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Summary

Panel count data arise in many applications when the event history of a recurrent event pro-
cess is only examined at a sequence of discrete time points. In spite of the recent methodolog-
ical developments, the availability of their software implementations has been rather limited.
Focusing on a practical setting where the effects of some time-independent covariates on the
recurrent events are of primary interest, we review semiparametric regression modeling ap-
proaches for panel count data that have been implemented in R package spef. The methods
are grouped into two categories depending on whether the examination times are associated
with the recurrent event process after conditioning on covariates. The reviewed methods are
illustrated with a subset of the data from a skin cancer clinical trial.
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1 Introduction

Panel count data is a special kind of event history data where the occurrence of recurrent

events is observed only at a sequence of discrete time points, as opposed to being observed

continuously in time. In contrast to conventional recurrent event data, where the exact

occurrence times of the events are known, panel count data only have the count of events in

each “panel” between successive examination times points (Kalbfleisch and Lawless, 1985).

Panel count data frequently arise in many fields such as clinical trials, epidemiological studies,

and engineering, when continuous follow-up to obtain exact event times of each subject is

infeasible or too costly. The term “panel count” in econometrics refers to longitudinal or

clustered count data (e.g., Riphahn et al., 2003; Croissant et al., 2008; Hsiao, 2014); although

somewhat related, it is to be distinguished from the context of event history data as we focus

on here.

The goal of this article is to review regression analysis for panel count data with a focus

on methods that are available in the R environment (R Core Team, 2017). Many statistical

methods have been developed to analyze panel count data, but quality controlled software

implementation remains rather limited. In their recently published book on panel count data

analysis, Sun and Zhao (2013) noted the absence of actively maintained software packages at

the time of writing their book (Sun and Zhao, 2013, p.222). Two R packages for panel count

data are publicly available at this time. Package spef (Chiou et al., 2017) provides multiple

methods in a unified interface, with an earlier version presented in Wang and Yan (2011).

Package PCDSpline (Yao and Wang, 2014) is an implementation of the gamma frailty model

of Yao et al. (2016). Instead of providing a comprehensive review of all existing methods, we

focus on semiparametric regression models with time-independent covariates as implemented

in the spef package; methods and software for handling time-varying covariates have been

much less developed (Huang et al., 2010). Covariate effects on the recurrent events are of

primary interest. Non-parametric estimation is possible with spef package by specifying an

intercept-only model. We give more details on methods that are available in spef package
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and that were not treated in detail in Sun and Zhao (2013). The illustration code will help

readers who need to analyze a panel count dataset to obtain some quick insights easily.

One challenge in practical panel count data analysis is that the examination process or

the follow-up time may be informative about the recurrent event process even after condi-

tioning on available covariates. For example, patients with higher tumor recurrence rates

may have more frequent clinical examinations as they may require more medical attention

(Li et al., 2011; Sun and Zhao, 2013). Another example is in labor progression of women

giving childbirth, if each 1 cm increment of cervical dilation is treated as a recurrent event,

then women with faster cervix dilation may have more frequent vaginal examinations (Ma

and Sundaram, 2017). Informative examination times are often encountered in panel count

data, and falsely treating informative examination times as noninformative could result in

biased regression coefficient estimation and misleading conclusions. Similar situations may

arise where the follow-up time is informative. Therefore, we grouped the methods into two

categories depending on whether or not informative examinations or follow-up times can be

accommodated.

This article is organized as follows. A subset of the data from a skin tumor clinical trial

is introduced in Section 2 to demonstrate the structure and graphical features of panel count

data. Notations of observed data and some of the most popular semiparametric models are

presented in Section 3. Methods under the assumption of noninformative and informative

examination/censoring times are reviewed in Section 4 and Section 5, respectively, illustrated

with the skin tumor data. The performances of the implemented methods under different

settings in a simulation study are reported in Section 6. A discussion concludes in Section 7.

2 Skin Cancer Chemoprevention Trail

We illustrate the usage of the spef package with a skin cancer prevention study (Bailey et al.,

2010). The whole dataset is available in Sun and Zhao (2013, Table A.3.) and is included in
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the spef package under the name skinTumor. The study was a randomized, double-blind,

placebo-controlled phase-3 clinical trial conducted at the University of Wisconsin Compre-

hensive Cancer Center. The primary objective was to determine whether the application

of difluoromethylornithine (DFMO) as a chemoprevention agent would lead to a significant

reduction in the occurrence of new skin tumors. The study consisted of 290 patients with a

history of skin tumor. These patients were randomly assigned into two groups: a treatment

group with oral DFMO at a daily dose of 0.5 gram/m2 and a placebo group with matching

dosage. At each examination time during the follow-up, the number of newly developed skin

tumors were counted, measured, and removed. Comprehensive analysis of the whole data

can be found in recent publications (e.g., Li et al., 2011; Sun and Zhao, 2013; Chiou et al.,

2017).

For illustration propose, we only use a subset of skinTumor containing 73 patients who

enrolled in the study after the age of 70 years because some methods with bootstrapping are

computationally demanding for large samples. Of the 73 patients, 40 were male and 41 were

in the treatment group. The average number of examination times was 8.9 in this subset

of patients, with three quartiles being 7, 9, and 10. The average number of skin tumors

developed for each patient in this subset throughout the study was 2.9 (median = 3). We

named this subset skiTum and used this name in the sequel. To view the structure of panel

count data, we show the data for one patient (with id 10):

library(spef)

data(skinTumor)

skiTum <- subset(skinTumor, age >= 70)

subset(skiTum, id == 10, select = c(id, time, count, dfmo, priorTumor))

## id time count dfmo priorTumor

## 95 10 183 1 0 16

## 96 10 366 0 0 16
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## 97 10 569 0 0 16

## 98 10 757 0 0 16

## 99 10 940 1 0 16

## 100 10 1011 0 0 16

## 101 10 1024 0 0 16

The patient with id 10 was followed for 1024 days from the enrollment, examined 7

times on days after enrollment as shown in variable time, with the corresponding number of

tumors in variable count. This patient was assigned to the placebo group (dfmo = 0) and

had 16 skin tumors prior to enrollment. Treatment indicator (dfmo) and prior tumor counts

(priorTumor) will be used as covariates in the regression model for the tumor occurrences in

this study. Following Wang and Yan (2011), we display the data in a tile plot that shows not

only the panel count but also the examination times of each subject using package ggplot2

(Wickham, 2009):

library(ggplot2)

ggplot(skiTum, aes(time, as.factor(id), width = 25, height = 1)) +

geom_tile(aes(fill = count)) + theme_bw() +

theme(axis.text.y = element_blank(), axis.ticks = element_blank()) +

facet_grid(dfmo ~ ., scales = "free_y", as.table = FALSE,

labeller = labeller(dfmo = function(x) paste("DFMO =", x))) +

scale_fill_gradient(low = "grey", high = "black") +

scale_x_continuous(breaks = seq(0, 2000, 200)) +

labs(fill = "Count") + xlab("Time in days") + ylab("Patient")

[Figure 1 about here.]

Figure 1 presents the resulting tile plot. It appears that patients in the treatment group

have slightly more examinations than those in the placebo group, which might indicate

informative examination times.
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All the models in the sequel have the same model formula specified via PanelSurv, which

is similar to the Surv function in the survival package (Therneau, 2015). We consider

models with two covariates: dfmo and priorTumor. For better interpretation of the baseline

function, we center priorTumor by its median 3:

skiTum$priorTumor <- skiTum$priorTumor - 3

fm <- PanelSurv(id, time, count) ~ dfmo + priorTumor

The major function to fit regression models for panel count data in the spef package

is panelReg, which takes the model formula as an input and returns an object of class

panelReg.

3 Notation and Regression Models

For subject i, i = 1, . . . , n, let Ni(t) be counting process of recurrent events of interest.

Suppose that the event counts are only observable at Ki discrete random time points, 0 =

ti0 < ti1 < ti2 < . . . < tiKi
≤ τ , where tij is the jth examination time, Ki is a positive

integer-valued random variable, and τ is the longest follow-up time in the data. Let G be

the time grid formed by all distinctive examination times: 0 < s1 < · · · < sg = τ , where g is

the number of distinctive examination times. A subject-specific, time-independent covariate

vector Xi is observed and its effect on the occurrence of the events is or primary interest. The

observed data are independent and identically distributed copies of {tij, Ki, Ni(tij), Xi; j =

1, . . . , Ki}, i = 1, . . . , n. Let nij = Ni(tij) − Ni(tij−1) be the number of events in the time

interval (tij−1, tij] and mi = Ni(Yi) be the total number of events during the follow-up, where

Yi = tiKi
is the last examination time. Additionally, there could be a censoring or follow up

time Ci, which may or may not equal to the last observation time Yi. As in recurrent event

settings, the censoring time Ci’s are always observed unlike in the case of standard right-

censored survival data. Both the examination times and the follow-up time can potentially

be informative about the event process after conditioning on the covariates.
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Earlier models for recurrent event processes characterize the intensity function (Gail et al.,

1980; Prentice et al., 1981; Andersen and Gill, 1982). To introduce the common models, we

drop the index i for ease of notation. Let dN(t) = N{(t + dt)−} − N(t−). The intensity

function is defined as the event occurrence rate conditional on the whole event history

λ(t) = lim
∆→0+

1

∆
Pr[dN(t) = 1|H(t−)],

where H(t−) = {N(u) : 0 ≤ u < t} is the event history up to t. The Cox-type intensity

model incorporates covariate X in the intensity function (Andersen and Gill, 1982)

λ(t;X) = λ0(t) exp(X>β), (1)

where λ0(t) is nonnegative baseline intensity function, and β is a vector of regression coeffi-

cients for covariate vector X.

In practice, the Cox-type intensity model in Model (1) might be inadequate and difficult

to verify (Lin et al., 2000). In contrast to Model (1), recent approaches characterize the rate

function r(t) of N(t) defined by E{dN(t)} = r(t) dt and the mean function µ(t) =
∫ t

0
r(s) ds

(Nelson, 1988; Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin et al., 2000). Unlike

the intensity function, the rate or mean function does not completely specify the stochastic

nature of N(t); they are, respectively, sometimes referred to as the marginal intensity and

cumulative intensity function. Covariates can be incorporated in the form of proportional

rates model

r(t;X) = r0(t) exp(X>β), (2)

for some nonnegative baseline rate function r0(t), or proportional means model

µ(t;X) = µ0(t) exp(X>β), (3)

for some nondecreasing baseline mean function µ0(t). Since we consider time-independent
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covariate so far, Model (2) and Model (3) are equivalents.

A commonly used modification to Model (1) and (3) is to introduce a positive frailty

variable or random effect. Specifically, conditional on a frailty Z and covariate vector X, the

proportional intensity model becomes

λ(t;X,Z) = Zλ0(t) exp(X>β),

and the proportional means model becomes

µ(t;X,Z) = Zµ0(t) exp(X>β). (4)

For identification purpose, it is often assumed that E(Z|X) = 1. The frailty is useful in

allowing over-dispersion in the count (e.g., Hua et al., 2014) or dependence between N(·)

and the examination or censoring times (e.g., Huang et al., 2006; He et al., 2009).

The baseline intensity function λ0(t) and the baseline mean function µ0(t) are often left

completely unspecified and estimated nonparametrically. Since µ0(t) and the cumulative

baseline intensity Λ0(t) =
∫ t

0
λ0(s) ds are nondecreasing functions, they can be specified by

monotone splines (Ramsay, 1988). The motonone spline specification offers a good com-

promise between flexibility and computational advantage, so it has been adopted by many

authors in various settings (Lu et al., 2009; Hua and Zhang, 2012; Deng et al., 2015; Hua

et al., 2014; Yao et al., 2016). An implementation of monotone splines is available in R

package splines2 for this purpose.

A recent accelerated mean model (Xu et al., 2017; Chiou et al., 2017) has rate function

r(t;X,Z) = Zr0{t exp(X>β)} exp(X>β), (5)

where the distribution of frailty Z is unspecified beyond E(Z|X) = 1. This model formulation

is different from the Cox-type specifications and it connects to the accelerated failure time
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(AFT) models in that, unconditional on Z, µ(t;X) = E{N(t)|X} = µ0{t exp(X>β)}. The

covariate effects modify the time scale of the cumulative mean function and have a direct

marginal interpretation. For example, if X is a treatment indicator, then the expected

number of events by time t among the treated subjects (X = 1) equals the expected number

of events by time teβ in the control group (X = 0).

4 Noninformative Examination/Censoring Times

We first consider the situation where the examination times and the censoring time are

noninformative for the event process. That is, conditional on the covariates, the examina-

tion/censoring times and the event process are independent. The conditional independence

assumption allows one to treat the examination/censoring times as if they were fixed instead

of random.

4.1 Likelihood-Based Approaches

The non-homogeneous Poisson process has been studied first, in which case the Cox-type

intensity model (1) and the proportional means model (3) coincide. So we consider Model (3)

only. From the independent increments of Poisson processes, the log likelihood function is

L(β, µ0) =
n∑
i=1

Ki∑
j=1

{
nij log µ0(tij) + nijX

>
i β − µ0(tij) exp(X>i β)

}
.

Parameter estimation of β depends on the specification of µ0(t). If µ0(t) is unspecified,

the nonparametric maximum likelihood estimator (MLE) of µ0(t) is the non-decreasing step

function that jumps only at the times of the grid G of distinct examination times (Wellner

and Zhang, 2000). The MLE of (β, µ0(t)), denoted by (β̂n, µ̂n(t)), can be obtained from a

computationally intensive iterative procedure (Wellner and Zhang, 2007).

To reduce the computation complexity in obtaining MLE, Lu et al. (2009) specified
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log µ0(t) by monotone B-splines log µ0(t) =
∑κ

i=1 αiBi(t), where Bi(t), i = 1, . . . , κ, are the

B-spline basis functions with κ degrees of freedom. The degrees of freedom, κ, is typically

chosen to be dg1/3e + 1 where d·e is the ceiling function and g is the number of distinctive

examination times as defined in Section 3. The MLE of (β, α), denoted by (β̂n, α̂n), can then

be found from a constrained optimization for any given K. Lu et al. (2009) show that under

certain regularity conditions β̂n is consistent, asymptotically normal, and asymptotically as

efficient as that obtained when µ0(t) is unspecified. For the skin tumor example, this method

is called by setting method = "MLs" in the panelReg function from spef package:

panelReg(fm, data = skiTum, method = "MLs", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "MLs", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.2375 0.7886 0.3114 -0.762 0.45

## priorTumor 0.0806 1.0839 0.0187 4.319 1.6e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard errors of the regression coefficient estimates were obtained from bootstrap with

50 replicates by setting se = "Bootstrap" and, in control, "R = 50". The implementation

of monotone splines in the spef package was based on the methods proposed in Ramsay

(1988). The same model can also be fit with PCDReg.nf function from the PCDSpline

package (Yao and Wang, 2014). The PCDSpline package further allows a gamma frailty to

account for within-subject dependence (Yao et al., 2016).
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A less efficient but simpler approach to obtain the regression coefficient estimate is to

maximize the following pseudo-likelihood based on the Poisson distribution of each N(tij)

ignoring within-subject dependence

Lp(β, µ0) =
n∑
i=1

Ki∑
j=1

N(tij) log µ0(tij) +N(tij)X
>
i β − µ0(tij) exp(X>i β).

The estimator of β with an unspecified µ0(t) (Zhang, 2002) can be obtained by setting

method = "MPL":

(fit.MPL <- panelReg(fm, data = skiTum, method = "MPL", se = "Bootstrap",

control = list(R = 50)))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "MPL", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.2320 0.7929 0.3543 -0.655 0.51

## priorTumor 0.0880 1.0920 0.0173 5.095 3.5e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimator of β when µ0(t) is specified by monotone B-splines (Lu et al., 2009) can be

obtained by setting method = "MPLs":

(fit.MPLs <- panelReg(fm, data = skiTum, method = "MPLs", se = "Bootstrap",

control = list(R = 50)))

##
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## Call:

## panelReg(formula = fm, data = skiTum, method = "MPLs", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.2402 0.7864 0.3637 -0.66 0.51

## priorTumor 0.0874 1.0913 0.0176 4.97 6.8e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hua et al. (2014) considered Model (4) with Z assumed to be a gamma variable with

mean 1 and variance σ2. Under the working assumption that N(·) is a non-homogeneous

Poisson process, the full likelihood after integrating Z out has a closed-form in terms of

β and µ0. By approximating µ0(t) with monotone splines with parameter vector α, they

estimate α and β after fixing σ2 at a method of moment estimate based on pseudolikelihood

estimator from Zhang (2002) and Wellner and Zhang (2007).

The estimated baseline mean function for the aforementioned methods can be accessed

from the baseline component in the object returned from the panelReg call. The spef

package provides a utility function for its graphcial presentation through the generic function

plot. For example, the estimated baseline mean function from method = "MPL" and method

= "MPLs" can be plotted as follows:

plot(fit.MPLs, lwd = 1.5, main="")

plot(fit.MPL, add = TRUE, lty = 2, lwd = 1.5)

legend("topleft", c("MPL", "MPLs"), bty = "n", lty = 1:2, lwd = 1.5)

[Figure 2 about here.]
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Figure 2 shows the overlaid estimated curves from the two methods. They are interpreted as

the mean function for patients in the placebo group with 3 prior tumors. Baseline function

estimates from other methods in the sequel, if available, can be a accessed similarly.

4.2 Estimating Equation Approaches

Sun and Wei (2000) allow dependence among the event process, examination time process,

and the censoring time through covariates if the latter two follow a proportinal means model

and a proportional hazards model, respectively. Define the examination time process Hi(t) =

H̃i{min(t, Ci)} =
∑Ki

j=1 I(tij ≤ t). Assume that the mean function of H̃i(t) has the form

µHi (t) = µH0 (t) exp(X>i γ), (6)

where µH0 (t) is a completely unspecified function and γ is a regression coefficient vector.

Further assume that covariate effects on the censoring time can be specified by a Cox pro-

portional hazards model for Ci,

λCi (t|Xi) = λC0 (t) exp(X>i η), (7)

where λC0 (t) is a completely unspecified baseline hazard function and η is a regression co-

efficient vector. The covariates are assumed to have been centered by theie means in the

derivation of the method.

Sun and Wei (2000) proposed estimating equations by considering
∫
Ni(t) dHi(t). Under

the model specifications for µHi (t) and λCi (t),

E

{∫
Ni(t) dHi(t)

}
= exp{X>i (β + γ)}

∫
µ0(t)Si(t) dµH0 (t),

where Si(t) = exp{−
∫ t

0
λC0 (s) ds+X>i η}. Therefore, if γ and η are known, β can be estimated
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from the following estimating equation

n∑
i=1

Xi exp{−X>i (β + γ)}
∫
Ni(t)

Si(t)
dHi(t) = 0. (8)

The unknown quantities in the equation can be replaced with their estimates: γ can be

estimated from estimating equations for proportional rates models (Lawless and Nadeau,

1995); η can be estimated from partial score equations (Kalbfleisch and Prentice, 2011); and

the baseline hazard λC0 (t) can be estimated as in a standard survival analysis. Sun and

Wei (2000) established the consistency and asymptotic normality of the resulting estimator

requiring the correct specification of the models for the examination times and the censoring

time. The estimator of β can be obtained by setting method = "EE.SWc":

panelReg(fm, data = skiTum, method = "EE.SWc", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "EE.SWc", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo 0.842 2.320 0.622 1.35 0.18

## priorTumor 0.110 1.116 0.028 3.92 9e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When η = 0, in which case the censoring time does not depend on covariates, the esti-

mator can be obtained by setting method = "EE.SWb":
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panelReg(fm, data = skiTum, method = "EE.SWb", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "EE.SWb", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.0830 0.9203 0.3306 -0.251 0.8

## priorTumor 0.1333 1.1426 0.0235 5.674 1.4e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

An even simpler version of Sun and Wei (2000) assuming independent examination and

censoring by setting γ = η = 0 can be obtained by setting method = "EE.SWa".

Hu et al. (2003) proposed a more efficient estimating equation that extends the method

of Lawless and Nadeau (1995) for recurrent event analysis. Define hi(t) = Hi(t) − Hi(t
−)

for each i so that hi(t) = 1 if t is an examination time of subject i and hi(t) = 0 otherwise.

Assume that E{hi(t)} > 0 for each t ∈ T where T ⊂ (0, τ ] is the collection of all observed

examination times on a grid. Conditioning on the examination times, Hu et al. (2003)

proposed a natural estimating equation for β

n∑
i=1

Ki∑
j=1

w(tij)

{
Xi −

∑n
k=1 I(Ck ≥ tij)Xk exp(X>k β)ok(tij)∑n
k=1 I(Ck ≥ tij) exp(X>k β)ok(tij)

}
nij = 0, (9)

where w(·) is a known, possibly data dependent weight function and ok(t) indicates whether

subject k has an observation at time t. The estimating equation (9) was constructed under

the assumption that there is more than one subject with the same examination time. Thus,
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this method cannot be applied to scenarios where all examination times are distinct, which

implies ok(tij) = 1 when k = i and 0 otherwise. Solution to the conditional estimating

equations (9) with w(t) = 1 can be obtained by setting method = "EE.HSWc":

panelReg(fm, data = skiTum, method = "EE.HSWc", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "EE.HSWc", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo 0.0483 1.0494 0.2322 0.208 0.840

## priorTumor 0.0524 1.0538 0.0236 2.221 0.026 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To allow covariate effects on the examination times in a proportional means Model (6),

Hu et al. (2003) proposed an estimating equation unconditional on the examination times

n∑
i=1

Ki∑
j=1

w(tij)

[
Xi −

∑n
k=1 I(Ck ≥ tij)Xi exp{X>k (β + γ)}∑n
k=1 I(Ck ≥ tij) exp{X>k (β + γ)}

]
nij = 0, (10)

where γ needs to be replaced with an estimate as in solving (8). In contrast to (8), this

equation does not require model specification of the censoring time. See Section 5.4.3 of Sun

and Zhao (2013) for more discussion on comparison of the estimating equation approaches.

Solution to the marginal estimating equations (10) can be obtained by setting method =

"EE.HSWm":
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panelReg(fm, data = skiTum, method = "EE.HSWm", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "EE.HSWm", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.1652 0.8478 0.3130 -0.528 0.6000

## priorTumor 0.0539 1.0554 0.0167 3.223 0.0013 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since panel counts are similar to longitudinal data, Hua and Zhang (2012) applied gen-

eralized estimating equations (GEE) (Liang and Zeger, 1986) to marginal Model (3) with

log λ(t) approximated by monotone splines with parameters α as in Lu et al. (2009). The

panel counts from subject i form a vector Ni = {Ni(ti1), . . . , Ni(ti,Ki
)}>, with mean vector

µi = {µ(ti1;Xi), . . . , µ(tiKi
;Xi)}>. The GEE has the form

n∑
i=1

∂µ>i
∂θ

V −1
i (Ni − µi) = 0, (11)

where θ> = (β>, α>), and Vi is a Ki × Ki working covariance matrix of Ni. Hua and

Zhang (2012) used a two-iterative algorithm to solve for θ. First, a Newton–Raphson update

is applied to solve (11); second, the estimate of α is projected to a legitimate space via

quadratic programming such that the resulting splines is monotone nondecreasing. Flexible

choices of the working covariance matrix Vi’s can lead to higher efficiency in estimation and

robustness to overdispersion.
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5 Informative Examination/Censoring Times

5.1 Frailty Methods

One way to allow informative examination times after conditioning on covariates is to in-

troduce a frailty, or random effect that is shared by both the recurrent event process and

the examination time process. Huang et al. (2006) considered Model (4), which allows the

examination times to be associated with the event process through the frailty after condi-

tioning on the covariates. The approach of Huang et al. (2006) is especially appealing in

that there is no need to specify the distribution of the frailty, or models for the examination

process and the censoring time. The estimation procedure takes advantage of the fact that,

conditional on {Zi, Xi, Ki, Yi}, the unobserved Ki examination times are order statistics of

independent and identically distributed random variables with distribution function

Fi(t) =
µ(t;Xi, Zi)

µ(Yi;Xi, Zi)
=

µ0(t)

µ0(Yi)
.

This formulation suggests that the estimation of F (t) does not involve Xi and Zi. Let

Φ(t) = µ0(t)/µ0(τ), where τ is still the longest follow-up time. A nonparametric estimator

of F (t) is obtained by maximizing

n∏
i=1

Ki∏
j=1

[
Φ(Ti,j)− Φ(Ti,j−1)

Φ(Yi)

]nij

,

which is mathematically equivalent to the likelihood constructed from a set of independently

interval-censored and right-truncated data. Therefore, the maximization of the likelihood

can be implemented by the Turnbull’s self-consistency algorithm (Turnbull, 1976). When

computational performance is of concern, the squared extrapolation method of Varadhan

and Roland (2008) can be adopted to accelerate the maximization. Then Λ(τ) and β are
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obtained from solving

n−1

n∑
i=1

wi

 1

Xi

[miΦ(Yi)
−1 − µ0(τ) exp(X>i β)

]
= 0,

where wi is a weight function and Φ(·) is replaced with its estimate. This approach with

wi = 1 is requested by setting method = "HWZ":

panelReg(fm, data = skiTum, method = "HWZ", se = "Bootstrap",

control = list(R = 50))

## [1] "Warning: SE based on 32 converged bootstrap samples"

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "HWZ", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.3069 0.7358 0.3117 -0.984 0.32

## priorTumor 0.0771 1.0801 0.0198 3.900 9.6e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A warning message indicates that not all of the 50 bootstrap converged. The reported

bootstrap standard errors are based on those that converged.

Alternative approaches specify models for the examination times and the censoring time.

Extending the estimation strategies of Sun and Wei (2000), Sun et al. (2007) investigated

a similar semiparametric model with Zα
i in place of Zi in Model (4), where Zi is an unob-

served multiplicative frailty introduced into Model (6) for the examination times. He et al.
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(2009) used two frailties to introduce dependence among the three models (3), (6), and (7)

beyond covariate effects. Specifically, one frailty enters all three models while the other

enters Model (3) and (7). Model parameters are estimated through a three-step estimation

procedure. This method imposes a distributional assumption on the underlying random ef-

fect and requires the examination process to be a nonhomogeneous Poisson process, which

is needed in an EM algorithm in handling the parameters and frailties in the model for the

examination process. Zhao et al. (2013) proposed a more general model which replaces Z

in Model (4) with f(Z), where Z is a multiplicative frailty introduced into Model (6) as in

Sun et al. (2007), and f is a positive, completely unspecified link function. They relaxed the

Poisson assumption for the examination process. The methods of He et al. (2009) and Zhao

et al. (2013) are presented in detail in Sun and Zhao (2013, Sections 6.2–6.3).

5.2 Augmented Estimating Equations

Wang et al. (2013) approached the problem by treating the unobserved event times as missing

data. Consider the time grid G in Section 3, let Nij = Ni(sj) − Ni(sj−1) be the number of

events occurred in (sj−1, sj]. Only summations of Nij’s over those subintervals whose union

coincides with an observation window are observed. Regardless of the examination times,

if Nij’s were observed, under conditional independent censoring, Model (3) suggests a set of

complete-data estimating equations:

n∑
i=1

[
Nij − λj exp(X>i β)

]
rij = 0, j = 1, . . . , G,

n∑
i=1

G∑
j=1

[
Nij − λj exp(X>i β)

]
Xirij = 0,

where λj = Λ(sj) − Λ(sj−1) is the baseline mean number of events occurring in interval

(sj−1, sj], and rij = I(sj ≤ Ci) is the at-risk indicator. The model parameters are estimated

by an Expectation-Solving (ES) algorithm (Elashoff and Ryan, 2004), an analog of the EM
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algorithm for estimating equations without specifying the full likelihood. The algorithm

iterates between imputing the values of Nij’s and solving the conditional expected version of

the complete-data estimating equations given the observed data. This method is called by

setting method = "AEE":

panelReg(fm, data = skiTum, method = "AEE", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "AEE", se = "Bootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.2624 0.7692 0.3069 -0.855 0.39

## priorTumor 0.0805 1.0839 0.0193 4.181 2.9e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the case of informative censoring, the number of events between the last examination

time Yi and τ is also treated as missing and imputed using a working model; see (Wang

et al., 2013) for more details. This method is requested by setting method = "AEEX":

panelReg(fm, data = skiTum, method = "AEEX", se = "Bootstrap",

control = list(R = 50))

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "AEEX", se = "Bootstrap",
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## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.2953 0.7443 0.3011 -0.981 0.33

## priorTumor 0.0761 1.0791 0.0191 3.979 6.9e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.3 Accelerated Mean Model

Chiou et al. (2017) estimated the parameters of the accelerated mean model (5) by a pro-

file estimating equation approach. Specifically, consider the transformed times t∗ij(β) =

tij exp(X>i β) and censoring time Y ∗i (β) = Yi exp(X>i β), i = 1, . . . , n. Conditional on

(Zi, Xi, Ki, Yi), the unobserved Ki examination times on the transformed scale t∗ij(β) are

order statistics of independent and identically distributed random variables with distribu-

tion function µ0(t)/µ0(Y ∗i (β)). Let Φ(t) = µ0(t)/µ0(τβ), where τβ = τ supi exp(X>i β). For

given β, Φ can be estimated with the same method of Huang et al. (2006) except that the

estimate depends on β. Define Φ̂n(t; β) as the resulting estimator. Then, β is estimated by

solving the estimating equation

n∑
i=1

Xi

[
miΦ̂

−1
n {Y ∗j (β); β} − 1

n

n∑
j=1

mjΦ̂
−1
n {Y ∗j (β); β}

]
= 0.

In our implementation, this equation is solved with a gradient-free spectral method (Barzilai

and Borwein, 1988; La Cruz et al., 2006). The accelerated mean model is called by setting

method = "AMM". Since fitting this model is much more computing intensive than other

methods, we timed this call:
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system.time(fit.AMM <- panelReg(fm, data = skiTum, method = "AMM",

se = "smBootstrap", control = list(R = 50)))

## user system elapsed

## 2484.372 25.064 2508.341

fit.AMM

##

## Call:

## panelReg(formula = fm, data = skiTum, method = "AMM", se = "smBootstrap",

## control = list(R = 50))

##

## coef exp(coef) se(coef) z Pr(>|z|)

## dfmo -0.0650 0.9370 0.2211 -0.294 0.7700

## priorTumor 0.0906 1.0948 0.0344 2.630 0.0085 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard errors was obtained from a smoothed bootstrap procedure proposed in Chiou

et al. (2017) by setting se = "smBootstrap". The standard bootstrap procedure to obtain

the standard errors is still available by setting se = "Bootstrap".

6 Simulation

We extended the simulation studies in Huang et al. (2006) and Wang et al. (2013) to provide

a thorough comparison among the estimators discussed in this paper. Since the regression

coefficient in the accelerated mean model is interpreted differently than those in the propor-

tional means model, we focus here on the comparison of the regression coefficient estimates
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in the proportional means model. We generated recurrent events from a Poisson process with

mean model specified in Model (4) for t ∈ [0, τ ] with τ = 10. The baseline mean function was

set to be µ0(t) = 2t. Two mutually independent covariates, Xi1 and Xi2 were generated from

the Bernoulli distribution with rate 0.5 and the standard normal distribution, respectively.

The regression coefficients were set to be β = (β1, β2)> = (0.5, 1)>. The subject-specific

frailty Zi had three configurations: 1) fixed at constant 1; 2) generated from a gamma dis-

tribution with mean 1 and variance 0.5; or 3) generated from a uniform distribution over

[0, 2]. The sample size n had two levels, 100 and 200.

We considered three scenarios depending on how examination times associate with re-

current events:

• Scenario 1: examination times and recurrent events are independent. The number of

examinations, Ki, was generated from a district uniform distribution on {1, . . . , 6} and

the distinct examination times ti1, . . . , tiKi
, were the order statistics of Ki independent

and identically distributed uniform distribution over [0, 10].

• Scenario 2: examination times and recurrent events are independent conditioning on

the covariates. If Xi1Xi2 > 0, then the number of examinations, Ki, was generated

from a district uniform distribution on {1, . . . , 8} and the distinct examination times

were the order statistics of Ki independent and identically distributed exponential

distribution with mean 2; otherwise, Ki and ti1, . . . , tiKi
were generated in the same

fashion as in Scenario 1.

• Scenario 3: examination times are informative about the recurrent events after con-

ditioning on the covariates. If Xi1Xi2 > 0 and Zi > 1, then Ki and ti1, . . . , tiKi
were

generated as in the case of Xi1Xi2 > 0 in Scenario 2; otherwise, they were generated

in the same fashion as in Scenario 1.

Under the study designs, Scenario 3 reduces to Scenario 1 when Zi was fixed at 1 but the

two scenarios are different otherwise. In Scenario 2 when the examination times and recurrent
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events are independent conditioning on covariate, subjects with Xi1 = 1 and Xi2 > 0 are

more likely to be examined more frequently. In Scenario 3 when the examination times are

informative about the recurrent events, the design implies a positive association between the

underlying recurrent event process and the examination time process; subjects with Xi1 = 1,

Xi2 > 0 and Zi > 1 have a higher event rate and tend to be examined more frequently.

Since examination times were generated from continuous probability distributions for all

three scenarios, EE.HSWc estimator was excluded from the study as the EE.HSWc estimator

is not applicable to scenarios when there are no ties in examination times. The standard

errors were estimated using the standard bootstrap procedure by setting se = "Bootstrap"

with R = 200 bootstrap samples. For each configuration, 1000 datasets were generated and

analyzed. The timing results were obtained on a Linux machine with 2 GHz CPU.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

Table 1 presents the results under Scenario 1. All estimators are virtually unbiased. The

empirical standard errors and the estimated standard errors from the standard bootstrap

procedure agree closely for all estimators, suggesting that the bootstrap procedure provides

valid inference. The estimating-equation-based estimators were fastest to compute, but

they appear to have higher standard errors than other estimators. All estimators had higher

standard errors in the case of gamma frailty, which has high variance than the case of uniform

frailty. The empirical coverage percentages are mostly reasonably close to the nominal level

of 95%, with a closer agreement with larger sample size (results for n = 200 not shown).

Table 2 summarizes the results under Scenario 2. No estimator except those based on

estimating equations show noticeable bias. The substantial bias and, consequently, the low

coverage rate of the confidence intervals from the estimating equation approaches are due to
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their misspecification of the examination time process. The other estimators do not require

specification of the examination time process, which might not be of primary interest. They

appear to have similar results regarding bias and standard errors. Among them, the AEE

estimator is the fastest and has the smallest standard errors, albeit the advantage in standard

error is small.

Table 3 summarizes the results under Scenario 3. Under this setting of informative

examination times, the only unbiased estimators appear to be the HWZ estimator and the

AEEX estimator, with comparable standard errors. This is explained by the rationals on

which they are derived. Their coverage rates of the confidence intervals were a bit lower

than the nominal rate for the continuous regression coefficient, and the agreement improves

as the sample size becomes n = 200 (results not shown). The AEEX estimator is twice as fast

as the HWZ estimator.

7 Discussion

Nonparametric estimation of the mean cumulative function or mean rate function (e.g., Sun

and Zhao, 2013, Chapter 3–4) plays an important role in many methods for semiparametric

regression models. Estimation of semiparametric approaches often involves an alternate

iteration between updating the estimate of β and updating the estimate of µ0(t), the latter

of which is often based on nonparametric estimation given β. For example, the MLE and

MPLE of Wellner and Zhang (2007) are based on the one-sample nonparametric MLE and

MPLE of Wellner and Zhang (2000). The method of Huang et al. (2006) does not require

alternate iteration in estimating the parameters of Model (4) because of the special structure

of this model. When the idea is adapted to the accelerated mean Model (5) of Chiou

et al. (2017), nonparametric estimation given the parametric part becomes necessary in an

alternate iteration procedure. Some nonparametric estimation methods with self-consistent

algorithm (Hu et al., 2009a,b) have not been, but could be combined with a parametric
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estimation procedure to form a semiparametric approach. For methods implemented in the

spef package, nonparametric estimation can be requested by setting right hand of the model

formula to be intercept only; for example, PanelSurv(id, time, count) ~ 1. In addition,

the baseline function estimates can be plotted with the generic plot function as illustrated

in Section 4 and 5.

The scope of this review is limited to available implementations of semiparametric regres-

sion models with time-independent covariates. A wide range of topics on panel count data

have been studied, many of which have been reviewed by Sun and Zhao (2013). Examples are

nonparametric comparison (Zhang, 2006), semiparametric transformation models (Li et al.,

2010), multivariate panel count data analysis (He et al., 2008; Li et al., 2011; Zhang et al.,

2013; Li et al., 2015), measurement errors (Kim, 2007), mixed recurrent event and panel

count data analysis (Zhu et al., 2013), varying-coefficient models (He et al., 2017), incor-

poration of observation history in regression (Li et al., 2010; Deng et al., 2015), and so on.

Some topics are worth investigating; for example, adapting the semiparametric regression

with time-dependent covariates for recurrent event data (Huang et al., 2010) to panel count

data. The unavailability of cutting-edge methods to practitioners calls for user-friendly, qual-

ity controlled software implementation as reproductive statistical research gains sharpened

focus.
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Figure 1: Tile plot of the skin tumor data. Each tile represents an examination time. Darker
grays mean larger number of tumor since the last visit.
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Figure 2: Estimated baseline mean function from the MPL method and the MPLs method.
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Table 1: Simulation results for Scenario 1 where the examination times and the recurrent
events are independent with n = 100. Column bias is the average bias; ESE is the empirical
standard error; ASE is the average standard error based on the standard bootstrap; CP is
the empirical coverage probability (%); time is the average time in seconds used in both
point estimation and bootstrap variance estimation.

bias ESE ASE CP (%) Time

β1 β2 β1 β2 β1 β2 β1 β2

Z = 1
MLs −0.001 0.001 0.037 0.019 0.038 0.021 95.3 96.9 588.7
MPL −0.001 0.002 0.043 0.023 0.043 0.024 94.9 96.5 237.9
MPLs −0.001 0.001 0.042 0.023 0.044 0.023 96.3 96.4 543.9

EE.SWc −0.007 0.005 0.205 0.101 0.202 0.103 96.2 96.6 72.1
EE.SWb 0.005 0.006 0.149 0.087 0.159 0.087 96.1 96.1 47.7
EE.SWa 0.005 0.007 0.129 0.078 0.137 0.076 96.4 95.2 3.4
EE.HSWm −0.005 0.011 0.241 0.135 0.242 0.128 95.2 93.8 65.6

HWZ −0.001 0.001 0.046 0.022 0.046 0.023 94.0 93.8 1227.9
AEE −0.001 0.002 0.037 0.019 0.039 0.021 95.7 96.8 176.3
AEEX −0.002 −0.002 0.044 0.021 0.046 0.024 95.1 95.8 375.4

Z ∼ gamma distribution
MLs 0.007 −0.007 0.206 0.126 0.195 0.107 94.7 90.3 676.0
MPL 0.010 −0.007 0.215 0.127 0.198 0.107 93.8 90.4 264.8
MPLs 0.009 −0.007 0.216 0.129 0.202 0.110 93.8 90.3 578.4

EE.SWc −0.002 0.010 0.310 0.148 0.297 0.148 94.0 95.9 66.3
EE.SWb 0.012 0.007 0.216 0.113 0.227 0.121 95.5 96.0 43.7
EE.SWa 0.004 0.007 0.205 0.108 0.210 0.113 94.9 96.4 3.0
EE.HSWm 0.013 −0.010 0.304 0.179 0.310 0.166 95.9 92.8 60.9

HWZ 0.007 −0.007 0.201 0.124 0.190 0.113 93.3 91.3 1053.2
AEE 0.007 −0.007 0.205 0.125 0.194 0.110 94.8 91.2 237.1
AEEX −0.005 −0.011 0.200 0.122 0.192 0.112 94.6 91.5 362.5

Z ∼ uniform distribution
MLs −0.008 −0.005 0.177 0.106 0.171 0.096 94.1 90.6 674.3
MPL −0.009 −0.008 0.183 0.110 0.175 0.097 94.4 90.8 266.5
MPLs −0.008 −0.007 0.187 0.118 0.179 0.099 95.2 90.2 581.7

EE.SWc −0.006 0.004 0.305 0.139 0.274 0.139 92.4 95.6 66.8
EE.SWb −0.007 0.001 0.195 0.111 0.210 0.112 96.3 95.1 44.1
EE.SWa −0.014 0.002 0.174 0.105 0.194 0.103 97.0 94.9 3.1
EE.HSWm 0.002 0.001 0.308 0.176 0.297 0.163 94.7 93.4 61.3

HWZ −0.010 −0.005 0.177 0.109 0.164 0.098 92.6 90.1 1070.1
AEE −0.009 −0.005 0.176 0.111 0.169 0.095 93.7 90.4 235.0
AEEX −0.013 −0.009 0.173 0.107 0.168 0.095 94.6 90.1 366.7
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Table 2: Simulation results for Scenario 2 where the examination times and the recurrent
events are conditionally independent given covariates with n = 100. Column bias is the
average bias; ESE is the empirical standard error; ASE is the average standard error based
on the standard bootstrap; CP is the empirical coverage probability (%); time is the average
time in seconds used in both point estimation and bootstrap variance estimation.

bias ESE ASE CP (%) Time

β1 β2 β1 β2 β1 β2 β1 β2

Z = 1
MLs −0.001 0.001 0.043 0.022 0.045 0.023 96.0 96.4 600.9
MPL −0.002 0.002 0.052 0.026 0.053 0.028 95.1 96.7 243.4
MPLs −0.004 0.001 0.050 0.025 0.052 0.027 95.8 96.5 599.5

EE.SWc −0.229 −0.193 0.372 0.164 0.362 0.158 79.1 68.5 65.8
EE.SWb −0.833 −0.347 0.195 0.097 0.197 0.105 1.7 8.9 43.5
EE.SWa −0.338 −0.139 0.147 0.080 0.149 0.081 39.7 59.6 3.1
EE.HSWm −1.527 −0.399 0.291 0.164 0.292 0.158 0.0 29.8 60.8

HWZ −0.008 0.000 0.060 0.028 0.059 0.029 94.6 95.7 1120.5
AEE −0.001 0.001 0.043 0.022 0.045 0.024 95.2 96.5 236.7
AEEX −0.020 −0.007 0.055 0.027 0.056 0.029 94.3 96.8 474.5

Z ∼ gamma distribution
MLs 0.010 −0.007 0.202 0.119 0.192 0.104 94.4 90.9 728.1
MPL 0.025 −0.002 0.200 0.122 0.195 0.105 94.5 90.9 282.0
MPLs 0.004 −0.006 0.203 0.124 0.199 0.108 94.7 90.5 684.1

EE.SWc −0.277 −0.202 0.464 0.207 0.405 0.187 79.3 71.4 66.9
EE.SWb −0.828 −0.346 0.247 0.127 0.256 0.134 10.5 27.1 43.9
EE.SWa −0.333 −0.139 0.216 0.110 0.221 0.115 68.1 77.5 3.1
EE.HSWm −1.500 −0.409 0.349 0.207 0.340 0.198 1.5 40.4 61.4

HWZ 0.010 −0.006 0.212 0.128 0.198 0.115 92.9 91.7 1081.3
AEE 0.014 −0.006 0.199 0.119 0.190 0.103 94.4 90.9 341.3
AEEX −0.007 −0.016 0.203 0.123 0.192 0.108 94.8 90.8 512.6

Z ∼ gamma distribution
MLs −0.007 0.001 0.177 0.109 0.168 0.094 94.5 91.1 673.2
MPL 0.014 0.007 0.185 0.110 0.171 0.093 94.8 90.4 264.8
MPLs −0.003 0.004 0.187 0.112 0.176 0.098 94.9 90.7 638.4

EE.SWc −0.272 −0.192 0.442 0.205 0.392 0.188 80.2 75.4 61.7
EE.SWb −0.808 −0.345 0.239 0.128 0.242 0.128 8.8 25.4 40.9
EE.SWa −0.327 −0.138 0.202 0.103 0.204 0.109 64.6 77.1 3.5
EE.HSWm −1.492 −0.400 0.349 0.209 0.332 0.183 0.8 41.2 57.3

HWZ −0.017 0.001 0.179 0.117 0.172 0.094 93.0 89.7 989.9
AEE −0.002 0.002 0.174 0.108 0.166 0.090 94.5 89.5 301.4
AEEX −0.030 −0.009 0.168 0.112 0.169 0.096 95.0 90.2 463.4
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Table 3: Simulation results for Scenario 3 where the examination times are informative
about the recurrent events after conditioning on covariates with n = 100. Column bias is
the average bias; ESE is the empirical standard error; ASE is the average standard error
based on the standard bootstrap; CP is the empirical coverage probability (%); time is the
average time in seconds used in both point estimation and bootstrap variance estimation.

bias ESE ASE CP (%) Time

β1 β2 β1 β2 β1 β2 β1 β2

Z ∼ gamma distribution
MLs −0.147 −0.038 0.199 0.117 0.188 0.102 86.7 87.7 594.9
MPL −0.164 −0.048 0.210 0.115 0.190 0.101 84.5 87.3 221.6
MPLs −0.172 −0.048 0.208 0.118 0.192 0.103 85.5 86.6 496.9
EE.SWc −0.248 −0.110 0.318 0.153 0.290 0.147 81.6 85.8 64.9
EE.SWb −0.379 −0.155 0.215 0.113 0.225 0.119 59.9 74.7 42.6
EE.SWa −0.206 −0.078 0.192 0.100 0.208 0.109 86.1 88.7 2.9
EE.HSWm −0.723 −0.191 0.314 0.186 0.309 0.166 38.5 70.6 58.8
HWZ −0.003 −0.006 0.212 0.125 0.199 0.112 91.7 91.2 990.9
AEE −0.144 −0.038 0.198 0.116 0.189 0.100 88.8 90.7 225.6
AEEX −0.015 −0.014 0.206 0.122 0.191 0.105 92.6 89.9 419.1

Z ∼ uniform distribution
MLs −0.143 −0.032 0.181 0.113 0.173 0.096 86.7 89.7 633.3
MPL −0.169 −0.039 0.186 0.114 0.177 0.097 83.3 88.8 246.3
MPLs −0.175 −0.040 0.189 0.115 0.180 0.099 83.0 89.3 547.7
EE.SWc −0.258 −0.130 0.318 0.150 0.292 0.147 79.1 83.2 64.7
EE.SWb −0.453 −0.183 0.218 0.104 0.216 0.115 45.2 66.5 43.9
EE.SWa −0.221 −0.087 0.185 0.099 0.193 0.103 80.6 87.9 3.1
EE.HSWm −0.861 −0.229 0.323 0.179 0.303 0.165 21.0 65.7 59.8
HWZ −0.008 0.001 0.181 0.123 0.171 0.112 93.4 91.5 1010.1
AEE −0.142 −0.032 0.181 0.112 0.171 0.105 86.6 90.6 241.7
AEEX −0.022 −0.010 0.174 0.116 0.167 0.097 94.6 90.9 434.9
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