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Abstract—As multi-agent systems become more wide-spread
and versatile, the ability to satisfy multiple system-level con-
straints grows increasingly important. In applications ranging
from automated cruise control to safety in robot swarms,
barrier functions have emerged as a tool to provably meet
such constraints by guaranteeing forward invariance of desirable
sets. However, satisfying multiple constraints typically implies
formulating multiple barrier functions, which would be ame-
liorated if the barrier functions could be composed together as
Boolean logic formulae. The use of max and min operators, which
yields nonsmooth functions, represents one path to accomplish
Boolean compositions of barrier functions, and this work extends
previously established concepts for barrier functions to a class of
nonsmooth barrier functions that operate on systems described
by differential inclusions. We validate our results by deploying
Boolean compositions of nonsmooth barrier functions onto a team
of mobile robots.

Index Terms—Robotics, Lyapunov methods, autonomous sys-
tems

I. INTRODUCTION

N
UMEROUS applications utilize multi-agent systems to

achieve objectives in a robust and decentralized manner,

including rendezvous, where agents must meet in a decentral-

ized fashion; coverage control, in which agents must cover

an area of importance; and flocking, which mimics biological

systems (e.g., [1], [2], [3]). As the number of agents increases,

accomplishing objectives while satisfying multiple system-

level constraints becomes a concern. For example, collision

avoidance and connectivity maintenance typically must be

ensured throughout the maneuver (e.g., [4]), which translates

into the constraints that agents do not collide and do not lose

connectivity. As such, the ability to provably guarantee the

satisfaction of multiple constraints grows increasingly relevant.

Recently, [5] utilized barrier functions for constraint satis-

faction by ensuring forward invariance of a set that encodes

such safety requirements, and, subsequently, barrier functions

have been used to encode a variety of system constraints across

different domains, such as adaptive cruise control [5], [6],

collision avoidance for ground vehicles [7], unmanned aerial

vehicles [8], and remote-access robotics testbeds [9].

The above-referenced literature on barrier functions ad-

dresses a single, sufficiently smooth barrier function that

operates on a continuous dynamical system. Recently, [10]
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achieves a form of Boolean composition through products

and sums of barrier functions. However, the construction in

[10] forgoes the robustness qualities of the zeroing barrier

functions in [6] and restricts the system to lie strictly in

the interior of the invariant set. In this paper, we retain the

robustness properties associated with zeroing barrier functions

(see [6]) while supporting Boolean composition of barrier

functions by utilizing max and min operators of multiple

component barrier functions. However, the use of max and

min operators introduces points of nondifferentiablity into

the composite barrier functions, preventing the existing re-

sults from applying. Though not considered with regard to

barrier functions, nonsmooth Lyapunov functions have been

extensively studied (e.g., [11], [12], [13], [14]). The tools

developed for nonsmooth Lyapunov functions will also prove

highly useful for Nonsmooth Barrier Functions (NBFs), and in

this paper, we show how to extend the previously established

concepts within the smooth barrier function literature to a rich

class of NBFs.

It should be noted that NBFs are not the only possible tools

for composition of system-level constraints in multi-agent

systems. For example, potential functions and Lyapunov-like

barrier functions represent an approach that also permits some

degree of composition [15], [16], [17]. The major difference

between this work and these other approaches lies in the fact

that the work in this paper explicitly allows for guaranteed

Boolean composition of these objects (i.e., composition with

Boolean ∧, ∨, ¬ operators).

Additionally, the above-mentioned prior methods are often

formulated with respect to a particular task (e.g., obstacle

avoidance) or a particular dynamical system (e.g., differential

drive robots). Another strength of this work is that the NBF

framework is mathematically agnostic to the particular task

under consideration.

This work provides three main results with experimental

validation. First, this work presents a framework that permits

the application of NBFs to a class of systems described

by differential inclusions. Second, this work addresses some

computational requirements imposed by the nonsmooth nature

of the NBF framework, demonstrating that validation of NBFs

can be feasibly performed under certain assumptions. Third,

Boolean compositional NBFs are achieved via max and min
operators and are formulated as Quadratic Programs (QPs).

This article unfolds as follows. Sec. II covers background

material regarding differential inclusions and discusses some

tools from nonsmooth analysis. Sec. III applies these concepts

to NBFs for dynamical systems that are described by dif-

ferential inclusions and introduces convenient computational



methods to check whether a candidate function is a valid NBF.

Sec. IV considers a special case of the results in Sec. III to

compose a number of barrier functions with Boolean logic via

min and max operations. Finally, Sec. V shows the successful

deployment of a Boolean compositional NBF onto a team of

mobile robots.

II. BACKGROUND MATERIAL

This section introduces notation and background material,

including generalized gradients, differential inclusions, and

set-valued Lie derivatives. These tools are necessary to deal

properly with the nondifferentiable points of NBFs.

A. Notation

We denote by R≥0 the set of nonnegative real numbers. For

an integer k > 0, we use the shorthand notation [k] to denote

the set {1, . . . , k}. The symbol ◦ denotes function composi-

tion. The abbreviation a.e. stands for almost everywhere in the

sense of Lebesgue measure. The expression 〈· , ·〉 represents

the inner product of two vectors. The abbreviation co stands

for the convex hull of a set. A function α : R → R belongs

to extended class-K if α is continuous, strictly increasing, and

α(0) = 0. The function α is a class-K function when restricted

to R≥0. A function β : R≥0 ×R≥0 → R≥0 is class-KL if it

is class-K in its first argument and, for each fixed r, β(r, ·) is

continuous, strictly decreasing, and lims→∞ β(r, s) = 0.

B. Differential Inclusions

Differential inclusions have emerged as a tool to analyze

certain types of dynamical systems. For example, differential

equations with discontinuous right-hand sides have been exten-

sively studied (e.g., in [18]) by transforming the discontinuous

differential equation into a differential inclusion.

When formulating NBFs, we allow for applications to differ-

ential inclusions, potentially facilitating forward-set-invariance

analysis of such systems; though, these results also apply to

systems modeled by continuous differential equations. Given

a set-valued map F : R
n → 2R

n

, consider the differential

inclusion represented by

ẋ(t) ∈ F (x(t)). (1)

We assume that F is locally bounded; upper semi-continuous

(see [19, Sidebar 7]); and takes nonempty, compact, convex

values. These properties ensure the existence (but not unique-

ness) of solutions to (1) (see [19, Prop. S1]). A Carathéodory

solution to (1) is an absolutely continuous trajectory x :
[0, t1] → D ⊂ R

n such that ẋ(t) ∈ F (x(t)), a.e. t ∈ [0, t1],
x(0) = x0, with D an open, connected set and 0 < t1. Later

references to solutions to (1) always assume this definition.

In general, this article focuses on guaranteeing that a set

is forward invariant with respect to a differential inclusion,

meaning that every solution that starts in the set stays in the

set. This notion of forward invariance has been called strong

forward invariance in other work (cf. [19]). This article simply

refers to this property as forward invariance.

Definition 1. A set C is forward invariant, with respect to (1),

if x(0) ∈ C implies that x(t) ∈ C, for every t ∈ [0, t1] and for

every Carathéodory solution of (1) starting from x(0).

C. Nonsmooth Analysis

Here, we review some basic notions on nonsmooth analysis

that are necessary to analyze the nonsmooth functions that

result from applying max and min operators to smooth

functions (e.g., |x| = max{−x, x}). The generalized gradi-

ent of locally Lipschitz functions is a tool that deals with

the nondifferentiable points of nonsmooth functions [20]. A

function f : R
n → R

m is Lipschitz near x is there exist

δ, L > 0 such that ‖f(x1)− f(x2)‖ ≤ L‖x1 − x2‖, for every

x1, x2 ∈ B(x, δ). If a function is Lipschitz near every point

in its domain of definition, we refer to the function as locally

Lipschitz. Next, we define the generalized gradient.

Theorem 1 ([20, Theorem 2.5.1]). Let f be Lipschitz near x,

and suppose S is any set of Lebesgue measure zero in R
n.

Then, the generalized gradient of a function ∂f(x) is

∂f(x) = co{ lim
i→∞

∇f(xi) | xi → x, xi /∈ S ∪ Ωf},

where Ωf represents the zero-measure set where f is nondif-

ferentiable.

Often, some regularity is assumed to imbue the generalized

gradient with some desirable properties.

Definition 2 ([20, Definition 2.3.4]). A function f is regular

at x provided that for all v ∈ R
n, the one-sided directional

derivative f ′(x; v) = limh↓0 h
−1(f(x+hv)−f(x)) exists and

that f ′(x; v) = f◦(x; v), where the generalized directional

derivative f◦(x; v) is given by

f◦(x; v) = lim sup
y→x
h↓0

f(y + hv)− f(y)

h
.

If the component functions are regular, the generalized gra-

dient of their point-wise max or min can be easily computed,

as the next result shows.

Proposition 2 ([20, Proposition 2.3.12]). Let {fi} be a finite

collection of functions (i = 1, 2, . . . , k) Lipschitz near x. Then,

the function f defined by

f(x′) = max
i∈[k]

{fi(x
′)}

is Lipschitz near x as well. Let I(x′) denote the set of indices

i for which fi(x
′) = f(x′). Then,

∂f(x) ⊂ co{∂fi(x) | i ∈ I(x)},

and if fi is regular at x for each i ∈ I(x), then equality holds;

and f is regular at x.

This property becomes of particular interest when consider-

ing Boolean compositions of NBFs in Sec. IV. In particular,

Prop. 2 implies that the behavior of the generalized gradients

of the component functions encapsulates the behavior of the

generalized gradient of the max (or min).

D. Set-Valued Lie Derivatives

Following [19], this section formulates set-valued Lie

derivatives for nonsmooth functions with respect to systems

described by differential inclusions. Set-valued Lie derivatives



encapsulate the behavior of these nonsmooth functions by

combining possible directions between the generalized gra-

dient and the differential inclusion. In [11], these objects are

used to analyze nonsmooth Lyapunov functions; however, the

same tool may be applied to NBFs. The authors of [11]

introduce the following strong version of a set-valued Lie

derivative.

Lemma 2.1 ([11, Lemma 1]). Let x : [0, t1] → D ⊂ R
n be a

Carathéodory solution to (1), and let h : D ⊂ R
n → R be a

locally Lipschitz, regular function. Then, [0, t1] 3 t 7→ ḣ(x(t))
is absolutely continuous, and

ḣ(x(t)) ∈ LS
Fh(x(t)), a.e. t ∈ [0, t1], (2)

where, for each x′ ∈ D,

LS
Fh(x

′) = {a ∈ R | ∃ v ∈ F (x′) s.t. 〈ξ , v〉 = a,

∀ ξ ∈ ∂h(x′)}.

Interestingly, the work [12] extends the strong set-valued

Lie derivative of Lem. 2.1 to the larger class of so-called non-

pathological functions, a class that contains regular functions

as a subset.

Remark 2.1. If the regularity assumption on h is removed

from the hypothesis of Lemma 2.1, then (2) still holds with the

weaker set-valued Lie derivative defined by

LW
F h(x′) = {a ∈ R | ∃ v ∈ F (x′), ∃ ξ ∈ ∂h(x′)

s.t. 〈ξ , v〉 = a},
(3)

for each x′ ∈ D. This statement follows from [20, Prop. 2.2.2].

•

Regarding Rem. 2.1, the weak set-valued Lie derivative

generates substantially more values than the strong set-valued

Lie derivative but only requires a locally Lipschitz assumption.

As such, the weak set-valued Lie derivative lends itself to the

Boolean composition of barrier functions (see Sec. IV), as the

regularity property is not necessarily preserved through nested

compositions of max and min operators (e.g., a point-wise

minimum of point-wise maximums). This condition occurs

because regularity of some function f does not imply that

−f is regular.

III. NONSMOOTH BARRIER FUNCTIONS

This section contains the main results of the paper. Initially,

the section introduces the definitions of candidate and valid

NBFs and then provides sufficient conditions to guarantee

the forward-set-invariance properties of NBFs. Finally, this

segment discusses useful computational methods to check

these conditions.

A. Candidate and Valid Nonsmooth Barrier Functions

Here, we define the concepts of candidate and valid NBFs.

Note that, in Def. 3, the function h is not necessarily differen-

tiable. Importantly, if a candidate NBF is a valid NBF, then the

set C, as in Def. 3, is forward invariant. Valid and candidate

NBFs are defined as follows.

Definition 3. A continuous function h : D ⊂ R
n → R, where

D is an open, connected set, is a candidate NBF if the set

C = {x′ ∈ D | h(x′) ≥ 0} is nonempty.

Definition 4. A continuous candidate NBF h : D ⊂ R
n → R

is a valid NBF for (1) if x(0) ∈ C implies that there exists a

class-KL function β : R≥0 ×R≥0 → R≥0 such that

h(x(t)) ≥ β(h(x(0)), t), ∀ t ∈ [0, t1],

for all Carathéodory solutions x : [0, t1] → R
n of (1) starting

from x(0).

B. Sufficient Conditions for Valid NBFs

This section provides sufficient conditions that allow us to

determine whether a candidate NBF is in fact a valid NBF.

Toward this end, the following result will be useful.

Lemma 2.2. Let α : R → R be a locally Lipschitz, extended

class-K function and h : [0, t1] → R be an absolutely

continuous function. If ḣ(t) ≥ −α(h(t)), for almost every

t ∈ [0, t1], and h(0) ≥ 0, then there exists a class-KL function

β : R≥0 ×R≥0 → R≥0 such that h(t) ≥ β(h(0), t), and

h(t) ≥ 0, ∀ t ∈ [0, t1].

Proof. To prove this result, we utilize a differential inequality.

Toward this end, let

ż(t) = −α(z(t)), z(0) = h(0).

Because α is locally Lipschitz, solutions z(t) exist and are

unique, and since z(0) ≥ 0 and the restriction of an extended

class-K function to R≥0 is a class-K function, the solution

z(t) is a class-KL function β such that

z(t) = β(z(0), t).

Therefore, the solution z(t) is valid over [0, t1]. Then, because

ḣ(t) ≥ −α(h(t)), a.e. t ∈ [0, t1],

h(t) ≥ z(t), ∀t ∈ [0, t1], by [21, Thm. 1.10.2]. Thus,

h(t) ≥ β(h(0), t), ∀ t ∈ [0, t1],

proving the first claim. Because β is a class-KL function,

β(h(0), t) ≥ 0, ∀ t ∈ [0, t1]; thus, h(t) ≥ 0, ∀t ∈ [0, t1].

The following result states a sufficient condition for a

candidate NBF to be valid in terms of its strong set-valued

Lie derivative when evaluated along solutions to (1).

Theorem 3. Let h : D ⊂ R
n → R be a locally Lipschitz,

regular function that is a candidate NBF. If there exists a

locally Lipschitz extended class-K function α : R → R such

that the strong set-valued Lie derivative satisfies

minLS
Fh(x

′) ≥ −α(h(x′)), ∀ x′ ∈ D, (4)

then h is a valid NBF for (1).

Proof. Let x(0) ∈ C. By Lem. 2.1, each solution of (1)

satisfies

ḣ(x(t)) ∈ LS
Fh(x(t)), a.e. t ∈ [0, t1].



Thus, at a.e. t ∈ [0, t1]

ḣ(x(t)) ≥ minLS
Fh(x(t)) ≥ −α(h(x(t))).

This condition implies that at a.e. t ∈ [0, t1]

d

dt
(h ◦ x)(t) ≥ −α((h ◦ x)(t)),

when h ◦ x is viewed as a function of t. Since x(0) ∈ C,

(h ◦ x)(0) ≥ 0. Directly applying Lem. 2.2 yields that h is a

valid NBF, as defined in Def. 4.

Remark 3.1. The same result holds if we remove the assump-

tion that h is regular and instead the inequality (4) holds with

the weak set-valued Lie derivative LW
F h defined in (3). •

Remark 3.2. By a similar argument, if x(0) ∈ D − C (i.e.,

h(0) < 0) and the solution exists for all t ∈ [0,∞), then

we may show that −h(x(t)) ≤ β(−h(x(0)), t) (i.e., that x(t)
asymptotically returns to C). •

As the eventual goal of this work is to apply NBFs to a

group of mobile robots, the computational requirements of

verifying the NBF inequality conditions become a concern.

Toward this end, the following property of the usual inner

product on two convex hulls becomes of use. In the interest

of space efficiency, we omit this proof and note that it follows

from Caratheódory’s theorem for convex hulls.

Lemma 3.1. Let Ā ⊂ coA ⊂ R
n, B̄ ⊂ coB ⊂ R

n. If for

every a ∈ A, b ∈ B, 〈a , b〉 ≥ c, c ∈ R, then for every ā ∈ Ā,

b̄ ∈ B̄, 〈ā , b̄〉 ≥ c.

Next, we present the second of this article’s main results.

We omit the proof and note that it follows from Lem. 3.1 and

the version of Thm. 3 described in Rem. 3.1.

Theorem 4. Let h : D ⊂ R
n → R be locally Lipschitz func-

tion which is a candidate NBF. Let Ef , Eh : D ⊂ R
n → 2R

n

be set-valued maps such that

F (x′) ⊂ co Ef (x
′), ∂h(x′) ⊂ co Eh(x

′),

for all x′ ∈ D. If there exists a locally Lipschitz extended

class-K function α : R → R such that for every x′ ∈ D,

ξ ∈ Eh(x
′), and v ∈ Ef (x

′),

〈ξ , v〉 ≥ −α(h(x′)),

then h is a valid NBF for (1).

In Sec. IV, Thm. 4 facilitates the validation of candidate

NBFs that are defined by max or min operations of smooth

functions by expressing these sufficient conditions in terms of

the component functions.

IV. BOOLEAN LOGIC VIA MAX/MIN

This sections covers applications of max and min functions

to the Boolean composition of barrier functions. In particular,

this section demonstrates that these operators encode a system

of Boolean logic falling into the NBF framework in Sec. III.

We also cover a QP-based formulation of these Boolean

compositional NBFs with respect to a class of control-affine

systems.

A. Composition by Boolean Logic

Throughout this section, we assume that a finite set of

functions hi : D ⊂ R
n → R, i ∈ [k], are candidate NBFs.

Within this framework, max represents a Boolean ∨ operation:

that is, if hmax
[k] : D ⊂ R

n → R defined by

hmax
[k] (x′) = max

i∈[k]
{hi(x

′)}, (5)

for x′ ∈ D, is a candidate and valid NBF for (1), then

at each t ∈ [0, t1], there exists at least one j ∈ [k] such

that hj(x(t)) ≥ 0. Similarly, we note that min represents a

Boolean ∧ operation: that is, if hmin
[k] : D ⊂ R

n → R defined

by

hmin
[k] (x

′) = min
i∈[k]

{hi(x
′)}, (6)

for x′ ∈ D, is a candidate and valid NBF for (1), then at

each t ∈ [0, t1], hj(x(t)) ≥ 0, ∀ j ∈ [k]. Furthermore, −h
represents ¬h. These expressions allow for the application of

De Morgan’s laws in that h1∨h2 = ¬(¬h1∧¬h2), permitting

full Boolean composition.

B. Min/Max Barrier Functions

Having noted the utility of min and max as Boolean opera-

tors, we focus on the criteria that these Boolean compositional

NBFs must satisfy to be covered under the results of Sec. III.

In the interest of space efficiency, we omit the proof of this

result and note that it follows from Prop. 2 and Thm. 4. Prop. 5

holds for the min operator as well.

Proposition 5. Let hi : D ⊂ R
n → R, i ∈ [k], be a finite

set of locally Lipschitz functions which are candidate NBFs,

and let hmax
[k] : D ⊂ R

n → R be defined as in (5). For each

x′ ∈ D, let

J(x′) = {j ∈ [k] | hj(x
′) = max

i∈[k]
{hi(x

′)}},

and consider the set-valued map Eh : D ⊂ R
n → 2R

n

defined

by

Eh(x
′) =

⋃

j∈J(x′)

∂hj(x
′).

If hmax
[k] is a candidate NBF and there exists a locally Lipschitz

extended class-K function α : R → R such that for every

x′ ∈ D, ξ ∈ Eh(x
′), and v ∈ F (x′),

〈ξ , v〉 ≥ −α(hmax
[k] (x′)),

then hmax
[k] is a valid NBF for (1).

C. Quadratic-Program-Based Controllers

The formulation of a smooth barrier function with respect to

control-affine systems produces an affine constraint on the sys-

tem, and coupling this affine constraint with the minimization

of a quadratic cost, at each point in time, results in a quadratic

program (e.g., [5], [10]). This section provides similar results

for NBFs with respect to a class of control-affine systems.

In the nonsmooth case, the component functions generate a

series of constraints, rather than a single constraint, that must

be enforced point-wise in time. In the interest of space, we



Fig. 1. A group of 8 differential-drive robots in the Robotarium successfully navigate through a pair of obstacles (circles) to their desired destination (crosses)
and avoid inter-robot collisions. This task is accomplished by solving online for a QP-based controller with respect to the NBF in (7) that encodes and enforces
safety requirements.

omit the proof and note that it follows from [22, Thm. 1] and

Prop. 5.

Proposition 6. Let f : Rn → R
n, G : Rn → R

n×m, and

u : Rn → R
m be locally Lipschitz, and consider the control-

affine system ẋ(t) = f(x(t))+G(x(t))u(x(t)). Let hmin
[k] : D ⊂

R
n → R be defined as in (6), where each hi : D ⊂ R

n → R

is a continuously differentiable candidate NBF with a locally

Lipschitz derivative. Consider the functions w∗ : D ⊂ R
n →

R and u∗ : D ⊂ R
n → R

m defined by

w∗(x′) = min
(u,w)∈Rm+1

w

s.t. ∇hi(x
′)T (f(x′)+G(x′)u)+α(hi(x

′))−w≥0, ∀ i ∈ [k]

and

u∗(x′) = argmin
u∈Rm

uTH(x′)u+ b(x′)Tu

s.t. ∇hi(x
′)T (f(x′) +G(x′)u)+α(hi(x

′)) ≥ 0, ∀ i ∈ [k],

where H : D ⊂ R
n → R

m×m is locally Lipschitz, symmetric,

positive definite and b : D ⊂ R
n → R

m is locally Lipschitz.

If hmin
[k] is a candidate NBF and w∗(x′) > 0, for all x′ ∈ D,

then u∗ is locally Lipschitz; and hmin
[k] is a valid NBF for the

closed-loop system under the controller u∗.

Intuitively, w∗ in the above result gives some notion of

the width of the feasible set of solutions. If the feasible set

has non-zero width at all points, then a locally Lipschitz

solution may be selected from the feasible set. In general, the

computational complexity of a QP depends on the decision

variables, the constraints, and the utilized solver. For an

excellent survey of these methods for multi-agent systems, we

refer the reader to [8].

V. EXPERIMENTAL RESULTS

This section features a group of robots in the Robotarium

(see [9]), which is a remote-access, multi-agent robotics test

bed. The agents attempt to achieve a navigation objective

by utilizing a given controller that accomplishes the desired

goal but disregards safety measures: inter-agent collisions and

static obstacles. In this experiment, a QP wraps the existing

controller in an NBF framework such that it simultaneously

satisfies multiple safety requirements and fulfills the intent

behind the original controller.

Consider a team of 8 planar, single-integrator agents each

with state xi(t) ∈ R
2, i ∈ [8], and dynamics ẋi(t) = ui(x(t)).

To solve the ensemble problem via QP, we stack the states

and inputs into vectors x(t) =
[

x1(t)
T . . . x8(t)

T
]T

, where

x(t) ∈ R
16 and u(x(t)) is defined in the same fashion. The

agents’ objective is to drive from their initial condition to some

pre-specified goal points xg ∈ R
16, which is accomplished by

use of a locally Lipschitz proportional controller

uobj(x(t)) = xg − x(t).

To avoid collisions with other agents, the following compo-

sitional candidate NBF applies to each pair of agents

hc(x(t)) =
8
∧

i=1

8
∧

j=i+1

‖xi(t)− xj(t)‖
2 − (δc)2,

where δc > 0. Similarly, each agent avoids collisions with two

circular obstacles in the plane via the NBF

ho(x(t)) =
8
∧

i=1

2
∧

j=1

‖xi(t)− oj‖
2 − (δo)2,

where oj ∈ R
2 indicates the static position of an obstacle and

δo > 0. The final Boolean compositional barrier function is

given by

hmin(x(t)) = hc(x(t)) ∧ ho(x(t)). (7)
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Fig. 2. Value of Boolean compositional NBF in (7) over the course of the
experiment. Because the NBF remains positive over time, all safety objectives
are simultaneously satisfied.



Now, we examine the derivatives of the component barrier

functions of hc and ho. Taking a component barrier function

in hc with agents i and j yields

d

dt

(

‖xi(t)− xj(t)‖
2 − (δc)2

)

= Aij(x(t))u.

Here, the superscript Aij indicates that this vector describes

the derivative for agents i and j. Aij maps to a row vector

whose indices satisfy

Aij
i (x

′) = 2(x′
i−x′

j)
T , Aij

j (x
′) = −Aij

i (x
′), Aij

k (x
′) = 0,

where k 6= i, j and the subscript indicates a particular two-

dimensional element of Aij(x′). Importantly, Aij is locally

Lipschitz.

Similarly, each component function of ho will have a

derivative for agent i and obstacle j

d

dt

(

‖xi(t)− oj‖
2 − (δo)2

)

= Bij(x(t))u,

where the superscript Bij indicates that this function is

between agent i and obstacle j. Bij maps to a row vector

whose indices satisfy

Bij
i (x′) = 2(x′

i − oj)
T , Bij

k (x′) = 0, k 6= i,

where the subscript indicates a particular two-dimensional

element in Bij(x′). In this case, Bij is also locally Lipschitz.

Now, we utilize the QP formulation noted in Prop. 6 with the

objective function uTu−2uobj(x(t))Tu, which is equivalent to

minimizing the squared norm ‖u−uobj(x(t))‖2. This cost at-

tempts, at each point in time, to minimally modify the existing

controller uobj(x(t)) such that the modified controller achieves

the safety objectives. In this experiment, we assume that the

selection α(hmin(x(t))) = γhmin(x(t))3, γ > 0 makes w∗,

as defined in Prop. 6, satisfy the condition w∗(x′) > 0 for all

x ∈ R
16.

The QP is formulated as in Prop. 6 with the parameters

γ = 1000, δc = 0.04, δo = 0.1; and we deploy the resulting

controller onto the Robotarium’s team of unicycle-modeled

robots using the method in [23, Sec. 5].

Fig. 1 displays the mobile robots during this experiment,

and Fig. 2 shows the NBF of (7) during the course of the

experiment. The Boolean compositional NBF in (7) starts

positive and remains positive over the course of the experi-

ment; thus, all component barrier functions are simultaneously

satisfied. Furthermore, as a result of the minimally invasive

modification, the robots also arrive at the desired goal position,

satisfying their original navigation objective and the NBF.

Additionally, we note that the width of the feasible set remains

strictly greater than zero, validating the application of Prop. 6.

VI. CONCLUSIONS

We have introduced a class of Nonsmooth Barrier Func-

tions (NBFs), showing that existing results for smooth barrier

functions apply to NBFs and allowing formulation of Boolean

compositional NBFs via max and min operators. Furthermore,

we have provided results that illustrate some computational

methods for these conditions, allowing one to validate a class

of NBFs with quadratic programs. To validate these results,

a Boolean compositional NBF was deployed onto a team of

mobile robots in the Robotarium. Future work on this topic

could include temporal logic specifications for NBFs.
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