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Realizing and adiabatically preparing bosonic integer and fractional quantum
Hall states in optical lattices
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We study the ground states of two-dimensional lattice bosons in an artificial gauge field. Using state-of-the-art
density matrix renormalization group (DMRG) simulations we obtain the zero-temperature phase diagram for
hard-core bosons at densities n;, with flux n, per unit cell, which determines a filling v = n;/n4. We find the
bosonic Jain sequence [v = p/(p + 1)] states, in particular, a bosonic integer quantum Hall phase at v = 2, are
fairly robust in the hard-core boson limit, In addition to identifying Hamiltonians whose ground states realize these
phases, we discuss their preparation, beginning from independent chains, and ramping up interchain couplings.
Using time-dependent DMRG simulations, these are shown to reliably produce states close to the ground state

for experimentally relevant system sizes. Our proposal only utilizes existing experimental capabilities.
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The two-dimensional (2D) Bose-Hubbard model is one
of the simplest many-body systems that exhibits nontrivial
physics. Initially proposed as a model for the superconductor-
insulator transition in solid state systems [1,2], it was later
realized most cleanly in optical lattices of ultracold atoms
[3,4]. It has been widely studied by varying the ratio of hopping
to interaction strength 7/U, and the filling n;, of bosons per
site. A third natural parameter is the magnetic flux ng, the
tuning of which has been demonstrated recently in ultracold
atomic systems in periodically driven optical lattices [5]. The
phase diagram as a function of magnetic flux through the
unit cell is less understood. This is the bosonic analog of
the Harper-Hofstadter problem of free electrons in a tight-
binding model with magnetic flux [6]. However, to realize
interesting phases, the bosonic problem is necessarily inter-
acting (see also the related study of fermions [7-11]).

At finite flux density, quantum Hall phases (QHs) [12—14]
of bosons might appear if the filling factor v =n;/ny is
appropriate. One interesting state corresponds to v = 2, which
is called the bosonic integer quantum Hall state (BIQH)
[15,16]. Itbelongs to the newly discovered symmetry protected
topological (SPT) phase [17-19], different from all other frac-
tional quantum Hall states that are intrinsically topologically
ordered. This BIQH state was theoretically found before,
e.g., two-component bosons or higher Chern number flatband
model [20-27]. The BIQH indeed can be constructed using the
well-known composite fermion approach [28]. Specifically,
one can first attach one flux quantum to the bosons, converting
them into composite fermions, and letting them form a veg = p
integer quantum Hall state. This construction gives the so-
called Jain sequence states at a filling factor v = p/(p + 1),
and taking p = —2 gives the BIQH state [29].

For a given filling factor v, there could be different compet-
ing phases (e.g., different QHs, ordered states). Which phase
is the ground state is an energetic problem that usually differs
case by case, but it is very useful if one can learn some general
knowledge about the appearance of Jain’s composite fermion
states. For fermions, it is found that the Jain sequence state
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systematically appears in the lowest Landau level. However,
bosons behave quite differently: Half of the Jain sequence (the
hole part with p < 0) is missing in the continuum limit with the
lowest Landau level of bosons (U < t¢) (e.g., see a review in
Ref. [30] for numerics and Refs. [31,32] for analytical results).
Therefore, it is interesting to pass to the lattice, on which
one can achieve the infinite interaction limit U/t — oo that
may not be continuously connected with the continuum limit.
Indeed, early work motivating the search for lattice effects
reported a candidate BIQH at low densities (n = 1/7, 1/9)
[29]. Also, previous exact diagonalization (ED) calculations
on small system sizes found several Jain’s composite fermion
states with p = 1,2 [29,33-35]. In this Rapid Communication,
we systematically show that the full Jain sequence (at least
up to p = £5), in particular, the BIQH state, appears in the
U — oo limit.

Even if a quantum Hall state is the ground state of a simple
Harper-Hofstadter model, it remains challenging for cold-atom
experiments to realize. Cooling into a nontrivial ground state
poses special challenges, particularly in the context of driven
systems such as the Floquet engineered optical lattice systems
[5,36-44]. We need a cooling scheme to overcome this issue.
One way of cooling, called adiabatic preparation [45-49],
begins with a trivial state with low entropy, which is then
slowly ramped to the desired final state. Such adiabatic
preparation schemes in general require a continuous phase
transition between the initial state and the final state. For a
quantum Hall state, an adiabatic preparation scheme is even
more difficult, since usually an exotic phase transition, e.g.,
deconfined phase transition, will be involved [48]. Finding
an appropriate adiabatic preparation scheme for optical lattice
quantum Hall states is the second question on which we will
make progress, and, in particular, our scheme appears to work
for most quantum Hall phases, at least for the system sizes
relevant for experiments.

We will first present our density matrix renormaliza-
tion group (DMRG) simulation [50-52] which numerically
finds robust Jain sequence states p/(p + 1) (e.g., p =1,
+2,...,£5) on the lattice with a relatively high particle
density. In particular, the BIQH state (at p = —2) is found
robust with a short correlation length and quantized Hall
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FIG. 1. Harper-Hofstadter model on (a) a square lattice with flux
¢ = 2mng on each square plaquette, and (b) a triangular lattice with
flux n4 /2 on each triangle plaquette.

conductance. A related state was observed in the low-density
limit in Ref. [29]. Next, we use time-dependent DMRG
simulations [53-56] as well as exact diagonalization to discuss
the adiabatic preparation scheme for quantum Hall phases,
focusing on the BIQH state. The basic idea is beginning
with the independent chain limit of one-dimensional (1D)
Luttinger liquids, and ramping up interchain couplings that
also introduce the flux. To benchmark the effectiveness of
our preparation scheme, we utilize the wave-function overlap
between the state generated by the time ramp and the true
ground state as an indicator. We also discuss a physical
diagnosis using a two-point correlation function to detect the
gapless edge state of the quantum Hall phases.

Model and phases. We consider the Bose-Hubbard model
(Harper-Hofstadter model) on a square (triangular) lattice (see
Fig. 1),

H=-1) ¢Mala;+UQ nini=1. (1)
(ij) i

The first term is the nearest-neighbor hopping subject to a
background flux A;;, with )~ A = ¢ = 2mny4 on each square
plaquette (or ng/2 on each triangle). The second term is the
on-site Hubbard interactions, and we mainly consider the
limit U — oo that gives the hard-core boson constraint n =
0,1. Numerically, we confirm the phases also survive under
finite U.

One may expect quantum Hall phases for a certain filling
factor v = ny/ng, where ny, is the boson density per site. The
simplest possibility is a Jain sequence withv = p/(p + 1) =
ny/ng from the composite fermion approach [28]. First,
one can attach one flux quantum to the boson, yielding the
composite fermion. The composite fermions still have density
np and see an effective flux ng — ny = np,/p, then naturally
they will form an integer quantum Hall state with vcp = p.
Naively, the continuum limit, which can be formulated as the
lowest Landau level with a contact Haldane’s pseudopotential
V§(r — r'), is the most ideal platform for quantum Hall phases.
In that limit, however, several states, particularly the BIQH
state (p = —2), were not found in the extensive study (e.g.,
see a review in Ref. [30]).

Here, we focus mainly on the limit with U — oco. Unex-
pectedly, we numerically find that the Jain sequence states
(p=1,%£2,...,45,...) systematically appear in this limit.
We also note that even if ny < 1, the system we consider
here is still different from the continuum limit. It is because
the infinite on-site interaction U will be much larger than the
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TABLE 1. A brief summary of Jain’s sequence on the square
lattice with small p = 1, £2 obtained in our DMRG simulations. n,, is
the density per site. ny is the flux per square plaquette. The simulations
are mainly carried on an infinite cylinder with circumference L =
6,...,12.

oY = P

p+1 ng np

1/4 1/8
p=1

1/5 1/10
o =1/2 1/6 1/12
Laughlin state

1/4 1/6
p=2

1/5 2/15
o =2/3

1/6 1/9
Halperin’s (221) state
p=-2 1/6 1/3
oV =2 1/8 1/4

Bosonic integer 1/10 1/5
Quantum Hall e .

Landau level spacing (~ngJ ), making the simple Landau level
physics invalid. Theoretically, the flux attachment requires the
boson to be a hard-core object, hence the infinite U may
energetically help the flux attachment to happen. This may
be an intrinsic mechanism for our numerical observation.

Several methods were applied to study this problem before
[29,33-35,57-61]; here, we will use the infinite DMRG
simulation [52] to tackle it. We numerically observe a Jain
sequence states of bosons at filling factor v = p/(p + 1) for
p=1,%2,..., £5. Generally, the instability of the Jain states
grows with p. A consequence is that, to realize a larger p, one
needs a more dilute density (meaning a smaller ny4 and n;).
On the other hand, we also find that the Jain sequence states
are more stable on the triangular lattice [62]. Here and in
the following, we mainly focus on small p = 1, £2 on the
square lattice as summarized in Table I. The results of larger
p are summarized in the Supplemental Material [62]. We
study an infinite cylinder with circumference L, =6, ...,12
and different sizes give consistent results. For a smaller flux
density ng than we show in Table I, we expect the same
quantum Hall state still exists. A particularly interesting state
corresponds to p = —2, that is, the BIQH state at v = 2.
Unlike fractional QH, BIQH does not possess topological
order, instead it is a SPT [protected by the U(1) charge
conservation]. So here our results provide a very simple setting
for experimentally realizing the putative interacting SPT phase
in spatial dimensions higher than d = 1.

We numerically diagnose those quantum Hall phases
through their quantized Hall conductance (many-body Chern
number). To measure the Hall conductance, we wrap the
system on a cylinder, and measure the charge pumping by
threading 27 flux [63,64]. The pumped charge is exactly the
Hall conductance o*” [65]. As clearly shown in Fig. 2(a),
the Hall conductance is precisely o*¥ = 1/2,2/3, 2 for three
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FIG. 2. Numerical diagnosis of quantum Hall states v = 2, 1/2,
2/3; L. is the circumference. (a) Quantized Hall conductance
measured from flux insertion on an infinite cylinder. Charge transfer
as a function of flux: (Q) = —oy, %. (b) The correlation length & of
the quantum Hall state vs bond dimension m in DMRG simulations
showing convergence. The truncation error of DMRG simulation is
around 1078-107'°. The correlation length is small compared with
the circumference, indicating that our DMRG simulation is reliably
producing 2D physics.

quantum Hall states. Also, we find that the states have a short
correlation length [Fig. 2(b)], indicating a fully gapped state.

Adiabatic preparation from the 1D phase. One important
challenge for cold-atom experiments is to cool into the ground
state. We now discuss one preparation scheme for preparing
quantum Hall phases using adiabatic preparation starting from
decoupled 1D wires. The idea is that we first turn off hopping
along one direction (say, J, = 0). In this limit, we get decou-
pled 1D Luttinger liquids with density n;,. Then we slowly turn
on the hopping J, (that also introduces the flux), which even-
tually yields a 2D bosonic quantum Hall phase at the isotropic
limit J, = J;. The adiabatic preparation schemes by coupling
smaller subsystems have also been used elsewhere [66].

Numerically, we find this scheme can achieve the adiabatic
preparation for bosonic (both fractional and integer) quantum
Hall phases. One piece of numerical evidence is the properties
of the ground state as we ramp the system from 1D wires
to a 2D quantum Hall state. First, we find the physical
quantities (e.g., the energy and entanglement entropy) evolve
continuously as we change the parameter (J,). Second, we
observe that the wave function of the ground state of the system
is changing smoothly, namely, the wave-function overlap
(I (Jy +dJy))| — lasdJ, — 0.

To make a more direct contact with experiments, we
also simulate the preparation scheme as the nonequilib-
rium process. It can be generally described by |yf) =

fOT dte " Dy, H(t) is the time-dependent Hamiltonian
that will be tuned experimentally,

Hit)=-J, Z eiAffalTa_,- - Jy(@®) Zem”'ajaj
(ij)x (if)y
+U Y nini = 1), @
with time-dependent hopping on the y direction, Jy(¢) =

Jit/T. Yo 1is the initial state, that is, the ground
state of the starting Hamiltonian H(0). Numerically, we
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FIG. 3. Nonequilibrium dynamics simulation of the preparation
scheme with different ramp times 7', and we define J = J,. We
show the results of the BIQH state at ngy =1/6, n, =1/3 of a
square lattice placed on both the L. = 6 infinite cylinder (a),(c)
and the 6 x 6 square geometry (b),(d). (a),(b) show the time
evolution of entanglement entropy, where the solid line represents
the entanglement entropy of the ground state vs Jy/J;, and the
dots represent the entanglement entropy from the time evolution.
(c),(d) shows the wave-function overlap per site between the ground
state ¥(Jy) and the state from time evolution 1/~/[Jy(t)]. Intriguingly,
TJ =20 seems to give a better ground state than 7'J = 100; the
physical reason is unclear.

N . . T
first discretize the time-evolution operator [, dte™"H® ~

[T, e i =tH D) "with 1, = nT /m, m > 1, and the final
Hamiltonian H(t; = T') is the one in Eq. (1). Following the
method introduced by Zaletel ef al. [56], we then rewrite the
operator ¢ (1= H) a5 a4 matrix product operator, and
apply it to the wave function successively.

Figure 3 shows the numerical results for the preparation
scheme. We carry out simulations for (i) the infinite cylinder
geometry (y direction is taken to infinite), and (ii) the finite
square geometry that has an open boundary condition on both
the x and y directions. To quantify how good the adiabatic
preparation is, we compare the state from the time evolution
(IZ[Jy(t)]) with the true ground state [vyr(J,)] of the static
Hamiltonian. Specifically, we compare the entanglement en-
tropy and wave-function overlap between two states. Clearly,
the adiabatic preparation works well for both schemes, and
the quality of the adiabaticity increases as the preparation time
becomes longer. In particular, the wave-function overlap (per
site) can reach 0.9999, which is strong proof for our adiabatic
preparation scheme.

The finite square geometry works worse than the infinite
cylinder geometry [e.g., see Figs. 3(c) and 3(d)]. Such behavior
is expected since the quantum Hall state on a finite square
geometry has gapless edge modes. The gapless modes will
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FIG. 4. Diagnosis of the quantum Hall state by measuring the
two-point correlation function | (ag (x)ay(x))|. (a) The cartoon picture
for a quantum Hall state on a finite L, x L, cluster. For a quantum
Hall state, x = 0,1 corresponds to the edge on which the correlation
function decays algebraically. x > 1 corresponds to the bulk where
the correlation function decays exponentially, however, if a,(x) hits
the edge (y ~ L,), the correlation function obeys the power law.
Numerical results: (b) 9 x 12 cluster, ny = 1/6, n, =1/3, v =2
quantum Hall state. (¢) 6 x 6, ng = 1/6, n, = 1/3, v = 2 quantum
Hall state. (d) 6 x 6, ng =0, n;, = 1/3, superfluid. (e) 6 x 6, ny =
1/6, n, = 1/2, staggered potential A = 2, charge density wave.

inevitably lead to some undesired excitations in an adiabatic
preparation scheme. Fortunately, the experimental study as
well as our numerical simulations are carried out on a finite
system, which has a finite gap AE o 1/L. Therefore, as long
as the ramping time is long enough, the adiabatic preparation
can be ideally achieved. The preparation scheme can be further
optimized by adding a second tuning parameter, the magnetic
flux ¢ = 2mngy [47]. Tuning of ¢ has recently been realized
using quantum gas microscopes [5]. More details can be found
in the Supplemental Material [62].

Physical diagnosis of quantum Hall state. Finally, we
study a simple correlation function based method to diagnose
quantum Hall states in mesoscopic geometries. Although it
is presently unclear how to directly measure this quantity in
experiments, this will serve as a proxy for other correlation
function based approaches to study quantum Hall states.
The QH state has a gapped bulk but a gapless edge. To
observe this property, one can measure the correlation function
(ag(x)a},(x)) along one direction, as shown in Fig. 4(a). x
represents the position on the X direction, and ag(x) is always
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placed on the edge. When x ~ 0, the two-point correlation
function is always measured on thel, edge, and hence will give
a power law decaying behavior (ag(x)ay(x)) o 1/y%. On the
other hand, when x is placed in the middle of the sample
(x ~ Ly/2), (a(T)(x)ay (x)) is measuring the correlation function
in the bulk, yielding an exponentially decay behavior e=/%.
However, once a,(x) hits the edge (r ~ L), (ag(x)ay(x)) will
follow a power law decay again. In summary, the two-point
correlation functions behave as (we consider x < L, /2 due to
the symmetry),

1/y%, x ~0,
(ad()ay(x)) o e V/E, x~L,/2y<Ly (3
1/(y+2x)*, x~L:/2,y~L,.

Figure 4(b) shows the data of two-point correlation func-
tions of the bosonic integer quantum Hall state on a large
system, 9 x 12 cluster (from DMRG). It is consistent with the
above scaling behavior, Eq. (3). In particular, when x ~ L, /2,
the correlation function shows a nonmonotonic behavior: At
first it decays fast, but then suddenly increases as a, hits
the edge. Such scaling behavior is also visible on a small
system size, e.g., 6 x 6 cluster in Fig. 4(c). In contrast, a
superfluid [Fig. 4(d)] and a charge density wave [Fig. 4(e)]
do not show any nonmonotonic behavior. The state from our
adiabatic preparation protocol also admits such nonmonotonic
correlations (see Supplemental Material [62]), demonstrating
that it retains physical characteristics of the ground state.

Conclusion and outlook. We study quantum Hall phases and
their adiabatic preparation scheme in the Harper-Hofstadter
model with hard-core bosons. Our theoretical study lends
support to Jain’s composite fermion picture in a regime where
lattice effects play an important role. We note a recent work
finds another setting for Jain’s composite fermion states of
bosons [67]. On the other hand, our work indicates a way
forward for the experimental study of quantum Hall phases
in optical lattices. It is interesting to understand the nature
of the phase transition from the 1D wires to 2D quantum
Hall phases. Another interesting problem is to come up
with experimental measurement protocols, such as measuring
the Hall conductance [38] or detecting the edge state (e.g.,
Refs. [68,69]).

Acknowledgments. We acknowledge stimulating discus-
sions with Eugene Demler, Frank Pollmann, Chong Wang,
Norman Yao, and Liujun Zou. Y.-C.H. thanks F. Pollmann
for sharing the TENPY package to do the simulations of time-
dependent DMRG, and thanks N. Yao for sharing unpublished
ED results. Y.-C.H. and F.G. are supported by a postdoctoral
fellowship from the Gordon and Betty Moore Foundation,
under the EPiQS initiative, GBMF4306, at Harvard University.
A.V. is supported by a Simons Investigator Award and by the
AFOSR MURI Grant No. FA9550- 14-1-0035.

[1] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Boson localization and the superfluid-insulator transition,
Phys. Rev. B 40, 546 (1989).

[2]1 S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar,
Continuous quantum phase transitions, Rev. Mod. Phys. 69, 315
(1997).

[3] M. Greiner, O. Mandel, T. Esslinger, T. W Hinsch, and I. Bloch,
Quantum phase transition from a superfluid to a Mott insulator
in a gas of ultracold atoms, Nature (London) 415, 39 (2002).

[4] X. Zhang, C.-L. Hung, S.-K. Tung, and C. Chin, Observation
of quantum criticality with ultracold atoms in optical lattices,
Science 335, 1070 (2012).

201103-4



REALIZING AND ADIABATICALLY PREPARING BOSONIC ...

[5] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke, D.
Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and M. Greiner,
Microscopy of the interacting Harper-Hofstadter model in the
two-body limit, Nature (London) 546, 519 (2017).

[6] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[7] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional
Quantum Hall States at Zero Magnetic Field, Phys. Rev. Lett.
106, 236804 (2011).

[8] N. Regnault and B. A. Bernevig, Fractional Chern Insulator,
Phys. Rev. X 1, 021014 (2011).

[9] E. Tang, J.-W. Mei, and X.-G. Wen, High-Temperature Frac-
tional Quantum Hall States, Phys. Rev. Lett. 106, 236802 (2011).

[10] D. Sheng, Z.-C. Gu, K. Sun, and L. Sheng, Fractional quantum
Hall effect in the absence of Landau levels, Nat. Commun. 2,
389 (2011).

[11] A. G. Grushin, A. Gémez-Le6én, and T. Neupert, Floquet
Fractional Chern Insulators, Phys. Rev. Lett. 112, 156801
(2014).

[12] K. V. Klitzing, G. Dorda, and M. Pepper, New Method for
High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494
(1980).

[13] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-Dimensional
Magnetotransport in the Extreme Quantum Limit, Phys. Rev.
Lett. 48, 1559 (1982).

[14] R. B. Laughlin, Anomalous Quantum Hall Effect: An Incom-
pressible Quantum Fluid with Fractionally Charged Excitations,
Phys. Rev. Lett. 50, 1395 (1983).

[15] Y.-M. Lu and A. Vishwanath, Theory and classification of
interacting integer topological phases in two dimensions: A
Chern-Simons approach, Phys. Rev. B 86, 125119 (2012).

[16] T. Senthil and M. Levin, Integer Quantum Hall Effect for
Bosons, Phys. Rev. Lett. 110, 046801 (2013).

[17] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry
protected topological orders and the group cohomology of their
symmetry group, Phys. Rev. B 87, 155114 (2013).

[18] F.D. M. Haldane, Nonlinear Field Theory of Large-Spin Heisen-
berg Antiferromagnets: Semiclassically Quantized Solitons of
the One-Dimensional Easy-Axis Néel State, Phys. Rev. Lett. 50,
1153 (1983).

[19] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa,
Entanglement spectrum of a topological phase in one dimension,
Phys. Rev. B 81, 064439 (2010).

[20] S. Furukawa and M. Ueda, Integer Quantum Hall State in
Two-Component Bose Gases in a Synthetic Magnetic Field,
Phys. Rev. Lett. 111, 090401 (2013).

[21] S. D. Geraedts and O. I. Motrunich, Exact realization of integer
and fractional quantum Hall phases in u(1) x u#(1) models in
(2 4+ 1)D, Ann. Phys. 334, 288 (2013).

[22] N. Regnault and T. Senthil, Microscopic model for the bo-
son integer quantum Hall effect, Phys. Rev. B 88, 161106
(2013).

[23] Y.-H. Wu and J. K. Jain, Quantum Hall effect of two-component
bosons at fractional and integral fillings, Phys. Rev. B 87,245123
(2013).

[24] A. Sterdyniak, N. R. Cooper, and N. Regnault, Bosonic Integer
Quantum Hall Effect in Optical Flux Lattices, Phys. Rev. Lett.
115, 116802 (2015).

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 201103(R) (2017)

[25] Y.-C. He, S. Bhattacharjee, R. Moessner, and F. Pollmann,
Bosonic Integer Quantum Hall Effect in an Interacting Lattice
Model, Phys. Rev. Lett. 115, 116803 (2015).

[26] G. Moller and N. R. Cooper, Fractional Chern Insulators
in Harper-Hofstadter Bands with Higher Chern Number,
Phys. Rev. Lett. 115, 126401 (2015).

[27] T.-S. Zeng, W. Zhu, and D. N. Sheng, Bosonic integer quantum
Hall states in topological bands with Chern number two,
Phys. Rev. B 93, 195121 (2016).

[28] J. K. Jain, Composite-Fermion Approach for the Fractional
Quantum Hall Effect, Phys. Rev. Lett. 63, 199 (1989).

[29] G. Moller and N. R. Cooper, Composite Fermion Theory for
Bosonic Quantum Hall States on Lattices, Phys. Rev. Lett. 103,
105303 (2009).

[30] N.R. Cooper, Rapidly rotating atomic gases, Adv. Phys. 57, 539
(2008).

[31] F. Harper, S. H. Simon, and R. Roy, Perturbative approach to flat
Chern bands in the Hofstadter model, Phys. Rev. B 90, 075104
(2014).

[32] T. Scaffidi and S. H. Simon, Exact solutions of fractional Chern
insulators: Interacting particles in the Hofstadter model at finite
size, Phys. Rev. B 90, 115132 (2014).

[33] A.S.Sgrensen, E. Demler, and M. D. Lukin, Fractional Quantum
Hall States of Atoms in Optical Lattices, Phys. Rev. Lett. 94,
086803 (2005).

[34] R. N. Palmer, A. Klein, and D. Jaksch, Optical lattice quantum
Hall effect, Phys. Rev. A 78, 013609 (2008).

[35] M. Hafezi, A. S. Sgrensen, E. Demler, and M. D. Lukin,
Fractional quantum Hall effect in optical lattices, Phys. Rev.
A 76, 023613 (2007).

[36] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111,
185301 (2013).

[37] M. Atala, M. Aidelsburger, M. Lohse, J. T Barreiro, B. Paredes,
and I. Bloch, Observation of chiral currents with ultracold atoms
in bosonic ladders, Nat. Phys. 10, 588 (2014).

[38] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.
Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch, and N.
Goldman, Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms, Nat. Phys. 11, 162 (2015).

[39] D. Jaksch and P. Zoller, Creation of effective magnetic fields in
optical lattices: The Hofstadter butterfly for cold neutral atoms,
New J. Phys. 5, 56 (2003).

[40] J. Dalibard, F. Gerbier, G. Juzelitnas, and P. Ohberg, Collo-
quium: Artificial gauge potentials for neutral atoms, Rev. Mod.
Phys. 83, 1523 (2011).

[41] N.R. Cooper, Optical Flux Lattices for Ultracold Atomic Gases,
Phys. Rev. Lett. 106, 175301 (2011).

[42] F. Gerbier and J. Dalibard, Gauge fields for ultracold atoms in
optical superlattices, New J. Phys. 12, 033007 (2010).

[43] A. R. Kolovsky, Creating artificial magnetic fields for cold
atoms by photon-assisted tunneling, Europhys. Lett. 93, 20003
(2011).

[44] N. Goldman, G. Juzelitnas, P. Ohberg, and I. B. Spielman,
Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys.
77, 126401 (2014).

[45] A.S. Sgrensen, E. Altman, M. Gullans, J. V. Porto, M. D. Lukin,
and E. Demler, Adiabatic preparation of many-body states in
optical lattices, Phys. Rev. A 81, 061603 (2010).

201103-5



HE, GRUSDT, KAUFMAN, GREINER, AND VISHWANATH

[46] M. Popp, B. Paredes, and J. I. Cirac, Adiabatic path to fractional
quantum Hall states of a few bosonic atoms, Phys. Rev. A 70,
053612 (2004).

[47] F. Grusdt, F. Letscher, M. Hafezi, and M. Fleischhauer, Topo-
logical Growing of Laughlin States in Synthetic Gauge Fields,
Phys. Rev. Lett. 113, 155301 (2014).

[48] M. Barkeshli, N. Y. Yao, and C. R. Laumann, Continuous
Preparation of a Fractional Chern Insulator, Phys. Rev. Lett.
115, 026802 (2015).

[49] E. Kapit, M. Hafezi, and S. H. Simon, Induced Self-Stabilization
in Fractional Quantum Hall States of Light, Phys. Rev. X 4,
031039 (2014).

[50] S. R. White, Density Matrix Formulation for Quantum Renor-
malization Groups, Phys. Rev. Lett. 69, 2863 (1992).

[51] S. R. White, Density-matrix algorithms for quantum renormal-
ization groups, Phys. Rev. B 48, 10345 (1993).

[52] I. P. McCulloch, Infinite size density matrix renormalization
group, revisited, arXiv:0804.2509.

[53] G. Vidal, Efficient Classical Simulation of Slightly Entan-
gled Quantum Computations, Phys. Rev. Lett. 91, 147902
(2003).

[54] S. R. White and A. E. Feiguin, Real-Time Evolution Using the
Density Matrix Renormalization Group, Phys. Rev. Lett. 93,
076401 (2004).

[55] A. J. Daley, C. Kollath, U. Schollwock, and G. Vidal, Time-
dependent density-matrix renormalization-group using adaptive
effective Hilbert spaces, J. Stat. Mech.: Theory Exp. (2004)
P04005.

[56] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, and
F. Pollmann, Time-evolving a matrix product state with long-
ranged interactions, Phys. Rev. B 91, 165112 (2015).

[57] R. N. Palmer and D. Jaksch, High-Field Fractional Quantum
Hall Effect in Optical Lattices, Phys. Rev. Lett. 96, 180407
(2006).

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 201103(R) (2017)

[58] A. Sterdyniak, N. Regnault, and G. Mdller, Particle entangle-
ment spectra for quantum Hall states on lattices, Phys. Rev. B
86, 165314 (2012).

[59] A. Sterdyniak, B. A. Bernevig, N. R. Cooper, and N. Regnault,
Interacting bosons in topological optical flux lattices, Phys. Rev.
B 91, 035115 (2015).

[60] S.S. Natu, E. J. Mueller, and S. Das Sarma, Competing ground
states of strongly correlated bosons in the Harper-Hofstadter-
Mott model, Phys. Rev. A 93, 063610 (2016).

[61] D. Hiigel, H. U. R. Strand, P. Werner, and L. Pollet, Anisotropic
Harper-Hofstadter-Mott model: Competition between conden-
sation and magnetic fields, Phys. Rev. B 96, 054431 (2017).

[62] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.96.201103 for additional numerical data.

[63] Y.-C. He, D. N. Sheng, and Y. Chen, Obtaining topological
degenerate ground states by the density matrix renormalization
group, Phys. Rev. B 89, 075110 (2014).

[64] A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann,
Characterization and stability of a fermionic v = 1/3 fractional
Chern insulator, Phys. Rev. B 91, 035136 (2015).

[65] R. B. Laughlin, Quantized Hall conductivity in two dimensions,
Phys. Rev. B 23, 5632 (1981).

[66] A. M. Rey, R. Sensarma, S. Folling, M. Greiner, E. Demler,
and M. D. Lukin, Controlled preparation and detection of
d-wave superfluidity in two-dimensional optical superlattices,
Europhys. Lett. 87, 60001 (2009).

[67] S.D. Geraedts, C. Repellin, C. Wang, R. S. K. Mong, T. Senthil,
and N. Regnault, Emergent particle-hole symmetry in spinful
bosonic quantum Hall systems, Phys. Rev. B 96, 075148 (2017).

[68] S. Yin and B. Béri, Universality and quantized response in
bosonic mesoscopic tunneling, Phys. Rev. B 93, 245142 (2016).

[69] X.-Y. Dong, A. G. Grushin, J. Motruk, and F. Pollmann,
Edge state dynamics in bosonic fractional Chern insulators,
arXiv:1710.03756 .

201103-6



