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Induced smoothing for rank-based regression

with recurrent gap time data

Tianmeng Lyua, Xianghua Luoab∗†, Gongjun Xuc, Chiung-Yu Huangd

Various semiparametric regression models have recently been proposed for the analysis of gap times between

consecutive recurrent events. Among them, the semiparametric accelerated failure time (AFT) model is especially

appealing owing to its direct interpretation of covariate effects on the gap times. In general, estimation of the

semiparametric AFT model is challenging because the rank-based estimating function is a non-smooth step

function. As a result, solutions to the estimating equations do not necessarily exist. Moreover, the popular

resampling-based variance estimation for the AFT model requires solving rank-based estimating equations

repeatedly and hence can be computationally cumbersome and unstable. In this paper, we extend the induced

smoothing approach to the AFT model for recurrent gap time data. Our proposed smooth estimating function

permits the application of standard numerical methods for both the regression coefficients estimation and the

standard error estimation. Large-sample properties and an asymptotic variance estimator are provided for the

proposed method. Simulation studies show that the proposed method outperforms the existing non-smooth rank-

based estimating function methods in both point estimation and variance estimation. The proposed method is

applied to the data analysis of repeated hospitalizations for patients in the Danish Psychiatric Center Register.

Copyright c⃝ 20XX John Wiley & Sons, Ltd.

Keywords: accelerated failure time model; gap times; Gehan-type weight; induced smoothing; recurrent
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1. Introduction

Recurrent event data are frequently encountered in clinical and epidemiological studies, where each subject can experience

an event of interest repeatedly. Examples of recurrent events include rehospitalizations experienced by patients with

psychiatric disorders [1], recurrent infections after hematopoietic cell transplantations [2], and many others. Depending on

the nature of recurrent events and the research interest, the focus of statistical analysis can be placed on the time-to-event

data by modeling the intensity or rate function of the counting process or on the gap times between consecutive events. For

the former, various nonparametric and semiparametric methods have been developed in the literature. Some ponparametric
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methods include the estimation of the cumulative rate function [3, 4] and techniques for estimating the rate function [5].

Several authors [6, 7, 8, 9] considered Cox-type models which assume that the effects of covariates are multiplicative

on the intensity or rate functions of the underlying counting process, whereas others considered additive intensity or rate

models [10, 11].

Alternatively, the focus can be placed on the gap times between recurrent events. As discussed in [12], the unique

sequential ordering structure of recurrent gap time data generates difficulty in model estimation. First, due to the

correlation among gap times of the same subject, the recurrent gap times beyond the first gap are subject to induced

informative censoring even when the total censoring time is completely random. Second, the last censored gap time is

expected to be longer than the previous uncensored gap times. Lastly, unlike the clustered survival data where the cluster

size is typically assumed to be non-informative, the number of recurrent gap times of a subject is usually informative since

subjects who are at a higher risk tend to have more gap times. Therefore, it is not appropriate to naively treat recurrent gap

time data as independently censored clustered survival data and apply methods for clustered survival data to recurrent gap

time data. Several authors [12, 13] have developed nonparametric methods to estimate the distribution of recurrent gap

times, while others [14, 15] studied nonparametric estimation of the gap time hazard function in the presence of covariates.

Semiparametric regression models for recurrent gap time data include proportional hazards (PH) models [16], accelerated

failure time (AFT) models [17, 18], linear transformation models [19], additive hazards models [20], and more recently,

quantile regression models [21] and transformed hazards models [22].

Among the various recurrent gap time models, the AFT model is particularly appealing as it provides a direct

interpretation of the covariate effects on the (transformed) length of gap times. Nevertheless, similar to the AFT models

for univariate survival data [23, 24, 25, and reference therein], the estimation of the AFT model for recurrent gap time data

[17] usually relies on rank-based estimating functions which are non-smooth step functions of regression parameters. It

is well known that solving non-smooth, rank-based estimating equations could be computationally challenging since the

solution to a non-smooth estimating equation typically does not exist. In addition to the difficulties in point estimation,

variance estimation for the semiparametric AFT models has also been found challenging. This is because the asymptotic

variance depends on the slope of the estimating function which can not be evaluated directly when the estimating function

is non-smooth. Popular alternatives for variance estimation include the bootstrap method [26] and the perturbation method

[27, 17]. However, both methods require solving rank-based estimating equations for numerous times, and hence can be

computationally inefficient and unstable since they depend heavily on the point estimation from the non-smooth estimating

functions, which is not guaranteed to succeed, for each resampling.

To tackle the difficulties in variance estimation for the AFT models with univariate survival data, Zeng and Lin [28]

proposed new resampling methods which only require evaluating the estimating functions repeatedly rather than solving

them. These methods [28] can greatly improve the efficiency in computing for the variance estimation; however, the

challenge in the point estimation remains unresolved. Alternatively, efforts have been made on improving the point and

variance estimation simultaneously by approximating the rank-based estimation function by a continuously differentiable

estimating function so that the standard numerical methods can be applied in the inference procedure. In particular, Brown

and Wang [29] proposed the so-called induced smoothing technique for the rank-based estimating function for univariate

survival data with Gehan’s weight. Later, it was extended to general weights [30]. Similar smoothing techniques have been

extended to clustered survival data [31, 32]. To our knowledge, no efforts have been made on improving the estimation

of the AFT model with recurrent gap time data in literature. In this paper we propose to extend the induced smoothing

technique to the AFT model for recurrent gap time data.

The rest of the paper is organized as follows. In Section 2, we first introduce the notation and setting of the AFT model

for recurrent gap time data. We then briefly introduce the non-smooth rank-based estimating functions. In Section 3,

we present the proposed induced smoothing method for the recurrent-gap-time AFT model followed by its large-sample

properties and an asymptotic variance estimator. In Section 4, we conduct simulation studies to compare the proposed

induced smoothing method with the existing rank-based estimating function method with various variance estimation
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methods. A real data analysis using the patient contact data from the Danish Psychiatric Central Register is presented in

Section 5. Some concluding remarks are provided in Section 6.

2. The AFT model and rank-based estimating functions

2.1. The AFT model for recurrent gap time data

Consider a study with n subjects being recruited after each experienced an initial event and being followed on the

recurrence of the event. Let i = 1, . . . , n index the subjects and j = 0, 1, . . . index the recurrent events of the ith subject,

with j = 0 indicating the initial event. Let Tij denote the gap time between the (j − 1)th event and the jth event for

subject i. Among the various regression models for recurrent gap times, the AFT model is of particular interest because of

its direct interpretation of covariate effects on the (transformed) gap time variable. Let Zi be the p× 1 vector of baseline

covariates. We impose the usual linear model for the logarithm-transformed gap times:

log(Tij) = βββᵀ

0Zi + ϵij , (1)

where βββ0 is the true p× 1 vector of regression parameters and has the usual interpretation of covariate effects as in

linear models. The error terms within each subject, ϵij , j = 1, 2, . . ., are assumed to have an unknown common marginal

distribution, and the correlation structure among the error terms is left unspecified. In this way, the correlation between

two gap times ϵij and ϵij′ is allowed to depend on j and j′. Finally, we assume that the error vectors ϵi = (ϵi1, ϵi2, . . .)ᵀ,

i = 1, . . . , n, are independently and identically distributed (i.i.d.) across subjects.

Note that the identical marginal distribution condition assumed for Model (1) is weaker than the shared frailty model

which assumes that the error terms of the same subject are i.i.d. given a subject-specific frailty variable. Under the shared

frailty model, each pair of gap times in the set {log(Tij), j = 1, . . .} are required to have the same correlation. The identical

marginal distribution condition for Model (1) leaves the within-subject correlation structure fully unspecified, hence Model

(1) allows more sophisticated correlation structure in real data, such as the autoregressive (AR) and the unstructured

correlation.

In most applications, the observation of recurrent events is subject to right censoring due to loss of follow-up or end of

study. Let Ci be the censoring time of the recurrent event process for the ith subject, which is assumed to be independent

of {Tij ; j ≥ 1} conditional on Zi. Let mi denote the number of observed events so that mi satisfies
∑mi

j=1 Tij ≤ Ci and
∑mi+1

j=1 Tij > Ci, where
∑0

1 = 0. We further define the censoring indicator for the jth event δij = I(
∑j

l=1 Til ≤ Ci),

where I(·) is an indicator function. Let Xij denote the observed gap time such that Xij = Tij for j = 1, . . . ,mi and

Xi,mi+1 = Ci −
∑mi

l=1 Xil. Define the transformed observed gap time Yij = log(Xij). The observed data of subject i

consist of {(Xij , δij); j = 1, . . . ,mi + 1,Zi, Ci}.

2.2. Rank-based estimating function

We begin by considering the simple yet inefficient method that only uses times to first event in model estimation; that is,

ignoring gap times of higher orders. Define the residuals eij(βββ) = log(Xij)− βββᵀZi. Let Nij(βββ, t) = δijI{eij(βββ) ≤ t} and

Rij(βββ, t) = I{eij(βββ) ≥ t} be the counting process and at-risk process on the time scale of the residual, corresponding to

subject i’s jth gap time. An unbiased weighted rank-based estimating function for βββ based on the time-to-first event data

takes the form [24, 34, 35]:

n
∑

i=1

w(βββ, ei1(βββ))δi1

[

Zi −
1
n

∑n
l=1 ZlI{el1(βββ) ≥ ei1(βββ)}

1
n

∑n
l=1 I{el1(βββ) ≥ ei1(βββ)}

]
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or, equivalently,

n
∑

i=1

∫ ∞

−∞
w(βββ, t)

{

Zi −
S1(βββ, t)

S0(βββ, t)

}

dNi1(βββ, t), (2)

where S0(βββ, t) = n−1
∑n

i=1 Ri1(βββ, t), S1(βββ, t) = n−1
∑n

i=1 ZiRi1(βββ, t), and w(βββ, t) is the weight function. Common

choices of w(βββ, t) include w(βββ, t) ≡ 1 for log-rank (LR) weight [23] and w(βββ, t) ≡ S0(βββ, t) for Gehan’s weight [36].

Note that the estimating function in (2) is constructed based on the linear rank statistic and can be viewed as the sum of

the weighted difference between the covariate of a subject with an event (subject i) and the expected covariate among

those who are in the “risk set” at the transformed event time of this subject, {l : el1(βββ) ≥ ei1(βββ)}.

To improve the efficiency of estimation, one can make use of information beyond the first gap time. However, as

discussed earlier, methods for clustered survival data cannot be directly applied to the recurrent gap time data due to

the unique sequential structure of recurrent events. It was demonstrated in [37] that, when the underlying recurrent

gap times of a subject are exchangeable, the weighted-risk set (WRS) technique can be applied to a reduced dataset

to avoid biases in estimation caused by induced informative censoring and the biased sampling of the last censored gap

time. Specifically the last censored gap time is not used in the construction of the estimating functions if the number of

uncensored gap times of a subject is at least one. For the ease of discussion, we define m∗
i = max{mi, 1}, then m∗

i = 1 if

subject i has no observed recurrent events and m∗
i equals the number of observed recurrent events mi if mi ≥ 1. Note that

Xi1 = Ci if mi = 0 and Xij = Tij for j = 1, ..,m∗
i if mi ≥ 1. Thus, the reduced data used in the WRS estimations are

{(Xij , δij); j = 1, . . . ,m∗
i ,Zi, Ci} from each subject. The WRS method assigns a weight 1/m∗

i to each of the remaining

m∗
i gap times of a subject to ensure that overall contribution of each subject to the estimation to be the same to avoid the

possible bias caused by informative cluster sizes.

In the same spirit as the WRS method in [37], we first define the averaged counting process and the averaged at-risk

process for the AFT model:

N∗
i (βββ, t) =

1

m∗
i

m∗
i

∑

j=1

Nij(βββ, t),

R∗
i (βββ, t) =

1

m∗
i

m∗
i

∑

j=1

Rij(βββ, t).

Note that these two averaged processes are based on the individual counting processes Nij and Rij defined earlier,

which are all on the scale of the residual of the log-transformed gap times. Hence, the two averaged processes

N∗
i (βββ, t) and R∗

i (βββ, t) defined here are different than those in [37]. Let S∗
0 (βββ, t) = n−1

∑n
i=1 R

∗
i (βββ, t) and S∗

1 (βββ, t) =

n−1
∑n

i=1 ZiR∗
i (βββ, t). Then, we can replace n−1

∑n
i=1 Ni1(βββ, t), n−1

∑n
i=1 ZiNi1(βββ, t), S0(βββ, t), and S1(βββ, t) in (2) with

their respective multivariate counterparts n−1
∑n

i=1 N
∗
i (βββ, t), n

−1
∑n

i=1 ZiN∗
i (βββ, t), S

∗
0 (βββ, t), and S∗

1 (βββ, t) and construct

a new estimating equation:

U(βββ) =
n
∑

i=1

∫ ∞

−∞
w∗(βββ, t)

{

Zi −
S∗
1 (βββ, t)

S∗
0 (βββ, t)

}

dN∗
i (βββ, t), (3)

where the weight function w∗(βββ, t) is required to converge to the same limit as w(βββ, t) as n → ∞. It can be shown that (3)

is equivalent to
n
∑

i=1

1

m∗
i

m∗
i

∑

j=1

w∗(βββ, eij(βββ))δij

[

Zi −
S∗
1{βββ, eij(βββ)}

S∗
0{βββ, eij(βββ)}

]

. (4)

It is easy to show that the empirical processes n−1
∑n

i=1 N
∗
i (βββ, t), n−1

∑n
i=1 ZiN∗

i (βββ, t), S∗
0 (βββ, t), and S∗

1 (βββ, t)
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converge to the same limits as their respective univariate counterparts and that the mapping defined by U in (3) is compactly

differentiable with respect to the supremum norm. As a result, we can prove that U(βββ) and its univariate counterpart in

(2) converge weakly to the same limiting distribution and converge uniformly to the same limit. The latter ensures the

consistency of the solution, denoted by β̂ββ, to the estimating equation U(βββ) = 0.

Note that, while Chang [17] was the first to consider the AFT model for recurrent event data, it is worthwhile to point out

that the estimating function proposed in [17] is a special case of (4) with the unit or log-rank weight function, w∗(βββ, t) = 1:

ULR(βββ) =
n
∑

i=1

1

m∗
i

m∗
i

∑

j=1

δij

[

Zi −
S∗
1{βββ, eij(βββ)}

S∗
0{βββ, eij(βββ)}

]

. (5)

The existence of a strongly consistent and asymptotically normal sequence of solutions to ULR(βββ) = 0 was established in

[17]; however, the involvement of the unknown parameter βββ in the indicator function renders the estimating function in

(5) a non-smooth step function of βββ. Hence, a solution β̂ββLR such that ULR(β̂ββLR) = 0 may not exist for a finite sample. An

alternative approach is to estimate βββ by minimizing the norm of ULR(βββ), that is ∥ULR(βββ)∥ = ULR(βββ)ᵀULR(βββ). However,

because monotonicity in ULR(βββ) with respect to βββ is not guaranteed, there may exist multiple solutions to the minimization

problem. Therefore, the point estimation based on the non-smooth estimating function in (5) could be computationally

challenging in applications.

Because the asymptotic variance of the point estimator depends on the slope of the estimating function in (5), it is

difficult to estimate the variance directly when the estimating function is non-smooth. In the literature, resampling-based

methods are commonly used for variance estimation. Among them, the bootstrap method is popular due to the ease

of implementation. As an alternative, Chang [17] adopted the perturbation technique proposed by Parzen et al. [27] to

estimate the variance of β̂ββLR. Briefly, since it has been proved that n−1/2ULR(βββ) converges in distribution to a multivariate

normal distribution with mean 0 and covariance VLR(βββ), one can first generate a large number of random vectors R’s from

a multivariate normal distribution with mean 0 and covariance V̂LR(βββ), where V̂LR(βββ) is a consistent estimator of VLR(βββ).

Then, one can solve the equation ULR(βββ) = R to obtain β̂ββLR(R) for each R. The variance of β̂ββLR can be approximated by

the sample variance of β̂ββLR(R)’s.

Note that both the bootstrap and the perturbation method require solving the estimating equation for a large number of

times, which causes the computational burden to increase in a great amount, especially when the estimating function is

non-smooth. In addition, the two variance estimation methods rely on the success of each resampling’s point estimation

whose challenges have been discussed previously.

3. The proposed induced smooth estimating function

Since the rank-based estimating functions discussed in Section 2.2 are non-smooth, causing difficulties in parameter

estimation, we propose a monotonic, smooth estimating function in this section. We want to reemphasize that although

Johnson and Strawderman [31] have proposed a smooth estimating function for the clustered survival data AFT model,

their method cannot be directly applied to the recurrent gap time data because of the unique structure of this type of data.

For univariate survival data, it has been proved that, when using Gehan’s weight, the estimating function in (2) is

monotonic and corresponds to a convex objective function [38]. If the parameter is estimated by minimizing the objective

function, then the set of minimizers would be convex although the minimizer may not be unique. Later, it was showed

that applying an induced smoothing technique on the rank-based estimating function with Gehan’s weight leads to an

estimating function which is both smooth and monotonic, essential for improving the computation for both the point and

variance estimation [29]. We now consider extending the induced smoothing technique to the setting of recurrent gap

time data. We start with the rank-based estimating function for the recurrent gap time data in (4) by using a Gehan-type
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weight, defined as w∗(βββ, t) = S∗
0 (βββ, t), which converges to the same limit as Gehan’s weight for univariate survival data

w(βββ, t) = S0(βββ, t). The estimating function then becomes

UG(βββ) =
n
∑

i=1

∫ ∞

−∞
S∗
0 (βββ, t)

{

Zi −
S∗
1 (βββ, t)

S∗
0 (βββ, t)

}

dN∗
i (βββ, t)

=
n
∑

i=1

1

m∗
i

m∗
i

∑

j=1

S∗
0{βββ, eij(βββ)}δij

[

Zi −
S∗
1{βββ, eij(βββ)}

S∗
0{βββ, eij(βββ)}

]

=
1

n

n
∑

i=1

m∗
i

∑

j=1

n
∑

l=1

m∗
l

∑

k=1

δij
m∗

im
∗
l

(Zi − Zl)I {elk(βββ) ≥ eij(βββ)} (6)

Then, we can apply the induced smoothing technique to the estimating function with the Gehan-type weight in (6) as

follows. Let W be a p× 1 independent standard normal vector, then a smoothed estimating function can be proposed by

replacing UG(βββ) with EW [UG(β̃ββ)], where β̃ββ = βββ + n−1/2W , and EW denotes the expectation with respect to W . This leads

to a smooth, monotonic estimating function:

U (s)
G (βββ) = EW

[

UG(β̃ββ)
]

=
1

n

n
∑

i=1

m∗
i

∑

j=1

n
∑

l=1

m∗
l

∑

k=1

δij
m∗

im
∗
l

(Zi − Zl)EW

[

I{elk(β̃ββ) ≥ eij(β̃ββ)}
]

.

It is easy to show that

EW

[

I
{

elk(β̃ββ) ≥ eij(β̃ββ)
}]

= EW

[

I
{

Ylk − (βββ + n−1/2W )ᵀZl ≥ Yij − (βββ + n−1/2W )ᵀZi

}]

= EW

[

I
{

(βββ + n−1/2W )ᵀ(Zl − Zi) ≤ Ylk − Yij

}]

= Φ

{

Ylk − Yij − βββᵀ(Zl − Zi)

ril

}

,

where Φ(·) is the cumulative distribution function of a standard normal random variable and r2il = n−1(Zl − Zi)ᵀ(Zl −
Zi). Let hlk,ij(βββ) = {Ylk − Yij − βββᵀ(Zl − Zi)}/ril, then we have

EW

[

I{elk(β̃ββ) ≥ eij(β̃ββ)}
]

= Φ(hlk,ij(βββ)).

Thus, the resulting smooth estimating function can be expressed as

U (s)
G (βββ) =

1

n

n
∑

i=1

m∗
i

∑

j=1

n
∑

l=1

m∗
l

∑

k=1

δij
m∗

im
∗
l

(Zi − Zl)Φ(hlk,ij(βββ)). (7)

Let U̇ (s)
G (βββ) = ∂

{

1
nU

(s)
G (βββ)

}

/∂βββ, then

U̇ (s)
G (βββ) =

1

n2

n
∑

i=1

m∗
i

∑

j=1

n
∑

l=1

m∗
l

∑

k=1

δij
m∗

im
∗
l

1

ril
φ(hlk,ij(βββ))(Zi − Zl)(Zi − Zl)

ᵀ,

where φ(·) is the probability density function of a standard normal random variable. It can be easily shown that the smooth

estimating function in (7) is the derivative of the convex objective function

L(s)
G (βββ) =

1

n

n
∑

i=1

m∗
i

∑

j=1

n
∑

l=1

m∗
l

∑

k=1

δij
m∗

im
∗
l

[{elk(βββ)− eij(βββ)}Φ(hij,lk(βββ)) + rilφ(hij,lk(βββ))] . (8)
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The estimator β̂ββ
(s)

G is obtained by minimizing the objective function L(s)
G (βββ). The consistency and asymptotic normality

of β̂ββ
(s)

G are stated in the following theorem and proved in Appendix.

Theorem 1. Under the regularity conditions in the Appendix, β̂ββ
(s)

G is a strongly consistent estimator ofβββ0 and
√
n(β̂ββ

(s)

G −
βββ0) converges in distribution to N(0,Σ), where Σ = A−1V (A−1)ᵀ, and V = limn→∞ Var

{

n−1/2UG(βββ0)
}

, A =

∂/∂βββ
{

limn→∞ n−1UG(βββ0)
}

.

Note that the smooth estimator β̂ββ
(s)

G has the same asymptotic properties as the estimator β̂ββG (defined in the Appendix)

based on the non-smooth estimating function with the Gehan-type weight.

Since the proposed estimating function in (7) is smooth and thus differentiable, one can use U̇ (s)
G (β̂ββ

(s)

G ) to estimate

AG(βββ0) [29, 31]. Hence, we propose to use U̇ (s)
G (β̂ββ

(s)

G )−1V̂G

{

U̇ (s)
G (β̂ββ

(s)

G )−1
}ᵀ

to estimate the asymptotic variance of

√
n
(

β̂ββ
(s)

G − βββ0

)

, where V̂G is the sample variance of {n−1/2U (s)
G,b(β̂ββ

(s)

G ), b = 1, . . . , NB} and U (s)
G,b(β̂ββ

(s)

G ) is the smooth

estimating function based on the bth bootstrap sample at βββ = β̂ββ
(s)

G .

4. Simulation

Simulation studies were conducted to assess the performance of the proposed smooth estimating function as compared to

the non-smooth rank-based estimating function with various variance estimation methods. For each simulation scenario,

1000 datasets were generated, each with a sample size of n = 100 or n = 200. All resampling sizes (number of bootstraps

or perturbations) were set to be 200.

We began by generating the log gap times log(Tij), i = 1, . . . , n, j = 1, 2, . . . , from the AFT model:

log(Tij) = β1Zi1 + β2Zi2 + ϵij , (9)

where β1 = β2 = 0.5, and ϵij = αi + ϵ∗ij . The covariate Z1 had a Bernoulli distribution with success probability equal to

0.5 and Z2 followed a uniform distribution on the interval [0, 1]. The frailties αi followed a normal distribution with mean

−1 and variance ρ. Two types of distributions of the random errors ϵ∗ij were examined: normal distribution and logistic

distribution, and the parameters of the distributions were determined so that ϵ∗ij had mean zero and variance 1− ρ. Two

values of the variance parameter, ρ = 0.2, 0.4, were considered to achieve different levels of within-subject correlations.

Note that Model (9) implies a uniform correlation structure and the within subject correlation is ρ. It is easy to prove that

the above shared frailty model satisfies the identical marginal distribution condition assumed in Model (1). The censoring

times Ci were generated from uniform distributions to yield desirable censoring rates (i.e., percent of subjects without any

observed events), cp = 25% and 50%.

To show that the proposed method is valid when the data have more complicated correlation structure, we considered

scenarios where log(Tij) follow a first-order autoregression or AR (1) model:

log(Tij) = β1Zi1 + β2Zi2 + α+ ωij ,

where α = −1, ωij = ρωij−1 + vij and vij followed a normal distribution with mean zero and variance 1− ρ2 for

j = 2, . . .. We started by generating ωi1 from a normal distribution with mean zero and variance 1. Two levels of ρ,

0.2 and 0.4, were considered. It can easily be proved that the above AR(1) model also satisfies the identical marginal

distribution condition in Model (1).

With the simulated data, we first compared the performance of the non-smooth estimating equation with either the log-

rank weight in (5) [17] or Gehan’s weight in (6) to the performance of the proposed smooth estimating equation in (7).

The simulation results for data with an uniform correlation structure in normal or logistic random errors, and data with the
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Table 1. Results for simulated data with uniform correlation structure and normal random error. The standard error for the
non-smooth models, with the log-rank weight and Gehan’s weight, is estimated by the bootstrap method or the perturbation
method (Parzen et al.); the standard error for the proposed method is estimated by the bootstrap method and the asymptotic
variance (ASV) estimator; n is the sample size; cp is the percent of subjects without events; ρ is the within-subject
correlation; m̄ is the average number of gap times, observed or censored per subject; Bias is the relative bias computed
as the difference of the mean estimated parameter and the true value divided by the true value; SD is the Monte-Carlo
standard deviation; ASE is the mean standard error; CP is the proportion of the 95% confidence intervals covering the true

value.

Non-smooth, log-rank weight Non-smooth, Gehan’s weight
Bootstrap Perturbation Bootstrap

n cp ρ m̄ Bias SD ASE CP ASE CP Bias SD ASE CP

100 0.25 0.2 3.41 β1 -0.005 0.211 0.210 0.943 0.212 0.943 0.004 0.184 0.186 0.949
β2 -0.026 0.378 0.361 0.927 0.363 0.926 -0.022 0.321 0.323 0.946

0.4 3.80 β1 0.005 0.213 0.215 0.958 0.218 0.964 0.005 0.193 0.193 0.958
β2 0.017 0.372 0.373 0.938 0.376 0.937 0.021 0.321 0.336 0.952

0.50 0.2 1.88 β1 0.004 0.239 0.250 0.958 0.267 0.965 0.006 0.217 0.235 0.964
β2 -0.037 0.424 0.436 0.956 0.449 0.957 -0.006 0.394 0.409 0.960

0.4 2.00 β1 0.023 0.248 0.248 0.942 0.264 0.958 0.017 0.231 0.233 0.954
β2 -0.000 0.438 0.436 0.950 0.447 0.947 0.004 0.404 0.406 0.945

200 0.25 0.2 3.41 β1 0.002 0.143 0.149 0.956 0.150 0.957 0.009 0.123 0.130 0.956
β2 -0.018 0.276 0.257 0.926 0.258 0.931 -0.004 0.231 0.225 0.937

0.4 3.80 β1 0.004 0.154 0.152 0.940 0.153 0.944 0.001 0.133 0.134 0.946
β2 -0.001 0.261 0.264 0.942 0.264 0.947 -0.002 0.225 0.233 0.960

0.50 0.2 1.88 β1 -0.005 0.169 0.173 0.944 0.177 0.951 -0.007 0.153 0.162 0.959
β2 -0.009 0.302 0.303 0.943 0.308 0.949 0.003 0.275 0.281 0.953

0.4 2.00 β1 0.002 0.169 0.174 0.956 0.177 0.962 0.002 0.158 0.162 0.956
β2 0.003 0.301 0.304 0.946 0.310 0.945 0.010 0.280 0.281 0.939

Proposed, smooth Naive
Bootstrap ASV Univariate Clustered

n cp ρ m̄ Bias SD ASE CP ASE CP Bias SD Bias SD

100 0.25 0.2 3.41 β1 0.005 0.184 0.186 0.949 0.182 0.945 0.003 0.217 0.039 0.176
β2 -0.022 0.321 0.323 0.944 0.315 0.939 -0.004 0.378 0.017 0.291

0.4 3.80 β1 0.005 0.193 0.193 0.956 0.189 0.949 0.010 0.221 0.066 0.234
β2 0.022 0.321 0.336 0.950 0.326 0.949 0.024 0.371 0.058 0.400

0.50 0.2 1.88 β1 0.008 0.218 0.235 0.964 0.228 0.950 0.016 0.233 0.070 0.220
β2 -0.006 0.394 0.408 0.961 0.394 0.954 -0.005 0.423 0.022 0.377

0.4 2.00 β1 0.020 0.231 0.233 0.952 0.227 0.943 0.015 0.244 0.120 0.269
β2 0.005 0.404 0.406 0.943 0.393 0.934 0.003 0.426 0.056 0.469

200 0.25 0.2 3.41 β1 0.009 0.123 0.130 0.955 0.129 0.953 0.009 0.148 0.049 0.122
β2 -0.004 0.231 0.225 0.936 0.222 0.936 0.018 0.274 0.033 0.211

0.4 3.80 β1 0.001 0.133 0.134 0.946 0.133 0.939 0.001 0.155 0.062 0.163
β2 -0.002 0.225 0.233 0.960 0.230 0.953 0.002 0.260 0.034 0.280

0.50 0.2 1.88 β1 -0.005 0.154 0.162 0.958 0.160 0.956 -0.000 0.163 0.056 0.157
β2 0.004 0.275 0.281 0.953 0.277 0.949 0.003 0.295 0.048 0.271

0.4 2.00 β1 0.003 0.158 0.162 0.957 0.160 0.952 0.002 0.166 0.120 0.192
β2 0.011 0.280 0.281 0.939 0.277 0.934 0.010 0.292 0.109 0.333

AR(1) correlation structure are presented in Tables 1, 2 and 3, respectively. For the point estimates, we report the relative

bias (Bias) and the Monte-Carlo empirical standard deviation of the point estimates (SD). For each variance estimation

method, we report the average standard errors (ASE) and the coverage percentage (CP) of the 95% confidence intervals

(CIs).

The simulation results show that the average point estimates based on the non-smooth and smooth estimating functions
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Table 2. Results for simulated data with uniform correlation structure and logistic random error. The standard error for the
non-smooth models, with the log-rank weight and Gehan’s weight, is estimated by the bootstrap method or the perturbation
method (Parzen et al.); the standard error for the proposed method is estimated by the bootstrap method and the asymptotic
variance (ASV) estimator; n is the sample size; cp is the percent of subjects without events; ρ is the within-subject
correlation; m̄ is the average number of gap times, observed or censored per subject; Bias is the relative bias computed
as the difference of the mean estimated parameter and the true value divided by the true value; SD is the Monte-Carlo
standard deviation; ASE is the mean standard error; CP is the proportion of the 95% confidence intervals covering the true

value.

Non-smooth, log-rank weight Non-smooth, Gehan’s weight
Bootstrap Perturbation Bootstrap

n cp ρ m̄ Bias SD ASE CP ASE CP Bias SD ASE CP

100 0.25 0.2 3.39 β1 0.002 0.214 0.204 0.939 0.206 0.942 0.018 0.182 0.181 0.945
β2 -0.018 0.369 0.354 0.938 0.355 0.930 -0.006 0.313 0.314 0.946

0.4 3.80 β1 0.014 0.210 0.211 0.950 0.213 0.955 0.020 0.189 0.189 0.946
β2 0.003 0.372 0.367 0.939 0.369 0.940 0.011 0.329 0.329 0.952

0.50 0.2 1.88 β1 0.016 0.235 0.237 0.952 0.257 0.958 0.022 0.224 0.226 0.948
β2 0.039 0.405 0.412 0.955 0.421 0.951 0.055 0.381 0.389 0.954

0.4 2.00 β1 0.000 0.246 0.241 0.949 0.257 0.955 0.007 0.229 0.229 0.948
β2 -0.006 0.433 0.423 0.932 0.433 0.931 -0.005 0.398 0.397 0.949

200 0.25 0.2 3.40 β1 0.013 0.152 0.145 0.942 0.146 0.944 0.018 0.127 0.126 0.948
β2 -0.012 0.262 0.252 0.944 0.253 0.945 -0.002 0.221 0.218 0.953

0.4 3.80 β1 0.006 0.150 0.150 0.949 0.150 0.947 0.007 0.135 0.132 0.949
β2 0.012 0.262 0.261 0.954 0.262 0.951 0.017 0.228 0.230 0.957

0.50 0.2 1.88 β1 0.016 0.158 0.165 0.957 0.168 0.958 0.016 0.149 0.156 0.965
β2 0.024 0.286 0.289 0.948 0.294 0.947 0.029 0.270 0.270 0.951

0.4 1.99 β1 0.005 0.175 0.170 0.931 0.173 0.934 0.008 0.160 0.160 0.944
β2 0.013 0.306 0.296 0.943 0.301 0.943 0.004 0.274 0.275 0.949

Proposed, smooth Naive
Bootstrap ASV Univariate Clustered

n cp ρ m̄ Bias SD ASE CP ASE CP Bias SD Bias SD

100 0.25 0.2 3.39 β1 0.019 0.182 0.181 0.943 0.177 0.942 0.013 0.216 0.047 0.172
β2 -0.005 0.314 0.314 0.945 0.306 0.941 -0.005 0.377 0.035 0.287

0.4 3.80 β1 0.020 0.189 0.189 0.947 0.186 0.941 0.007 0.219 0.072 0.226
β2 0.012 0.329 0.329 0.953 0.320 0.947 -0.001 0.371 0.070 0.392

0.50 0.2 1.88 β1 0.024 0.225 0.226 0.947 0.219 0.936 0.027 0.240 0.089 0.226
β2 0.056 0.381 0.389 0.955 0.376 0.938 0.051 0.400 0.108 0.373

0.4 2.00 β1 0.009 0.229 0.229 0.948 0.223 0.942 0.014 0.241 0.130 0.275
β2 -0.003 0.398 0.397 0.948 0.384 0.941 -0.002 0.425 0.081 0.446

200 0.25 0.2 3.40 β1 0.018 0.127 0.126 0.949 0.125 0.946 0.010 0.151 0.049 0.123
β2 -0.001 0.221 0.218 0.953 0.215 0.950 -0.007 0.264 0.037 0.211

0.4 3.80 β1 0.008 0.135 0.132 0.949 0.131 0.946 0.000 0.152 0.069 0.168
β2 0.018 0.227 0.230 0.958 0.228 0.955 0.014 0.256 0.065 0.288

0.50 0.2 1.88 β1 0.017 0.149 0.156 0.967 0.154 0.964 0.020 0.161 0.080 0.152
β2 0.030 0.270 0.270 0.951 0.265 0.944 0.025 0.284 0.074 0.262

0.4 1.99 β1 0.009 0.160 0.160 0.943 0.158 0.938 0.015 0.166 0.125 0.193
β2 0.005 0.274 0.275 0.949 0.271 0.948 0.007 0.291 0.087 0.323

are all virtually unbiased. We noticed that under the simulation scenarios that we used, the non-smooth method with the

log-rank weight failed to converge for about half a percent of the simulated datasets (the results in the tables are based on

the simulated datasets with converged point estimates).

As for the variance estimation, the asymptotic variance estimator of the proposed smooth estimating function gives

satisfactory variance estimation with the ASE being close to the Monte-Carlo empirical SD and the bootstrap ASE and
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Table 3. Results for simulated data with AR(1) correlation structure. The standard error for the non-smooth models, with
the log-rank weight and Gehan’s weight, is estimated by the bootstrap method or the perturbation method (Parzen et
al.); the standard error for the proposed method is estimated by the bootstrap method and the asymptotic variance (ASV)
estimator; n is the sample size; cp is the percent of subjects without events; ρ is the correlation parameter in the AR(1)
correlation structure; m̄ is the average number of gap times, observed or censored per subject; Bias is the relative bias
computed as the difference of the mean estimated parameter and the true value divided by the true value; SD is the Monte-
Carlo standard deviation; ASE is the mean standard error; CP is the proportion of the 95% confidence intervals covering

the true value.

Non-smooth, log-rank weight Non-smooth, Gehan’s weight
Bootstrap Perturbation Bootstrap

n cp ρ m̄ Bias SD ASE CP ASE CP Bias SD ASE CP

100 0.25 0.2 3.22 β1 -0.028 0.213 0.209 0.943 0.211 0.944 -0.009 0.183 0.185 0.954
β2 -0.031 0.367 0.365 0.934 0.367 0.938 -0.038 0.319 0.324 0.933

0.4 3.38 β1 -0.029 0.207 0.209 0.943 0.211 0.945 -0.014 0.182 0.187 0.948
β2 -0.021 0.373 0.363 0.939 0.364 0.942 -0.010 0.325 0.326 0.942

0.50 0.2 1.85 β1 0.008 0.251 0.249 0.951 0.265 0.957 0.010 0.230 0.233 0.957
β2 -0.027 0.427 0.433 0.950 0.445 0.947 0.007 0.388 0.403 0.958

0.4 1.92 β1 0.012 0.261 0.247 0.929 0.265 0.940 0.015 0.241 0.232 0.934
β2 -0.021 0.430 0.433 0.948 0.445 0.952 0.006 0.394 0.402 0.945

200 0.25 0.2 3.23 β1 -0.021 0.150 0.147 0.935 0.148 0.940 -0.010 0.128 0.128 0.941
β2 -0.024 0.259 0.257 0.936 0.257 0.942 -0.029 0.221 0.223 0.950

0.4 3.38 β1 -0.019 0.149 0.148 0.948 0.149 0.949 -0.012 0.126 0.131 0.947
β2 -0.030 0.263 0.256 0.938 0.257 0.934 -0.032 0.225 0.226 0.947

0.50 0.2 1.85 β1 -0.022 0.168 0.174 0.946 0.177 0.951 -0.012 0.155 0.161 0.963
β2 -0.027 0.299 0.303 0.952 0.308 0.950 0.000 0.273 0.278 0.950

0.4 1.92 β1 -0.018 0.177 0.173 0.941 0.176 0.944 -0.014 0.162 0.161 0.942
β2 -0.008 0.291 0.302 0.954 0.307 0.955 0.006 0.266 0.278 0.963

Proposed, smooth Naive
Bootstrap ASV Univariate Clustered

n cp ρ m̄ Bias SD ASE CP ASE CP Bias SD Bias SD

100 0.25 0.2 3.22 β1 -0.009 0.183 0.185 0.955 0.181 0.950 0.007 0.218 -0.023 0.143
β2 -0.038 0.320 0.324 0.934 0.315 0.931 -0.021 0.385 -0.041 0.252

0.4 3.38 β1 -0.013 0.182 0.187 0.948 0.183 0.942 0.012 0.216 -0.030 0.163
β2 -0.009 0.325 0.325 0.940 0.317 0.933 -0.002 0.387 -0.034 0.282

0.50 0.2 1.85 β1 0.012 0.231 0.233 0.955 0.227 0.947 0.013 0.244 0.018 0.210
β2 0.007 0.388 0.402 0.958 0.388 0.951 0.004 0.415 0.017 0.336

0.4 1.92 β1 0.017 0.242 0.232 0.935 0.226 0.922 0.028 0.257 0.030 0.236
β2 0.007 0.395 0.402 0.943 0.389 0.935 0.003 0.423 0.021 0.366

200 0.25 0.2 3.23 β1 -0.010 0.128 0.128 0.941 0.127 0.939 0.002 0.153 -0.025 0.101
β2 -0.028 0.221 0.223 0.950 0.220 0.946 -0.022 0.269 -0.038 0.174

0.4 3.38 β1 -0.012 0.126 0.131 0.946 0.129 0.946 0.012 0.151 -0.032 0.111
β2 -0.032 0.225 0.225 0.947 0.223 0.948 -0.012 0.268 -0.053 0.192

0.50 0.2 1.85 β1 -0.011 0.155 0.161 0.964 0.159 0.959 -0.009 0.167 -0.002 0.140
β2 0.001 0.273 0.278 0.950 0.274 0.946 0.002 0.293 0.020 0.244

0.4 1.92 β1 -0.013 0.162 0.161 0.943 0.159 0.939 -0.004 0.172 0.012 0.160
β2 0.006 0.266 0.278 0.964 0.275 0.957 0.009 0.285 0.027 0.256

the CP being close to its nominal level (95%). The Monte-Carlo SD of the estimates from the proposed smooth estimating

function method and the non-smooth method with Gehan’s weight are close; and both are smaller than that of the non-

smooth method with log-rank weight [17] for the simulated data. It should be noted that since the bootstrap method and

the perturbation method [27] for the non-smooth method with log-rank weight need solving the non-smooth estimating

equations for numerous times, the variance estimation suffers from the same non-convergence problem as in the point
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Table 4. Regression results for schizophrenia data. SE is standard error estimate; CI is confidence interval.

Non-smooth Smooth
Log-rank weight Gehan’s weight

Estimate SE 95% CI Estimate SE 95% CI Estimate SE 95% CI

Log(onset age) 1.444 0.298 (0.860, 2.028) 1.295 0.242 (0.822,1.769) 1.295 0.241 (0.822,1.768)
Gender 0.095 0.276 (-0.445, 0.636) 0.123 0.233 (-0.334,0.580) 0.125 0.235 (-0.335,0.585)

estimation (the ASE and CP in the tables are based on the converged bootstrap samples or perturbed samples only).

The computing time of the asymptotic variance estimator based on the proposed smooth estimating function method was

substantially shorter than that of the bootstrap or perturbation method of the non-smooth methods as expected.

For comparison, we also applied two existing methods to recurrent gap time data: (1) analyzing the time to first event

only data with the induced smoothing method for univariate survival data [29], and (2) applying the induced smoothing

method for clustered survival data [31] to the recurrent gap time data, by ignoring their sequential structure. The results

are shown in the lower-right panel of Tables 1-3. Whereas the point estimates of the univariate method are satisfactory,

this method is obviously less efficient (i.e., larger SDs) than the proposed method. As expected, the point estimates of the

clustered survival data method are biased, and the biases increase with the within-subject correlation, which demonstrates

that naively applying methods for clustered survival data in the analysis of recurrent gap times can yield substantial bias.

5. Data analysis

We applied the proposed method to the hospitalization data from the Danish Psychiatric Central Register [39] which

computerized all admissions to psychiatric hospitals and psychiatric wards in general hospitals in Denmark since 1969.

In this paper, we only considered a subset of the published data, which was composed of a cohort of 286 individuals

who were first admitted to or contacted with Danish psychiatric services between April 1 and December 31, 1970. The

maximum follow-up time was set to be 3 years to avoid any potential change in the distributional pattern of recurrent

gap times. The details about this cohort have been described elsewhere [37, 21]. Briefly, among the 286 subjects, 106

(37%) were females, 230 (80%) had schizophrenia onset after 20 years old, 115 (40%) were censored after the initial

hospitalization or contact with no records of rehospitalization, 56 (20%) had one rehospitalization, and 115 (40%) had

two or more rehospitalization records. The average number of rehospitalization was 1.7. The median disease onset age

was 26 with a range of 14 to 88 years old. Note that 9 of the 286 patients died before the end of the follow-up time, hence,

the independent censoring assumption was not expected to be seriously violated.

Our main interest was to estimate the effect of the disease onset age on the gap time between two successive

hospitalizations. We fitted the AFT model to the data with two covariates, the logarithm-transformed onset age and gender.

We applied both the proposed smooth method and non-smooth methods with log-rank or Gehan’s weight. The variance

for the non-smooth and smooth methods was estimated by the bootstrap and the asymptotic methods, respectively.

As shown in Table 4, the point estimates of the effects of log onset age and gender from the non-smooth and smooth

estimating functions are similar, while the CIs from the proposed method and the non-smooth method with Gehan’s weight

are narrower than the non-smooth method with log-rank weight [17], similar to the findings from the simulation study. All

methods show that the effect of onset age was significantly associated with gap times between recurrent hospitalization

while gender did not have a significant effect, which is in line with the previous findings in literature [37, 21].
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6. Discussion

Despite its appealing direct interpretation, the AFT model [17] has not been widely used in recurrent event data analysis

possibly due to the lack of reliable and efficient computing programs. In this paper, we have introduced an induced

smoothing technique to improve the performance of the rank-based AFT model for recurrent gap time data. With

simulations and a real data analysis, we have shown that the proposed smooth estimating function method provides similar

but more computational stable point and variance estimates as compared to the existing non-smooth estimating function

method in [17]. The proposed induced smoothing method also has been shown to be more computationally efficient than

the non-smooth methods. Hence we recommend to use the proposed induced smoothing method with the asymptotic

variance estimator for data analysis.

In this paper, we adopted a Gehan-type weight for the induced smoothing method in order to achieve a more tractable

objective function. However, the induced smoothing method is applicable to other weight functions such as the log-rank

weight or a general weight function. Note that estimating functions with general weights may not be monotonic. In that

case, by following similar techniques in [30], one can use an iterative procedure and within each iteration, reweight a

monotonic estimating function in the same form as (6) to approximate the estimating function with a general weight. We

note that, like many correlated-data methods, the proposed induced smoothing method for the recurrent gap time AFT

model is robust in the sense that its validity does not depend on the correct specification of the correlation structure. A

possible future research direction is to improve the efficiency of estimation by incorporating the correlation structure in

the estimating function, such as using the generalized method of moments estimation studied by [33] for clustered survival

data.

Appendix

We provide a brief proof of consistency and asymptotic normality of β̂ββ
(s)

G by following the proofs for Theorem 1 and 2 in

[31]. We assume the following regularity conditions:

Condition A1. The parameter space B containing βββ0 is a compact subset of Rp.

Condition A2. ∥Zi∥+m∗
i is uniformly bounded almost surely by a nonrandom constant (i = 1, . . . , n).

Condition A3. Var(ϵ11) < ∞.

Condition A4. The matrix A and V defined in Theorem 1 exist and A is not singular.

Condition A5. Let f0(·) denote the marginal density associated with model error term ϵ11. Assume f0(·) and f ′
0(·) are

bounded functions on R with
∫

R

{

f ′
0(t)

f0(t)

}2

f0(t)dt < ∞.

Condition A6. The marginal distribution of Ci is absolutely continuous and has a uniformly bounded density gi(·) on

R for i = 1, . . . , n.

Among the above conditions, A1, A2, A4, A5, A6 are standard conditions to ensure consistency and the asymptotic

normality of the estimator from Equation (6) according to [31]. Since |Cov(ϵij , ϵik)| ≤ Var(ϵ11), i = 1, . . . , n, j, k =

1, . . . ,m∗
i , Condition A3 ensures that the covariances between the error terms of recurrent events of the same person

are bounded.

Proof of consistency. We know that the estimating function in Equation (6) is the gradient of convex objective

function LG(βββ) =
1
n

∑n
i=1

∑m∗
i

j=1

∑n
l=1

∑m∗
l

k=1(m
∗
im

∗
l )

−1δij{elk(βββ)− eij(βββ)}I{elk(βββ) ≥ eij(βββ)} which is continuous

almost everywhere. Using a similar approach as the proofs for Lemmas 1 and 2 in [31], we can prove that

supβββ∈B
| 1nLG(βββ)− L0(βββ)| → 0 almost surely where L0(βββ) is convex for βββ ∈ B and supβββ∈B

| 1nL
(s)
G (βββ)− L0(βββ)| → 0

almost surely. Condition A4 implies that L0(βββ) is strictly convex at βββ0 and thus βββ0 is a unique minimizer of L0(βββ).
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Let β̂ββG be the minimizer of LG(βββ) and β̂ββ
(s)

G be the minimizer of L(s)
G (βββ). According to Theorem II.1 and Corollary II.2 in

[6], we can conclude that both β̂ββG and β̂ββ
(s)

G converge almost surely to βββ0.

Proof of asymptotic normality. First we prove the asymptotic normality of n1/2(β̂ββG − βββ0). Using similar arguments as

in Theorem 2 in [40], we can show that

n1/2(β̂ββG − βββ0) = −A−1n−1/2UG(βββ0) + op(1 +
√
n∥β̂ββG − βββ0∥).

We define

M∗
i (βββ, t) =

1

m∗
i

m∗
i

∑

j=1

Mij(βββ, t),

Mij(βββ, t) = Nij(βββ, t)−
∫ t

−∞
Rij(βββ, u)λ0(u)du, and

z̄(βββ, t) =
E{S∗

1 (βββ, t)}
E{S∗

0 (βββ, t)}
,

where λ0(·) is the common hazard function of ϵij , i = 1, . . . , n, j = 1, . . . ,m∗
i . Let s0(βββ, x) = E{S0(βββ, x)} and s1(βββ, x) =

E{S1(βββ, x)}. Following similar argument as in [37], we can show that E {S∗
0 (βββ, t)} = E

[

n−1
∑n

l=1 I{el1(βββ) ≥ t}
]

=

s0(βββ, t) and E{S∗
1 (βββ, t)} = E

[

n−1
∑n

l=1 ZlI{el1(βββ) ≥ t}
]

= s1(βββ, t), and hence we prove that z̄(βββ, t) = s1(βββ, t)/s0(βββ, t).

Then, following [41], we have

1

n
UG(βββ0) =

1

n

n
∑

i=1

ui + op(n
−1/2),

where

ui =

∫ τ

−∞
s0(βββ0, t){Zi − z̄(βββ, t)}dM∗

i (βββ, t).

According to central limit theorem, we have
√
n{n−1UG(βββ0)} converge in distribution to N(0, V ), thus,

√
n(β̂ββG − βββ0)

converges in distribution to N(0, A−1V (A−1)ᵀ).

Next we prove the asymptotic normality of
√
n(β̂ββ

(s)

G − βββ0) and show that
√
n(β̂ββ

(s)

G − βββ0) and
√
n(β̂ββG − βββ0) converge

to the same limiting distribution. First, following a similar approach as in [31], Lemma 3, we can prove that ∥U̇ (s)
G (βββ0)−

A∥ → 0. Second, since we know that A−1
{

n−1/2UG(βββ0)
}

is asymptotically normal with mean zero and variance

A−1V A−1, then if we can prove
√
n(β̂ββ

(s)

G − βββ0) +A−1n−1/2UG(βββ0) → 0 (A.1)

in probability, it will imply that
√
n(β̂ββ

(s)

G − βββ0) converge in distribution to N(0, A−1V A−1).

Following [42], let Gn(βββ) = L(s)
G (βββ), ηn = n−1/2UG(βββ0), Mn = n1/2Ip, Vn = (1/2)A. Then (A.1) can be written as

Mn

(

β̂ββ
(s)

G − βββ0

)

+
1

2
V −1
n ηn → 0 (A.2)

in probability. According to Theorem 3 in [42], (A.2) holds if the following conditions are met:

Condition B1. Gn(βββ) is convex and β̂ββ
(s)

G is a sequence satisfying Gn(β̂ββ
(s)

G ) ≤ infβββ∈B Gn(βββ) + op(1).

Condition B2. ηn = Op(1), lim infn→∞ inf |βββ|=1 βββ
′Vnβββ > 0 and lim supn→∞ sup|βββ|=1 βββ

′Vnβββ < ∞.

Condition B3. For each βββ ∈ RP , Gn(βββ0 +M−1
n βββ)−Gn(βββ0)− βββ′ηn − βββ′Vnβββ = op(1).

It is easy to show that Conditions B1 and B2 hold when Conditions A1-A6 hold. We need to prove that Condition B3

holds. By Taylor expansion, we have

Gn(βββ0 +M−1
n βββ) = Gn(βββ0) + (M−1

n βββ)ᵀ
{

∂

∂βββ
Gn(βββ0)

}

+
1

2
(M−1

n βββ)ᵀ
{

∂2

∂βββ2
Gn(βββ

∗
n)

}

(M−1
n βββ) + op(1),
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then

Gn

(

βββ0 +M−1
n βββ

)

−Gn(βββ0)− βββ′
{

n−1/2U (s)
G (βββ0)

}

−
1

2
βββ′

{

U̇ (s)
G (βββ∗

n)
}

βββ = op(1), (A.3)

where ∥βββ∗
n − βββ0∥ ≤ ∥M−1

n βββ∥. Since {n−1U (s)
G (βββ)} is a sequence of bounded, continuously differentiable functions and

∥U̇ (s)
G (βββ0)−A∥ → 0, U̇ (s)

G (βββ∗
n) in (A.3) can be replaced by A. Thus we have

Gn(βββ0 +M−1
n βββ)−Gn(βββ0)− βββ′

{

n−1/2U (s)
G (βββ0)

}

− βββ′Vnβββ = op(1). (A.4)

Then Condition B3 holds if we can prove

n−1/2∥U (s)
G (βββ0)− UG(βββ0)∥ → 0 (A.5)

in probability.

By the definition of U (s)
G (βββ0), we have

U (s)
G (βββ0)− UG(βββ0) =

∫

RP

{UG(βββ0 + n−1/2u)− UG(βββ0)}φ(u)du, (A.6)

where φ(u) is the pdf of W . Define Kn(u;βββ0,Θ) = ∥ 1√
n
{UG(βββ0 + n−1/2u)− UG(βββ0)}−Θu∥ where Θ is a fixed matrix

that satisfies ∥Θ∥ ≤ M and M < ∞. We know that E(W ) =
∫

RP uφ(u) = 0, so we can derive

n−1/2∥U (s)
G (βββ0)− UG(βββ0)∥ =

∥

∥

∥

∥

∫

RP

[

1√
n

{

UG(βββ0 + n−1/2u)− UG(βββ0)
}

−Θu

]

φ(u)du

+

∫

RP

Θuφ(u)du

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

RP

[

1√
n

{

UG(βββ0 + n−1/2u)− UG(βββ0)
}

−Θu

]

φ(u)du

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

RP

Θuφ(u)du

∥

∥

∥

∥

=

∫

RP

Kn(u;βββ0,Θ)φ(u)du

=I1 + I2,

where I1 =
∫

∥u∥≤ϵn
Kn(u;βββ0,Θ)φ(u)du and I2 =

∫

∥u∥>ϵn
Kn(u;βββ0,Θ)φ(u)du for any ϵn > 0. Following a similar

approach as in Theorem 2 in [40], we have

sup
∥b−βββ0∥≤dn

∥

∥

∥

1√
n
{UG(b)− UG(βββ0)}−A

√
n(b− βββ0)

∥

∥

∥

1 + n1/2∥b− βββ0∥
= op(1) (A.7)

for any positive sequence dn → 0. Let b = βββ0 + n−1/2u, dn = n−1/2ϵn, Θ = A and suppose that ϵn = o(
√
n), then it

follows Equation (A.7) that

sup
∥u∥≤ϵn

Kn(u;βββ0,Θ)

1 + ∥u∥
= op(1),

which implies I1 → 0 in probability.
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Let Θ = A. Because of the triangle inequality, we have

I2 =

∫

∥u∥>ϵn

∥

∥

∥

∥

1√
n

{

UG

(

βββ0 + n−1/2u
)

− UG(βββ0)
}

−Au

∥

∥

∥

∥

φ(u)du

≤
√
n

∫

∥u∥>ϵn

∥

∥

∥

∥

1

n

{

UG

(

βββ0 + n−1/2u
)

− UG(βββ0)
}

∥

∥

∥

∥

φ(u)du

+

∫

∥u∥>ϵn

∥Au∥φ(u)du

≤ sup
∥u∥>ϵn

∥

∥

∥

∥

1

n

{

UG(βββ0 + n−1/2u)− UG(βββ0)
}

∥

∥

∥

∥

√
n

∫

∥u∥>ϵn

φ(u)du

+ ∥A∥
∫

∥u∥>ϵn

∥u∥φ(u)du. (A.8)

Since there is a constant Q < ∞ such that n−1UG(βββ) < Q based on Condition A2, we can derive that the first component

in (A.8) is ≤ 2Q
√
nP (∥W∥ > ϵn). It is easy to show that a sequence of ϵn can be selected so that ϵn = o(

√
n), ϵn → ∞

as n → ∞ and 2Q
√
nP (∥W∥ > ϵn) → 0,

∫

∥u∥>ϵn
∥u∥φ(u)du → 0 as n → ∞. Thus, we have shown that (A.8) → 0 in

probability, which implies I2 → 0 in probability, then (A.5) holds. Therefore, the asymptotic normality of β̂ββ
(s)

G is proved.
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