for all β2 ∈ [0, 1] the probability of interest has the same exponential decay rate P (supt∈[0,1] σ(t)f(t) > b) =

e
−(1+o(1)) b2

2maxt∈T V ar(σ(t)f(t)) = e−(1+o(1))b2/2, as b → ∞. In Figure 2(a), we see that the estimated probability

is relatively small when β2 is close to the boundary values 0 or 1, compared to the case when β2 ∈ [0.2, 0.8]

and is far away from the boundary values. For β2 ∈ [0.2, 0.8] the estimated probability stays around 9×10−12

and does not fluctuate much. For all β2 ∈ [0, 1], the maximum CV of the estimator is controlled within 10.

This is again consistent with our theoretical results.
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Figure 2: Simulation results for Example 4, where b = 7 and δb = 1/b.

Example 5. Consider the Gaussian random field {f(t), t ∈ T} defined in (16), and the class of variance

and mean functions σ(t) = 1 − 0.5(x − β2)
2 and µ(t) = β1t, where β1 ∈ [−0.5, 0.5] and β2 ∈ [0, 1]. The

probability of interest is P (supt∈[0,1]{[1− 0.5× (t− β2)
2]f(t) + β1t} > b), for b = 7.

Table 4 shows the simulated results for different choices of β1 and β2. We see that the estimated probabilities

range from 4.2× 10−12 to 1.16× 10−10. The maximum CV in Table 4 is 9.9. This means that the standard

error of the averaged Monte Carlo estimator with 104 samples is controlled within 9.9%× EQLσ,µ(b).

5. Proofs of main results

Throughout the proof, we write a(b) = O(c(b)) if there exists a positive constant κ, independent of

b, σ(·), µ(·), such that |a(b)|/|c(b)| ≤ κ. We also write a(b) = o(c(b)) if |a(b)|/|c(b)| → 0 as b → ∞, uniformly

in σ(·) and µ(·) satisfying Assumption C1. We will use κ̃ as a generic notation to denote large and not-so-

important constants (independent of µ, σ and b) whose value may vary from place to place. Similarly, we

use ε̃ as a generic notation for small positive constants.

Proof of Proposition 1. We start with the proof of Proposition 1 (i). We can see that if maxti∈Tσ
′(ti)f(ti)+

µ(ti) > b, then maxti∈T σ(ti)f(ti)+µ(ti) > b always happens and the change of measure is well defined. We
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β1 β2 est. sd. CV

-0.50 0.00 4.20E-12 4.03E-11 9.6

-0.33 0.17 5.60E-12 3.69E-11 6.6

-0.17 0.33 5.69E-12 3.29E-11 5.8

0.00 0.50 8.78E-12 5.09E-11 5.8

0.17 0.67 2.09E-11 1.27E-10 6.1

0.33 0.83 5.82E-11 4.04E-10 6.9

0.50 1.00 1.16E-10 1.15E-09 9.9

Table 4: Simulation results for Example 5, where b = 7 and δb = 2/b.

have

EQ†

[

(

dP

dQ†

)2

; maxti∈Tσ
′(ti)f(ti) + µ(ti) > b

]

= E

[

dQ†

dP
×
(

dP

dQ†

)2

; maxti∈Tσ
′(ti)f(ti) + µ(ti) > b

]

= E

[

dP

dQ† ; maxti∈Tσ
′(ti)f(ti) + µ(ti) > b

]

= E

[

∑M
i=1 P (σ(ti)f(ti) + µ(ti) > b)

∑M
i=1 I(σ(ti)f(ti) + µ(ti) > b)

;maxti∈Tσ
′(ti)f(ti) + µ(ti) > b

]

.

Because
∑M

i=1 I(σ(ti)f(ti) + µ(ti) > b) ≤ M , the above display is further bounded from below by

=
1

M

(

M
∑

i=1

P (σ(ti)f(ti) + µ(ti) > b)

)

× wσ′,µ(b)

≥ 1

M
max
ti∈T

P (σ(ti)f(ti) + µ(ti) > b)× wσ′,µ(b)

= exp

{

−(1 + o(1))
b2

2maxti∈T σ(ti)2
− (1 + o(1))

b2

2maxti∈T σ′(ti)2

}

,

where we used the following lemma, whose proof is given in Section 5.1, to obtain that

wσ′,µ(b) = exp

{

−(1 + o(1))
b2

2maxti∈T σ′(ti)2

}

.

Lemma 1. Let {f(t) : t ∈ T} be a centered, unit variance and continuous Gaussian random field living on

a compact set T . Assume that σ(t) > 0 and µ(t) are continuous functions. Then, there exists positive ε̃ such

that

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

= e
−(1+o(1)) b2

2maxt∈T σ2(t) and P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

≥ ε̃b−1 max
t∈T

e
− (b−µ(t))2

2σ2(t) .

Under the assumption that maxti∈T σ′(ti) < maxti∈T σ(ti), we know that for ε < 1
2 (1−

maxσ′(ti)
maxσ(ti)

)

EQ†
[ (

dP
dQ†

)2

; maxti∈Tσ
′(ti)f(ti) + µ(ti) > b

]

w2−ε
σ′,µ(b)

≥ w−ε
σ′,µ(b),
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which tends to infinity as b → ∞.

We proceed to the proof of part (ii). Let t′max = argmaxt∈T σ′(t). We consider the event F =

{b/σ′(t′max) < f(t′max) < minti∈T [b/σ(ti)]}. Because maxti∈T σ′(ti) > maxti∈T σ(ti), F is non-empty and

F ⊂ {maxti∈T σ′(ti)f(ti) + µ′(ti) > b}. Moreover, according to the sampling scheme in Algorithm 1, we

have Q†(F ) > 0. On the other hand, when the event F happens,
∑M

i=1 I(σ(ti)f(ti) > b) = 0, therefore

Q†( dP
dQ† = ∞) ≥ Q†(F ) > 0. In other word, dP

dQ† is not well-defined. �

Proof of Proposition 2. Define the random index t∗ := argmaxt∈T [σ(t)f(t) + µ(t)]. We restrict our

analysis to the integral over the region [µ(t∗), µ(t∗) + δb]× [σ(t∗), σ(t∗) + δ2b ] and arrive at

EQ[L2
σ,µ(b)]

=EQ

[(
∫ µu+δb

µl

∫ σu+δ2b

σl

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)dςdν

)−2

; maxti∈T σ(ti)f(ti) + µ(ti) > b

]

≤EQ

[(
∫ µ(t∗)+δb

µ(t∗)

∫ σ(t∗)+δ2b

σ(t∗)

∑M
i=1 I(ςf(ti) + ν > b)

MP (ςf(t1) + ν > b)
g(ς)h(ν)dςdν

)−2

; maxti∈T σ(ti)f(ti) + µ(ti) > b

]

=EQ

[(
∫ µ(t∗)+δb

µ(t∗)

∫ σ(t∗)+δ2b

σ(t∗)

∑M
i=1 I(ςf(ti) + ν > b)

M Φ̄( b−ν
ς )

g(ς)h(ν)dςdν

)−2

; maxti∈T σ(ti)f(ti) + µ(ti) > b

]

(17)

Note that for all (ς, ν) ∈ [µ(t∗), µ(t∗)+δb]×[σ(t∗), σ(t∗)+δ2b ], we have ςf(t
∗)+ν ≥ maxti∈T σ(ti)f(ti)+µ(ti).

Therefore, the event maxti∈T σ(ti)f(ti)+µ(ti) > b implies ςf(t∗)+ν ≥ b. Consequently,
∑M

i=1 I(ςf(ti)+ν >

b) ≥ 1 on the event maxti∈Tσ(ti)f(ti) + µ(ti) > b. Therefore, (17) is further bounded from above by

≤ M2EQ

[(
∫ µ(t∗)+δb

µ(t∗)

∫ σ(t∗)+δ2b

σ(t∗)

g(ς)h(ν)

Φ̄( b−ν
ς )

dςdν

)−2

; maxti∈Tσ(ti)f(ti) + µ(ti) > b

]

≤ O(1)M2EQ

[

(

∫ µ(t∗)+δb

µ(t∗)

∫ σ(t∗)+δ2b

σ(t∗)

g(ς)h(ν)be
(b−ν)2

2ς2 dςdν
)−2

; maxti∈Tσ(ti)f(ti) + µ(ti) > b

]

(18)

Note that for all (ς, ν) ∈ [µ(t∗), µ(t∗)+δb]× [σ(t∗), σ(t∗)+δ2b ], we have be
(b−ν)2

2ς2 = O(1)be
(b−µ(t∗))2

2σ2(t∗) . Therefore,

(18) is bounded from above by

≤ O(1)M2EQ

[

(

∫ µ(t∗)+δb

µ(t∗)

∫ σ(t∗)+δ2b

σ(t∗)

g(ς)h(ν)be
(b−µ(t∗))2

2σ2(t∗) dςdν
)−2

; maxti∈Tσ(ti)f(ti) + µ(ti) > b

]

= O(1)M2δ−6
b b−2EQ

[

e
− (b−µ(t∗))2

σ2(t∗) ; maxti∈Tσ(ti)f(ti) + µ(ti) > b
]

≤ O(1)M2δ−6
b b−2 max

ti∈T
e
− (b−µ(ti))

2

σ2(ti) . (19)

On the other hand, according to Lemma 1 we have

P
(

sup
ti∈T

σ(ti)f(ti) + µ(tti) > b
)

≥ ε̃b−1 max
ti∈T

e
− b−µ(ti)

2σ2(ti) .
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Combining this and (19), we have that there exists b0 sufficiently large such that for b ≥ b0

EQ[L2
σ,µ(b);maxti∈Tσ(ti)f(ti) + µ(ti) > b]

M2b6w2
σ,µ(b)

= O(1).

This completes our proof. �

Proof of Theorem 1. Note that supt∈T σ(t)f(t) + µ(t) ≥ supt∈TN
σ(t)f(t) + µ(t), we have

∣

∣

∣
P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

− P
(

sup
t∈TN

σ(t)f(t) + µ(t) > b
)∣

∣

∣

= P
(

sup
t∈T

σ(t)f(t) + µ(t) > b, sup
t∈TN

σ(t)f(t) + µ(t) ≤ b
)

.

We split the above probability into two parts.

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b, sup
t∈TN

σ(t)f(t) + µ(t) ≤ b
)

= P
(

b < sup
t∈T

σ(t)f(t) + µ(t) ≤ b+
γ

b
, sup
t∈TN

σ(t)f(t) + µ(t) ≤ b
)

+P
(

sup
t∈T

σ(t)f(t) + µ(t) > b+
γ

b
, sup
t∈TN

σ(t)f(t) + µ(t) ≤ b
)

,

which is further bounded from above by

P
(

b < sup
t∈T

σ(t)f(t) + µ(t) ≤ b+
γ

b

)

+ P
(

sup
t∈T

σ(t)f(t) + µ(t) > b+
γ

b
, sup
t∈TN

σ(t)f(t) + µ(t) ≤ b
)

, (20)

where we will choose γ later. We proceed to upper bounds of the above two terms separately. For the first

term, we apply the following Lemma.

Lemma 2. (Proposition 6.5 of [2].) Under Assumptions C1,C3 and C4, for any v > 0, let β∗ = min(β, β′)

and ρ = 2d
β∗ + dv + 1, where d is the dimension of T . There exists constants b0, λ ∈ (0,∞) so that for all

b ≥ b0 ≥ 1,

P
(

max
t∈T

σ(t)f(t) + µ(t) ≤ b+
γ

b

∣

∣

∣
max
t∈T

σ(t)f(t) + µ(t) > b
)

≤ λabρ. (21)

With the aid of the above lemma with v = 1
β∗ , we have for b ≥ b0

P
(

b < sup
t∈T

σ(t)f(t) + µ(t) ≤ b+
γ

b

)

= P
(

max
t∈T

σ(t)f(t) + µ(t) > b
)

P
(

max
t∈T

σ(t)f(t) + µ(t) ≤ b+
γ

b

∣

∣

∣
max
t∈T

σ(t)f(t) + µ(t) > b
)

≤ λγbρP
(

max
t∈T

σ(t)f(t) + µ(t) > b
)

with ρ = 3d
β∗ + 1. We choose γ := 2−1λ−1b−ρε, then the above display gives the following upper bound for

the first term in (20)

P
(

b < sup
t∈T

σ(t)f(t) + µ(t) ≤ b+
γ

b

)

≤ ε

2
wσ,µ(b).
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We proceed to the second term in (20). According to Assumption C2, we have

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b+
γ

b
, sup
t∈TN

σ(t)f(t) + µ(t) ≤ b
)

≤ P
(

sup
t,s∈T,|t−s|≤κm/N

|σ(t)f(t) + µ(t)− (σ(s)f(s) + µ(s))| > γ

b

)

,

which is further bounded from above by

P
(

sup
t,s∈T,|t−s|≤κm/N

|σ(t)f(t)− σ(s)f(s)|+ sup
t,s∈T,|t−s|≤κm/N

|µ(t)− µ(s)| > γ

b

)

. (22)

According to Assumption C1, we have

sup
t,s∈T,|t−s|≤κm/N

|µ(t)− µ(s)| = O(κβ∗

m /Nβ∗

).

Plugging this into (22), we have

P
(

sup
t,s∈T,|t−s|≤κm/N

|σ(t)f(t) + µ(t)− σ(s)f(s) + µ(s)| > γ

b

)

≤P
(

sup
t,s∈T,|t−s|≤κm/N

|σ(t)f(t)− σ(s)f(s)| > γ

b
− κβ∗

m /Nβ∗
)

.
(23)

We choose N ≥ κ̃λ1/β∗

b(ρ+1)/β∗

ε−1/β∗

for κ̃ sufficiently large, then γ
b − κβ∗

m
1

Nβ∗ > γ
2b . Therefore, we further

have

P
(

sup
t,s∈T,|t−s|≤κm/N

|σ(t)f(t) + µ(t)− σ(s)f(s) + µ(s)| > γ

b

)

≤P
(

sup
t,s∈T,|t−s|≤κm/N

|σ(t)f(t)− σ(s)f(s)| > γ

2b

)

.
(24)

To control the above probability, we use the following lemma known as the Borell-TIS lemma, which is

proved independently by [10] and [33].

Lemma 3. (Borell-TIS.) Let {f(t); t ∈ U}, where U is a compact set, be a mean zero Gaussian random field.

f is almost surely bounded on U . Then, E[supU f(t)] < ∞, and P (supt∈U f (t)− E[supt∈U f (t)] ≥ b) ≤
exp

(

− b2

2σ2
U

)

, where σ2
U = supt∈U Var[f(t)].

We define a new Gaussian random field

ξ(s, t) = σ(s)f(s)− σ(t)f(t). (25)

The next lemma, whose proof will be provided in Section 5.1, characterizes Esupt,s∈T,|t−s|≤κm/Nξ(s, t).

Lemma 4. For all σ, µ and f satisfying Assumptions C1, C3 and C4, there is a uniform constant κξ > 0

such that

E sup
t,s∈T,|t−s|≤κm/N

|ξ(s, t)| < κξN
−β∗/2 logN
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Furthermore, the variance of ξ(s, t) is bounded from above by

V ar(ξ(s, t)) = (σ(s)− σ(t))2 + 2σ(s)σ(t)(1− r(s, t)) ≤ κ2
H |s− t|2β∗

+ 2σ2
u|s− t|β∗ ≤ O(|s− t|β∗

). (26)

According to Assumption C1 and C4, the above display is further bounded from above by

V ar(ξ(s, t)) ≤ O(N−β∗

) (27)

We choose N such that κξN
− β∗

2 logN ≤ γ
4b . Then according to the Borell-TIS lemma and Lemma 4, we

have

P
(

sup
|t−s|≤κm

N

|ξ(s, t)| > γ

4b

)

≤ exp

(

−ε̃
γ2

N−β∗b2

)

. (28)

The above display is of order o(εwσ,µ(b)) if γ2

N−β∗b2
≥ κ̃β∗

max(− log ε, b2), for a large enough and possibly

different constant κ̃. Therefore, it is sufficient to choose N ≥ κ̃max(− log ε, b2)1/β
∗

b2/β
∗

γ−2/β∗

(log b)κ̃.

Combining this with our choice of γ, and recall our choice of ρ in Lemma 2 it is sufficient to choose N ≥
κ̃max(− log ε, b2)1/β

∗

b2/β
∗+2/β∗( 3d

β∗ +1)ε−2/β∗

(log b)κ̃, which is bounded by N0 = b2/β
∗( 3d

β∗ +2+ε0)ε−2/β∗−ε0 for

any ε0 > 0 and b sufficiently large. This completes our proof. �

Proof of Theorem 2. According to Proposition 2 with M = O(Nd), we have

EQ[L2
σ,µ,N (b)] = O(1)N2dδ−6

b w2
σ,µ,N (b).

According to the choice of N0 in Theorem 1, we have

EQ[L2
σ,µ,N (b)] = O(1)b4d/β

∗( 3d
β∗ +2+ε0)+6ε−4d/β∗−2dε0w2

σ,µ,N (b)

uniformly for µ, σ ∈ C(µl, µu, σl, σu, β, κH). This completes our proof. �

Proof of Corollary 1. The mean squared error of Zσ,µ,N (b) is decomposed as the sum of its bias and

variance,

E[Zσ,µ,N (b)−wσ,µ(b)]
2 = [EZσ,µ,N (b)−wσ,µ(b)]

2+V ar(Zσ,µ,N (b)) = [wσ,µ,N (b)−wσ,µ(b)]
2+V ar(Lσ,µ,N (b))/n.

Setting ε := εδ1/2 in Theorem 1, we have [wσ,µ,N (b) − wσ,µ(b)]
2 < ε2δw2

σ,µ(b)/2 for N ≥ N(εδ1/2, b). Fur-

thermore, according to Theorem 2, we have V ar(Lσ,µ,N (b))/n ≤ ε2δw2
σ,µ(b)/2 for n ≥ 2κcb

qε−q1−2δ−
q1
2 −1.

Consequently, for such N and n we have E[Zσ,µ,N (b) − wσ,µ(b)]
2 ≤ ε2δ. Thanks to Chebyshev’s inequality,

we have

P (|Zσ,µ,N (b)− wσ,µ(b)| > ε) <
E[Zσ,µ,N (b)− wσ,µ(b)]

2

ε2
≤ δ.

Therefore, Zσ,µ,N (b) satisfies (14). �
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5.1. Proofs of supporting lemmas

Proof of Lemma 1. First, according to Lemma 3, we have

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

≤ P

(

sup
t∈T

σ(t)f(t) > b−max
t∈T

µ(t)

)

≤ e
−(1+o(1)) b2

2maxt∈T σ2(t) . (29)

On the other hand, for each t ∈ T we have

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

≥ P
(

σ(t)f(t) + µ(t) > b
)

= P
(

f(t) >
b− µ(t)

σ(t)

)

,

which is further bounded from below by

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

≥ 1√
2πσ(t)

( σ(t)

b− µ(t)
− σ3(t)

(b− µ(t))3

)

e
− (b−µ(t))2

2σ2(t) = ε̃b−1e
− b2

2σ2(t) .

To obtain the last equation in the above display, we used the fact that µ(t) ∈ [µl, µu] and σ(t) ∈ [σl, σu] with

σl > 0. Taking the maximum of the right-hand side of the above display, we have

P
(

sup
t∈T

σ(t)f(t) + µ(t) > b
)

≥ ε̃b−1 max
t∈T

e
− (b−µ(t))2

2σ2(t) . (30)

Combining the above expression with (29), we complete the proof. �

Proof of Lemma 4. To prove this lemma, we will need the following entropy bound ([14]).

Lemma 5. Let f be a centered Gaussian field living on a metric space U . Define the pseudo-metric

df (s, t) =
√

E(f(s)− f(t))2.

Assume that U is a compact space under the metric df and for each ε > 0. Denote by N(ε) the smallest

number of balls with radius ε under the metric df . Then there exists a universal constant K such that

E
[

sup
t∈U

f(t)
]

≤ K

∫ diam(U)

0

(logN(ε))
1
2 dε. (31)

Let U = {(s, t) : s, t ∈ T, |s− t| ≤ κm
1
N } and

d2ξ((s, t), (s
′, t′)) = E[ξ(s, t)− ξ(s′, t′)]2 = E[ξ(s, s′)− ξ(t, t′)]2.

We first investigate the metric dξ. We have

d2ξ((s, t), (s
′, t′)) ≤ 2V ar(ξ(s, s′)) + 2V ar(ξ(t, t′)). (32)

Applying (26) to the above display, we have that there is a κ̃ uniformly for all σ, µ satisfying Assumption

C1, such that

dξ((s, t), (s
′, t′)) ≤ κ̃

√

|s− s′|β∗ + |t− t′|β∗ . (33)

According to the relationship between the lp norms, we have (|s−s′|β∗

+|t−t′|β∗

)
1
β∗ ≤ d

1
2− 1

β∗
√

|s− s′|2 + |t− t′|2.
The result, together with (33), implies that B((s, t), ε̃ε

2
β∗ ) ⊂ Bdξ

((s, t), ε) for some constant ε̃ that only
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depends on d, β∗ and κ̃, where B and Bξ denote balls under the Euclidean norm and dξ metrics respec-

tively. Note that the set T × T can be covered by κ̃ε−
4d
β∗ many B(ε̃ε

2
β∗ ) balls with a possibly different κ̃.

Consequently, the set U can be covered by the same number of Bdξ
(ε) balls. Therefore, we have

log(N(ε)) ≤ log κ̃+
4d

β∗ log ε−1

On the other hand, we have dξ((s, t), (s
′, t′)) ≤ 2V ar(ξ(s, t)) + 2V ar(ξ(s′, t′)). Also according to (26), we

have d2ξ((s, t), (s
′, t′)) = O(|s − t|β∗

+ |s′ − t′|β∗

). Therefore, for |s − t| ≤ κm/N we have dξ((s, t), (s
′, t′)) =

O(N−β∗/2). Consequently, diam(U) ≤ κ̃N−β∗/2. According to Lemma 5, we have

E sup
t,s∈T,|t−s|≤κm

1
N

≤ κ̃(
4d

β∗ )
1/2

∫ κ̃N−β∗/2

0

(log ε−1)1/2dε = O(N−β∗/2 logN).

This completes our proof. �
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