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Abstract

This paper develops an efficient Monte Carlo method to estimate the tail probabilities of the ratio of the largest
eigenvalue to the trace of the Wishart matrix, which plays an important role in multivariate data analysis. The estimator
is constructed based on a change-of-measure technique and it is proved to be asymptotically efficient for both the real
and complex Wishart matrices. Simulation studies further show the outperformance of the proposed method over
existing approaches based on asymptotic approximations, especially when estimating probabilities of rare events.
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1. Introduction

Consider n independent and identically distributed (i.i.d.) p-dimensional observations x1, ..., xn from a real or
complex valued Gaussian distribution with mean zero and covariance matrix Σ = σ2Ip. Here σ2 is an unknown
scaling factor and Ip is the p × p identity matrix. Define the n × p data matrix X = [x1, . . . , xn]>, and assume
λ1 ≥ . . . ≥ λp are the ordered real eigenvalues of the sample covariance matrix Σ̂ = n−1XHX, where “H” denotes the
conjugate transpose. Note that if p > n, the last p − n of the λ’s are zero. Let Un be the ratio of the largest eigenvalue
to the trace:

Un :=
λ1

min{n, p}−1 ∑p
i=1 λi

. (1)

We are interested in estimating the following rare-event tail probability of Un:

αn(x) := Pr (Un > x) ,

where x is some constant such that αn(x) is small. Estimating rare-event tail probabilities is often of interest in
multivariate data analysis. For instance, in multiple testing problems, it is often needed to evaluate very small p-
values for individual test statistics to control the overall false-positive error rate.

The random variable Un plays an important role in multivariate statistics on testing the covariance structure and
possible mean singles. For instance, it has been popularly used to test for equality of the population covariance to
a scaled identity matrix, i.e., the sphericity test [e.g., 22]: H0 : Σ = σ2Ip v.s. H1 : Σ , σ2Ip with σ2 unknown.
The test statistic Un does not depend on the unknown variance parameter σ2 and has high detection power against
alternative covariance matrix with a low rank perturbation of the null σ2Ip. In particular, under the alternative of
rank-1 perturbation with Σ = hh′ + σ2Ip for some unknown h ∈ Rp and σ2, the likelihood ratio test statistic Ln =

suph,σ2 f1(X; h, σ2)/supσ2 f0(X;σ2) can be written as a monotone function of Un and therefore αn(x) corresponds to
the p-value [e.g., 4, 22]. Please refer to [17, 22, 24] for more discussions and many other applications.
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Despite its importance in multivariate analysis, the exact distribution of Un may be difficult to compute, especially
when estimating the rare-event tail probabilities. Note that σ−2n−1XHX follows a Wishart distributionWβ,p(n, n−1Ip)
(β = 1 for real Gaussian and β = 2 for complex Gaussian), then the distribution of Un corresponds to that of the
ratio of largest eigenvalue and the trace of a Wβ,p(n, n−1Ip). However, such distribution is nonstandard and the
exact distribution formulas for Un involves high dimensional integrals or as inverses of certain Laplace transforms.
Numerical evaluation has been studied in [6, 7, 16, 18, 25, 28]. But for high-dimensional data with large p, the
computation becomes more challenging, which is particularly the case when αn(x) is small due to the additional
computational cost to control the relative estimation error of αn(x).

The asymptotic distribution of Un with p and n both going to infinity has also been studied in the literature. It
is known that Un asymptotically behaves similarly to the largest eigenvalue λ1, whose limiting distribution has been
studied in [13] and [14], and Un also asymptotically follows the Tracy-Widom distribution [e.g., 4, 23]. That is,

Pr
(

Un − µn,p

σn,p
> x

)
→ 1 − TWβ(x), (2)

whereTWβ denotes the Tracy-Widom distribution of order β, with β ∈ {1, 2} for real and complex valued observations
respectively. In particular, for real valued observations,

µn,p =
1
n

(√
n −

1
2

+

√
p −

1
2

)2
,

σn,p =
1
n

(√
n −

1
2

+

√
p −

1
2

)( 1
√

n − 1/2
+

1√
p − 1/2

)1/3
. (3)

The convergence rate is shown to be of the order O(min{n, p}−2/3) [21]. For complex case, similar expressions can be
found in [15]. [23] studied the accuracy of the Tracy-Widom approximation for finite values of n and p, and found
that the approximation may be inaccurate for small and even moderate values of p when n is large. A correction term
was therefore proposed by [23] to improve the approximation result, which is derived using the Fredholm determinant
representation, and the approximation rate is shown to be o(min{n, p}−2/3) when X follows complex Gaussian. For
real Gaussian case, which is of the interest in many statistics applications, [23] conjectured the result also holds. The
calculation of correction term in [23] depends on the second derivative of the non-standard Tracy-Widom distribution,
which usually involves numerical discretization scheme.

Another limitation of the existing methods is that they may become less efficient when estimating small tail
probabilities of rare events. This paper aims to address such rare-event estimation problem. In particular, we propose
an efficient Monte Carlo method to estimate the exact tail probability of Un by utilizing the importance sampling
technique. Importance sampling is a commonly used tool to reduce the Monte Carlo variance and it has been used to
estimated small tail probabilities, especially when the event is rare, in a wide variety of stochastic systems with both
light-tailed and heavy-tailed distributions [e.g., 2, 3, 5, 11, 19, 20, 26, 29].

An importance sampling algorithm needs to construct an alternative sampling measure (a change of measure) un-
der which the eigenvalues are sampled. Note that it is necessary to normalize our estimator with a Radon-Nikodym
derivative to ensure an unbiased estimator. Ideally, one develops a sampling measure so that the event of interest is
no longer rare under the sampling measure. The challenge is of course the construction of an appropriate sampling
measure; and one common heuristic is to utilize a sampling measure that approximates the conditional distribution
of Un given the event {Un > x}. This paper proposes a change of measure Q that asymptotically approximate the
conditional measure Pr(· | Un > x). We establish rigorous analysis of proposed estimator for Un and show it is asymp-
totically efficient. Simulation studies show that the proposed method outperforms existing approximation approaches,
especially when estimating probabilities of rare events.

The remainder of the paper is organized as follows. In Section 2, we propose the importance sampling estimator
and provide the main result on the estimator’s asymptotic efficiency in Theorem 1. Numerical results are presented in
Section 3 to illustrate its performance. We discuss the possibility of generalizing the result to the ratio of the sum of
the largest k eigenvalues to the trace of a Wishart matrix in Section 4. The proof for Theorem 1 is given in Section 5.
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2. Importance sampling estimation

For ease of discussion, we consider the setting of p ≤ n, p → ∞ and n → ∞. When p > n, the algorithm
and theory are essentially the same up to switching labels of p and n, which is explained in Remark 4. We use the
notation β to denote the real Wishart Matrix ( β = 1) and complex Wishart matrix ( β = 2). Since Un = pλ1/(

∑p
i=1 λi)

is invariant to σ2, the analysis does not depend on the specific values of σ2, and we take σ2 as follows in order to
simplify the notation and unify the real and complex cases under the same representation as specified in the following
equation (4).

• When β = 1, we assume that σ2 = 1. That is, X’s entries are i.i.d. N(0, 1), and (λ1, . . . , λp) are ordered
eigenvalues of n−1X>X.

• When β = 2, we assume σ2 = 2. Consider the circularly symmetric Gaussian random variable [e.g., 27], and
we say X := Y + iZ ∼ CN(0, σ2) when Y and Z are i.i.d. N(0, σ2/2). In the following, we assume that X’s
entries are i.i.d. CN(0, 2), and (λ1, . . . , λp) are ordered eigenvalues of n−1XHX.

Under the two cases with β = 1 and 2, the p eigenvalues λ1 ≥ . . . ≥ λp ≥ 0 are distributed with the following
probability density function [e.g., 9]:

fn,p,β(λ) = Cn,p,β

p∏
i< j

∣∣∣λi − λ j

∣∣∣β p∏
i=1

λ
β(n−p+1)

2 −1
i e−

n
2
∑p

i=1 λi , for β = 1 and 2, (4)

where Cn,p,β is a normalizing constant taking the following form

Cn,p,β = p!
(n
2

) βnp
2

p∏
j=1

Γ(1 +
β
2 )

Γ(1 +
β
2 j)Γ{ β2 (n − p + j)}

.

Then the target probability αn(x) = P (Un > x) can be written as

αn(x) =

∫
λ1≥...≥λp≥0

1(Un > x) fn,p,β(λ1, . . . , λp)dλ1 . . . dλp.

where 1(·) is the indicator function. As discussed in the introduction, directly evaluating the above p-dimensional
integral is computationally challenging, especially when p is relatively large.

This work aims to design an efficient Monte Carlo method to estimate αn(x). We first introduce some computa-
tional concepts in rare-event analysis literature, which helps to evaluate the computation efficiency of a Monte Carlo
estimator.

Consider an estimator Ln(x) of a rare-event probability αn(x), which goes to 0 as n → ∞. We simulate N
i.i.d. copies of Ln(x), {L( j)

n (x) : j = 1, ...,N} and obtain the average estimator L̄n(x) = N−1 ∑N
j=1 L( j)

n (x). We want
to control the relative error |L̄n(x) − αn(x)|/αn(x) such that for some prescribed ε, δ > 0,

Pr
{
|L̄n(x) − αn(x)|/αn(x) > ε

}
< δ.

Consider the direct Monte Carlo estimator for an example. The direct Monte Carlo directly generates samples from the
density (4) and uses Ln(x) = 1(Un > x). So each simulation we have a Bernoulli variable with mean αn(x). According
to the central limit theorem, the direct Monte Carlo simulation requires N = Θ{ε−2δ−1αn(x)−1} i.i.d. replicates to
achieve the above accuracy, where the notation Θ(·) is defined as follows. For any an and bn depending on n, an =

Θ(bn) denotes that 0 < lim infn→∞ |an/bn| ≤ lim supn→∞ |an/bn| < ∞. This implies that the direct Monte Carlo method
becomes inefficient and even infeasible as αn(x)→ 0.

A more efficient estimator is the asymptotically efficient estimator [e.g., 3, 26]. An unbiased estimator Ln(x) of
αn(x) is called asymptotically efficient if

lim inf
n→∞

ln Var{Ln(x)}
lnαn(x)2 ≥ 1. (5)
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Note that (5) is equivalent to

lim sup
n→∞

Var{Ln(x)}
αn(x)2−η = 0, (6)

for any η > 0. In addition, since E(L2
n) ≥ Var{Ln(x)} and

lim sup
n→∞

ln E(L2
n)

lnαn(x)2 ≤ 1

by Hölder’s inequality that E(L2
p) ≥ {E(Lp)}2 = α2

n(x), (5) is also equivalent to

lim
n→∞

ln E(L2
p)

lnαn(x)2 = 1.

When Ln(x) is asymptotically efficient, by Chebyshevs inequality,

Pr
{
|L̄n(x) − α(x)|/α(x) > ε

}
≤ Var{Ln(x)}/{Nα(x)2ε2},

and therefore (6) implies that we only need N = O{ε−2δ−1α(x)−η}, for any η > 0, i.i.d. replicates of Ln(x). Compared
with the direct Monte Carlo simulation, the efficient estimators substantially reduce the computational cost, especially
when αn(x) is small.

To construct an asymptotically efficient estimator, we use the importance sampling technique, which is a popularly
used method for variance reduction of a Monte Carlo estimator. We use P to denote the probability measure of the
eigenvalues (λ1, . . . , λn). The importance sampling estimator is constructed based on the following identity:

Pr(Un > x) = E{1(Un > x)} = EQ

{
1(Un > x)

dP
dQ

}
,

where Q is a probability measure such that the Radon-Nikodym derivative dP/dQ is well defined on the set {Un > x},
and we use E and EQ to denote the expectations under the measures P and Q, respectively. Let f Q

n,p(·) be the density
function of the eigenvalues (λ1, . . . , λn) under the change of measure Q. Then, the random variable defined by

Ln :=
fn,p(λ1, . . . , λn)

f Q
n,p(λ1, . . . , λn)

1(Un > x)

is an unbiased estimator of αn(x) under the measure Q. Therefore, to have Ln asymptotically efficient, we only need
to choose a change of measure Q such that

lim inf
n→∞

∣∣∣∣ ln EQ

{
fn,p(λ1,...,λn)2

f Q
n,p(λ1,...,λn)2 1(Un > x)

} ∣∣∣∣
|2 lnαn(x)|

≥ 1. (7)

To have an insight of the requirement (7), we consider some examples. First consider the direct Monte Carlo with
f Q
n,p(·) = fn,p(·), the right hand side of (7) then equals 1/2 which is smaller than 1. On the other hand, consider Q(·)

to be the conditional probability measure given Un > x, i.e., f Q
n,p(·) = an(x)−1 fn,p(·)1(Un > x); then the right hand side

of (7) is exactly 1. Note that this change of measure is of no practical use since Ln depends on the unknown αn(x).
But if we can find a measure Q that is a good approximation of the conditional probability measure given Un > x, we
would expect (7) to hold and the corresponding estimator Ln to be efficient. In other words, the asymptotic efficiency
criterion requires the change of measure Q is a good approximation of the conditional distribution of interest.

Following the above argument, we construct the change of measure Q as follows, which is motivated by a recent
study of [12]. [12] studied the tail probability of the largest eigenvalue, i.e., Pr(λ1 > px) with p > n and proposed
a change of measure that approximates the conditional probability measure given λ1 > px in total variation when
p � n. It is known that the asymptotic behavior λ1 and Un are closely related. We therefore adapt the change of
measure for the current problem of estimating Un. However, we would like to clarify that the problem of estimating
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Un is different from that in [12] in terms of both theoretical justification and computational implementation, which is
further discussed in Remark 3.

Specifically, we propose the following importance sampling estimator.

Algorithm 1. Every iteration in the algorithm contains three steps:

Step 1 We use the matrix representation of the β-Laguerre ensemble introduced in [9], and generate matrix Ln−1,p−1,β :=
Bn−1,p−1,βB>n−1,p−1,β, where Bn−1,p−1,β is a bidiagonal matrix defined by

Bn−1,p−1,β =



χβ(n−1)
χβ(p−2) χβ(n−2)

. . .
. . .

χβ χβ(n−(p−1))


(p−1)×(p−1)

.

The notation χa denotes the square-root of the chi-square distribution with degree of freedom a, and the diagonal
and sub diagonal elements of Bn−1,p−1,β are generated independently. We then calculate the corresponding
ordered eigenvalues of n−1Ln−1,p−1,β, denoted by λ2 ≥ . . . ≥ λp.

Step 2 Conditional on (λ2, . . . , λp), sample λ1 from an exponential distribution with density

f (λ1) =nre−nr(λ1−x̃∨λ2)
· I (λ1 > x̃ ∨ λ2) , (8)

where r is a rate function such that

r =
1
2
− βγ

∫
1

βx − y
dσβ(y) −

1 − γ
2x

(9)

with γ = p/n, the σβ(·) denotes the probability distribution function of the Marchenko-Pastur law such that

σβ(ds) =

√
(s − s∗)(s∗ − s)
β × 2πγs

1s∈[s∗,s∗]ds (10)

with s∗ = β
(√
γ + 1

)2
and s∗ = β

(√
γ − 1

)2
, and x̃ is a constant depending on n, p, β and x such that

x̃ =
x Tr (n−1Ln−1,p−1,β)

p − x
.

Step 3 Based on the collected λ1 ≥ . . . ≥ λp, a corresponding importance sampling estimate can be calculated as in
(12) below and the value of the estimate is saved.

The three steps above are repeated in every iteration. After the last iteration, the saved sampling estimates from all
iterations are averaged to give an unbiased estimate of α(x).

Now we give the details on how to compute the importance sampling estimate (12) in every iteration of the
algorithm. Let Q be the measure induced by combining the above two-step sampling procedure. From [9], under the
change of measure Q, the density of (λ∗2, . . . , λ

∗
p) := n(n − 1)−1(λ2, . . . , λp) is

f Q
n,p(λ∗2, . . . , λ

∗
p) = Cn−1,p−1,β

∏
2≤i< j≤p

|λ∗i − λ
∗
j |
β ·

p∏
i=2

(λ∗i )
β(n−p+1)

2 −1 · e−
n−1

2
∑p

i=2 λ
∗
i .
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This implies the density function of (λ2, . . . , λp) under Q is

f Q
n,p(λ2, . . . , λp) =

( n
n − 1

) β(n−1)(p−1)
2

Cn−1,p−1,β

∏
2≤i< j≤p

|λi − λ j|
β ·

p∏
i=2

λ
β(n−p+1)

2 −1
i · e−

n
2
∑p

i=2 λi . (11)

Therefore dQ/dP takes the form

dQ
dP

=
f Q
n,p(λ2, . . . , λp) × nre−nr(λ1−x̃∨λ2) · I(λ1>x̃∨λ2)

fn,p(λ1, λ2, . . . , λp)

=

(
n

n−1

) β(n−1)(p−1)
2 Cn−1,p−1,β nre−nr(λ1−x̃∨λ2) · I(λ1>x̃∨λ2)

Cn,p,β
∏p

i=2(λ1 − λi) · λ
β(n−p+1)

2 −1
1 · e−

n
2 λ1

.

The corresponding importance sampling estimate is given by

Ln(x) =
dP
dQ

1(Un>x), (12)

where Un is calculated with the sampled λ1, . . . , λp based on the (1).
We claim that for the proposed algorithm 1, with the chosen r in (9), the importance sampling estimator Ln(x) is

asymptotically efficient in estimating the target tail probability. This result is given in Theorem 1 below, whose proof
is given in Section 5.

Theorem 1. When p/n → γ ∈ R, the estimator Ln(x) in (12) is asymptotically efficient in estimating αn(x) for
x >

(√
γ + 1

)2
.

Remark 1. Our discussion on the asymptotic efficiency focuses on the case of estimating rare-event tail probability
αn(x), that is, when {Un > x} corresponds to a rare event. When x ≤

(√
γ + 1

)2
, {Un > x} is not rare, and we can

still apply the importance sampling algorithm with a reasonable positive r value as the exponential distribution’s rate.
However, the theoretical properties of the importance sampling estimator shall be studied under a different framework
and therefore is not further pursued in this study.

Remark 2. We explain the Marchenko-Pastur form of (10). When X’s entries have mean 0 and variance 1 (β = 1 and
2), the Marchenko-Pastur law for eigenvalues of n−1XHX takes the following standard form [e.g., Theorem 3.2 in 24]

f (ds̄) =

√
(s̄+ − s̄)(s̄ − s̄−)

2πγ s̄
1[s̄−,s̄+](s̄)ds̄ (13)

with s̄− = (1 −
√
γ)2 and s̄+ = (1 +

√
γ)2. For the considered setting of this paper, the real case (β = 1) has σ2 = 1,

so (10) and (13) are consistent. On the other hand, the complex case (β = 2) has σ2 = 2 and therefore (10) and (13)
are different up to a factor of β = 2. Specifically, let (λ̄1, . . . , λ̄p) and (λ1, . . . , λp) be eigenvalues of n−1XHX when X
has i.i.d. entries of CN(0, 1) and CN(0, 2) respectively. Then we know (λ1, . . . , λp) ∼ 2(λ̄1, . . . , λ̄p) and (13) implies
the empirical distribution in (10).

Remark 3. We discuss the differences between the proposed method and the method in [12] on the largest eigenvalue,
which also employs an importance sampling technique. First, the two methods have different targets, i.e., Pr(λ1 > x) in
[12] and Pr(Un > x) here, and therefore use different change of measures to construct efficient importance sampling
estimators. As discussed in Section 2, in order to achieve asymptotical efficiency, the change of measures should
approximate the target conditional distribution measures, i.e., Pr( · | λ1 > x) in [12] and Pr( · | Un > x) in this paper.
Due to the difference between the two conditional distributions, two different change of measures are constructed
in the two methods. Specifically, [12] samples the largest eigenvalue λ1 from a truncated exponential distribution
depending on the second largest eigenvalue λ2 while this work samples λ1 from an exponential distribution depending
on eigenvalues (λ2, · · · , λp). Second, the proof techniques of the main asymptotic results in the two papers are also
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different. In particular, to show the asymptotic efficiency of the importance sampling estimators as defined in (5),
we need to derive asymptotic approximations for both the rare-event probability α(x) and the second moments of
the importance sampling estimator EQ{L2

n(x)}. Even though the largest eigenvalue λ1 and the ratio statistic Un have
similar large deviation approximation results for their tail probabilities, the asymptotic approximations for the second
moments of the importance sampling estimators are different due to the differences between the considered change of
measures as well as the effect of the trace term in Un. Please refer to the proof for more details.

Remark 4. The method and the theoretical results can be easily extended from the case of p ≤ n to p ≥ n by
switching the labels of n and p and changing γ to γ−1 correspondingly. Note that when p ≥ n, eigenvalues of n−1XHX
and p−1XXH give the same test statistic Un as defined in (1), which is because XHX and XXH have the same set of
nonzero eigenvalues and Un is scale invariant. By symmetry, when p ≥ n, the joint density function of the eigenvalues
of p−1XXH have the same form as (4), except that the labels of n and p are switched. Therefore, the cases when
p ≤ n and p ≥ n are equivalent up to the label switching. Note that after p/n is changed to n/p, γ becomes γ−1

correspondingly.

3. Numerical study

We conduct numerical studies to evaluate the performance of our algorithm. We first take combinations (n, p) =

(100, 10), (100, 20), (500, 20), (1000, 50), and β = 1, 2, respectively. Then we compare our algorithm with other
methods and present the results in Table 1 and 2.

For the proposed importance sampling estimator, we repeat NIS = 104 times and show the estimated probabilities
(“ES TIS ” column) along with the estimated standard deviations of Lp, i.e.,

√
VarQ(Lp) (“S DIS ” column). The ratios

between estimated standard deviations and estimates (“S DIS /ES TIS ” column) indicate the efficiency of algorithms.
Note that with NIS = 104 replications, the standard error of the estimate is S DIS /

√
NIS = S DIS /100. In addition, three

alternative methods are considered, including the direct Monte Carlo, the Tracy-Widom distribution approximation,
and the corrected Tracy-Widom approximation [23]. We compute direct Monte Carlo estimates (“ES TDMC” column)
with NDMC = 106 independent replications. We present the standard deviation of direct Monte Carlo estimates
(“S DDMC” column) and the ratios between estimated standard deviations and estimates (“S DDMC/ES TDMC”). In
addition, we use the approximation of Tracy-Widom distribution (“TW” column) specified in equation (2). The TW(x)
is computed from RMTstat package in R. Furthermore, following [23], we compute the Tracy-Widom approximation
with correction term (“c.TW” column):

Pr
(

U − µn,p

σn,p
> x

)
≈ 1 − TWβ(x) +

1
2

(
2

np

) (
µn,p

σn,p

)2

TW
′′

β(x), (14)

where TW
′′

(x) is computed numerically via a standard central differencing scheme with ∆x = 10−3. When β = 1, µ
and σ is chosen according to equation (3). When β = 2, µ and σ is chosen according to [15].

We can see from Table 1 and Table 2 that the Tracy-Widom distribution (“TW” column) significantly overestimates
the tail probabilities for all considered settings and the finding is consistent with that in [23]. And the corrected Tracy-
Widom approximation (“c.TW” column) underestimates the tail probability αn(x) and goes to a negative number as
αn(x) goes small. Since the proposed importance sampling and the direct Monte Carlo method are both unbiased
estimators, next we compare their computational efficiency. As discussed in Section 2, for the average estimator
L̄n(x) = N−1 ∑N

j=1 L( j)
n (x), “S DIS /ES TIS ” and “S DDMC/ES TDMC” can be used as a measure of the computational

efficiency in terms of iteration numbers. From the results in Tables 1 and 2, as α(x) decreases, “S DDMC/ES TDMC”
goes large quickly and even becomes “NaN”. On the other hand, “S DIS /ES TIS ” increases slowly and is generally
smaller than “S DDMC/ES TDMC”, showing that the proposed importance sampling is more efficient than the direct
Monte Carlo method.

To further illustrate, we compare the iteration numbers NIS and NDMC that would be needed to achieve the same
level of relative standard errors of the estimators. Specifically, in order to have the same ratios of the standard errors
to the estimates, i.e., S EIS /ES TIS = (S DIS /

√
NIS )/ES TIS and S EDMC/ES TDMC = (S DDMC/

√
NDMC)/ES TDMC ,
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obtained under the importance sampling and direct direct Monte Carlo, respectively, we need

NDMC

NIS
=

(S DDMC/ES TDMC)2

(S DIS /ES TIS )2 . (15)

Based on the above equation, the simulation results show that to have a similar standard error obtained under the
importance sampling, the direct Monte Carlo method needs more iterations as α(x) goes small. For example, from
Table 1, when n = 100, p = 10 and x = 2.1, we need NDMC to be approximately 4.3× 102 times larger than NIS ; when
n = 1000, p = 50 and x = 1.62, we need NDMC about 1.3 × 104 times larger.

Besides from the iteration numbers, we also compare the average time cost of each iteration under the importance
sampling and the direct Monte Carlo method, respectively. For the direct Monte Carlo, two methods are considered in
computing the eigenvalues. The first method directly computes the test statistic Un using the eigen-decomposition of a
randomly sampled Wishart matrix. The second method computes the eigenvalues from the tridiagonal representation
form as in Step 1 of Algorithm 1. We run 104 iterations for all the methods and report the average time of one iteration
in Table 3, where the first method of the direct Monte Carlo is denoted as TDMC 1, the second method is denoted as
TDMC 2, and the importance sampling method is denoted as TIS . The simulation results show that TDMC 1 has the
highest time cost per iteration, while TDMC 2 and TIS are similar. We further explain the simulation results from the
perspective of algorithm complexity. For each iteration, the first direct Monte Carlo method samples a p × p Wishart
matrix and performs its eigen-decomposition, which usually has the cost of O(p3). The second direct Monte Carlo
method and the importance sampling only need to sample O(p) number of χ2 random variables and then decompose
a symmetric tridiagonal matrix, which have O(p2) cost per iteration [8]. Although the importance sampling also
samples from an exponential distribution in Step 2, the distribution parameters can be calculated in advance and it
does not affect the overall complexity much. Therefore, the time complexity of the algorithm TDMC 1 is higher while
TDMC 2 and TIS are similar per iteration. Together with the result in (15), we can see that the importance sampling is
more efficient than the direct Monte Carlo method in terms of both the iteration number and the overall time cost.

To further check the influence of replication number NIS of the importance sampling algorithm, we focus on the
case of n = 100 and p = 10 and compare the performance of different NIS ’s. In order to obtain accurate reference val-
ues of the tail probabilities, we use direct Monte Carlo with repeating time NDMC = 108 to estimate multiple tail prob-
abilities αn(x)’s ranging from 10−2 to 10−6 under β = 1, 2 respectively. Then we estimate the corresponding αn(x)’s
using our algorithm with NIS = 104, 105, 106 respectively. The results are presented in Figure 1, where the x-axis rep-
resents the reference values log10 (ES TDMC). The line “DMC with error bar” represents the (approximated) pointwise
95% confidence intervals

[
log10

(
ES TDMC − 2 × S DDMC/

√
NDMC

)
, log10

(
ES TDMC + 2 × S DDMC/

√
NDMC

)]
. Simi-

larly, the line “Importance Sampling with error bar” represents the importance sampling estimates and pointwise
95% confidence intervals

[
log10

(
S DIS − 2 × S DIS /

√
NIS

)
, log10

(
ES TIS + 2 × S DIS /

√
NIS

)]
. From the figures, the

proposed algorithm can well estimate the probability as small as 10−6 with NIS = 104, which is more efficient than
directed Monte Carlo and more accurate than Tracy-Widom approximations. Furthermore, Figure 1 shows that the al-
gorithm improves when number of iterations increases. We also plot the Tracy-Widom approximations in (2) and (14)
in Figure 1 for comparison. Figure 1 shows that without correction, the Tracy-Widom distribution in (2) is not accurate
and overestimates the probabilies. The correction term in (14) improves the approximation when the probability is
larger than the scale of about 10−2, which is consistent with the result in [23]. But when the probability goes smaller,
the corrected approximation has larger deviation from true values (on the log10 scale) and even becomes negative.
Note that since we cannot plot the log10 of negative numbers in the figures, the lines of the corrected Tracy-Widom
approximations appear to be shorter. These results validate the results in Table 1 and 2.
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Table 1: Estimation Results for β = 1

(a) n=100 , p=10

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
1.80 2.44e-2 1.25e-1 5.14 2.46e-2 1.55e-1 6.30 2.58e-2 5.07e-2
1.95 1.02e-3 5.00e-3 4.89 1.08e-3 3.28e-2 30.46 3.90e-4 4.37e-3
1.98 5.32e-4 3.55e-3 6.66 5.57e-4 2.36e-2 42.36 4.96e-6 2.48e-3
2.10 2.43e-5 2.48e-4 10.22 2.20e-5 4.69e-3 213.20 -7.46e-5 2.07e-4
2.30 5.25e-8 7.72e-7 14.71 0 0 NaN 0 0

(b) n=100 , p=20

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
2.10 9.14e-2 3.73e-1 4.09 8.99e-2 2.86e-1 3.18 9.29e-2 1.21e-1
2.30 2.86e-3 2.04e-2 7.13 2.71e-3 5.20e-2 19.19 2.31e-3 6.09e-3
2.40 3.44e-4 2.60e-3 7.54 3.11e-4 1.76e-2 56.70 1.54e-4 9.07e-4
2.50 2.89e-5 2.01e-4 6.95 2.60e-5 5.10e-3 196.11 -6.13e-6 1.05e-4
2.70 1.50e-7 1.78e-6 11.85 0 0 NaN 0 0

(c) n=500 , p=20

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
1.46 4.64e-2 2.21e-1 4.76 4.68e-2 2.11e-1 4.51 4.87e-2 6.51e-2
1.51 3.98e-3 2.16e-2 5.43 3.70e-3 6.07e-2 16.40 3.70e-3 7.03e-3
1.56 1.57e-4 7.13e-4 4.54 1.55e-4 1.24e-2 80.32 1.28e-4 4.40e-4
1.62 2.14e-6 1.49e-5 6.97 3.00e-6 1.73e-3 577.35 -1.87e-6 6.71e-6
1.70 2.43e-9 2.72e-8 11.20 0 0 NaN 0 0

(d) n=1000 , p=50

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
1.52 2.75e-2 1.29e-1 4.70 2.90e-2 1.68e-1 5.78 2.96e-2 3.59e-2
1.55 2.51e-3 1.16e-2 4.63 2.57e-3 5.06e-2 19.71 2.53e-3 7.98e-4
1.60 1.41e-5 5.25e-5 3.72 2.20e-5 4.69e-3 213.20 1.15e-5 3.25e-5
1.62 1.40e-6 8.70e-6 6.21 2.00e-6 1.41e-3 707.11 -7.93e-7 6.71e-6
1.66 7.49e-9 3.69e-8 4.93 0 0 NaN 0 0
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Table 2: Estimation Results for for β = 2

(a) n=100 , p=10

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
1.77 3.72e-3 3.34e-2 8.98 3.79e-3 6.15e-2 16.21 2.20e-3 1.26e-2
1.81 9.21e-4 1.32e-2 14.34 8.97e-4 2.99e-2 33.37 -1.36e-4 4.42e-3
1.91 1.89e-5 3.28e-4 17.37 1.70e-5 4.12e-3 242.53 -1.22e-4 2.11e-4
1.93 6.68e-6 8.44e-5 12.64 4.00e-6 2.00e-3 500 -7.44e-5 1.07e-4
1.99 2.98e-7 4.25e-6 14.27 0 0 NaN -1.29e-5 1.24e-5

(b) n=100 , p=20

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
2.10 1.20e-2 7.99e-2 6.68 1.45e-2 1.20e-1 8.23 1.41e-2 2.70e-2
2.18 1.04e-3 7.59e-3 7.28 1.34e-3 3.66e-2 27.29 8.64e-4 3.65e-3
2.30 2.18e-5 3.47e-4 15.94 2.30e-5 4.80e-3 208.51 -2.06e-5 8.86e-5
2.38 6.73e-7 1.94e-5 28.86 1.00e-6 1.00e-3 1000 -2.70e-6 4.83e-6
2.46 1.63e-8 2.83e-7 17.36 0 0 NaN -1.73e-7 1.93e-7

(c) n=500 , p=20

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
1.45 8.04e-3 5.49e-4 6.84 8.98e-3 9.43e-2 10.51 8.95e-3 1.58e-2
1.48 6.56e-4 8.02e-3 12.22 6.49e-4 2.55e-2 39.24 5.07e-4 1.59e-3
1.50 8.77e-5 1.16e-3 13.18 8.60e-5 9.27e-3 107.83 3.88e-5 2.70e-4

1.525 5.05e-6 5.37e-5 10.63 8.00e-6 2.83e-3 353.55 -1.87e-6 2.28e-5
1.55 1.85e-7 1.71e-6 9.28 0 0 NaN -4.66e-7 1.49e-6

(d) n=1000 , p=50

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC c.TW TW
1.51 5.85e-3 6.67e-2 11.39 5.20e-3 7.19e-2 13.83 5.31e-3 7.46e-3
1.53 2.65e-4 1.96e-3 7.39 3.04e-4 1.74e-2 57.35 2.98e-4 5.32e-4
1.56 1.72e-6 1.84e-5 10.72 0 0 NaN 1.33e-6 4.20e-6
1.58 3.15e-8 2.86e-7 9.10 0 0 NaN 1.46e-8 9.85e-8
1.60 4.24e-10 3.80e-9 8.97 0 0 NaN -6.21e-11 1.56e-9
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Estimation results for n = 100 and p = 10
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Table 3: Estimation of Time

(a) β = 1

n p x TDMC 1 TDMC 2 TIS

100 10 1.95 1.28e-03 7.26e-04 8.89e-05
100 10 1.98 1.15e-03 9.23e-05 8.51e-05
100 20 2.3 1.58e-03 7.35e-05 6.84e-05
100 20 2.4 1.65e-03 1.79e-04 6.33e-05
500 20 1.51 1.27e-03 9.87e-05 9.32e-05
500 20 1.56 1.67e-03 7.39e-05 8.82e-05
1000 50 1.55 3.19e-03 1.05e-04 1.56e-04
1000 50 1.6 3.12e-03 9.76e-05 1.34e-04

(b) β = 2

n p x TDMC 1 TDMC 2 TIS

100 10 1.77 1.87e-03 1.75e-04 6.08e-05
100 10 1.81 1.85e-03 5.47e-05 5.90e-05
100 20 2.18 2.86e-03 8.37e-05 1.20e-04
100 20 2.3 2.69e-03 1.11e-04 6.69e-05
500 20 1.45 2.79e-03 8.46e-05 7.01e-05
500 20 1.48 3.53e-03 7.24e-05 8.90e-05

1000 50 1.53 8.65e-03 9.03e-05 1.53e-04
1000 50 1.56 8.35e-03 9.61e-05 1.49e-04

4. Conclusions and Extensions

This paper proposes an asymptotically efficient Monte Carlo method to estimate the tail probabilities of the ratio of
the largest eigenvalue to the trace of the Wishart matrix. Theoretically, we prove the importance sampling estimator is
asymptotic efficient. Numerically, we conduct extensive studies to evaluate the performance of the proposed algorithm
compared with other existing methods in terms of estimation accuracy and computational cost in estimating the tail
probabilities.

The method can be adapted to estimating tail probabilities of the ratio of the sum of the first k largest eigenvalues
to the trace of the Wishart matrix, which is defined as

Uk
n =

∑k
i=1 λi

min{p, n}−1 ∑p
i=1 λi

,

where k is a fixed positive integer. We consider the algorithm as follows. First, sample λ2, . . . , λp from n−1Ln−1,p−1,β
using the same method in Algorithm 1. Second, conditioning on λ2, . . . , λp, sample λ1 from a truncated exponential
distribution with the same form as (8), but we redefine

x̃ =
x
∑p

i=2 λi − p
∑k

i=2 λi

p − x

and choose r to be a small constant that depend on the large deviation result of the largest k eigenvalues. We conducted
a numerical study to show the validation and efficiency of the proposed method in estimating the tail probabilities of
Uk

n. Following the design in Section 3, the sampling is repeated 104 times for the importance sampling method and
106 times for the direct Monte Carlo method. The k is chosen to be 2, 3, 4, n = 100, p = 50, and we take r = 1/10.
Tables 4 and 5 summarize the results of β = 1 and β = 2, which show similar patterns as Tables 1 and 2. When the
tail probability becomes smaller, S DIS /ES TIS is smaller than S DDMC/ES TDMC , which indicates that the importance
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sampling is more efficient than the direct Monte Carlo method in estimating the tail probabilities as discussed in
Section 3. It would be interesting to study the asymptotic property of this algorithm on estimating the tail probability
of Uk

n; however, it needs development of asymptotic theory on the tail probabilities of the first k largest eigenvalues,
which is beyond the scope of this study, and we would like to leave it for future work.

Table 4: Uk
n Results for β = 1

(a) n=100 , p=50, k=2

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC

5.9 1.14e-03 6.70e-03 5.89 1.55e-03 3.93e-02 25.41
6.0 3.22e-04 3.80e-03 11.78 2.98e-04 1.73e-02 57.92
6.1 5.68e-05 9.37e-04 16.49 5.50e-05 7.42e-03 134.84
6.4 1.09e-07 3.21 e-06 29.50 0 0 NaN

(b) n=100 , p=50, k=3

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC

8.4 1.56e-03 1.77e-02 11.36 1.55e-03 3.93e-02 25.41
8.5 4.22e-04 5.48e-03 12.98 4.04e-04 2.01e-02 49.74
8.7 1.46e-05 2.99e-04 20.44 1.80e-05 4.24e-03 235.70
8.9 7.26e-07 2.53e-05 34.83 0 0 NaN

(c) n=100 , p=50, k=4

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC

10.6 7.60e-03 5.65e-02 7.43 8.01e-03 8.91e-02 11.13
10.8 6.58e-04 6.63e-03 10.08 8.44e-04 2.90e-02 34.41
11.0 5.49e-05 1.47e-03 26.73 6.40e-05 8.00e-03 125.00
11.3 1.70e-07 5.56e-06 32.77 0 0 NaN

5. Proof of Theorem 1

This section provides the proof for Theorem 1 of the estimator’s asymptotic efficiency. We focus on the case when
p ≤ n and p/n → γ ∈ (0, 1]. For the case of p ≥ n and p/n → γ ∈ [1,∞), the proof follows from the same argument
by switching the labels of n and p, as shown in Remark 4, and therefore is skipped.

Recall the definition of Q, Lp = dP
dQ 1(Un > x) and α(x) = Pr(Un > x). To prove the asymptotic efficiency defined

in (5), we only need to show lim infn→∞ ln EQ(L2
p)/{2 lnαn(x)} ≥ 1 since EQ(L2

p)/{2 lnαn(x)} ≤ VarQ(L2
p)/{2 lnαn(x)}.

We give an outline of the proof first.

Step 1. We give the asymptotic approximation of limn→∞ n−1 lnαn(x) = −γIβ(βx), where Iβ(βx) is the large deviation
rate function.

Step 2. By the result in Step 1, we only need to prove that

lim inf
n→∞

ln EQ(L2
p)

2 lnαn(x)
= lim inf

n→∞

ln EQ(L2
p)

−2γIβ(βx)
≥ 1.

This is established using the upper bound I1 + I2 + I3 of EQ(L2
p) in (19) together with the limiting properties

of I1, I2, and I3 in (20) (21) and (22) respectively.
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Table 5: Uk
n Results for β = 2

(a) n=100 , p=50, k=2

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC

5.6 4.67e-03 3.52e-02 7.54 5.03e-03 7.07e-02 14.07
5.7 5.08e-04 5.95e-03 11.72 4.98e-04 2.23e-02 44.80
5.8 4.75e-05 9.55e-04 20.12 3.80e-05 6.16e-03 162.23
6.0 7.71e-08 2.48e-06 32.18 0 0 NaN

(b) n=100 , p=50, k=3

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC

8.1 1.78e-03 2.08e-02 11.67 2.16e-03 4.64e-02 21.50
8.2 3.67e-04 8.31e-03 22.67 2.90e-04 1.70e-02 58.71
8.3 1.87e-05 3.73e-04 19.96 2.50e-05 5.00e-03 200.00
8.5 1.50e-07 6.90e-06 45.95 0 0 NaN

(c) n=100 , p=50, k=4

x ESTIS SDIS SDIS/ESTIS ESTDMC SDDMC SDDMC/ESTDMC

10.4 2.49e-03 4.78e-02 19.18 2.73e-03 5.22e-02 19.12
10.5 4.27e-04 6.15e-03 14.40 4.42e-04 2.10e-02 47.55
10.6 5.47e-05 1.86e-03 34.04 6.90e-05 8.31e-03 120.38
10.8 3.17e-07 1.23e-05 38.96 0 0 NaN

The details of Steps 1 and 2 are given below.

Step 1. We first obtain the large deviation rate function for Un, which gives an approximation to n−1 lnαn(x) as in [1].
From the argument in [4], the large deviation of Un has a similar rate function to λ1. The explicit form of the large
deviation rate function of λ1 can be obtained from Theorem 2.6.6 in [1]. In particular, denote (λ̃1, . . . , λ̃p) to be the
unordered eigenvalues of n−1XHX; then from (4), (λ̃1, . . . , λ̃p) has joint density function

fn,p,β(λ̃1, . . . , λ̃p) =
1
p!

Cn,p,β

∏
1≤i< j≤p

|λ̃i − λ̃ j|
β ·

p∏
i=1

λ̃
β(n−p+1)

2 −1
i · e−

n
2
∑p

i=1 λ̃i

=
(
Zp

V,β

)−1 ∣∣∣∆p(λ̃)
∣∣∣β e−p

∑p
i=1 V(λ̃i),

where the last line follows the notation of (2.6.1) in [1] with ∆p(λ̃) :=
∏

1≤i< j≤p(λ̃i − λ̃ j), Zp
V,β := p!C−1

n,p,β and

V(x) :=
n

2p
x −

β(n − p + 1) − 2
2p

ln x ∼
1
2

{
x
γ
− β

(
1
γ
− 1

)
ln x

}
.

The notation “an ∼ bn” denotes an = (1 + o(1))bn. Following the definition in (2.6.3) of [1], we further define

Zp−1
pV/(p−1),β :=

∫
R
. . .

∫
R

∣∣∣∆p−1(λ̃)
∣∣∣β e−(p−1)

∑p−1
i=1

{
p

p−1 V(λ̃i)
} p−1∏

i=1

dλ̃i

=

∫
R
. . .

∫
R

∏
1≤i< j≤(p−1)

∣∣∣λ̃i − λ̃ j

∣∣∣β p−1∏
i=1

λ̃
β(n−p+1)

2 −1
i · e−

n
2
∑p−1

i=1 λ̃i

p−1∏
i=1

dλ̃i;
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then the density function (11) implies that the normalization constant Zp−1
pV/(p−1),β equals

Zp−1
pV/(p−1),β =

 1
(p − 1)!

( n
n − 1

) β(n−1)(p−1)
2

Cn−1,p−1,β


−1

.

With the above notation, Theorem 2.6.6 in [1] states that the large deviation approximation of λ1 = maxp
i=1 λ̃i has

speed p and good rate function:

Iβ(s) =

{
−β

∫
R ln |s − t|σβ(dt) + V(s) + αV,β if s ≥ s∗

∞ if s < s∗

where s∗ = β(1 −
√
γ)2, s∗ = β(1 +

√
γ)2, σβ(·) is the probability distribution function of the Marchenko-Pastur law

specified in (10) and

αV,β := − lim
p→∞

1
p

ln
Zp−1

pV/(p−1),β

Zp
V,β

.

A direct calculation gives that for p/n→ γ,

ln
Zp−1

pV/(p−1),β

Zp
V,β

∼
β(n + p)

2
ln n −

βp
2

ln p −
βn
2

ln n −
β(p + n)

2
· (ln β − 1) + O(ln n)

∼
β

2

{
γ ln

(
1
γ

)
− (γ + 1)(ln β − 1)

}
n + o(n);

then we obtain αV,β = (β/2) · {ln γ + (1/γ + 1) (ln β − 1)} . Therefore, the large deviation approximation of λ1 =

maxp
i=1 λ̃i has the rate function:

Iβ(s) =


−β

∫
R ln |s − t|σβ(dt) + s

2γ −
β
2

(
1
γ
− 1

)
ln s

+
β
2

{
ln γ +

(
1
γ

+ 1
)

(ln β − 1)
}

if s ≥ s∗

∞ if s < s∗.
(16)

Recall the notation in Remark 2 and from result in [4], we know when X has i.i.d. entries N(0, 1) or CN(0, 1),
largest eigenvalue λ̄1 and the ratio Un defined in (1) of n−1XHX have the same large deviation approximation function
(16). But now in our complex case, X has i.i.d. entries CN(0, 2) with β = 2. Similar to argument in Remark 2, since
Un is invariant to this change, we have

lim
n→∞

1
n

ln Pr(Un > x) = lim
n→∞

1
n

ln Pr(λ̄1 > x)

= lim
p→∞

p
n
×

1
p

ln Pr(λ1 > βx) = −γIβ(βx).

Therefore we have the large deviation result:

n−1 lnαn(x) ∼ −γIβ (βx) . (17)

Step 2. We focus on the ln{EQ(L2
p)} in this step. Recall that σβ(·) in (10) denotes the equilibrium measure for the large

deviations of the empirical distribution of eigenvalues (λ1, . . . , λp) under P; see Lemma 2.6.2 from [1]. Define t1 as a
constant such that t1 > n/(n−1) but close to n/(n−1). Let B(ε) be the ball of probability measures defined on [0, t1M]
with radius ε around σβ(·) under the following metric ρ that generates the weak convergence of probability measures
on R: for two probability measures µ and ν on R,

ρ(µ, ν) = sup
‖h‖L≤1

∣∣∣∣ ∫
R

h(x)µ(dx) −
∫
R

h(x)ν(dx)
∣∣∣∣, (18)
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where h is a bounded Lipschitz function defined on R with ‖h‖ = supx∈R |h(x)| and ‖h‖L = ‖h‖+supx,y |h(x)−h(y)|/|x−
y|. Let LQ

p−1 be the empirical measure of (λ∗2, . . . , λ
∗
p) with (λ2, . . . , λp) = {(n − 1)/n} × (λ∗2, . . . , λ

∗
p) being constructed

as in Step 1 of Algorithm 1 under the change of measure Q. We know from Marchenko-Pastur law, LQ
p−1 → σβ(·)

defined in (10) a.s. Then for a big constant M, we have the following upper bound for EQ(L2
p)

EQ

(
L2

p

)
≤ EQ


(

dP
dQ

)2

; λ1 > M


+EQ


(

dP
dQ

)2

; Un > x,M > λ1,L
Q
p−1 < B(ε)


+EQ


(

dP
dQ

)2

; Un > x,M > λ1,L
Q
p−1 ∈ B(ε)


=: I1 + I2 + I3. (19)

We will show that the first two terms of the above upper bound is ignorable, i.e.,

lim
M→∞

lim sup
n→∞

1
n

ln I1 = −∞, (20)

lim
M→∞

lim sup
n→∞

1
n

ln I2 = −∞ for any ε > 0. (21)

And we will show

lim
ε→0,M→∞

lim sup
n→∞

1
n

ln I3 = −2γIβ(βx). (22)

Combining (20), (21) and (22) together, we will know

lim sup
n→∞

1
n

ln EQ(L2
P) ≤ −2γIβ(βx).

Then by the result in Step 1. of the proof and the fact that logα(x) < 0, we will know

lim inf
n→∞

ln EQ(L2
p)

2 lnαn(x)
≥ 1.

Based on the argument above, in the following we only need to prove (20)–(22).

Proof of (20). Let Bn,p, β := Zp−1
pV/(p−1), β/Z

p
V, β. From the construction of the change of measure Q, we can rewrite the

left hand side display in (20) as

lim
M→∞

lim sup
n→∞

1
n

ln EQ

[{Bn,p, β
∏p

i=2(λ1 − λi)β · λ
β(n−p+1)

2 −1
1 · e−

n
2 λ1

nre−nr(λ1−x̃∨λ2) · I(λ1>x̃∨λ2)

}2
; λ1 > M

]
≤ lim

M→∞
lim sup

n→∞

1
n

ln
∫

λ1>M,
λ1>λ2

r−2n−2B2
n,p,βλ

β(p+n−1)−2
1 e−nλ1+2rn(λ1−x̃∨λ2)

×rne−rn(λ1−x̃∨λ2) f Q
n,p(λ2, . . . , λp)dλ1dλ2, . . . , dλp

≤ lim
M→∞

lim sup
n→∞

1
n

ln
∫
λ1>M

r−1n−1B2
n,p,βλ

β(p+n−1)−2
1 · e−nλ1+rnλ1−rnx̃dλ1.
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Next we change variable λ1 to λ1 + M and since (λ1 + M)β(p+n−1)−2 ≤ Mβ(p+n−1)−2e{β(p+n−1)−2}λ1/M , we obtain the
following upper bound for the expectation in (20)

lim
M→∞

lim sup
n→∞

1
n

ln
∫ ∞

0
r−1n−1B2

n,p,βMβ(p+n−1)−2e{β(p+n−1)−2}λ1/M−(n−rn)(λ1+M)−rnx̃dλ1

= lim
M→∞

lim sup
n→∞

1
n

ln{B2
n,p,βMβ(p+n−1)−2e−(n−rn)M−rnx̃} + o(1) = −∞,

where the last step follows from the approximation of Bn,p, β from (16). This proves equation (20).

Proof of (21). Consider the expectation term in (21). Since λ1 − λi < M and λ2 ∨ x̃ ≥ x̃, the following inequality
holds for any ε > 0,

lim sup
n→∞

1
n

ln I2 ≤ lim sup
n→∞

1
n

ln EQ

[{Bn,p, βMβ(p−1)λ
β(n−p+1)

2 −1
1 e−

n
2 λ1

rne−rn(λ1−x̃)

}2
;

Un > x,M > λ1,L
Q
p−1 < B(ε)

]
. (23)

Under the assumption that p/n→ γ, λ1 < M and with the result from (16), we know

Bn,p, βMβ(p−1)λ
β(n−p+1)

2 −1
1 e−

n
2 λ1

rne−rn(λ1−x̃) = eO(nM).

This implies that

(23) ≤ lim sup
n→∞

1
n

ln[eO(nM)Q{Un > x,M > λ1,L
Q
p−1 < B(ε)}]

≤ lim sup
n→∞

[
O(M) +

1
n

ln Pr{LQ
p−1 < B(ε)}

]
.

The large deviation result for LQ
p−1 [Theorem 2.6.1 in 1] then gives that

lim sup
n→∞

1
n2 ln Pr{LQ

p−1 < B(ε)} = lim sup
n→∞

(p − 1)2

n2 ×
1

(p − 1)2 ln Pr{LQ
p−1 < B(ε)} < 0.

This proves (21).

Proof of (22). Define Ωn := {Un > x,M > λ1 and LQ
p−1 ∈ B(ε)}. We can write

I3 = O(1)n−2B2
n,p, βEQ

{
e2β

∑p
i=2 ln(λ1−λi)λ

β(n−p+1)−2
1 e−nλ1 e2nr(λ1−x̃∨λ2); Ωn

}
.

Let Φ(z, ε) = supµ∈B(ε)

∫
ln(|z − y|){µ(dy) − σβ(dy)}, we have

p∑
i=2

ln(λ1 − λi) = (p − 1)
∫
R

ln
( nλ1

n − 1
− y

)
L

Q
p−1(dy) − (p − 1) ln

n
n − 1

≤ (p − 1)Φ
( nλ1

n − 1
, ε

)
+ (p − 1)

∫
ln

( nλ1

n − 1
− y

)
σβ(dy) + O(1).

Under the condition that λ1 < M, we know nλ1/(n − 1) < 2M when n is big enough. Let G = max
{
β(1 +

√
γ)2, 2M

}
and define

h(x) = x1x∈[0,G]; (24)
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then h is a bounded Lipschitz function. Furthermore, given LQ
p−1 ∈ B(ε) and under measure Q, we have

∣∣∣∣ 1
p − 1

p∑
i=2

nλi

n − 1
− β

∣∣∣∣ =
∣∣∣∣ ∫

R
h(y)LQ

p−1(dy) −
∫
R

h(y)σβ(dy)
∣∣∣∣ < O(ε) = o(1),

for β = 1 and 2. This is because from Theorem 6.3.1 in [10], for a distribution with the same density as (13), the
first moment is µ1,γ =

∫
s̄ × f (s̄)ds̄ = 1. For density in (10), similar to Remark 2, the first moment is

∫
s × σβ(ds) =

β
∫

s̄ × f (s̄)ds̄ = β × µ1,γ = β. Consider our choice of G in (24),∫
R

h(y)σβ(dy) =

∫
R

yσβ(dy) = β × µ1,γ = β.

Therefore, Un > x and λ1 > x̃ implies that λ1 > βx + O(ε) and we can write

I3 ≤ O(1)n−1B2
n,p, β

∫ M

βx+O(ε)
e2β(p−1)Φ( nλ1

n−1 ,ε)+2β(p−1)
∫

ln( nλ1
n−1−y)σβ(dy)

×λ
β(n−p+1)−2
1 e−nλ1+rn{λ1−βx+O(ε)}dλ1.

Since βx + O(ε) < λ1 < M, we have Φ
(
nλ1/(n − 1), ε

)
≤ supz∈[n(βx+O(ε))/(n−1),nM/(n−1)] Φ(z, ε) under the constraint

L
Q
p−1 ∈ B(ε) and that

∫
ln

( nλ1

n − 1
− y

)
σβ(dy)

=

∫
ln(

nβx
n − 1

− y)σβ(dy) +

∫
ln

(
1 +

nλ1 − nβx
nβx − (n − 1)y

)
σβ(dy)

≤

∫
ln(

nβx
n − 1

− y)σβ(dy) +

∫
nλ1 − nβx

nβx − (n − 1)y
σβ(dy).

It follows that

I3 ≤ O(1)n−1B2
n,p, β × e

2β(p−1) sup
z∈[ n(βx+O(ε))

n−1 , nM
n−1 ]

Φ(z,ε)+2β(p−1)
∫

ln( nβx
n−1−y)σβ(dy)

×

∫ M

βx+O(ε)
e2β(p−1)

∫ nλ1−nβx
nβx−(n−1)y dσβ(y)λ

β(n−p+1)−2
1 e−nλ1+rn{λ1−x+O(ε)}dλ1

= O(1)n−1B2
n,p, β × e

2β(p−1) sup
z∈[ n(βx+O(ε))

n−1 , nM
n−1 ]

Φ(z,ε)+2β(p−1)
∫

ln( nβx
n−1−y)σβ(dy)

×

∫ M−βx

O(ε)
e2β(p−1)

∫ nλ1
nβx−(n−1)y dσβ(y)

· (λ1 + βx) β(n−p+1)−2 · e−(1−r)n(λ1+βx)−rn{βx+O(ε)}dλ1

≤ O(1)n−1B2
n,p, β × e

2β(p−1) sup
z∈[ n(βx+O(ε))

n−1 , nM
n−1 ]

Φ(z,ε)+2β(p−1)
∫

ln( nβx
n−1−y)σβ(dy)

× (βx)β(n−p+1)−2e−n{βx+O(ε)}

×

∫ M−βx

O(ε)
e2β(p−1)

∫ nλ1
nβx−(n−1)y dσβ(y)+{β(n−p+1)−2} λ1

βx −(1−r)nλ1 dλ1, (25)

where in the second step we change the variable λ1 to (λ1 + βx) for the integral and in the last step we use (λ1 +

βx)β(n−p+1)−2 ≤ (βx)β(n−p+1)−2e{β(n−p+1)−2}λ1/(βx).
Under s∗ < βx, we can find a finite number t0 such that s∗ < t0x ≤ n{βx + O(ε)}/(n − 1), for small enough ε and

big enough n. Recall that t1M ≥ nM/(n − 1). Next we show that

lim sup
ε→0

sup
z∈[t0 x,t1 M]

Φ(z, ε) ≤ 0. (26)
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For any z ∈ [t0x, t1M] and µ ∈ B(ε), let S1(z) = {y ∈ supp(σβ) ∪ supp(µ) : |z − y| > η} and S2(z) = {y ∈ supp(σβ) ∪
supp(µ) : |z−y| ≤ η}, where supp(µ) is the support of measure µ and η is a small constant such that η < min{t0x− s∗, 1}
with s∗ defined in (10). Note that supp(σβ) ⊂ S1(z). Given z ∈ [t0x, t1M], set fz(y) := ln(|z − y|) for y ∈ S1(z). The
Lipschitz norms of the set of functions { fz(·); z ∈ [t0x, t1M]} on S1(z) are bounded by a constant C < ∞. By the
definition of ρ(·, ·) in (18), we obtain

sup
z∈[t0 x,t1 M]

∫
R

ln(|z − y|){µ(dy) − σβ(dy)}

≤ sup
z∈[t0 x,t1 M]

∫
S1

fz(y){µ(dy) − σβ(dy)} + sup
z∈[t0 x,t1 M]

∫
S2

fz(y)µ(dy)

≤ sup
z∈[t0 x,t1 M]

∫
S1

fz(y){µ(dy) − σβ(dy)}

≤ Cρ(µ, σβ) < Cε,

for any µ ∈ Bε . This implies that supz∈[t0 x,t1 M] Φ(z, ε) < Cε. Then (26) follows. When r < 1−2βγ
∫
{1/(βx−y)}dσβ(y)−

β(1 − γ)/(βx), we know that the integral term in (25) is ∼ enO(ε). Therefore

lim
ε→0

M→∞

lim sup
n→∞

1
n

ln I3

= 2βγ
∫

ln(βx − y)σβ(dy) − βx + β(1 − γ) ln(βx) − β {γ ln γ + (1 + γ) (ln β − 1)}

= −2γIβ(βx),

where Iβ(x) is defined as in (16). Therefore we conclude

lim sup
n→∞

1
n

ln EQ(L2
p) ≤ −2γIβ(βx).

Hence, the above upper bound and the approximation in (17) imply that

lim inf
n→∞

ln EQ(L2
p)

2 lnαn(x)
≥ 1,

where note that lnαn(x) < 0. This completes the proof.
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