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• The Keldysh response theory for disordered, interacting fermions is derived.
• The theory applies to any Altland–Zirnbauer class with at least a U(1) symmetry.
• The correct infrared physics at finite temperature is automatically incorporated.
• The Altshuler–Aronov–Khmelnitsky equations for dephasing are systematically derived.
• A strategy to explore the MBL transition as a dephasing catastrophe is proposed.
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a b s t r a c t

We derive the finite temperature Keldysh response theory for
interacting fermions in the presence of quenched short-ranged dis-
order, as applicable to any of the 10 Altland–Zirnbauer classes in an
Anderson delocalized phase with at least a U(1) continuous sym-
metry. In this formulation of the interacting Finkel’stein nonlinear
sigmamodel, the statistics of one-bodywave functions are encoded
by the constrained matrix field, while physical correlations follow
from the hydrodynamic density or spin response field, which
decouples the interactions. Integrating out the matrix field first,
we obtain weak (anti) localization and Altshuler–Aronov quan-
tum conductance corrections from the hydrodynamic response
function. This procedure automatically incorporates the correct in-
frared cutoff physics, and in particular gives the Altshuler–Aronov–
Khmelnitsky (AAK) equations for dephasing of weak (anti)
localization due to electron–electron collisions. We explicate the
method by deriving known quantumcorrections in two dimen-
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sions for the symplectic metal class AII, as well as the spin-SU(2)
invariant superconductor classes C and CI. We show that quan-
tum conductance corrections due to the special modes at zero
energy in nonstandard classes are automatically cut off by tem-
perature, as previously expected, while the Wigner–Dyson class
Cooperon modes that persist to all energies are cut by dephasing.
We also show that for short-ranged interactions, the standard
self-consistent solution for the dephasing rate is equivalent to
a particular summation of diagrams via the self-consistent Born
approximation. This should be compared to the corresponding AAK
solution for long-ranged Coulomb interactions, which exploits the
Markovian noise correlations induced by thermal fluctuations of
the electromagnetic field. We discuss prospects for exploring the
many-body localization transition as a dephasing catastrophe in
short-range interacting models, as encountered by approaching
from the ergodic side.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Recently, there has been a renewed surge of interest in disordered interacting quantum systems
ignited by many-body localization (MBL) [1–5]. In 2006, Basko, Aleiner and Altshuler (BAA) [3,6]
demonstrated that an isolated electron system, with weak and short-range interaction and strong
quenched disorder that localizes all single-particle states, can undergo a finite temperature metal–
insulator transition. The insulating state now known as the MBL phase exhibits strictly zero dc
conductivity and a number of unique physical properties. Isolated from an external environment,
a system in the MBL phase fails to serve as its own heat bath and does not thermalize. Quantum
coherence is preserved on all length scales in such systems at energy densities corresponding to
nonzero or even infinite temperature [7]. Coherence due to localization can protect some types of
topological order [8,9], even in the regime where such order is forbidden in thermal equilibrium.

Most of the recent work has focused on theMBL phase [5], while theMBL-ergodic phase transition
in one-dimensional systems has been studied in Refs. [10–13]. By contrast, the nature (or even the
existence) of the MBL-ergodic transition in dimensions higher than one remains unclear. Another key
open question involves the issue of whether rare thermal fluctuations are able to destabilize the MBL
phase in two or more dimensions [14,15].

1.1. The ergodic-MBL transition in 2D and nonstandard classes

A strategy to understand MBL in two dimensions is to approach the putative transition from
the ergodic side. In a system with a many-body mobility edge, the ergodic phase should persist for
temperatures T > TMBL. One possibility is to study a system that is completely localized without
interactions, but which can exhibit a zero temperature quantum metal–insulator transition in the
presence of interactions. The latter can occur due to the antilocalizing effect of certain Altshuler–
Aronov (AA) corrections [16,17], which are caused by the elastic scattering of particles off of disorder-
induced Friedel oscillations in the particle density [18]. Since AA corrections are ineffective at
(de)localizing states away from the Fermi energy [17], it implies that such a zero temperature metal–
insulator transition sits at the threshold of MBL with TMBL = 0. A slight weakening of the interaction
strength could then induce a small TMBL > 0, so that in this case the MBL-ergodic transition is a
deformation of the zero temperature quantum critical point [19].

Noninteracting disordered fermion systems are completely classified according to the ‘‘10-fold
way’’ due to Zirnbauer and Altland [20,21]. The 10-fold way is a randommatrix scheme that includes
the three standard Wigner–Dyson classes, which describe diffusive metals, and seven ‘‘nonstandard’’
classes that describe fermion systemswith particle–hole and/or chiral symmetry [22]. This additional
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symmetry in the nonstandard classes gives rise to special characteristics at the center of the one-
body spectrum, such as critical scaling of the average density of states [22]. The nonstandard classes
arise e.g. in the description of quasiparticles in superconductors, since Pauli exclusion imposes
‘‘automatic’’ particle–hole symmetry for Majorana fermions, with or without additional internal
degrees of freedom. The 10-fold way also classifies the strong (fully gapped) topological insulators
and superconductors, as well as their edge or surface states [23].

Key to the physics of noninteracting, nonstandard class models are additional quantum interfer-
ence corrections [22], beyond those encountered in the Wigner–Dyson classes that afflict diffusive
metals. These modify the statistics of the one-body wave functions near the band center and can
lead to anomalous and/or critical behavior of the zero temperature Landauer conductance (at half-
filling) [24,25]. It is important to note however that the single-particle wave functions away from zero
energy reside in a standard Wigner–Dyson class, since the particle–hole or chiral symmetry [20,21]
responsible for the special properties at the band center is broken by finite frequency or chemical
potential. This point is reviewed at length in this paper.

Despite decades of work, aspects of zero-temperature metal–insulator transitions in d > 1
spatial dimensions for interacting Wigner–Dyson class systems remain unsolved or controversial
[26–29]. Recent progress includes understanding the interplay of wave function multifractality and
interactions [30–32] as well as the effects of disorder on interacting surface states of topological
insulators [33]. Yet interacting versions of the nonstandard classes greatly expand the possibilities for
understanding critical delocalization and interaction-driven quantum phase transitions, as shown by
Dell’Anna [34,35] and others [36–40]. In addition, some nonstandard class models in low dimensions
can be solved exactly in the absence of interactions [22,41,42], enabling a nonperturbative starting
point (with respect to disorder) for analyzing interaction effects. For example, strong evidence has
been provided that AA corrections to the spin or thermal conductivity vanish to all orders at the
dirty surface of a bulk topological superconductor [40,43]. As applied to gapless quasiparticles in
superconductors, the nonstandard class systems give physical realizations of disordered electronic
systems with short-range (vs. long-range Coulomb) interactions, mediated by virtual fluctuations of
the ‘‘massive’’ electromagnetic field [36]. Restriction to short-range interactions is believed to be a
necessary ingredient for MBL [44].

1.2. Keldysh response theory and results

In this paper, we reformulate the problem of disordered interacting fermion systems as a finite-
temperature Keldysh response theory. We obtain a version of the Finkel’stein nonlinear sigma model
(FNLσM) [26], applicable to any Altland–Zirnbauer class with at least a U(1) continuous symmetry.
Our approach is similar to the Keldysh formulation for theWigner–Dyson classes previously exploited
in Ref. [45]; see also [46–48]. The FNLσM provides a systematic framework to study the combined
effects of interactions and disorder, wherein the inverse dimensionless conductance is usually treated
as a perturbation parameter (but see, e.g., [40]). In our version, the FNLσM is a disorder-averaged
theory containing two types of interacting fields: a dynamic matrix field subject to nonlinear con-
straints, andHubbard–Stratonovich (H.-S.) field(s) introduced to decouple the interactions. Thematrix
field encodes the statistics of the one-body wave functions in the presence of disorder and describes
the diffusive motion of electrons in a delocalized phase. By contrast, the H.-S. field corresponds to
a quantity conserved in every realization of disorder potential, i.e., a hydrodynamic response mode
associated to a continuous symmetry. The theory of the ergodic phase can be formulated as the
hydrodynamic response theory at finite temperature using the Keldysh technique.

The advantage of this dual-field Keldysh framework is that one is able to describe and clearly
distinguish virtual and real scattering processes. In an isolated system, the latter arise entirely due to
inelastic collisions between electrons, responsible for dephasing weak (anti)localization conductance
corrections at finite temperature [16,17,49–51]. So long as quantum interference corrections to dc
transport are cut off in the infrared, the system behaves as a nonintegrable classical system on the
largest scales and is guaranteed to equilibrate deformations away from thermal equilibrium.

In the present paper, we set up and calculate explicitly the linear response function of 2D
disordered systems, and obtain the quantum corrections to the conductivity which consist of weak
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localization (WL) [or weak anti-localization (WAL) in case of spin–orbit interaction] and Altshuler–
Aronov (AA) corrections [16–18]. Our framework has two key advantages. First, it automatically inte-
grates ‘‘tricky’’ field-theoretic effects such as wave function renormalization in a natural way; these
are pervasive in nonstandard class calculations. Second, it incorporates the correct infrared cutoffs
to all quantum corrections. In particular, Wigner–Dyson class quantum conductance corrections that
arise at all one-body energies are cut by dephasing. We show how to derive the Altshuler–Aronov–
Khmelnitsky (AAK) [49] equations for the dephasing of the weak (anti)localization correction. We
expect that higher-loop calculations would give the corresponding generalization for the dephasing
of higher-order quantum conductance corrections. By contrast, we show that additional nonstandard
class WL/WAL corrections that arise due to the special modes at zero energy are automatically cut by
temperature [52], as are the AA corrections [17].

The specific models we consider here are 2D disordered conductors in the Wigner–Dyson sym-
metry class AII (also known as symplectic or spin–orbit metal class) and in the nonstandard class C,
both with short-range interaction. The symplectic metal has been thoroughly studied (for a review,
see [27]) and serves as a benchmark. On the other hand, class C is a nonstandard class with particle–
hole symmetry. It can be viewed as a superconductor quasiparticle systemwith broken time-reversal
symmetry, and yet possessing spin-rotational invariance in every disorder realization [53]. Class C
could be realized experimentally in a type II superconductor, in which gapless quasiparticles hop
between randomly-pinned vortex cores [53,54,22]. For quasiparticles in a superconductor, electric
charge is not a hydrodynamic mode because an electron can be Andreev reflected as a hole. In
class C, spin SU(2) symmetry implies that spin is a hydrodynamic mode. We consider the spin–spin
(exchange) interaction and the spin conductance in class C.

An important exceptional aspect of class C is that, contrary to most other 2D systems, the spin–
spin interaction strength is not renormalized to one-loop order [36,34], and possibly not to three
loops [37,55]. This should be contrasted against the original Finkel’stein model calculation in the
orthogonal metal class AI, which features a notorious one-loop divergence in the spin triplet inter-
action channel [26,27,56] that may signal a magnetic instability. We emphasize that the only small
parameter in the FNLσM loop expansion is the inverse dimensionless conductance; the interaction
strength is treated to all orders. Formally, the sigma model sums interaction corrections as in a large-
N expansion [40,43]. Because the interaction is not renormalized, by balancing the contribution from
WL and AA, class C can undergo a controlled zero-temperature metal–insulator transition in the spin
conductance [36,34]. This property makes it a promising candidate for investigating the MBL-ergodic
transition in two dimensions by deforming the zero-temperature metal–insulator transition.

We derive the one-loop results for these two models and one more (class CI) as follows,
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Eq. (1.1a) [(1.1b)] gives the quantum correction to the electric (spin) conductivity for class AII (C). Here
and throughout this paper, we work in units such that h̄, the Boltzmann constant kB, and the electric
charge e or spin charge s = h̄/2 are set equal to one. The ultraviolet cutoff appearing in all corrections
is the inverse of the elastic scattering time Λ = τ−1

el . Eq. (1.1c) provides the one-loop corrections for
class CI. This is the same as class C, but with time-reversal preserved instead of broken [53]. Eqs. (1.1)
are valid to all orders of interaction strength γ . In classes AII and CI, for simplicity we ignore the BCS
interaction channel [27] in this work (see Refs. [57–62] where various effects stemming from the
Cooper channel renormalizations were scrutinized).
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Although the results in Eq. (1.1) were obtained previously in the form of renormalization group
(RG) equations [27,63] (AII) [34,36,37] (C,CI), here we rederive them in the response framework since
the purpose of this paper is to present amethod applicable to disordered systems at finite temperature
in any symmetry class. In Eq. (1.1a) [Eq. (1.1b)], the first term corresponds to theWAL (WL) correction
for class AII (C), whereas the second terms in these equations are AA corrections due to the charge
(spin) interaction channel in class AII (C).

Different from the RG method, our calculations directly give the correct infrared cutoffs to all
conductance corrections. The WAL correction to class AII is cut off in the infrared by the dephasing
rate τ−1

φ . The dephasing time τφ is a function of the diffusion constant D and the interaction strength

γ such that τφ(D, γ ) → ∞ for γ → 0 or D → ∞. The rate τ−1
φ must be determined by solving the

appropriate AAK equations [49], as we review in the next subsection and in Section 6. By contrast, the
WL correction to class C is directly cut by the temperature T . This is because this correction arises due
to the special nonstandard class diffusion modes present only at zero energy [52]. Since this is a set of
measure zero for the energy integration, it is regularized automatically for any T > 0, as are the AA
corrections [17].

Except for the first term in Eq. (1.1c), the result for class CI is identical to Eq. (1.1b) for class C.
The first term is the WL correction due to the usual orthogonal Wigner–Dyson class AI Cooperon,
as we show here in the noninteracting model. The Cooperon is enabled in class CI by time-reversal
symmetry, which is absent in class C. Since this mode persists to all one-body energies, it must be cut
by the dephasing rate τ−1

φ (D, γ ) [52,64].

1.3. Self-dephasing of weak (anti)localization by diffusive density fluctuations

One of themain goals of this paper is to show how the problem of dephasing quantum interference
corrections can be precisely derived from the Keldysh sigma model. This should allow a systematic
investigation (order by order in the inverse dimensionless conductance) of self-dephasing in a closed,
two-dimensional disorderedmany-body quantum systemwith short-range interactions. In Section 7,
we return to this problem and explain how class Cmay admit a perturbatively controlled investigation
of a many-body delocalization transition in 2D in the form of a failure of self-dephasing. The class C
scenario however requires a two-loop calculation, which we leave to future work.

We now summarize the technical statement of the dephasing problem for the lowest order
Cooperon correction, as formulated by AAK [49]. As is well known, the one-loopWL orWAL Cooperon
correction arises due to interference between pairs of time-reversed paths [50,17]. In Section 6,we de-
rive the AAK problem for the symplectic metal class using our Keldysh formalism. TheWAL correction
[first term in Eq. (1.1a)] obtains from return probability, equal to the integral of the Cooperon,

δσWAL = 2

π

∫
η

〈
Ct

η,−η(x, x)
〉
ρ
, (1.2)

where the Cooperon Ct
η,−η(x, x) is the solution of{

∂η − D

2
∇2 + i

2

[
ρcl

(
x, t + η

2

)
− ρcl

(
x, t − η

2

)]}
Ct

η,η′ (x, x′) = D

2
δ(η − η′)δ(x − x′). (1.3)

Here D denotes the diffusion constant, t is the average time on the forward and backward (time-
reversed) paths, and η is the relative time. The field ρcl(x, t) is the ‘‘classical’’ component of the
hydrodynamic electric charge density, a bosonic mode in the Keldysh formalism. The Cooperon
interacts with (emits particle–hole pairs [65] via) ρcl(x, t) along the forward and backward paths at
times (t + η/2) and (t − η/2), respectively.

To obtain the WAL correction to conductivity, one needs to perform the average
〈
Ct

η,−η(x, x)
〉
ρ
in

Eq. (1.2) over the thermal fluctuations of the density field ρcl. The latter is Gaussian with the Keldysh
(classical–classical) correlation function given by
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Fig. 1. Dephasing of quantum interference between time-reversed paths [Cooperon weak (anti)localization correction]. The
dephasing ‘‘events’’ occur due to the interaction between the virtually diffusing quantum particle and the stochastic, diffusive
fluctuations of the density at temperature T . Dephasing suppresses the contribution of paths longer than the length Lφ = √

Dτφ ,
where 1/τφ is the dephasing rate. For a systemwith short-range interactions, both the rate of virtual diffusion and of the thermal
density fluctuations are controlled by the same diffusion constantD. So long as 1/τφ > 0, the system serves as its own heat bath
(many-body delocalized, ergodic phase). By contrast, for weak localization in two spatial dimensions, 1/τφ = 0 would signal
localization, since the Cooperon correction is logarithmically divergent in the infrared. Different from the case of dynamically
screened long-range Coulomb interactions [49], for short-range interactions the thermal fluctuations of the density are a non-
Markovian dephasing mechanism for the virtual diffusion.

with the corresponding space–time expression

iΔ(K )
ρ (x, t) ≈ T

γ 2

κ

(
1

4πDc |t|
)
exp

(
− x2

4Dc |t|
)

. (1.5)

In these equations, we assume that the frequency |ω| � kBT , corresponding to real collision processes
between thermally activated carriers responsible for dephasing. Here

Dc ≡ D

1 − γ
, κ ≡ (1 − γ )2ν0, (1.6)

where Dc is the charge diffusion constant, γ is the short-range interaction strength, κ is the charge
compressibility, and ν0 is the bare density of states per spin [27]. The physics of Eqs. (1.2)–(1.5) is
sketched in Fig. 1.

Eqs. (1.3) and (1.5) show that for short-range interactions, both the rate of virtual diffusion and the
rate of thermal density fluctuations are controlled by the same diffusion constantD. Different from the
usual case of dynamically screened long-range Coulomb interactions, the ‘‘noise kernel’’ in Eq. (1.5)
is non-Markovian; equivalently, the ‘‘heat bath’’ kernel in Eq. (1.4) is non-Ohmic. The Markovian
(memoryless) character of density fluctuations due to screened Coulomb interactions allows an
exact solution to Eq. (1.2) [49]. In that case the solution is equivalent to a self-consistent condition
imposed on the lowest order cumulant expansion for the averaged Cooperon [50,17]. For short-range
interactions (non-Markovian noise), the same self-consistent condition gives the result [66]

τ−1
φ = 1

4πDν0

γ 2

(2 − γ )
T ln

(
T

τ−1
φ

)
, (1.7)

as we derive in Section 6.1.2. For γ < 0, τ−1
φ is nonzero except in the zero temperature limit T → 0.

Since the noise mediated by the heat bath is slow due to diffusion, there could be corrections to
Eq. (1.7) that are not captured by the self-consistent condition. This is another interesting direction
for future work.

1.4. Outline

The rest of paper is organized as follows. In Section 2, we review and derive the FNLσM in
the Keldysh formalism applicable to a finite-temperature system in any symmetry class. Section 3
presents the detailed derivation of the response function for the symplectic metal, while Section 4
is devoted to an analogous calculation for quasiparticle spin transport in a class C superconductor.
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The additional WL correction due to the Cooperon mode in class CI is extracted in Section 5. We
close the technical part of this work with Section 6, wherein we derive the AAK equations (1.2)–(1.5)
for dephasing of the WAL correction. We show that the usual self-consistent solution [50,17,66] is
equivalent to a particular diagrammatic summation.

In the final Section 7, we sketch a ‘‘dephasing catastrophe’’ scenario for class C that may allow
perturbatively controlled access to a many-body delocalization transition in two dimensions.

2. Derivation of the nonlinear σ model in the Keldysh formalism

2.1. Keldysh path integral

In this section, we give the derivation of the Finkel’stein nonlinear sigma model (FNLσM) in
the Keldysh formalism for various universality classes. We consider a system of spin-1/2 fermions
subject to a disorder potential. We also include repulsive short-range density–density interactions
with interaction strength U and attractive spin singlet BCS interaction with coupling W . The starting
point is the generating function for the closed Keldysh contour going from t = −∞ to t = +∞ and
then back to t = −∞:

Z[V ] ≡
∫

Dψ̄Dψ exp
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(2.1)

Here ψ → ψa,s(t, x) carries Keldysh a ∈ {1, 2} and spin s ∈ {↑, ↓} labels. The index a = 1 (a = 2)
corresponds to the forward (backward) part of time contour. τ̂ , ŝ stand for Pauli matrices acting on the
Keldysh and spin spaces, respectively. Ĝ is the noninteracting Green’s function defined on the Keldysh
contour. In the space–time basis, it is given by:
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where T and T̄ are time-ordering and anti-time-ordering operators, respectively. A detailed review on
the Keldysh formalism can be found in [45,67]. V is a scalar potential that is incorporated so we can
compute the density response to an external field. Its classical component Vcl is the external electric
potential, while the quantum one Vq couples to the density operator. The net potential field on the
forward (backward) part of time contour V1 (V2) is given by

V1 = Vcl + Vq, V2 = Vcl − Vq. (2.3)

We further decouple the interactionswith Hubbard–Stratonovich (H.-S.) fields ρ andΔ, and obtain
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−Δ∗
cl(ω + ω′)ψT(ω)ŝ2τ̂ 3ψ(ω′) − Δ∗
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where Ṽ denotes the sum of source field V and H.-S. field ρ:

Ṽcl,q = Vcl,q + ρcl,q. (2.5)
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2.2. Keldysh and ‘‘thermal’’ rotations

The inverse of the Green’s function can be expressed as

Ĝ−1(ω; x, x′) = Û LOM̂F (ω) Ĝ−1
η (ω; x, x′) M̂F (ω)Û

†
LOτ̂ 3, (2.6)

where

Ĝη(ω) ≡
[
ω + iητ̂ 3 − ĥ
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2
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[
1 F (ω)
0 −1

]
. (2.7)

Here ĥ refers to the static single particle Hamiltonian. F (ω) is the generalized Fermi distribution
function at temperature T ,

F (ω) ≡ tanh
( ω

2T

)
. (2.8)

Notice that Ĝη depends only on the spectrumbut not the occupation number; its diagonal components
are the retarded and advanced noninteracting Green’s functions. We implement the nonunitary
change of variables,

ψ(ω, x) → τ̂ 3ÛLOM̂F (ω)ψ(ω, x), ψ̄(ω, x) → ψ̄(ω, x) M̂F (ω)Û
†
LO, (2.9)

to eliminate thedistribution function in thenoninteractingpart of the fermion action, i.e.,−i
∫

ψ̄ Ĝ−1ψ .
Under this transformation, the generating function in Eq. (2.4) becomes

Z[V ] =
∫
Dψ̄DψDρ|DΔ|2 exp

[
i
2

U

∫
t,x

ρqρcl + i
2

W

∫
t,x

(
Δ∗

qΔcl + ΔqΔ
∗
cl

)]

× exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i

∫
ω,x,x′

ψ̄(ω, x)Ĝ−1
η (ω; x, x′)ψ(ω, x′)

−i

∫
ω,ω′,x

[
Ṽcl(ω − ω′) ψ̄(ω) M̂F (ω)M̂F (ω

′)ψ(ω′)
+Ṽq(ω − ω′) ψ̄(ω) M̂F (ω)τ̂ 1M̂F (ω

′)ψ(ω′)

]

− i

2

∫
ω,ω′,x

⎡
⎢⎢⎢⎢⎢⎢⎣

Δcl(ω + ω′) ψ̄(ω)ŝ2M̂F (ω)τ̂ 1M̂T
F (ω

′) ψ̄T(ω′)

+Δq(ω + ω′) ψ̄(ω)ŝ2M̂F (ω)M̂T
F (ω

′) ψ̄T(ω′)

−Δ∗
cl(ω + ω′)ψT(ω)ŝ2M̂T

F (ω)τ̂ 1M̂F (ω
′)ψ(ω′)

−Δ∗
q(ω + ω′)ψT(ω)ŝ2M̂T

F (ω)M̂F (ω
′)ψ(ω′)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2.10)

The distribution function now appears only in the external and H.-S. potentials. This is physically and
mathematically desirable, since the noninteracting, unperturbed theory encodes only the problem
of single-particle wave function localization, which is independent of mode occupation numbers or
temperature.

2.3. Keldysh action for a static Bogoliubov–de Gennes Hamiltonian

Eq. (2.10) can also be used as the starting point for the study of unpaired quasiparticles in a BCS
superconductor. At the level of static mean field theory, we have

Δcl(ω + ω′) = iΔ
(0)
cl δω+ω′,0, Δ∗

cl(ω + ω′) = i(Δ
(0)
cl )

∗δω+ω′,0,
Δq(ω + ω′) = 0, Δ∗

q(ω + ω′) = 0,
(2.11)

and the generating function Z[V ] [see Eq. (2.10)] acquires the form

Z[V ] =
∫
Dψ̄DψDρ exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i

∫
ω,x,x′

ψ̄(ω, x)Ĝ−1
η (ω; x, x′)ψ(ω, x′) + i

2

U

∫
t,x

ρqρcl

+ i

2

∫
ω,x

[
Δ

(0)
cl ψ̄(ω)iŝ2τ̂ 1 ψ̄T(−ω) +

(
Δ

(0)
cl

)∗
ψT(−ω)(−i)ŝ2τ̂ 1 ψ(ω)

]

−i

∫
ω,ω′,x

[
Ṽcl(ω − ω′) ψ̄(ω) M̂F (ω)M̂F (ω

′)ψ(ω′)
+ Ṽq(ω − ω′) ψ̄(ω) M̂F (ω)τ̂ 1M̂F (ω

′)ψ(ω′)

]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.12)
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Here we have exploited the following identity

τ̂ 1M̂T
F (−ω)τ̂ 1 = −M̂F (ω), M̂−1

F (ω) = M̂F (ω). (2.13)

2.4. Majorana spinor reformulation

It is useful to introduce the Majorana spinors

χ ≡
[

ψ

ŝ2τ̂ 1Σ̂1ψ̄T

]
, χ̄ = [

ψ̄ −ψTŝ2τ̂ 1Σ̂1
]
. (2.14)

which carry indices in particle–hole (σ ), Keldysh (τ ), and spin (s) spaces. In addition, we view χ and
χ̄ as having a continuous index |ω| that ranges over the positive real axis, and a discrete sign index
Σ ≡ sgn(ω) ∈ ±. The Pauli matrix Σ̂1 is an inversion operator on frequency space:

〈ω| Σ̂1
∣∣ω′〉 = 2πδ(ω + ω′). (2.15)

χ and χ̄ are not independent of each other but are related by

χ̄ = −χTŝ2σ̂ 1τ̂ 1Σ̂1, (2.16)

where σ̂ indicates a Pauli matrix in the particle–hole space.
Using Eq. (2.13), the generating function Z[V ] [Eq. (2.10)] can be rewritten as

Z[V ] =
∫

DχDρ|DΔ|2 exp

[
i
2

U

∫
t,x

ρqρcl + i
2

W

∫
t,x

(
Δ∗

qΔcl + ΔqΔ
∗
cl

)]

× exp

{
i

2
χ̄

[
σ̂ 3 ω̂ + iητ̂ 3σ̂ 3 − σ̂ 3ĥ BdG − V̂ − D̂

]
χ

}
,

(2.17)

where ĥBdG takes the form

ĥBdG =
⎡
⎣ ĥ −iΔ

(0)
cl

i
(
Δ

(0)
cl

)∗ −ŝ2ĥT ŝ2

⎤
⎦

σ

, (2.18)

and the kernels V̂ and D̂ are defined as

V̂ω,ω′ (x) = Ṽcl(ω − ω′, x̂) M̂F (ω)M̂F (ω
′) + Ṽq(ω − ω′, x̂) M̂F (ω)τ̂ 1M̂F (ω

′),

D̂ω,ω′ (x) = − [σ̂+Δcl(ω − ω′, x) + σ̂−Δ∗
cl(−ω + ω′, x)

]
M̂F (ω)M̂F (ω

′)

− [
σ̂+Δq(ω − ω′, x) + σ̂−Δ∗

q(−ω + ω′, x)
]
M̂F (ω)τ̂ 1M̂F (ω

′).

(2.19)

Here σ̂± denotes (σ̂ 1 ± iσ̂ 2)/2.

2.5. Target manifold

Next, we follow the standard route to derive the Finkel’stein nonlinear sigma model starting from
Eq. (2.17). To begin with, we want to identify the nonlinear sigma model target manifold for various
symmetry classes.
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2.5.1. Class AI
As an example, we first consider the time-reversal and spin-rotational invariant orthogonal metal

(AI) class. For this class, ĥBdG satisfies the following conditions:

− ŝ2σ̂ 2ĥT
BdGŝ

2σ̂ 2 = ĥ BdG, ‘‘Majorana’’ condition (automatic particle–hole symmetry),
(2.20a)

ŝ2σ̂ 3ĥT
BdGŝ

2σ̂ 3 = ĥ BdG, time-reversal invariance, (2.20b)

ŝiĥ BdGŝ
i = ĥ BdG, spin SU(2) invariance, (2.20c)

σ̂ 3ĥ BdGσ̂ 3 = ĥ BdG, electric charge U(1) invariance. (2.20d)

Here Eq. (2.20a) is true in all cases [due to Eq. (2.16)], whereas Eqs. (2.20b) and (2.20c) arise from the
time-reversal and spin-rotational invariance, respectively. Moreover, Eq. (2.20d) corresponds to the
electric charge conservation, i.e. Δ

(0)
cl = 0 in Eq. (2.18). Since the particle–hole condition in Eq. (2.20a)

is ‘‘automatic’’ (i.e. merely a consequence of Pauli exclusion), we can combine it with Eq. (2.20b) to
obtain an equivalent, alternative ‘‘chiral’’ version of time-reversal symmetry:

− σ̂ 1ĥ BdGσ̂ 1 = ĥ BdG, ‘‘chiral’’ form of time-reversal invariance. (2.21)

We want to find the unitary transformation χ → Ûχ under which Hamiltonian part of action

Sh ≡ i

2
χ̄ σ̂ 3 ĥ BdG χ (2.22)

remains invariant. This requires

ÛTŝ2σ̂ 2τ̂ 1Σ̂1ĥ BdGÛ = ŝ2σ̂ 2τ̂ 1Σ̂1ĥ BdG. (2.23)

Taking into account the conditions imposed on ĥBdG [Eq. (2.20)], we find

ÛTŝ2τ̂ 1σ̂ 1Σ̂1Û = ŝ2τ̂ 1σ̂ 1Σ̂1. (2.24)

This implies that Û ∈ Sp(16N), whereN is the total number of absolute frequencies. Only a subgroup of
transformations leaves the infinitesimal part of the action Sη = η

2
χ̄ τ̂ 3σ̂ 3χ invariant. Besides Eq. (2.24),

they are subject to

Û†τ̂ 3σ̂ 3Û = τ̂ 3σ̂ 3, (2.25)

and as a result belong to the group Sp(8N)× Sp(8N). The targetmanifold for the orthogonal class sigma
model is therefore Sp(16N)/[Sp(8N) × Sp(8N)]. See Ref. [22] for an enumeration of (noninteracting)
sigma model target manifolds in the 10-fold way.

2.5.2. Class AII
If we introduce the spin–orbit scattering, the spin-rotational invariance is broken but the time-

reversal symmetry is preserved, and we arrive at the symplectic metal (AII) class. In this case, ĥBdG no
longer obeys the condition in Eq. (2.20c). Eq. (2.24) which gives the symmetry of Sh now becomes

ÛTτ̂ 1σ̂ 1Σ̂1Û = τ̂ 1σ̂ 1Σ̂1, ŝiÛ ŝi = Û, (2.26)

while Eq. (2.25) defining the symmetry-breaking subgroup remains the same. Unlike the orthogonal
class, here the transformation matrix Û does not act on the spin space. One can then easily deduce
that target manifold of the AII class is O(8N)/[O(4N) × O(4N)].

2.5.3. Class A with spin SU(2) invariance
Nowwe turn to the unitarymetal (A) classwith spin SU(2) invariance. The time-reversal symmetry

is broken, and the associated condition in Eq. (2.20b) is no longer imposed on ĥBdG. The set of
transformations that preserves the action Sh satisfies

ÛTŝ2τ̂ 1σ̂ 1Σ̂1Û = ŝ2τ̂ 1σ̂ 1Σ̂1, σ̂ 3Û σ̂ 3 = Û, (2.27)
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while imposing invariance of Sη , in addition, gives Eq. (2.25). The two independent conditions in
Eq. (2.27) can be solved via the particle–hole space decomposition

Û =
[
Û1 0

0 ŝ2τ̂ 1Σ̂1Û∗
1 ŝ

2τ̂ 1Σ̂1

]
σ

, Û1 ∈ U(8N). (2.28)

Therefore, the unitary metal with spin SU(2) invariance possesses the sigma model target manifold
U(8N)/[U(4N) × U(4N)].

2.5.4. Class C
Our final example consists of gapless quasiparticles in the class C superconductor [36,34], which

has broken time reversal symmetry and preserved spin-rotational invariance. It can be considered as
a descendant of class A with spin SU(2) symmetry, after relinquishing charge U(1) symmetry. Now
ĥBdG only follows conditions in Eqs. (2.20a) and (2.20c). The invariance of the action Sh [Eq. (2.22)]
requires

ÛTŝ2τ̂ 1Σ̂1Û = ŝ2τ̂ 1Σ̂1, σ̂ iÛ σ̂ i = Û . (2.29)

Here the second equation means the solution does not act on the particle–hole space. The invariance
of Sη further restricts

Û†τ̂ 3Û = τ̂ 3, (2.30)

which can be solved by the decomposition in the Keldysh space:

Û =
[
Û1 0

0 ŝ2Σ̂1Û∗
1 ŝ

2Σ̂1

]
τ

, Û1 ∈ U(4N). (2.31)

The target manifold is therefore Sp(8N)/U(4N) (c.f. [22]).

2.6. Hamiltonian description for non-standard classes

Belowwe will obtain the Keldysh FNLσM for the non-standard class C as a formal ‘‘descendant’’ of
the orthogonal metal class AI model. This is possible because class AI has more symmetry than class
C, namely time-reversal invariance and electric charge conservation. Suppressing these symmetries
makes massive some of the quantum diffusion modes in the parent class, immediately determining
the structure of the lower symmetry sigmamodel [34]. In Section 5, we analyze the class CImodel that
restores time-reversal symmetry; the FNLσM is obtained from class AI in the same way. It is however
instructive to provide ‘‘microscopic’’ Hamiltonians for these non-standard class systems, in order to
ground the interpretation of the interaction channels.

A class C system can be realized in principle in a type II s-wave superconductor, driven into the
quasi-2D Abrikosov vortex lattice phase via a perpendicularmagnetic field BwithHc1 < B < Hc2 [54].
Here Hc{1,2} denote the lower and upper critical field strengths. The idea is that for Hc1 � B � Hc2, the
density of vortices is very low and the system is a spin and thermal insulator, with localized bound
state quasiparticles residing in the vortex cores. Note that to obtain class C, it is necessary to neglect
the Zeeman coupling to spin. By increasing the orbital field strength, the vortex density becomes
higher, enabling hopping between isolated vortices. In the presence of nonmagnetic disorder, the
vortex positions will deviate from a perfect lattice, forming a pinned ‘‘vortex glass’’. This system can
be gapless, i.e. possess quasiparticle states at the Fermi energy [54]. These gapless quasiparticles could
undergo an Anderson insulator–metal transition as a function of increasing B < Hc2. Because class C
localizes without interactions in two dimensions, the metallic phase is in fact only possible in 2D due
to the delocalizing effect of the Altshuler–Aronov (AA) correction, see Eq. (1.1b). The AA correction
arises due to residual quasiparticle interactions mediated by spin exchange scattering [36,34].



108 Y. Liao et al. / Annals of Physics 386 (2017) 97–157

TheHamiltonian incorporating disorder, mean-field superconductivity, an externalmagnetic field,
and electron–electron interactions is given by [54,37]

H (C) ≡H
(C)
D + H

(C)
I , (2.32a)

H
(C)
D =

∫
x

⎡
⎢⎣ ψ†

s (x)
{

1

2m

[
−i∇ − e

c
A(x)

]2 − EF + u(x)
}

ψs(x)

+Δ(x)ψ†
↑(x)ψ

†
↓(x) + Δ∗(x)ψ↓(x)ψ↑(x)

⎤
⎥⎦ , (2.32b)

H
(C)
I =

∫
x

[
Uρ ρ2(x) + US S(x) · S(x) + UΔ

(
ψ

†
↑ ψ

†
↓
)
(x)
(
ψ↓ψ↑

)
(x)
]
. (2.32c)

In Eq. (2.32b), ψs(x) annihilates an electron with spin s ∈ {↑, ↓} (and the repeated index is summed).
This term incorporates the static magnetic field via B = ∇×A(x), quenched disorder via the potential
u(x), and the inhomogeneous mean-field pairing potential Δ(x). The latter must be self-consistently
determined in the presence of B and u(x).

The interactions in Eq. (2.32c) are the three channels that generically arise for a finite density spin-
1/2 electron system. All are four-fermion interactions, where the electric charge density ρ and spin
density S are defined via

ρ = ψ†
s ψs, S = ψ†

s1
ŝs1,s2ψs2 , (2.33)

and ŝ is the vector of Pauli matrices acting on the physical spin. The interactions are charge–charge
(Uρ), spin exchange (US), and residual pairing (UΔ). Long-range Coulomb interactions are assumed to
be screened by the condensate, so that Uρ incorporates only the short-range component.

Aswritten, all three interaction terms in Eq. (2.32c) are in fact equivalent due to the Pauli principle,
i.e. there is only one local product of four independent fermion fields. However, Eq. (2.32c) should be
interpreted differently: it is a short-hand notation for interactions that should be defined along the
Fermi surface in the unpaired system, and then projected into the low-energy effective theory for the
gapless quasiparticle states that arise in the disordered Abrikosov vortex lattice. To derive the form
of the sigma model, it is not necessary to provide this level of detail. Symmetry dictates the structure
of the allowed interaction terms in the FNLσM. A microscopic description is necessary only to derive
the bare values of the coupling strengths Uρ,S,Δ.

For a system in class C which possesses only spin SU(2) symmetry in every realization of disorder,
it is straightforward to show that both the charge–charge Uρ and residual pairing UΔ interactions
drop out of the sigma model. This is because charge is not conserved, and time-reversal symmetry is
broken. Only the spin–spin interaction survives [36,34]. The dimensionless interaction parameter γ

appearing in the AA correction in Eq. (1.1b) is proportional to US , and incorporates in addition a Fermi
liquid renormalization. See Eq. (2.44).

By contrast, class CI describes gapless quasiparticles in a superconductor with time-reversal and
spin SU(2) symmetries. In this case, bothUS andUΔ would enter the full Keldysh FNLσM[34], although
we neglect the residual pairing channel to obtain Eq. (1.1c). The kinetic term in class CI can also
take the form shown in Eq. (2.32b), but with A(x) = 0. Class CI can describe gapless 2D Dirac
quasiparticles in the d-wave cuprates, subject to nonmagnetic disorder [22]. We note however that
the derivation of the sigma model from a gapless, disordered Dirac model in two spatial dimensions
requires special care, as the standard self-consistent Born approximation used to obtain the saddle-
point configuration for the matrix field q̂ (see below) is known to be invalid [68]. A better method
exploits the nonabelian bosonization of the clean Dirac quasiparticles, and incorporates the disorder
into this [69]. The nonabelian bosonization method becomes ‘‘exact’’ for surface states of a class CI
topological superconductor, where it directly gives the class CI FNLσM, but augmented with a Wess–
Zumino–Novikov–Witten term. For topological superconductor surface states, the residual pairing
interaction UΔ can induce spontaneous time-reversal symmetry breaking and surface spin or thermal
quantum Hall order. See Refs. [70,40,43] for details.
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2.7. Effective q̂-matrix field theory

ĥBdG in Eq. (2.17) can be written as a summation of two terms:

ĥBdG = ĥ0 + u(x)σ̂ 3 (2.34)

where ĥ0 is the corresponding ĥBdG of the clean system. u(x) indicates the static impurity potential
and is assumed to be Gaussian white-noise distributed

P[u] = exp

[
−πν0τel

∫
x
u2(x)

]
. (2.35)

Here τel denotes the elastic scattering time and ν0 is the density of states per spin species. Although
we only consider potential disorder, the results are independent of this assumption.

The disorder-dependent part of the action takes the form

Sdis = i

2

∫
x
χ̄ (x)u(x)χ (x). (2.36)

Averaging the disorder part of the generating function Z[V ] over the distribution in Eq. (2.35), we
obtain

〈
e−Sdis

〉 = exp

{
1

16πν0τel

∫
x
Tr [(χχ̄) (χχ̄)]

}
. (2.37)

Then the quartic action induced by disorder average is decoupled by the H.-S. matrix field q̂,

〈
e−Sdis

〉 = ∫
Dq̂ exp

{
−πν0

8τel

∫
x
Tr
(
q̂2
)− 1

4τel
χ̄ q̂χ

}
. (2.38)

q̂ is a Hermitian matrix with indices in particle–hole, spin, Keldysh, and frequency spaces.
After the H.-S. transformation, we integrate the disorder-averaged partition function Z[V ] over the

fermion field χ , and obtain an effective q̂-matrix field theory:

Z[V ] =
∫

Dq̂Dρ|DΔ|2 exp(−S),

S = −i
2

U

∫
t,x

ρqρcl − i
2

W

∫
t,x

(
Δ∗

qΔcl + ΔqΔ
∗
cl

)+ πν0

8τel

∫
x
Tr
(
q̂2
)

− 1

2
Tr log

[
σ̂ 3 ω̂ + iητ̂ 3σ̂ 3 − σ̂ 3ĥ0 − V̂ − D̂ + i

1

2τel
q̂

]
.

(2.39)

Neglecting the interactions, and varying the actionwith respect to thematrix q̂ yields the saddle-point
equation

−iπν0 q̂ =
∫
k

[
σ̂ 3 ω̂ + iητ̂ 3σ̂ 3 − σ̂ 3ĥ0(k) + i

1

2τel
q̂

]−1

, (2.40)

whose solution is q̂SP = τ̂ 3σ̂ 31̂s1̂ω , determined by the symmetry-breaking iη term.
We then expand the action in terms of the fluctuations around the saddle point. The fluctuations

of the massive modes are ignored, while the massless mode can be parameterized as

q̂ = Û†q̂ SPÛ . (2.41)

Here Û belongs to the set of transformations that preserve the symmetry of Sh [Eq. (2.22)], and as a
result its explicit form depends upon the universality class of the system [see Section 2.5].
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2.7.1. Class AI
For class AI, the transformation matrix Û in Eq. (2.41) satisfies condition Eq. (2.24). Using this, and

performing the gradient expansion (see e.g. [45]), we arrive at the FNLσM of the orthogonal class:

Z[V ] =
∫

Dq̂Dρ|DΔ|2 exp(−S),

S = 1

8λ

∫
x
Tr
[∇q̂ · ∇q̂

]+ i
h

2

∫
x
Tr
[
q̂(σ̂ 3ω̂ + iησ̂ 3τ̂ 3)

]
− ih

2

∫
x
Tr
[(

Ṽcl + Ṽqτ̂
1
)
M̂F (ω̂)q̂(x)M̂F (ω̂)

]

+ ih

2

∫
x
Tr
[(

Δcl σ̂
+ + Δ∗

cl σ̂
− + Δq σ̂+τ̂ 1 + Δ∗

q σ̂−τ̂ 1
)
M̂F (ω̂)q̂(x)M̂F (ω̂)

]

− i
4

π
h

∫
t,x

Ṽcl Ṽq − i
4

π
h
(1 − γ )

γ

∫
t,x

ρqρcl − i
2

W

∫
t,x

(
Δ∗

qΔcl + ΔqΔ
∗
cl

)
,

(2.42)

where q̂ is subject to the following constraints

q̂2 = 1, Tr q̂ = 0, ŝ2σ̂ 1τ̂ 1Σ̂1q̂Tŝ2σ̂ 1τ̂ 1Σ̂1 = q̂, (2.43)

deduced from Eqs. (2.41) and (2.24). The sigma model coupling constants h, λ and γ are defined in
terms of bare parameters as

h ≡ π (2ν0)

2
,

1

λ
≡ Dh, γ ≡

2
π
hU

1 + 2
π
hU

. (2.44)

Here D is the diffusion constant and takes the value D = v2
F τel/2. The parameter γ is the interaction

strength that takes into account Fermi liquid renormalization [26].
The first termon the last line of Eq. (2.42) obtains from the diagonal (retarded–retarded, advanced–

advanced) piece of the second-order gradient expansion [45]. It supplies the charge compressibility
to the density polarization function in the static ω → 0 limit.

The FNLσM for the other classes mentioned in Section 2.5 can be derived similarly. However, they
can also be deduced directly from Eq. (2.42) by restricting the q̂-matrix fluctuations relative to the
orthogonal case.

2.7.2. Class AII
With respect to class AII, the associated rotation matrix Û does not act on the spin space (since

the latter is no longer hydrodynamic, due to spin–orbit coupling), and is subject to the constraints in
Eq. (2.26). As a result, one can simplify the problemby parameterizing q̂ as q̂ = q̂1⊗1̂s and eliminating
the spin space. The partition function of the nonlinear sigma model reduces to

Z[V ] =
∫

Dq̂1Dρ|DΔ|2 exp(−S),

S = 1

4λ

∫
x
Tr
[∇q̂1 · ∇q̂1

]+ ih

∫
x
Tr
[
q̂1(σ̂

3ω̂ + iησ̂ 3τ̂ 3)
]

− ih

∫
x
Tr
[(

Ṽcl + Ṽqτ̂
1
)
M̂F (ω̂)q̂1(x)M̂F (ω̂)

]
+ ih

∫
x
Tr
[(

Δcl σ̂
+ + Δ∗

cl σ̂
− + Δq σ̂+τ̂ 1 + Δ∗

q σ̂−τ̂ 1
)
M̂F (ω̂)q̂1(x)M̂F (ω̂)

]
− i

4

π
h

∫
t,x

Ṽcl Ṽq − i
4

π
h
(1 − γ )

γ

∫
t,x

ρqρcl + 2

Wi

∫
t,x

(
Δ∗

qΔcl + ΔqΔ
∗
cl

)
.

(2.45)

q̂1 carries indices in particle–hole, Keldysh and frequency spaces, and obeys

q̂21 = 1, Tr q̂1 = 0, σ̂ 1τ̂ 1Σ̂1q̂T1σ̂
1τ̂ 1Σ̂1 = q̂1. (2.46)

The saddle point is q̂SP = τ̂ 3σ̂ 3.
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2.7.3. Class A with spin SU(2) invariance
The FNLσM of the unitary metal with spin SU(2) invariance can be derived in a similar fashion.

Given the particular form matrix Û takes [see Eq. (2.28)], q̂ is parameterized in the particle–hole
space as

q̂ =
[
q̂1 0

0 ŝ2τ̂ 1Σ̂1q̂T1 ŝ
2τ̂ 1Σ̂1

]
σ

, (2.47)

where q̂1 ≡ Û
†
1 τ̂

3Û1 is a matrix in spin, Keldysh and frequency spaces.

Using the identity Σ̂1ω̂Σ̂1 = −ω̂, we arrive at the sigma model action

S = 1

4λ

∫
x
Tr
[∇q̂1 · ∇q̂1

]+ ih

∫
x
Tr
[
q̂1(ω̂ + iητ̂ 3)

]
, (2.48)

where q̂1 is restricted by

q̂21 = 1, Tr q̂1 = 0. (2.49)

Here for simplicity we have dropped interacting part of the action, which is given by the same
expression as that in Eq. (2.45) (except for the BCS channel interaction, which vanishes in this case
due to broken time reversal symmetry). The saddle point of this sigma model is q̂ SP = τ 3.

2.7.4. Class C
For the class C superconductor, we discard the dynamical charge density and BCS channel interac-

tions, but incorporate the spin triplet interactions. Eq. (2.10) now becomes

Z[B] =
∫

DχDb exp

{
i

2
χ̄

[
σ̂ 3 ω̂ + iητ̂ 3σ̂ 3 − σ̂ 3ĥ BdG − B̂

]
χ

}
exp

[
2i

U

∫
t,x

biqb
i
cl

]
, (2.50)

where

B̂ω,ω′ (x) = B̃i
cl(ω − ω′, x̂)ŝiσ̂ 3 M̂F (ω)M̂F (ω

′) + B̃i
q(ω − ω′, x̂)ŝiσ̂ 3 M̂F (ω)τ̂ 1M̂F (ω

′). (2.51)

U now stands for the coupling strength of the spin triplet interaction. We denote the source and
H.-S. magnetic fields as B and b, respectively, and call the combined field B̃. Classical and quantum
components of the magnetic field B are defined similarly as the scalar potential V [see Eq. (2.3)]: The
classical component Bcl is an external Zeeman field, and the quantum component Bq couples to the
physical spin density operator.

Notice that the rotation matrix Û for this class does not act on particle–hole space [see Eq. (2.29)].
Therefore, we parameterize q̂ as q̂ = q̂1 ⊗ σ̂ 3, where q̂1 is a matrix in spin, Keldysh, and frequency
spaces. The nonlinear sigma model for class C acquires the form

Z[B] =
∫

DbDq̂1 exp(−S),

S = 1

4λ

∫
x
Tr
[∇q̂1 · ∇q̂1

]+ ih

∫
x
Tr
[
q̂1(ω̂ + iητ̂ 3)

]
− ih

∫
x
Tr
[(

B̃cl + B̃qτ̂
1
)

· ŝ M̂F (ω̂)q̂1(x)M̂F (ω̂)
]

− i
4

π
h

∫
t,x

B̃cl · B̃q − i
4

π
h
(1 − γ )

γ

∫
t,x

bcl · bq.

(2.52)

Here the reduced matrix q̂1 possesses the saddle point q̂SP = τ̂ 3, and satisfies the conditions

q̂21 = 1, Tr q̂1 = 0, −ŝ2τ̂ 1Σ̂1q̂T1 ŝ
2τ̂ 1Σ̂1 = q̂1. (2.53)

We have used the same definitions for h, λ and γ as in Eq. (2.44), although now U is the coupling
constant of the spin triplet interaction, and D denotes the bare spin diffusion constant (in the absence
of interactions).
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In the next few sections, we work with the FNLσMs derived here and compute the (spin) density
response function and conductivity in the disordered class AII metal and class C superconductor.

3. Class AII

3.1. Density linear response function

The density linear response function is defined as

Π (k, ω) = δn(k, ω)

δVcl(k, ω)

∣∣∣∣
Vcl=0

= i

2

δ2Z[V ]
δVcl(k, ω)δVq(−k, −ω)

∣∣∣∣
Vcl=Vq=0

, (3.1)

where n is the density averaged over the forward and backward contour copies, and the generating
function Z[V ] for the symplectic class is given by Eq. (2.45). In what follows, we drop the BCS pairing
channel interaction as we are only interested in the density linear response and the conductivity.

It is convenient to apply the transformation: ρcl,q → ρcl,q − Vcl,q after which the problem reduces
to performing the functional integration

Π (k, ω) = − 2

π
h
(1 − γ )

γ

∫
DρDq̂ e−Sq−Sc−Sρ

[
1 + i

4

π
h
(1 − γ )

γ
ρcl(k, ω)ρq(−k, −ω)

]
, (3.2)

where

Sq = 1

4λ

∫
x
Tr
[∇q̂ · ∇q̂

]+ ih

∫
x
Tr
[
q̂(σ̂ 3ω̂ + iησ̂ 3τ̂ 3)

]
, (3.3a)

Sc = − ih

∫
x
Tr
[(

ρcl + ρqτ̂
1
)
M̂F (ω̂)q̂(x)M̂F (ω̂)

]
, (3.3b)

Sρ = − i
4

π
h
1

γ

∫
t,x

ρqρcl. (3.3c)

The physical response function obtains from the classical–quantum (retarded) correlation function of
the hydrodynamic charge density field ρ.

3.2. Parameterization

To simplify the parameterization of q̂ around the saddle point q̂sp = τ̂ 3σ̂ 3, we perform a rotation
such that q̂sp → τ̂ 3. This can be achieved by the similarity transformation for q̂:

q̂ → R̂q̂R̂†, (3.4)

where

R̂ ≡ 1̂ + σ̂ 3

2
+ 1̂ − σ̂ 3

2
τ̂ 1. (3.5)

Under this transformation, Sq remains invariant, while Sc acquires the form

Sc = −2ih

∫
Tr

[(
ρcl + ρqτ̂

1
)
M̂F (ω̂)

(
1̂ + σ̂ 3

2
q̂

)
M̂F (ω̂)

]
. (3.6)

q̂ is still subject to the first two constraints in Eq. (2.46), but the similarity transformation changes the
last condition to

σ̂ 1Σ̂1q̂Tσ̂ 1Σ̂1 = q̂. (3.7)

We then parameterize q̂ in the Keldysh space as

q̂ =
⎡
⎣
√
1 − Ŵ †Ŵ Ŵ †

Ŵ −
√
1 − ŴŴ †

⎤
⎦

τ

. (3.8)
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This parameterization resolves the nonlinear constraint q̂2 = 1. Ŵ is amatrix in both the particle–hole
and frequency spaces, satisfying the constraint

Ŵ = σ̂ 1Σ̂1(Ŵ †)Tσ̂ 1Σ̂1. (3.9)

We introduce unconstrained matrix fields X̂ and Ŷ defined as

X̂1,2(k) ≡ Ŵ 1,1
1,2 (k), Ŷ1,2(k) ≡ Ŵ 1,2

1,2 (k). (3.10)

Here superscripts index the particle–hole space, while the subscripts {1, 2} represent frequencies
{ω1, ω2}. In what follows, we also adopt the notation:

F1 ≡ F (ω1) = tanh
(ω1

2T

)
, δ1,2 ≡ δω1,ω2

. (3.11)

I.e., the numeric subscripts appearing in these formulas index the frequency. Moreover, we use
subscript −1 to indicate −ω1. Using Eqs. (3.9) and (3.10), Ŵ can be parameterized as

W1,2 =
[

X̂1,2 Ŷ1,2

Ŷ
†
−2,−1 X̂

†
−2,−1

]
σ

, (3.12)

in the particle–hole space.
Next, we expand the action Sq + Sc in powers of X̂ and Ŷ which are then rescaled by

X̂ → √
λX̂, Ŷ → √

λŶ , (3.13)

in order to simplify the power counting of the perturbation-theory parameter λ. Up to quadratic order
in X̂ and Ŷ , the action Sq + Sc contains two parts: S

(2)
X and S

(2)
Y , depending on the matrix fields X̂ and

Ŷ , respectively,

S
(2)
X [X̂†, X̂] =

∫ [
X̂

†
1,2(k1)M2,1;4,3(k1, k2)X̂3,4(k2) + J

†
2,1(k)X̂1,2(k) + J2,1(k)X̂†

1,2(k)
]
, (3.14a)

S
(2)
Y [Ŷ †, Ŷ ] =

∫
Ŷ

†
1,2(k1)N2,1;4,3(k1, k2)Ŷ3,4(k2). (3.14b)

HereM , N , J† and J are defined by the following equations,

M2,1;4,3(k1, k2) ≡ [
k21 − ihλ(ω1 − ω2)

]
δ1,4δ2,3δk1,k2

+ ihλ
[
ρcl(k1 − k2, ω4 − ω1) + F4ρq(k1 − k2, ω4 − ω1)

]
δ2,3

+ ihλ
[−ρcl(k1 − k2, ω2 − ω3) + F3ρq(k1 − k2, ω2 − ω3)

]
δ1,4,

(3.15a)

N2,1;4,3(k1, k2) ≡ [
k21 + ihλ(ω1 + ω2)

]
δ1,4δ2,3δk1,k2

+ ihλ
[
ρcl(k1 − k2, ω4 − ω1) − F1ρq(k1 − k2, ω4 − ω1)

]
δ2,3

+ ihλ
[−ρcl(k1 − k2, ω2 − ω3) + F3ρq(k1 − k2, ω2 − ω3)

]
δ1,4,

(3.15b)

J
†
2,1(k) ≡ 2ih

√
λ
[
(F2 − F1)ρcl(−k, ω2 − ω1) + (1 − F1F2)ρq(−k, ω2 − ω1)

]
, (3.15c)

J2,1(k) ≡ 2ih
√

λρq(k, ω2 − ω1). (3.15d)
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(J† is actually independent of J .) We also keep the higher-order terms in the Sq expansion. The cubic
term vanishes, whereas the quartic term takes the form

S(4)q [X̂†, X̂, Ŷ †, Ŷ ] =
∫

δk1+k3,k2+k4
λ

4

⎡
⎢⎣ −(k1 · k3 + k2 · k4) + 1

2
(k1 + k3) · (k2 + k4)

+i
h

2
λ(ω1 − ω2 + ω3 − ω4)

⎤
⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

X̂1,2(k1)X̂
†
2,3(k2)X̂3,4(k3)X̂

†
4,1(k4)

+ Ŷ1,−2(k1)Ŷ
†
−2,3(k2)Ŷ3,−4(k3)Ŷ

†
−4,1(k4)

+ 2X̂1,2(k1)X̂
†
2,3(k2)Ŷ3,−4(k3)Ŷ

†
−4,1(k4)

+ 2X̂1,2(k1)Ŷ3,−2(−k2)Ŷ
†
−4,3(−k3)X̂

†
4,1(k4)

+ 2X̂1,2(k1)Ŷ3,−2(−k2)X̂
†
4,3(−k3)Ŷ

†
−4,1(k4)

⎤
⎥⎥⎥⎥⎥⎦ .

(3.16)

3.3. Feynman rules

In this subsection, we present the Feynman rules for the matrix fields X̂ and Ŷ . Before continuing,
note that the rotation matrix R̂ [see Eq. (3.5)] is diagonal in the particle–hole space, and thus the
transformation in Eq. (3.4) does not mix the diagonal and off-diagonal components of Ŵ in this space.
Therefore, the diagonal elements of the transformed matrix field Ŵ σ ,γ , i.e. X̂ and X̂†, represent the
‘‘diffuson’’ mode, while the off-diagonal ones Ŷ and Ŷ † correspond to the ‘‘Cooperon’’ mode [45].

3.3.1. Bare propagators
Using Eqs. (3.14) and (3.15) and neglecting the interaction terms, we obtain the bare propagators

for the diffuson〈
X̂1,2(k)X̂†

2,1(k)
〉
0

= Δ0(k, ω1 − ω2), (3.17)

and Cooperon〈
Ŷ1,2(k)Ŷ †

2,1(k)
〉
0

= Δ0(k, ω1 + ω2). (3.18)

Here we have defined

Δ0(k, ω) ≡ 1

k2 + ihλω
. (3.19)

In Fig. 2(b), the diffuson propagator in Eq. (3.17) is represented diagrammatically by two black
solid lines with arrows pointing in the opposite directions. The numeric labels on the top and the
bottom of these lines denote the frequency indices of matrices X̂ and X̂†. The Cooperon propagator
in Eq. (3.18) is depicted in the same manner with blue dashed lines, see Fig. 2(h). The short arrows
indicate momentum flow and differentiate X̂ from X̂†: flow into (out of) the propagator indicates
X̂ (X̂†).

3.3.2. Interaction vertices
Fig. 2(c), (d), (i) and (j) illustrate vertices arising from the interaction terms quadratic in X̂ or Ŷ

in S
(2)
X + S

(2)
Y [see Eqs. (3.14) and (3.15)]. Their amplitudes are given by the following expressions, in

respective order,

(c) = −ihλ
[−ρcl(k1 − k2, ω2 − ω3) + F3ρq(k1 − k2, ω2 − ω3)

]
,

(d) = −ihλ
[
ρcl(k1 − k2, ω4 − ω1) + F4ρq(k1 − k2, ω4 − ω1)

]
,

(i) = −ihλ
[−ρcl(k1 − k2, ω2 − ω3) + F3ρq(k1 − k2, ω2 − ω3)

]
,

(j) = −ihλ
[
ρcl(k1 − k2, ω4 − ω1) − F1ρq(k1 − k2, ω4 − ω1)

]
.

(3.20)
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Fig. 2. (Color online) Feynman rules for class AII: (b) and (h) show the bare propagators for the diffuson [Eq. (3.17)] and the
Cooperon [Eq. (3.18)], respectively. Their full propagators, whose expressions are stated in Eq. (3.22), are illustrated in (a) and

(g). (c)–(f) depict interaction vertices coupling between the matrix field X̂ and the H.-S. field ρ, while those coupling together

Ŷ and ρ are pictured in (i) and (j). (k)–(o) show the 4-point diffusion vertices with amplitudes represented by Eq. (3.23). In this

figure and all other ones in Section 3, the black solid line represents the diffuson X̂ , while the blue dashed one corresponds to

the Cooperon Ŷ . The H.-S. field ρ is indicated by the red wavy line.

Here the H.-S. density field ρ is represented by a redwavy line. In action S
(2)
X , there are also interaction

terms linear in the diffuson X̂ field. Fig. 2(e) and (f) show the associated vertices whose amplitudes
are

(e) = −2ih
√

λ
[
(F2 − F1)ρcl(−k, ω2 − ω1) + (1 − F1F2)ρq(−k, ω2 − ω1)

]
,

(f ) = −2ih
√

λρq(k, ω2 − ω1).
(3.21)
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It is easy to check that, in all these diagrams, the conservation of momentum and energy holds at each
intersection point.

3.3.3. Full propagators
If we do not consider the quadratic interaction terms perturbatively, but group them with the

diffusion part, we arrive at the (formal) full propagators for the diffuson and Cooperon:〈
X̂1,2(k1)X̂

†
3,4(k2)

〉
= M−1

1,2;3,4(k1, k2),〈
Ŷ1,2(k1)Ŷ

†
3,4(k2)

〉
= N−1

1,2;3,4(k1, k2).
(3.22)

Diagrammatic representation of the full diffuson (Cooperon) propagator is shown in Fig. 2(a) [Fig. 2(g)].

3.3.4. 4-point diffusion vertices
Diagrams in Fig. 2(k)–(o) show the 4-point diffusion vertices arising from S

(4)
q [see Eq. (3.16)], and

each of them gives the identical contribution

− λ

2

[
−(k1 · k3 + k2 · k4) + 1

2
(k1 + k3) · (k2 + k4) + i

h

2
λ(ω1 − ω2 + ω3 − ω4)

]
× δk1+k3,k2+k4 . (3.23)

Here the amplitudes of diagrams in Fig. 2(k) and (l) have been multiplied by a symmetry factor of 2.

3.4. Effective response theory for the H.-S. field

3.4.1. Effective action
Since the density response functionΠ (k, ω) depends only on the correlator of the H.-S. field ρ [see

Eq. (3.2)], one can integrate out the matrix field q̂ to reduce the degrees of freedom.We introduce the
effective action Eρ defined as

Eρ ≡ Sρ − ln

(∫
Dq̂ e−Sq−Sc

)
, (3.24)

and rewrite the partition function as

Z =
∫

Dρ e−Eρ . (3.25)

As elaborated in the previous section, after expanding the action in powers of X̂ and Ŷ , we keep
the quadratic terms in both Sq and Sc [Eq. (3.14)], together with the quartic term in Sq [Eq. (3.16)], i.e.,

Sq + Sc =
∫ (

X̂†MX̂ + J†X̂ + X̂†J + Ŷ †NŶ
)

+ S(4)q [X̂†, X̂, Ŷ †, Ŷ ], (3.26)

where J†, J ,M and N are defined in Eq. (3.15). Integrating out X̂ and Ŷ matrix fields, we obtain

Eρ ≈ Sρ −
∫

J†M−1J + Tr lnM + Tr lnN + 〈SD4〉 , (3.27)

where 〈SD4〉 stands for
〈SD4〉 ≡

〈
S(4)q [X̂† − J†M−1, X̂ − M−1J, Ŷ †, Ŷ ]

〉
X,Y

≡
∫ DX̂†DX̂DŶ †DŶ exp

[
− ∫ X̂†MX̂ − ∫ Ŷ †NŶ

]
S
(4)
q [X̂† − J†M−1, X̂ − M−1J, Ŷ †, Ŷ ]∫ DX̂†DX̂DŶ †DŶ exp

[
− ∫ X̂†MX̂ − ∫ Ŷ †NŶ

] .

(3.28)
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We approximate here
〈
exp

[
−S

(4)
q

]〉
X,Y

with exp

[
−
〈
S
(4)
q

〉
X,Y

]
. This is a valid assumption since only

the first-order term
〈
S
(4)
q

〉
X,Y

in the cumulant expansion is needed.

Next,we expand the effective action Eρ in terms of the small parameterλ, and find the zeroth-order
term E0 acquires the form

E0 = Sρ −
∫

J†M−1|ρ=0 J + Tr lnM|ρ=0 + Tr lnN|ρ=0. (3.29)

Here Tr lnM|ρ=0 and Tr lnN|ρ=0 are two ρ-independent constants whose exact values are unimpor-

tant, and as a result are neglected. The 2nd term − ∫ J†M−1|ρ=0 J is depicted diagrammatically in
Fig. 3(a). Substituting Eqs. (3.3c) and ((3.15) into Eq. (3.29), we find the explicit form of E0:

E0 = −i
4

π
h
1

γ

∫
k,ω

ρq(−k, −ω)ρcl(k, ω)
Δ0(k, −ω)

Δu(k, −ω)

− (2ih)2λ

∫
k,ω

ρq(−k, −ω)ρq(k, ω)
ω

π
coth

( ω

2T

)
Δ0(k, −ω),

(3.30)

where Δu is defined as

Δu(k, ω) ≡ 1

k2 + ih(1 − γ )λω
. (3.31)

3.4.2. Bare propagator
Using Eq. (3.30), we find the bare Green’s function of the H.-S. field ρ arising from action E0,

〈ρa(k, ω)ρb(−k, −ω)〉0 = iΔρ(k, ω) = i

[
Δ(K )

ρ (k, ω) Δ(R)
ρ (k, ω)

Δ(A)
ρ (k, ω) 0

]
. (3.32)

Here a, b ∈ {cl, q} indicate the classical or quantum component. The retarded, advanced, Keldysh
components are given by,

Δ(R)
ρ (k, ω) = πγ

4h

Δu(k, −ω)

Δ0(k, −ω)
,

Δ(A)
ρ (k, ω) = πγ

4h

Δu(k, ω)

Δ0(k, ω)
= [

Δ(R)
ρ (k, ω)

]∗ = Δ(R)
ρ (k, −ω),

Δ(K )
ρ (k, ω) = [

Δ(R)
ρ (k, ω) − Δ(A)

ρ (k, ω)
]
coth

( ω

2T

)
.

(3.33)

The bare propagator of theH.-S. fieldρ has the typical formof a bosonicGreen’s function in theKeldysh
formalism, and is represented diagrammatically in the following by a red wavy line with a dot in the
middle, see Fig. 4.

3.4.3. Interaction vertices
The remaining part of the effective action Eρ can be considered as interactions and encodes

quantum corrections to the density response function. Vertices from the leading-order interaction
terms are shown in Fig. 3(b)–(f): Vertices in Fig. 3(b), (e) and (f) arise from −J†M−1J , Tr lnM and
Tr lnN , respectively; those in Fig. 3(c) and (d) are from 〈SD4〉. Diagrams with a closed Keldysh loop
vanish, and are not shown in Fig. 3.

3.4.4. Causality structure of the dressed propagator and self energy
Before proceeding, we review the general structure of the Green’s function and self energy in the

Keldysh formalism for the bosonic field ρ [45,67]. The dressed Green’s function should have the same
structure as the bare one, i.e.,

〈ρa(k, ω)ρb(−k, −ω)〉 = iGρ(k, ω) = i

[
G(K )

ρ (k, ω) G(R)
ρ (k, ω)

G(A)
ρ (k, ω) 0

]
, (3.34)



118 Y. Liao et al. / Annals of Physics 386 (2017) 97–157

Fig. 3. (Color online) Vertices of the H.-S. charge density field for class AII.

and also satisfies the condition (fluctuation–dissipation theorem)

G(K )
ρ (k, ω) = [

G(R)
ρ (k, ω) − G(A)

ρ (k, ω)
]
coth

( ω

2T

)
. (3.35)

Here, ‘‘R’’, ‘‘A’’ and ‘‘K’’ denote, respectively, the retarded, advanced and Keldysh components. The
dressed Green’s function Gρ(k, ω) can be calculated using

Gρ(k, ω) = [
Δ−1

ρ (k, ω) − Σρ(k, ω)
]−1

, (3.36)
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Fig. 4. Propagator of the H.-S. field. For class AII, the red wavy line stands for the charge density field ρ, while for class C it
indicates the spin magnetization density field b.

where the self energy Σρ(k, ω) acquires the following structure

Σρ(k, ω) =
[

0 Σ (A)
ρ (k, ω)

Σ (R)
ρ (k, ω) Σ (K )

ρ (k, ω)

]
. (3.37)

The Keldysh component of the self energy is related to its retarded and advanced counterparts in the
same way as the Green’s function, see Eq. (3.35) (detailed balance).

3.4.5. Density response and Green’s function
Following Eq. (3.34),we see that only the retardedGreen’s functionG(R)

ρ (k, ω) enters the calculation
of density response function Π (k, ω), and Eq. (3.2) can be rewritten as

Π (k, ω) = − 2

π
h
(1 − γ )

γ

[
1 − 4

π
h
(1 − γ )

γ
G(R)

ρ (k, ω)

]
. (3.38)

Ignoring the interaction terms in Eρ and approximating the dressed Green’s function G(R)
ρ (k, ω)

here with the bare one Δ(R)
ρ (k, ω), we arrive at the semiclassical density response function:

Π0 (k, ω) = − 2

π

h(1 − γ )k2

k2 − ih(1 − γ )λω
. (3.39)

This expression can be reduced to a more familiar form using D = 1/(λh) [Eq. (2.44)],

Π0 (k, ω) = −κ
Dck

2

Dck2 − iω
, (3.40)

where Dc the charge diffusion constant and κ the charge compressibility are given by

Dc = D

1 − γ
, κ = 2

π
h(1 − γ ). (3.41)

Once the density response function is known, the conductivity can be calculated through

σ (ω) = lim
k→0

iω

k2
Π (k, ω), (3.42)

where the current continuity has been used. The semiclassical result in Eq. (3.40) gives the Drude
conductivity

σ0 = 2

π

1

λ
= D(2ν0), (3.43)

where ν0 is the density of states per spin.
Eq. (3.38) implies that the quantum correction to the density linear response is proportional to the

difference of the dressed and bare retarded Green’s functions

δΠ (k, ω) = 8

π2
h2

(
1 − γ

γ

)2 [
G(R)

ρ (k, ω) − Δ(R)
ρ (k, ω)

]
. (3.44)

Employing the Dyson equation [Eq. (3.36)], along with the causality structure of the Green’s function
[Eq. (3.34)] and self energy [Eq. (3.37)], the expression in the square brackets of the equation above
can be approximated as

G(R)
ρ (k, ω) − Δ(R)

ρ (k, ω) ≈ Δ(R)
ρ (k, ω)Σ (R)

ρ (k, ω)Δ(R)
ρ (k, ω). (3.45)
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Fig. 5. (Color online) Self energy diagrams for class AII: Category 1. Diagram (a) is theweak antilocalization correction due to the
virtual Cooperon loop. Diagrams (b)–(e) are Altshuler–Aronov (AA) corrections, while (f) and (g) renormalize the interaction.

In what follows, we take into account the interaction terms in Eρ (see Fig. 3), and calculate their
contribution to the H.-S. field’s retarded self energy Σ (R)

ρ . Once the self energy Σ (R)
ρ is known, the

correction to the density response function and conductivity obtains from Eqs. (3.44) and (3.45).

3.5. Self energy

Figs. 5 and 6 depict the retarded self energy diagrams of the H.-S. field ρ for class AII. Additional
diagrams contribute in principle, but their total contribution vanishes (or is negligible compared with
the logarithmic correction we are interested in). These additional diagrams appear in Appendix B.

3.5.1. Category 1
All contributions from the diagrams in Fig. 5 can be expressed as

−iΣ (R)
ρ (k, ω) = −4h2λΔ2

0(k, −ω)

∫
ε1,ε2

(
Fε+

1
− Fε−

1

)
ΣX (ε

−
1 , ε+

1 , ε+
2 , ε−

2 ; −k, −k), (3.46)

where we have defined ε±
1,2 ≡ ε1,2 ± ω/2. ΣX denotes the corresponding self energy of the diffuson

matrix X when the density field ρ is integrated out first [26,27]. Its arguments specify the frequency
and momentum indices.
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Fig. 6. (Color online) Self energy diagrams for class AII: Category 2. These diagrams represent the AA wave function
renormalization, which determines the energy scaling of the density of states.



122 Y. Liao et al. / Annals of Physics 386 (2017) 97–157

The associated self energies ΣX in Fig. 5(a)–(e) are diagonal in frequency space, and are given by
(in respective order),

Σ
(a)
X (−k, −ω) = − λ

2
k2
∫
l
Δ0(l, −ω), (3.47a)

Σ
(b)
X (−k, −ω) = i

4
πhγ λ2

∫
l,ξ

[
Δ−1

0 (k, −ω)Δ0(l, ξ )Δu(l, ξ ) + Δu(l, ξ )
]

×
[
tanh

(
ε− − ξ

2T

)
− tanh

(
ε−

2T

)]
, (3.47b)

Σ
(c)
X (−k, −ω) = i

4
πhγ λ2

∫
l,ξ

[
Δ−1

0 (k, −ω)Δ0(l, ξ )Δu(l, ξ ) + Δu(l, ξ )
]

×
[
− tanh

(
ε+ + ξ

2T

)
+ tanh

(
ε+

2T

)]
, (3.47c)

Σ
(d)
X (−k, −ω) = i

4
πhγ λ2

∫
l,ξ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ0(|−k − l|, −ω − ξ )
Δu(l, ξ )

Δ0(l, ξ )

×
[
tanh

(
ε− − ξ

2T

)
+ coth

(
ξ

2T

)]

+ Δ0(|−k − l|, −ω − ξ )
Δu(l, −ξ )

Δ0(l, −ξ )

×
[
tanh

(
ε−

2T

)
− coth

(
ξ

2T

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.47d)

Σ
(e)
X (−k, −ω) = i

4
πhγ λ2

∫
l,ξ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ0(|−k − l|, −ω − ξ )
Δu(l, ξ )

Δ0(l, ξ )

×
[
− tanh

(
ε+ + ξ

2T

)
+ coth

(
ξ

2T

)]

+ Δ0(|−k − l|, −ω − ξ )
Δu(l, −ξ )

Δ0(l, −ξ )

×
[
− tanh

(
ε+

2T

)
− coth

(
ξ

2T

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.47e)

where we have defined ε1,2 = ε and we have omitted the factor δε1,ε2 . The modulus of frequency

in these expressions is cut off at the large limit by the elastic scattering rate Λ = τ−1
el . The mo-

mentum integrations, on the other hand, are performed over the whole space, except for Eq. (3.47a).
(Alternatively, we could choose the integration scheme where we integrate over 0 < Dl2 < Λ and
−∞ < ω < ∞.)

We evaluate these integrals up to logarithmic accuracy in the ultraviolet cutoff Λ by first carrying
out an expansion in terms of external frequency ω and momentum k. For the higher-order terms in
this expansion, the powers of Δ0,u(l, ξ ) are larger, leading to a negligible value after integration. For
this reason, these terms are omitted.

The diagram in Fig. 5(a) corresponds to the weak anti-localization (WAL) correction due to the
virtual Cooperon loop. Performing the momentum integration over 0 < Dl2 < Λ, we find Σ

(a)
X =

−(λ/8π )k2 ln(Λ/ω). In the limit of vanishing external frequency ω → 0, theWAL correction must be
cut off by dephasing due to inelastic scattering. In Section 6,we review the calculation of the dephasing
rate τ−1

φ from the AAK equations [49], derived here from the Keldysh sigma model formalism. As a
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result, Σ
(a)
X instead takes the form

Σ
(WAL)
X = Σ

(a)
X = − λ

8π
k2 ln

(
Λ

τ−1
φ

)
. (3.48)

To obtain Eq. (3.48), it is necessary to replace the bare Cooperon in Fig. 5(a) with the full one
[Eq. (3.22)], see Fig. 16. This gives the formal expression

Σ
(a)
X = −λ

2

∫
l

[
Δ−1

0 (l, −ω) + k2
]
N−1

ε−
1 ,−ε+

2 ;−ε+
1 ,ε−

2

(−l, −l), (3.49)

which must be averaged over the thermal fluctuations of the diffusive charge density field ρ (Sec-
tion 6).

Diagrams in Fig. 5(b)–5(e) represent Altshuler–Aronov (AA) corrections. Integrating and summing
Eqs. (3.47b)–(3.47e) yields

Σ
(AA)
X = k2

{
λ

4π

[
1 + 1

γ
ln(1 − γ )

]
ln

(
Λ

T

)}

− ihλω

[
λ

4π
ln(1 − γ ) ln

(
Λ

T

)
+ λ

8π
γ ln

(
Λ

T

)]
+ Σε.

(3.50)

The AA corrections are automatically cut off by temperature in the infrared, since the Bragg condition
for carrier scattering off of static Friedel oscillations is met only at the Fermi surface [17,18]. In
Eq. (3.50), Σε is a constant term (independent of the external frequency ω and momentum k), and
takes the form

Σε = i

8
πhγ λ2

∫
l,ξ

[Δ0(l, ξ ) + Δ0(l, −ξ )]

[
Δu(l, ξ )

Δ0(l, ξ )
− Δu(l, −ξ )

Δ0(l, −ξ )

]

×
[
2 coth

(
ξ

2T

)
− tanh

(
ξ + ε

2T

)
− tanh

(
ξ − ε

2T

)]
.

(3.51)

This is the ‘‘outscattering rate’’, which is half of the collision integral that enters the semiclassical
kinetic equation [65]. The latter determines the rate of energy relaxation [17]. Although the integral
expression for Σε is infrared divergent, it is forbidden from affecting the linear response due to the
charge U(1) Ward identity (current conservation).

The associated self energies ΣX of diagrams in Fig. 5(f) and (g) are off-diagonal in the frequency
indices, and take the forms

Σ
(f )
X = − i

4
πhγ λ2

∫
l

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ0(|−k − l|, −ω − ε1 + ε2)
Δu(l, ε1 − ε2)

Δ0(l, ε1 − ε2)

×
[
tanh

(
ε−
2

2T

)
+ coth

(
ε1 − ε2

2T

)]

+ Δ0(|−k − l|, −ω − ε1 + ε2)
Δu(l, −ε1 + ε2)

Δ0(l, −ε1 + ε2)

×
[
− tanh

(
ε+
2

2T

)
− coth

(
ε1 − ε2

2T

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3.52a)
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Σ
(g)
X = − i

4
πhγ λ2

∫
l

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ0(|−k − l|, −ω + ε1 − ε2)
Δu(l, −ε1 + ε2)

Δ0(l, −ε1 + ε2)

×
[
− tanh

(
ε+
2

2T

)
− coth

(
ε1 − ε2

2T

)]

+ Δ0(|−k − l|, −ω + ε1 − ε2)
Δu(l, ε1 − ε2)

Δ0(l, ε1 − ε2)

×
[
tanh

(
ε−
2

2T

)
+ coth

(
ε1 − ε2

2T

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.52b)

Changing the integration variable ε2 → ξ ≡ ε1 − ε2 in Eq. (3.46) and integrating these self energies
over ξ , we arrive at expressions quite similar to Eqs. (3.47d) and (3.47e), resulting in∫

ε2

(
Σ

(f )
X + Σ

(g)
X

)
= ihγ λω

[
λ

8π
ln

(
Λ

T

)]
− Σε. (3.53)

The constant −Σε cancels with Σε in Eq. (3.50), as required by the Ward identity.
Adding Eqs. (3.48), (3.50) alongwith Eq. (3.53) and inserting the result into Eq. (3.46), the diagrams

in Fig. 5 altogether give the contribution

−iΣ (R)
ρ (k, ω) = − 4

π
h2λωΔ2

0(k, −ω)
{[

k2δλ − ihλω(−δh)
]+ ihγ λω(−δΓ )

}
, (3.54)

where δλ, δh and δΓ are defined by

δλ ≡ − λ

8π
ln

(
Λ

τ−1
φ

)
+ λ

4π

[
1 + 1

γ
ln(1 − γ )

]
ln

(
Λ

T

)
, (3.55a)

δh ≡ − λ

4π
ln(1 − γ ) ln

(
Λ

T

)
− λ

8π
γ ln

(
Λ

T

)
, (3.55b)

δΓ ≡ − λ

8π
ln

(
Λ

T

)
. (3.55c)

3.5.2. Category 2
In Fig. 6, we show another group of self energy diagrams with non-negligible amplitudes. These

amplitudes are given by expressions that are identical apart from the distribution function piece.
Diagrams in Fig. 6(a) and (b) respectively give

(a) = (−4h2λ
) (− i

4
πhγ λ2

)
Δ0(k, −ω)

∫
ε,l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(l, −ξ ) (Fε+ω − Fε)

× (
Fε+ξ − Fε−ξ+ω + Fε+ω − Fε

)
,

(3.56a)

(b) = (−4h2λ
) (− i

4
πhγ λ2

)
Δ0(k, −ω)

∫
ε,l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(l, −ξ )
(
Fε+ξ − Fε

)
× (

Fε+ω − Fε−ω+ξ + Fε+ξ − Fε

)
.

(3.56b)

Combining these two equations and carrying out the integration gives the net contribution from
diagrams in Fig. 6:

−iΣ (R)
ρ (k, ω) = − 4

π
h2λωΔ0(k, −ω) (−δz) , (3.57)

where we have defined δz as

δz ≡ λ

4π
ln(1 − γ ) ln

(
Λ

T

)
. (3.58)
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Eq. (3.58) from the diagrams in Fig. 6 is the Altshuler–Aronov wave function renormalization (see
below), which determines the energy scaling of the disorder-averaged density of states.

3.5.3. Results
Summing up contributions from Figs. 5 [Eq. (3.54)] and 6 [Eq. (3.57)], we find the total retarded

self energy

−iΣ (R)
ρ (k, ω) = − 4

π
h2λωΔ2

0(k, −ω)
{[

k2δλ − ihλω(−δh)
]

+ ihγ λω(−δΓ ) + Δ−1
0 (k, −ω)(−δz)

}
.

(3.59)

The three terms in the braces come from Fig. 5(a)–(e), 5(f)–(g), and 6, respectively. The first two
correspond to the renormalization of the parameters (h, λ) and the interaction coefficient (Γ = hγ ),
whereas the third term is related to the wave function renormalization of matrix X̂ .

To one-loop order, the wave function renormalization Z acquires the form

Z = 1 + δz, (3.60)

and the renormalized hR, λR are related to the bare ones by

hR = h(1 + δh + δz),
1

λR

= 1

λ
(1 − δλ + δz). (3.61)

In Appendix A we prove that, to one loop order,

hR(1 − γR) = h(1 − γ ), (3.62)

from which one can infer the renormalized interaction strength γR. In a disordered normal metal,
this identity holds to all loop orders, meaning the charge compressibility κ defined in Eq. (3.41) does
not renormalize [27]. This constraint does not apply to the non-standard classes [39], e.g., the class C
superconductor (see Appendix A), since the density of states is typically critical in such systems even
in the absence of interactions. Using Eqs. (3.55), (3.58), one may note

δh + δz = γ δΓ , (3.63)

and as a result

hRγR = hγ (1 + δΓ ). (3.64)

Utilizing the identity in Eq. (3.63), Eq. (3.59) reduces to

−iΣ (R)
ρ (k, ω) = − 4

π
h2ωΔ2

0(k, −ω)k2λ(δλ − δz). (3.65)

The quantum correction to the density response function is

δΠ (k, ω) = −i
2

π
h2(1 − γ )2Δ2

u(k, −ω)ωk2λ (δλ − δz)

= −i
2

π
h2(1 − γ )2Δ2

u(k, −ω)ωk2 (λR − λ) ,

(3.66)

and the conductivity correction is

δσ = − 2

π

δλ − δz

λ
= 2

π

(
1

λR

− 1

λ

)
. (3.67)

Substituting the explicit forms of δλ and δz given by Eqs. (3.55) and (3.58), respectively, we obtain the
result in Eq. (1.1a).
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4. Class C

4.1. Spin density linear response

For the class C superconductor, the spin density linear response function can be obtained in a
similar fashion as in Section 3. It is defined as

Π i,j (k, ω) = δni
s(k, ω)

δB
j
cl(k, ω)

∣∣∣∣
Bcl=0

= i

2

δ2Z[B]
δB

j
cl(k, ω)δBi

q(−k, −ω)

∣∣∣∣
Bq=Bcl=0

, (4.1)

where Z[B] is given by Eq. (2.52). ns here refers to the spin density, and similar to the charge density
n, is averaged over the two branches of the Keldysh contour. Superscripts i and j index the spin
component.

As in the case of class AII, the first step is to shift the H.-S. field, now a vector field, by bcl,q →
bcl,q − Bcl,q. Then one can calculate the spin density response function from

Π i,j (k, ω) = − 2

π
h
(1 − γ )

γ

∫
DbDq̂ e−Sq−Sc−Sb

[
δi,j + i

4

π
h
(1 − γ )

γ
bicl(k, ω)bjq(−k, −ω)

]
,

(4.2)

where the actions acquire the forms,

Sq = 1

4λ

∫
x
Tr
[∇q̂ · ∇q̂

]+ ih

∫
x
Tr
[
q̂(ω̂ + iητ̂ 3)

]
, (4.3a)

Sc = − ih

∫
x
Tr
[(

bcl + bqτ̂
1
) · ŝ M̂F (ω̂)q̂(x)M̂F (ω̂)

]
, (4.3b)

Sb = − i
4

π
h
1

γ

∫
x,t

bcl · bq. (4.3c)

4.2. Parameterization

For class C, we employ the following q̂matrix parameterization in Keldysh space around the saddle
point q̂ SP = τ̂ 3, i.e.,

q̂ =
⎡
⎣
√
1 − Ŵ †Ŵ Ŵ †ŝ2

ŝ2Ŵ −
√
1 − ŝ2ŴŴ †ŝ2

⎤
⎦

τ

, (4.4)

where Ŵ is now a matrix in the spin as well as frequency spaces and satisfies the condition

Ŵ = Σ̂1Ŵ TΣ̂1, (4.5)

Inserting this parameterization into Sq + Sc [Eq. (4.3)], and expanding in powers of Ŵ , we obtain

the action up to quadratic order in Ŵ :

S
(2)
W =

∫
Ŵ † α,β

1,2 (k1)M
β,α;σ ,γ

2,1;4,3 (k1, k2)Ŵ
γ ,σ

3,4 (k2) + J†
β,α

2,1 (k)Ŵ
α,β

1,2 (k) + J
β,α

2,1 (k)Ŵ † α,β

1,2 (k), (4.6)

whereM , J , and J† (independent of J) are now defined as

M
β,α;σ ,γ

2,1;4,3 (k1, k2) ≡ 1

2

[
k21 − ihλ(ω1 − ω2)

]
δα,σ δβ,γ δ1,4δ2,3δk1,k2

+ ihλ
[
bcl(k1 − k2, ω4 − ω1) + F4bq(k1 − k2, ω4 − ω1)

] · s σ ,αδβ,γ δ2,3 ,

(4.7a)

J†
β,α

2,1 (k) ≡ ih
√

λ
[
(F2 − F1)bcl(−k, ω2 − ω1) + (1 − F1F2)bq(−k, ω2 − ω1)

] · (s s2)β,α, (4.7b)

J
β,α

2,1 (k) ≡ ih
√

λb q(k, ω2 − ω1) · (s2s )β,α. (4.7c)
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Fig. 7. (Color online) Feynman rules for class C: The bare and full propagators of the matrix field Ŵ are illustrated in (c) and
(d), respectively. As shown in Eq. (4.10), the bare propagator consists of two terms with different frequency structure. They

are depicted in (a) and (b). (e)–(g) show the interaction vertices coupling between H.-S. field b and matrix field Ŵ , while (h)
depicts the 4-point diffusion vertex.

Here the superscripts (α, β , etc.) index the spin space (instead of particle–hole space as in Section 3).
We have used the Ŵ matrix’s symmetry in Eq. (4.5) to simplify the action and rescaled Ŵ by

Ŵ → √
λŴ , Ŵ † → √

λŴ †. (4.8)

As before, we retain the quartic term in Sq, which takes the form

S(4)q =
∫

δk1+k3,k2+k4Ŵ
† α,β

1,2 (k1)Ŵ
β,γ

2,3 (k2)Ŵ
† γ ,σ

3,4 (k3)Ŵ
σ ,α
4,1 (k4)

× λ

8

[
−(k1 · k3 + k2 · k4) + 1

2
(k1 + k3) · (k2 + k4) − i

h

2
λ(ω1 − ω2 + ω3 − ω4)

]
.

(4.9)

4.3. Feynman rules

In Fig. 7, we show the Feynman rules for class C. Throughout this section, we employ the
notation in which the solid black line represents matrix field Ŵ and the red wavy line stands for
H.-S. (hydrodynamic spin density) vector field b.

4.3.1. Bare propagator
Without interaction, the Ŵ propagator is given by〈

Ŵ
α,β

1,2 (k)Ŵ † γ ,σ

3,4 (k)
〉
0

= Δ0(k, ω1 − ω2)
[
δα,σ δβ,γ δ1,4δ2,3 + δα,γ δβ,σ δ1,−3δ2,−4

]
. (4.10)
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It contains two terms represented respectively by diagrams in Fig. 7(a) and (b). In Fig. 7(c), we depict
the samepropagator in Fig. 7(a) butwith a ‘‘∞’’ symbol in themiddle. This diagram is used to represent
the sum of two terms in Eq. (4.10).

4.3.2. Interaction vertices
Fig. 7(e)–(g) show the interaction vertices arising from action S

(2)
W , with amplitudes given by the

following equations, in respective order,

(e) = −ihλ
[
bcl(k1 − k2, ω4 − ω1) + F4bq(k1 − k2, ω4 − ω1)

] · s σ ,α,

(f ) = −ih
√

λ
[
(F2 − F1)bcl(−k, ω2 − ω1) + (1 − F1F2)bq(−k, ω2 − ω1)

] · (s s2)β,α,

(g) = −ih
√

λ bq(k, ω2 − ω1) · (s2s )β,α.

(4.11)

4.3.3. Full propagator
Incorporating the quadratic interaction term with the diffusion action, we arrive at the full

propagator, which is represented by diagram in Fig. 7(d). It is given by〈
Ŵ

α,β

1,2 (k1)Ŵ
† γ ,σ

3,4 (k2)
〉
= M̃−1 α,β;γ ,σ

1,2;3,4 (k1, k2), (4.12)

where M̃ is the symmetrizedM kernel,

M̃
β,α;σ ,γ

2,1;4,3 (k1, k2) ≡ 1

4

[
M

β,α;σ ,γ

2,1;4,3 (k1, k2) + M
α,β;σ ,γ

−1,−2;4,3(k1, k2) + M
β,α;γ ,σ

2,1;−3,−4(k1, k2) + M
α,β;γ ,σ

−1,−2;−3,−4(k1, k2)
]
, (4.13)

and the matrix inversion is defined by

∫
ω3,ω4,k2

M̃−1 β,α;σ ,γ

2,1;4,3 (k1, k2)M̃
γ ,σ ;α′,β ′
3,4;1′,2′ (k2, k′

1)

= 1

2

(
δ1,1′δ2,2′δα,α′δβ,β ′ + δ1,−2′δ2,−1′δα,β ′δβ,α′

)
δk1,k′

1
.

(4.14)

In this section, we employ the notation that repeated spin indices imply summation.

4.3.4. 4-point diffusion vertex
The quartic action S

(4)
q [Eq. (4.9)] gives a 4-point vertex with amplitude

(h) = −λ

4

[
−(k1 · k3 + k2 · k4) + 1

2
(k1 + k3) · (k2 + k4) − i

h

2
λ(ω1 − ω2 + ω3 − ω4)

]
× δk1+k3,k2+k4 ,

(4.15)

which has beenmultiplied by a factor of 2 to account for the vertex symmetry. It is shown in Fig. 7(h).

4.4. Effective theory for H.-S. field

4.4.1. Effective action
As in Section 3, we integrate out the matrix q̂ degree of freedom and develop an effective theory

involving only the H.-S. field b. It is described by the partition function

Z =
∫

Db e−Eb ,

Eb ≡ Sb − ln

(∫
Dq̂ e−Sq−Sc

)
.

(4.16)

Sq + Sc can be expressed as

Sq + Sc =
∫

(Ŵ †M̃Ŵ + J†Ŵ + Ŵ †J) + S(4)q [Ŵ †, Ŵ ], (4.17)
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Fig. 8. (Color online) Interaction vertices of H.S. field b for class C.

wherewe have rewritten the first term by exploiting Ŵ ’s symmetry. Combining Eqs. (4.16) and (4.17),
we obtain the approximated effective action

Eb ≈ Sb −
∫

J†M̃−1J + Tr ln M̃ + 〈SD4〉 , (4.18)

where 〈SD4〉 stands for

〈SD4〉 ≡
∫ DŴ †DŴ exp

[
− ∫ Ŵ †M̃Ŵ

]
S
(4)
q [Ŵ † − J†M̃−1, Ŵ − M̃−1J]∫ DŴ †DŴ exp
[
− ∫ Ŵ †M̃Ŵ

] . (4.19)

Eb is then expanded in powers ofλ (or equivalentlyb). To the lowest order, the 3rd term in Eq. (4.18)
Tr ln M̃ is an irrelevant constant, and the 2nd term − ∫ J†M̃−1J can be obtained by simply replacing

M̃−1 with the bare propagator [see Fig. 8(a)]. Adding these terms alongwith Sb yields the lowest-order
effective action

E0 = −i
4

π
h
1

γ

∫
bq(−k, −ω) · bcl(k, ω)

Δ0(k, −ω)

Δu(k, −ω)

− (2ih)2λ

∫
bq(−k, −ω) · bq(k, ω)

ω

π
coth

( ω

2T

)
Δ0(k, −ω).

(4.20)

4.4.2. Bare propagator
Comparing E0 in Eq. (4.20) with the analogous result previously obtained for class AII [see

Eq. (3.30)], one can easily deduce the bare Green’s function for the H.-S. field b,

〈
bia(k, ω)b

j
b(−k, −ω)

〉
0

= iδi,j

⎡
⎢⎣Δ(K )

ρ (k, ω) Δ(R)
ρ (k, ω)

Δ(A)
ρ (k, ω) 0

⎤
⎥⎦ , (4.21)

where Δρ was defined in Eq. (3.33) and a, b ∈ {cl, q}. As in the case of class AII, it is represented by a
red curvy line with a dot in the middle, see Fig. 4.

4.4.3. Interaction vertices
The interaction vertices arising from the higher-order terms in effective action Eb are shown in

Fig. 8(b)–(f). As we have already explained, their contributions give rise to the quantum correction to
linear response function.
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4.4.4. Causality structure of the dressed Green’s function and self energy
The bosonic field’s causality structure discussed in Section 3 also applies here. The dressed Green’s

function Gb and self energy Σb of the H.-S. field b share the same structure with Gρ [Eq. (3.34)] and
Σρ [Eq. (3.37)], respectively. Once again, their retarded, advanced, and Keldysh components follow
the condition in Eq. (3.35).

4.4.5. Spin density response and Green’s function
The spin density response function Π i,j is determined by the retarded Green’s function:

Π i,j (k, ω) = − 2

π
h
(1 − γ )

γ

[
δi,j − 4

π
h
(1 − γ )

γ

(
G
(R)
b

)
i,j(k, ω)

]
. (4.22)

To the zeroth order in λ,
(
G
(R)
b

)
i,j(k, ω) becomes the bare propagator Δ(R)

ρ (k, ω)δi,j, and we have

Π
i,j
0 (k, ω) = −δi,j

2

π

h(1 − γ )k2

k2 − ih(1 − γ )λω
= −δi,jκ

Dck
2

Dck2 − iω
, (4.23a)

σ
i,j
0 = δi,j

2

π

1

λ
= δi,jD(2ν0). (4.23b)

Here we have used Eq. (3.42) which relates the spin density response function and conductivity.
The quantum correction to Π i,j can be calculated using

δΠ i,j (k, ω) = 8

π2
h2

(
1 − γ

γ

)2 [(
G
(R)
b

)i,j
(k, ω) − Δ(R)

ρ (k, ω)δi,j

]
, (4.24)

where the correction to the Green’s function is approximately(
G
(R)
b

)i,j
(k, ω) − Δ(R)

ρ (k, ω)δi,j ≈ Δ(R)
ρ (k, ω)

(
Σ

(R)
b

)i,j
(k, ω)Δ(R)

ρ (k, ω). (4.25)

4.5. Self energy

In this section,we evaluate the retarded self energy of theH.-S. field b at one-loop level, and use the
result to compute the quantum correction to spin density response functionΠ i,j and spin conductivity
σ i,j. The relevant self energy diagrams are depicted in Figs. 9–11.

4.5.1. Category 1
The contribution from each diagram in Fig. 9 can be expressed in terms of ΣW the associated self

energy for matrix Ŵ , i.e.,

−i
(
Σ

(R)
b

)i,j
(k, ω) = −4h2λ(sjs2)β,α(s2si)γ ,σ Δ2

0(k, −ω)

×
∫

ε1,ε2

(
Fε+

1
− Fε−

1

)
Σ

α,β;σ ,γ

W (ε−
1 , ε+

1 , ε+
2 , ε−

2 ; −k, −k).
(4.26)

For the diagrams in Fig. 9(a)–(e), the corresponding self energies ΣW are diagonal in energy and spin
spaces and acquire the forms,

Σ
(a)
W (−k, −ω) = − λ

8
Δ−1

0 (k, −ω)

∫
l
Δ0(l, 2ε

−), (4.27a)

Σ
(b)
W (−k, −ω) = − λ

8
Δ−1

0 (k, −ω)

∫
l
Δ0(l, −2ε+), (4.27b)

Σ
(c)
W (−k, −ω) = i

3

8
πhγ λ2

∫
l,ξ

[
Δ−1

0 (k, −ω)Δ0(l, ξ )Δu(l, ξ ) + Δu(l, ξ )
]

×
[
tanh

(
ε− − ξ

2T

)
− tanh

(
ε−

2T

)]
, (4.27c)
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Fig. 9. (Color online) Self energy diagrams for class C: Category 1. Diagrams (a) and (b) give part of the weak localization
correction due to the virtual class C diffuson loop. Diagrams (c)–(e) are Altshuler–Aronov (AA) corrections, while (f) and (g)
renormalize the interaction.

Σ
(d)
W (−k, −ω) = i

3

8
πhγ λ2

∫
l,ξ

[
Δ−1

0 (k, −ω)Δ0(l, ξ )Δu(l, ξ ) + Δu(l, ξ )
]

×
[
− tanh

(
ε+ + ξ

2T

)
+ tanh

(
ε+

2T

)]
, (4.27d)

Σ
(e)
W (−k, −ω) = − i

3

4
πhγ λ2
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×
∫
l,ξ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ0(|−k − l|, −ω − ξ )
Δu(l, ξ )

Δ0(l, ξ )

×
[
tanh

(
ε+ + ξ

2T

)
− coth

(
ξ

2T

)]

+ Δ0(|−k − l|, −ω − ξ )
Δu(l, −ξ )

Δ0(l, −ξ )

×
[
tanh

(
ε+

2T

)
+ coth

(
ξ

2T

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.27e)

where we have neglected the factor δε1,ε2δα,γ δβ,σ and set ε1 = ε2 = ε.
Inserting Eqs. (4.27a)–(4.27e) into Eq. (4.26), and carrying out integration by employing the

approximation technique introduced in Section 3, we obtain the net contributions from diagrams in
Fig. 9(a)–9(e):

−i
(
Σ

(R)
b

)i,j
(k, ω) = −δi,j4h

2λΔ2
0(k, −ω)

{ω

π

[
k2δλ − ihλω(−δh)

]+ 3c0

}
, (4.28)

where

δλ ≡ − λ

8π
ln

(
Λ

T

)
+ 3λ

4π

[
1 + 1

γ
ln(1 − γ )

]
ln

(
Λ

T

)
, (4.29a)

δh ≡ λ

8π
ln

(
Λ

T

)
− 3λ

4π
ln(1 − γ ) ln

(
Λ

T

)
− 3λ

8π
γ ln

(
Λ

T

)
, (4.29b)

c0 ≡
∫

ε

(Fε+ − Fε− )Σε. (4.29c)

Σε is the outscattering rate previously defined in Eq. (3.51). The first term in δλ and δh comes from
diagrams in Fig. 9(a) and (b),which represent part of the class Cweak localization correction. Diagrams
in Fig. 9(c)–(e) correspond to AA corrections and give rise to the other terms.

Note that unlike class AII, here the pure quantum interference correction at one loop order is
directly cut off in the infrared by temperature T , independent of dephasing. The derivation is as
follows. After inserting Eqs. (4.27a)–(4.27b) into Eq. (4.26), we arrive at the integral∫

ε

(Fε+ − Fε−)

∫
l
Δ0(l, ±2ε∓) =

∫
ε

(Fε+ω − Fε)

∫
l
Δ0(l, 2ε) ≈

∫
ε,l

(ω∂εFε) Δ0(l, 2ε)

= −ω

∫
ε,l

Fε∂εΔ0(l, 2ε)

= ω

π

1

4π
ln

(
Λ

T

)
.

(4.30)

Here we have approximated (Fε+ω − Fε) by (ω∂εFε) and applied an integration by parts. The key
difference relative to the standard class AII WAL correction [Eq. (3.47a)] is that the energy argument
of the loop propagator Δ0(l) in Eqs. (4.27a) and (4.27b) is ±2ε∓ = ±2ε − ω, not merely the external
frequency −ω. The subsequent ε-integration regularizes the infrared for any finite T > 0 [such
that F (ε) is smooth]. The total energy ε serves as a ‘‘mass’’ for the class C diffuson mode, which is
only gapless at ε = 0. This is a general feature of pure interference corrections due to nonstandard
class quantum diffusion modes [52,64]. In class C (which features broken time-reversal symmetry),
additional localizing corrections arise at all one-body energies at two-loop order, due to the unitary
class diffuson. These and all higher order corrections due to the Wigner–Dyson class modes must
(by contrast) be cut by dephasing. In the next section, we will consider the effect of restoring time-
reversal, which promotes class C to class CI. As a result, a WL correction due to the orthogonal class
AI Cooperon appears that is also cut by dephasing.
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For the remaining diagrams in Fig. 9, i.e. Fig. 9(f) and (g), the associated ΣW are no longer diagonal
in frequency and spin spaces and are given by, respectively,

Σ
(f )
W = − i

4
πhγ λ2

3∑
n=1

(sn)σ ,α(sn)γ ,β

×
∫
l

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ0(|−k − l|, −ω + ε1 + ε2)
Δu(l, −ε1 − ε2)

Δ0(l, −ε1 − ε2)

×
[
− tanh

(
ε−
2

2T

)
+ coth

(
ε1 + ε2

2T

)]

+ Δ0(|−k − l|, −ω + ε1 + ε2)
Δu(l, ε1 + ε2)

Δ0(l, ε1 + ε2)

×
[
tanh

(
ε+
2

2T

)
− coth

(
ε1 + ε2

2T

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4.31a)

Σ
(g)
W = − i

4
πhγ λ2(−iπhγ λ)

3∑
n=1

(sn)σ ,ν(sn)μ,β
(
δα,γ δμ,ν + δα,νδγ ,μ

)

×
∫
l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(|−k − l|, −ω − ξ )

[
tanh

(
ε+
2 + ξ

2T

)
− tanh

(
ε−
2

2T

)]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

× Δu(l, ξ )

Δ0(l, ξ )

[
tanh

(
ε+
1 + ξ

2T

)
− coth

(
ξ

2T

)]

+ Δu(l, −ξ )

Δ0(l, −ξ )

[
tanh

(
ε+
2

2T

)
+ coth

(
ξ

2T

)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(4.31b)

Their combined contribution can be written as

−i
(
Σ

(R)
b

)i,j
(k, ω) = −δi,j4h

2λΔ2
0(k, −ω)

[ω

π
(ihλγω)(−δΓ ) + c0

]
, (4.32)

where

δΓ ≡ λ

8π
ln

(
Λ

T

)
+ λ

2π

γ

(1 − γ )
ln

(
Λ

T

)
. (4.33)

Note that the terms proportional to c0 in Eqs. (4.28) and (4.32) do not cancel each other (unlike the
case in class AII). We know that all such terms must cancel in the final result due to the spin SU(2)
Ward identity. In what follows, we do not keep track of these terms involving the outscattering rate
Σε (which would give a ‘‘mass’’ to the spin polarization function).

4.5.2. Category 2
Diagrams in Fig. 10(a)–(h) give, in respective order, the following contributions:

(a) = −4δi,jh
2λΔ0(k, −ω)

× (i2πhγ λ2)

∫
l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(l, −ξ )

∫
ε1

(
Fε1+ω − Fε1

) 1
4
(Fε1+ξ + 3F−ε1−ω),

(4.34a)

(b) = −4δi,jh
2λΔ0(k, −ω)

× (i2πhγ λ2)

∫
l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(|−k − l|, −ω − ξ )Δu(l, −ξ )

∫
ε1

(
Fε1+ω − Fε1

)
× (−iπhγ λ)

∫
ε2

Fε2+ξ (Fε2+ω+ξ − Fε2 ),

(4.34b)
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Fig. 10. (Color online) Self energy diagrams for class C: Category 2. These diagrams give part of the AA wave function
renormalization.

(c) = −4δi,jh
2λΔ0(k, −ω)

× (i2πhγ λ2)

∫
l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(l, −ξ )

∫
ε1

(
Fε1+ξ − Fε1

) 1
4
(Fε1+ω + 3F−ε1−ξ ),

(4.34c)

(d) = −4δi,jh
2λΔ0(k, −ω)

× (i2πhγ λ2)

∫
l,ξ

Δ0(|−k − l|, −ω − ξ )Δu(|−k − l|, −ω − ξ )Δu(l, −ξ )

∫
ε1

(
Fε1+ξ − Fε1

)
× (−iπhγ λ)

∫
ε2

Fε2+ω(Fε2+ω+ξ − Fε2 ),

(4.34d)

(e) = −4δi,jh
2λΔ0(k, −ω)

× (i2πhγ λ2)

∫
l,ξ ,ε1

Δ0(|−k + l|, −ω + ξ )Δ0(l, ξ )

×
[

Δu(l, −ξ )

Δ0(l, −ξ )

(
1 − Fε1−ξ Fε1

)+
(

Δu(l, −ξ )

Δ0(l, −ξ )
− Δu(l, ξ )

Δ0(l, ξ )

)
coth

(
ξ

2T

) (
Fε1−ξ − Fε1

)]
,

(4.34e)
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(f ) = −4δi,jh
2λΔ0(k, −ω)

× (i2πhγ λ2)

∫
l,ξ ,ε1

Δ0(|−k + l|, −ω + ξ )Δu(|−k + l|, −ω + ξ )Δ0(l, ξ )

×
[

Δu(l, −ξ )

Δ0(l, −ξ )

(
1 − Fε1−ξ Fε1

)+
(

Δu(l, −ξ )

Δ0(l, −ξ )
− Δu(l, ξ )

Δ0(l, ξ )

)
coth

(
ξ

2T

) (
Fε1−ξ − Fε1

)]

× (−iπhγ λ)

∫
ε2

(Fε2+ω−ξ − Fε2 ),

(4.34f)

(g) = −4δi,jh
2λΔ0(k, ω)

× (i2πhγ λ2)

∫
l,ξ

Δ0(|k − l|, ω − ξ )Δu(l, −ξ )

∫
ε1

(
1 − Fε1−ωFε1

)
,

(4.34g)

(h) = −4δi,jh
2λΔ0(k, ω)

× (i2πhγ λ2)

∫
l,ξ

Δ0(|k − l|, ω − ξ )Δu(|k − l|, ω − ξ )Δu(l, −ξ )

∫
ε1

(
1 − Fε1−ωFε1

)

× (−iπhγ λ)

∫
ε2

(Fε2−ω+ξ − Fε2 ).

(4.34h)

We expand the integrals here in terms of external frequency ω and momentum k, and find that it is
sufficient to retain only the leading-order terms. Up to logarithmic accuracy, Eqs. (4.34g) and (4.34h)
vanish, and the summation of the remaining equations in Eq. (4.34) assumes the form

−i
(
Σ

(R)
b

)i,j
(k, ω) = −δi,j4h

2λΔ0(k, −ω)
ω

π
(−δz1), (4.35)

where

δz1 ≡ 3λ

4π
ln(1 − γ ) ln

(
Λ

T

)
+ λ

π

γ

(1 − γ )
ln

(
Λ

T

)
. (4.36)

4.5.3. Category 3
Fig. 11 depicts another group of diagrams that give significant contribution to the retarded self

energy. We find analogous diagrams for class AII (see Appendix B) whose net contributions vanish. In
the present case, the amplitudes acquire the following forms:

(a) = −2δi,jh
2λ2

∫
l,ε

[
Δ0(|k + l|, −2ε − ω)Δ0(l, −2ε − 2ω)Fε

+ Δ0(|k + l|, −2ε)Δ0(l, −2ε − ω)Fε

]
, (4.37a)

(b) = −8δi,jh
2λ2

∫
l,ξ

Δ0(|k + l|, ω + ξ )Δu(|k + l|, ω + ξ )Δ0(l, ξ )

× (−iπhγ λ)

∫
ε1

(Fε1 − Fε1+ω+ξ )
1

4
(3Fε1 − Fε1+2ω+ξ ),

(4.37b)

(c) = −8δi,jh
2λ2

∫
l,ξ

Δ0(|k + l|, ω + ξ )Δ0(l, ξ )Δu(l, ξ )

× (−iπhγ λ)

∫
ε2

Fε2 (Fε2+ω − Fε2+ω+ξ ),

(4.37c)
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(d) = −8δi,jh
2λ2

∫
l,ξ

Δ0(|k + l|, ω + ξ )Δu(|k + l|, ω + ξ )Δ0(l, ξ )Δu(l, ξ )

× (−iπhγ λ)2
∫

ε2

Fε2 (Fε2+ω − Fε2+ω+ξ )

∫
ε1

(Fε1 − Fε1+ω+ξ ).

(4.37d)

Evaluating the integrals and adding the results, one finds the net contribution from the diagrams in
Fig. 11:

−i
(
Σ

(R)
b

)i,j
(k, ω) = δi,ji

4

π
h(−δz2), (4.38)

where

δz2 ≡ λ

8π
ln

(
Λ

T

)
+ λ

2π

γ

(1 − γ )
ln

(
Λ

T

)
. (4.39)

Here Eq. (4.37a) contributes to the WL correction. It is easy to see that, as with Eq. (4.27a), it gives a
logarithmic correction whose infrared cutoff is temperature T .

To evaluate the diagrams in Figs. 9–11, we have used the following identities:

3∑
n=1

(
sn
)σ ,μ(

sn
)μ,β = 3δβ,σ , Tr[sisj] = 2δi,j, Tr[si] = 0,

3∑
n=1

(
s2sn

)α,μ(
sns2

)μ,γ = 3δα,γ ,

3∑
n=1

(
s2sn

)μ,β(
sns2

)σ ,μ = 3δβ,σ ,

3∑
n=1

Tr
[(

snsjs2
) (

s2sisn
)T] = 2δi,j,

3∑
n=1

Tr[sjsnsisn] = −2δi,j,

3∑
n=1

Tr[(snsjs2)(s2snsi)T] = −6δi,j,

3∑
n=1

Tr[(sjsns2)(s2sisn)T] = −6δi,j.

(4.40)

4.5.4. Results
Adding Eqs. (4.28), (4.32), (4.35) as well as (4.38), we arrive at the overall retarded self energy

−i
(
Σ

(R)
b

)i,j
(k, ω)

= −δi,j
4

π
h2λΔ2

0(k, −ω)

⎡
⎣ ωk2 (δλ − δz1 + 2δz2)

−ihλω2 (−δh + γ δΓ − δz1 + δz2) + k4

ihλ
(−δz2)

⎤
⎦ .

(4.41)

To one-loop order, the wave function renormalization Z for the field q̂ and the renormalized param-
eters hR, λR and γR are given by

Z = 1 + δz1 − 2δz2, hR = h(1 + δh + δz1 − 2δz2),
1

λR

= 1

λ
(1 − δλ + δz1 − 2δz2), γR = γ .

(4.42)

The derivation of the last equality (the nonrenormalization of the interaction γ ) is shown in Ap-
pendix A. Using Eqs. (4.29), (4.33), (4.36) and (4.39), one may verify that the second term inside the
brackets on the right-hand side of Eq. (4.41), proportional to −ihλω2, vanishes as required by current
conservation.

We then find the quantum correction to the spin density response function

δΠ i,j(k, ω) = −δi,ji
2

π
h2(1 − γ )2λΔ2

u(k, −ω)

[
ωk2 (δλ − δz1 + 2δz2) + k4

ihλ
(−δz2)

]
, (4.43)
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Fig. 11. (Color online) Self energy diagrams for class C: Category 3. These diagrams give the remainder of the wave function
renormalization. (a) is a pure class C quantum interference correction to the spin conductivity (weak localization) and to the
density of states. (b)–(d) are AA corrections.

and to the spin conductivity

δσ i,j = −δi,j
2

π

1

λ
(δλ − δz1 + 2δz2) = δi,j

2

π

(
1

λR

− 1

λ

)
. (4.44)

Eq. (4.44) can be written as Eq. (1.1b) using the explicit forms of δλ , δz1 and δz2.

5. Class CI

As a last example, we consider the noninteracting class CI superconductor where both the spin-
rotational and time-reversal symmetries are preserved [53]. Its nonlinear sigma model can be easily
obtained from class AI. The partition function Z[B] is given by

Z[B] =
∫

Dq̂ exp
(−Sq − Sc − SB

)
, (5.1a)

Sq = 1

4λ

∫
x
Tr
[∇q̂† · ∇q̂

]+ ih

2

∫
x
Tr
[
(ω̂ + iητ̂ 3)(q̂ + q̂†)

]
, (5.1b)

Sc = − ih

2

∫
x
Tr
[(

Bcl + Bqτ̂
1
) · ŝ M̂F (ω̂)

(
q̂ + q̂†) M̂F (ω̂)

]
, (5.1c)

SB = − i
4

π
h

∫
x,t

Bcl · Bq, (5.1d)

where q̂ is a matrix in Keldysh, spin, as well as frequency spaces, and subject to the conditions

q̂†q̂ = 1, −ŝ2τ̂ 1Σ̂1q̂Tŝ2τ̂ 1Σ̂1 = q̂†. (5.2)

q̂SP = τ̂ 3 is the saddle point. Note that there is noH.-S. field in the theory of the noninteracting system.
However, the external field B couples to the matrix field q̂ in the same way as the H.-S. field does in
the interacting case.
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5.1. Parameterization

To calculate the spin response function, we first apply the transformation:

q̂ → τ̂ 3q̂, q̂† → q̂†τ̂ 3, (5.3)

which brings the saddle point to the identity and transforms the actions Sq and Sc to

Sq = 1

4λ

∫
x
Tr
[∇q̂† · ∇q̂

]+ ih

2

∫
x
Tr
[
(ω̂τ̂ 3 + iη)(q̂ + q̂†)

]
, (5.4a)

Sc = − ih

2

∫
x
Tr
[(

Bcl + Bqτ̂
1
) · ŝ M̂F (ω̂)

(
τ̂ 3q̂ + q̂†τ̂ 3

)
M̂F (ω̂)

]
. (5.4b)

Moreover, the constraints of q̂ now become

q̂†q̂ = 1, ŝ2τ̂ 1Σ̂1q̂Tŝ2τ̂ 1Σ̂1 = q̂†. (5.5)

Given that q̂ is not Hermitian, a parameterization different from that in class AII and C is used:

q̂ = exp
(
iŴ
)

= 1 + iŴ − 1

2
Ŵ 2 − i

6
Ŵ 3 + 1

24
Ŵ 4 + · · · , (5.6)

where Ŵ follows the conditions

Ŵ = Ŵ †, ŝ2τ̂ 1Σ̂1Ŵ Tŝ2τ̂ 1Σ̂1 = −Ŵ . (5.7)

To be more specific, the second condition given above means

Ŵ
a,b;α,β

1,2 = sα,βŴ
−b,−a;−β,−α

−2,−1 , (5.8)

where the sign factor sα,β is defined by

sα,β =
{−1, α = β,

1, α �= β.
(5.9)

Here {a, b}, {α, β} and {1, 2} index the Keldysh, spin and frequency spaces, respectively. −a and −α

are defined such that (τ̂ 3)−a,−a = −(τ̂ 3)a,a and (ŝ3)−α,−α = −(ŝ3)α,α . For example, if a = 1 and α =↑,
then we have −a = 2 and −α =↓.

Substituting the parameterization given by Eq. (5.6) into Eq. (5.4), and rescaling Ŵ as in Eq. (4.8),
we arrive at the action in terms of Ŵ . Up to quadratic order in Ŵ , it can be expressed as

S
(2)
W =

∫
Ŵ

1,2;α,β

1,2 (−k1)M
β,α;σ ,γ

2,1;4,3 (k1, k2)Ŵ
2,1;γ ,σ

3,4 (k2) + J†
β,α

2,1 (k)Ŵ
2,1;α,β

1,2 (k)

+ J
β,α

2,1 (k)Ŵ 1,2;α,β

1,2 (−k)

+
∑
a,b

∫
1

2
Ŵ

a,a;α,β

1,2 (−k1)(Na,b)
β,α;σ ,γ

2,1;4,3 (k1, k2)Ŵ
b,b;γ ,σ

3,4 (k2),

(5.10)

whereM , N , J , and J† are defined as follows

M
β,α;σ ,γ

2,1;4,3 (k1, k2) ≡ 1

2

[
k21 − ihλ(ω1 − ω2)

]
δα,σ δβ,γ δ1,4δ2,3δk1,k2

+ihλ
[
Bcl(k1 − k2, ω4 − ω1) + F4Bq(k1 − k2, ω4 − ω1)

] · s σ ,αδ2,3δβ,γ ,

(5.11a)

J†
β,α

2,1 (k) ≡ h
√

λ
[
(F2 − F1)Bcl(−k, ω2 − ω1) + (1 − F1F2)Bq(−k, ω2 − ω1)

] · s β,α, (5.11b)

J
β,α

2,1 (k) ≡ −h
√

λB q(k, ω2 − ω1) · s β,α, (5.11c)
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(Na,b)
β,α;σ ,γ

2,1;4,3 (k1, k2) ≡ δa,bδa,1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

[
k21 − ihλ(ω1 + ω2)

]
δα,σ δβ,γ δ1,4δ2,3δk1,k2

+ ihλ
[
Bcl(k1 − k2, ω4 − ω1) + F4Bq(k1 − k2, ω4 − ω1)

]
· s σ ,αδ2,3δβ,γ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ δa,bδa,2

⎧⎪⎪⎨
⎪⎪⎩

1

2

[
k21 + ihλ(ω1 + ω2)

]
δα,σ δβ,γ δ1,4δ2,3δk1,k2

+ ihλ
[−Bcl(k1 − k2, ω4 − ω1) + F1Bq(k1 − k2, ω4 − ω1)

] · s σ ,αδ2,3δβ,γ

⎫⎪⎪⎬
⎪⎪⎭ .

(5.11d)

We also retain the cubic term S
(3)
W and quartic term S

(4)
W which arise from Sc [Eq. ((5.4b)] and Sq

[Eq. ((5.4a)], respectively. They are given by

S
(3)
W = −λ

6

∫
δk1+k2+k3,kJ

† β,α

2,1 (k)

×

⎡
⎢⎢⎣ Ŵ 2,1;α,α′

1,1′ (k1)Ŵ
1,2;α′,β ′
1′,2′ (k2)Ŵ

2,1;β ′,β
2′,2 (k3) + Ŵ 2,2;α,α′

1,1′ (k1)Ŵ
2,1;α′,β ′
1′,2′ (k2)Ŵ

1,1;β ′,β
2′,2 (k3)

+Ŵ 2,2;α,α′
1,1′ (k1)Ŵ

2,2;α′,β ′
1′,2′ (k2)Ŵ

2,1;β ′,β
2′,2 (k3) + Ŵ 2,1;α,α′

1,1′ (k1)Ŵ
1,1;α′,β ′
1′,2′ (k2)Ŵ

1,1;β ′,β
2′,2 (k3)

⎤
⎥⎥⎦

− λ

6

∫
δk1+k2+k3,−kJ

β,α

2,1 (k)

×

⎡
⎢⎢⎣ Ŵ 1,2;α,α′

1,1′ (k1)Ŵ
2,1;α′,β ′
1′,2′ (k2)Ŵ

1,2;β ′,β
2′,2 (k3) + Ŵ 1,1;α,α′

1,1′ (k1)Ŵ
1,2;α′,β ′
1′,2′ (k2)Ŵ

2,2;β ′,β
2′,2 (k3)

+Ŵ 1,2;α,α′
1,1′ (k1)Ŵ

2,2;α′,β ′
1′,2′ (k2)Ŵ

2,2;β ′,β
2′,2 (k3) + Ŵ 1,1;α,α′

1,1′ (k1)Ŵ
1,1;α′,β ′
1′,2′ (k2)Ŵ

1,2;β ′,β
2′,2 (k3)

⎤
⎥⎥⎦ ,

(5.12a)

S
(4)
W = λ

16

∫
δk1+k2+k3+k4,0

⎡
⎢⎢⎢⎣

− (k1 · k3 + k2 · k4) − 1

2
(k1 + k3) · (k2 + k4) − 1

3

(
k21 + k22 + k23 + k24

)
+1

6
ihλ(ω1 + ω2 + ω3 + ω4)

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2Ŵ
1,2;α,β

1,−2 (k1)Ŵ
2,1;β,γ

−2,3 (k2)Ŵ
1,2;γ ,σ

3,−4 (k3)Ŵ
2,1;σ ,α
−4,1 (k4)

+ Ŵ
1,1;α,β

1,2 (k1)Ŵ
1,1;β,γ

2,3 (k2)Ŵ
1,1;γ ,σ

3,4 (k3)Ŵ
1,1;σ ,α
4,1 (k4)

+ Ŵ
2,2;α,β

−1,−2 (k1)Ŵ
2,2;β,γ

−2,−3 (k2)Ŵ
2,2;γ ,σ

−3,−4 (k3)Ŵ
2,2;σ ,α
−4,−1 (k4)

+ 4Ŵ
1,1;α,β

1,2 (k1)Ŵ
1,1;β,γ

2,3 (k2)Ŵ
1,2;γ ,σ

3,−4 (k3)Ŵ
2,1;σ ,α
−4,1 (k4)

+ 4Ŵ
2,2;α,β

−1,−2 (k1)Ŵ
2,2;β,γ

−2,−3 (k2)Ŵ
2,1;γ ,σ

−3,4 (k3)Ŵ
1,2;σ ,α
4,−1 (k4)

+ 4Ŵ
1,1;α,β

1,2 (k1)Ŵ
1,2;β,γ

2,−3 (k2)Ŵ
2,2;γ ,σ

−3,−4 (k3)Ŵ
2,1;σ ,α
−4,1 (k4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.12b)

In what follows, we denote their summation as S
(3,4)
W .
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Fig. 12. (Color online) Class CI bare propagators. (a) and (b) correspond to the two terms in the propagator
〈
Ŵ 2,1Ŵ 1,2

〉
0

[Eq. (5.15a)]. Their sum is represented by (c). (d), (e) and (f) are associated with
〈
Ŵ 1,1Ŵ 1,1

〉
0
[ Eq. (5.15b)] ,

〈
Ŵ 2,2Ŵ 2,2

〉
0

[Eq. (5.15c)], and
〈
Ŵ 1,1Ŵ 2,2

〉
0
[Eq. (5.15d)], respectively.

5.2. Feynman rules

5.2.1. Bare propagator
Ignoring the coupling of the matrix field Ŵ to the external field B, the quadratic action acquires

the form

S
(2)
W =

∑
a,b

∫
Ŵ

a,b;α,β

1,2 (−k)Ŵ b,a;β,α

2,1 (k)
1

4

[
k2 − ihλ (ζaω1 + ζbω2)

]
, (5.13)

where ζa denotes (τ̂
3)a,a. We obtain the bare propagator attributed to this action〈

Ŵ
a,b;α,β

1,2 (k)Ŵ c,d;γ ,σ

3,4 (−k)
〉
0

= δα,σ δβ,γ δa,dδb,cδ1,4δ2,3Δ0(k, −ζaω1 − ζbω2)

+ sα,βδα,−γ δβ,−σ δa,−cδb,−dδ1,−3δ2,−4Δ0(k, −ζaω1 − ζbω2).
(5.14)

Here Δ0 is defined in Eq. (3.19). After substituting the explicit value of the Keldysh indices into this
equation, we arrive at:〈

Ŵ
2,1;α,β

1,2 (k)Ŵ 1,2;γ ,σ

3,4 (−k)
〉
0

= [
δα,σ δβ,γ δ1,4δ2,3 + sα,βδα,−γ δβ,−σ δ1,−3δ2,−4

]
Δ0(k, ω1 − ω2),

(5.15a)〈
Ŵ

1,1;α,β

1,2 (k)Ŵ 1,1;γ ,σ

3,4 (−k)
〉
0

= δα,σ δβ,γ δ1,4δ2,3Δ0(k, −ω1 − ω2), (5.15b)〈
Ŵ

2,2;α,β

1,2 (k)Ŵ 2,2;γ ,σ

3,4 (−k)
〉
0

= δα,σ δβ,γ δ1,4δ2,3Δ0(k, ω1 + ω2), (5.15c)〈
Ŵ

1,1;α,β

1,2 (k)Ŵ 2,2;γ ,σ

3,4 (−k)
〉
0

= sα,βδα,−γ δβ,−σ δ1,−3δ2,−4Δ0(k, −ω1 − ω2). (5.15d)

These terms are represented diagrammatically in Fig. 12, where solid black lines indicateW 2,1 and
W 1,2, while dashed blue (doted purple) ones correspond to W 1,1(W 2,2). Here the superscripts of W
are indices in the Keldysh space.W 2,1 andW 1,2 are distinguished by the direction of the short arrows.
Among the diagrams appearing in Fig. 12, (a) and (b) represent the two terms in Eq. (5.15a), while
(d), (e) and (f) correspond to, in respective order, Eqs. (5.15b), (5.15c), and (5.15d). As in class C, we
use two parallel lines with symbol ∞ in between to denote the sum of two terms in Eq. (5.15a) (see
Fig. 12(c)). Note that diagrams in Fig. 12(b) and (f) contain a sign factor sα,β assuming a value of −1
when the spin indices are the same, and +1 otherwise.

5.2.2. Interaction vertices
In Fig. 13(a)–(n), we depict the interaction vertices coupling the matrix field Ŵ and external fields

B. As with the H.-S. field in previous section, here we use red wavy line to denote B.
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Fig. 13. (Color online) Class CI interaction and diffusion vertices.
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The amplitudes of these interaction vertices are given as follows:

(a) = −h
√

λ
[
(F2 − F1)Bcl(−k, ω2 − ω1) + (1 − F1F2)Bq(−k, ω2 − ω1)

] · s β,α,

(b) = h
√

λBq(k, ω2 − ω1) · s β,α,

(c) = −ihλ
[
Bcl(k1 − k2, ω4 − ω1) + F4Bq(k1 − k2, ω4 − ω1)

] · s σ ,α,

(d) = − ihλ

2

[
Bcl(k1 − k2, ω4 − ω1) + F4Bq(k1 − k2, ω4 − ω1)

] · s σ ,α,

(e) = − ihλ

2

[−Bcl(k1 − k2, ω4 − ω1) + F1Bq(k1 − k2, ω4 − ω1)
] · s σ ,α,

(f ) = (g) = (h) = (i)

= hλ3/2

6

[
(F2 − F1)Bcl(−k, ω2 − ω1) + (1 − F1F2)Bq(−k, ω2 − ω1)

] · s β,αδ k1+k2+k3,k ,

(j) = (k) = (l) = (m)

= −hλ3/2

6
Bq(k, ω2 − ω1) · s β,αδ k1+k2+k3,−k .

(5.16)

5.2.3. 4-point diffusion vertices
The remaining diagrams in Fig. 13, i.e., (n)–(s), illustrate the 4-point diffusion vertices from S

(4)
W .

They share the same amplitude

−λ

4

⎡
⎢⎢⎣ − (k1 · k3 + k2 · k4) − 1

2
(k1 + k3) · (k2 + k4) − 1

3

(
k21 + k22 + k23 + k24

)
+1

6
ihλ(ω1 + ω2 + ω3 + ω4)

⎤
⎥⎥⎦

× δk1+k2+k3+k4,0 .

(5.17)

Here, to account for the vertex symmetry, the amplitude of diagram (n) has beenmultiplied by a factor
of 2, while that of (o) and (p) have been multiplied by 4.

5.3. Spin response

The spin density response functionΠ i,j(k, ω) can be obtained by taking derivatives of the partition
function Z[B] with respect to the external fields, see Eq. (4.1). We rewrite Z[B] in Eq. (5.1a) as

Z[B]

=
∫

DŴ exp

⎧⎪⎨
⎪⎩

−
∫

(Ŵ 1,2M̃Ŵ 2,1 + J†Ŵ 2,1 + Ŵ 1,2J) −
∑
a,b

∫
1

2
Ŵ a,aÑa,bŴ

b,b

−S
(3,4)
W [Ŵ 1,2, Ŵ 2,1, Ŵ 1,1, Ŵ 2,2] − SB

⎫⎪⎬
⎪⎭ ,

(5.18)

where M̃ and Ñ are the symmetrized M and N , respectively.
Integrating out Ŵ , we find

ln Z[B] ≈ −SB +
∫

J†M̃−1J − Tr ln M̃ − 1

2
Tr ln Ñ −

〈
S
(3,4)
W

〉
, (5.19)
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Fig. 14. (Color online) Lowest order diagrams in ln Z .

where
〈
S
(3,4)
W

〉
denotes

〈
S
(3,4)
W

〉
≡
∫ DŴ e− ∫ Ŵ1,2M̃Ŵ2,1−∑a,b

∫
1
2 Ŵ

a,aÑa,bŴ
b,b

S
(3,4)
W

[
Ŵ 1,2 − J†M̃−1, Ŵ 2,1 − M̃−1J, Ŵ 1,1, Ŵ 2,2

]
∫ DŴ e− ∫ Ŵ1,2M̃Ŵ2,1−∑a,b

∫
1
2 Ŵ

a,aÑa,bŴ
b,b

.

(5.20)

5.3.1. Semiclassical result
To the lowest order in the perturbation parameter λ, the 3rd and 4th terms in Eq. (5.19) are

two inessential constants independent of B, while the 2nd term illustrated in Fig. 14 gives nonzero
contribution. Using the identity (ŝi)−β,−αsα,β = (ŝi)α,β , it is straightforward to show that contributions
from the two diagrams in Fig. 14 are identical.

Combining all these terms, we arrive at

ln Z[B] = i
4

π
h

∫
Bq(−k, −ω) · Bcl(k, ω)k2Δ0(k, −ω)

− 4h2λ

∫
Bq(−k, −ω) · Bq(k, ω)

ω

π
coth

( ω

2T

)
Δ0(k, −ω) + O(λ),

(5.21)

which leads to the semiclassical spin response results:

Π
i,j
0 (k, ω) = −δi,j

2

π
h

k2

k2 − ihλω
= −δi,j(2ν0)

Dk2

Dk2 − iω
, (5.22a)

σ
i,j
0 = δi,j

2

π

1

λ
= δi,jD(2ν0). (5.22b)

5.3.2. Quantum correction
The evaluation of the quantum correction to spin response requires higher order terms of the form

of B
j
cl(k, ω)Bi

q(−k, −ω) in ln Z . The corresponding nonvanishing diagrams are shown in Fig. 15.

Diagrams in Fig. 15(a)–(i) are from the term −
〈
S
(3,4)
W

〉
in Eq. (5.19). Their contributions to ln Z are

as follows:

(a) = −δi,j4h
2λΔ2

0(k, −ω)

[(
k2 + 2ihλω

) λ

6

∫
ε

(Fε+ − Fε−)

∫
l
Δ0(l, −ω)

]
, (5.23a)

(b) = −δi,j4h
2λΔ2

0(k, −ω)

[
Δ−1

0 (k, −ω)
λ

12

∫
ε

(Fε+ − Fε−)

∫
l
Δ0(l, 2ε

−)
]

, (5.23b)

(c) = −δi,j4h
2λΔ2

0(k, −ω)

[
Δ−1

0 (k, −ω)
λ

12

∫
ε

(Fε+ − Fε−)

∫
l
Δ0(l, −2ε+)

]
, (5.23c)

(d) = (e) = −δi,j4h
2λΔ0(k, −ω)

[
λ

6

∫
ε

(Fε+ − Fε−)

∫
l
Δ0(l, −ω)

]
, (5.23d)

(f ) = (g) = −δi,j4h
2λΔ0(k, −ω)

[
−λ

6

∫
ε

(Fε+ − Fε−)

∫
l
Δ0(l, 2ε

−)
]

, (5.23e)

(h) = (i) = −δi,j4h
2λΔ0(k, −ω)

[
−λ

6

∫
ε

(Fε+ − Fε−)

∫
l
Δ0(l, −2ε+)

]
, (5.23f)
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Fig. 15. (Color online) Class CI linear response diagrams.

where, as before, ε± is defined as ε± = ε ± ω/2 . For notational simplicity, here we have omitted the

factor B
j
cl(k, ω)Bi

q(−k, −ω).
Wenotice that twodifferent types of integral appear in these equations. For Eqs. (5.23a) and (5.23d),

the integrand contains external-frequency-dependent propagator Δ0(l, −ω). As a result, these inte-
grals bring a factor of ln(Λ

ω
) . In the presence of interactions, the corresponding dc spin conductance

correction is cut off in the infrared limit by the dephasing rate, as in class AII. On the other hand, for
the remaining equations, propagatorΔ0(l, ∓ε±) depends on the integration variable ε. From a similar
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argument in class C, the corresponding contribution is cut off in the infrared directly by temperature,
instead of the dephasing rate.

Combining all these equations in Eq. (5.23), the net contribution from the diagrams in Fig. 15(a)–(i)
is

δ2 ln Z

δBclδBq

= −δi,j4h
2λΔ2

0(k, −ω)
ω

π

[
k2δλ − ihλω(−δh) + Δ−1

0 (k, −ω)(−δz1)
]
, (5.24)

where

δλ ≡ λ

24π
ln

(
Λ

ω

)
+ λ

24π
ln

(
Λ

T

)
, (5.25a)

δh ≡ λ

12π
ln

(
Λ

ω

)
− λ

24π
ln

(
Λ

T

)
, (5.25b)

δz1 ≡ − λ

12π
ln

(
Λ

ω

)
+ λ

6π
ln

(
Λ

T

)
. (5.25c)

Fig. 15(j) depicts diagram arising from −Tr ln M̃ in Eq. (5.19), with amplitude

(j) = −δi,j2h
2λ2

∫
l,ε

[
Δ0(l, −2ε − 2ω)Δ0(|k + l|, −2ε − ω)Fε

+ Δ0(l, −2ε − ω)Δ0(|k + l|, −2ε)Fε

]
. (5.26)

A straightforward calculation shows that diagram in Fig. 15(j) gives contribution

δ2 ln Z

δBclδBq

= δi,ji
4

π
h(−δz2), (5.27)

where

δz2 ≡ λ

8π
ln

(
Λ

T

)
. (5.28)

Using Eqs. (4.1), (5.24) and (5.27), we obtain the one-loop quantum correction to the spin response
function

δΠ i,j(k, ω) = −iδi,j
2

π
h2λΔ2

0(k, −ω)

×
[

ωk2 (δλ − δz1 + 2δz2) − ihλω2 (−δh − δz1 + δz2) + k4

ihλ
(−δz2)

]

= −iδi,j
2

π
h2λΔ2

0(k, −ω)

[
ωk2 (δλ − δz1 + 2δz2) + k4

ihλ
(−δz2)

]
,

(5.29)

where in the last equality, we have used −δh − δz1 + δz2 = 0, proved by substituting the explicit
form of these variables in Eqs. (5.25) and (5.28).

From this result we acquire the relative quantum correction to the spin conductivity for the
noninteracting class CI superconductor:

δσ i,j

σ
i,j
0

= − (δλ − δz1 + 2δz2)

= − λ

8π
ln

(
Λ

ω

)
− λ

8π
ln

(
Λ

T

)
.

(5.30)

It consists of two terms: the first logarithmic correction is cut off in the infrared limit by the external
frequency ω, while the second one is cut off by temperature T .

6. Weak (anti)localization and phase relaxation

In this section, we investigate the dephasing time by evaluating the WAL correction using two
different approaches, both carried out in the symplectic metal. The first approach is similar to the one
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employed by Altshuler, Aronov, and Khmelnitsky (AAK) [49]; in the second approach, we employ a
standard perturbation technique widely used for the evaluation of the dephasing time [71–73].

6.1. AAK approach

6.1.1. Equation of the Cooperon in the presence of the density field in the space–time representation
In the space–time representation, S

(2)
Y the quadratic action for the Cooperon matrix field Ŷ takes

the form [see Eq. (3.14b) for its momentum–frequency version]

S
(2)
Y [Ŷ †, Ŷ ] =

∫
x,t1,t2

Ŷ
†
t1,t2

(x)
{−∇2 + hλ

(
∂t1 − ∂t2

)+ ihλ [ρcl(x, t1) − ρcl(x, t2)]
}
Ŷt2,t1 (x).

(6.1)

Here we have disregarded the H.-S. field’s quantum component ρq. Using Eq. (6.1), we find, in the
presence of density field ρcl, the full Cooperon propagator

Ct1,t2;t ′2,t ′1 (x, x
′) ≡

〈
Ŷt1,t2 (x)Ŷ

†
t ′2,t ′1

(x′)
〉
, (6.2)

obeys the equation{−∇2 + hλ
(
∂t2 − ∂t1

)+ ihλ [ρcl(x, t2) − ρcl(x, t1)]
}
Ct1,t2;t ′2,t ′1 (x, x

′)
= δ(t1 − t ′1)δ(t2 − t ′2)δ(x − x′).

(6.3)

Following Ref. [49], we employ a change of variables

t = t1 + t2

2
, t ′ = t ′1 + t ′2

2
, η = t2 − t1, η′ = t ′2 − t ′1,

Ct,t ′
η,η′ (x, x′) = Ct1,t2;t ′2,t ′1 (x, x

′),
(6.4)

after which the equation for the Cooperon [Eq. (6.3)] reduces to{
−∇2 + 2hλ∂η + ihλ

[
ρcl

(
x, t + η

2

)
− ρcl

(
x, t − η

2

)]}
Ct,t ′

η,η′ (x, x′)

= δ(t − t ′)δ(η − η′)δ(x − x′).
(6.5)

Note that t appears as a parameter here and thus the solution can be represented as

Ct,t ′
η,η′ (x, x′) = Ct

η,η′ (x, x′)δ(t − t ′), (6.6)

where Ct
η,η′ (x, x′) follows{
−∇2 + 2hλ∂η + ihλ

[
ρcl

(
x, t + η

2

)
− ρcl

(
x, t − η

2

)]}
Ct

η,η′ (x, x′)

= δ(η − η′)δ(x − x′).
(6.7)

6.1.2. WAL correction
As mentioned in Section 3, to recover the correct infrared cutoff of the WAL correction to

conductivity, inclusion of higher-order diagrams is needed. Replacing the bare Cooperon in Fig. 5(a)
with the full one (see Fig. 16), we obtain the associated retarded self energy of the density field ρ:

−iΣ (R)
ρ (k, ω) = −4h2λΔ2

0(k, −ω)

(−λ

2

)∫
ε1,ε2,l

(
Fε+

1
− Fε−

1

)
× [

Δ−1
0 (l, −ω) + k2

] 〈
Cε−

1 ,−ε+
2 ;−ε+

1 ,ε−
2
(−l, −l)

〉
ρ
,

(6.8)

where ε±
1,2, as before, stands for ε1,2±ω/2. TheCooperonpropagator entering this equation is averaged

over thermal density fluctuations. To simplify the calculation, we directly set the frequency and
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Fig. 16. (Color online) Class AII WAL diagram with the full Cooperon propagator.

Fig. 17. (Color online) Full Cooperon propagator.

momentum indices according to the special properties of the averaged Cooperon. Moreover, an extra
factor of the space–time volume should appear on the left hand side of Eq. (6.8) but is neglected for
simplicity.

Particle number conservation demands that the density response function Π (k, ω) vanishes as
k → 0. Therefore, we argue the term proportional to Δ−1

0 (l, −ω) in Eq. (6.8) does not contribute and
focus on the remaining terms.

We then rewrite Eq. (6.8) in terms of the Cooperon in the space–time domain. After the Fourier
transform, the integral in Eq. (6.8) can be expressed as∫

ε1,ε2,l

(
Fε+

1
− Fε−

1

)
Cε−

1 ,−ε+
2 ;−ε+

1 ,ε−
2
(−l, −l)

=
∫

ε1

∫
t1,t2,t ′1,t ′2,x,x′

(
Fε+

1
− Fε−

1

)
Ct1,t2;t ′2,t ′1 (x, x

′)δ(x − x′)δ(t2 − t ′1)e
iε−
1 t1−iε+

1 t ′2+iωt2 .

(6.9)

Changing the variables according to Eq. (6.4) andusing Eq. (6.6) (see Fig. 17), Eq. (6.9) is further reduced
to

2

∫
ε1

∫
t,η,x

(
Fε+

1
− Fε−

1

)
Ct

η,−η(x, x)e
iωη = 2

π
ω

∫
t,η,x

Ct
η,−η(x, x)e

iωη. (6.10)

We then substitute Eq. (6.10) into Eq. (6.8). Averaging over the density fluctuations removes the
dependence of Ct

η,−η(x, x) on t and x. The corresponding integration over these variables cancels with
the extra factor of the space–time volume, and as a result one obtains:

−iΣ (R)
ρ (k, ω) = − 4

π
h2λωΔ2

0(k, −ω)k2δλ WAL, (6.11)

where

δλWAL = −λ

∫
η

〈
Ct

η,−η(x, x)
〉
ρ
eiωη. (6.12)

From Eqs. (3.42)–(3.45) and (6.11), the WAL correction to the dc conductivity can be expressed
through the Cooperon as
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δσWAL

σ0

= λ

∫
η

〈
Ct

η,−η(x, x)
〉
ρ
, (6.13)

where Ct
η,−η(x, x) is the solution of Eq. (6.7).

6.1.3. Cooperon solution in the form of a path integral
Multiplying both sides of Eq. (6.7) by 1/(2hλ) = D/2 [Eq. (2.44)] gives{

∂η − D

2
∇2 + i

2

[
ρcl

(
x, t + η

2

)
− ρcl

(
x, t − η

2

)]}
Ct

η,η′ (x, x′) = D

2
δ(η − η′)δ(x − x′), (6.14)

which can be considered the imaginary time Schrödinger equation for a particle of mass 1/D in the
presence of the stochastically fluctuating field

ρt (x, η) ≡ i

2

[
ρcl

(
x, t + η

2

)
− ρcl

(
x, t − η

2

)]
. (6.15)

Its solution in an arbitrary density field ρcl can be expressed in terms of a path integral [49,65,74]:

Ct
η,η′ (x, x′) = D

2

∫ x(η)=x

x(η′)=x′
Dx(τ )

× exp

(
−
∫ η

η′
dτ

{
1

2D
ẋ2(τ ) + i

2

[
ρcl

(
x(τ ), t + τ

2

)
− ρcl

(
x(τ ), t − τ

2

)]})
.

(6.16)

To obtain theWAL correction to conductivity, one needs to average the solution in Eq. (6.16) over the
fluctuations of the density field ρcl whose correlator is given by iΔ(K )

ρ in Eq. (3.33), and then substitute
the averaged Cooperon propagator into Eq. (6.13). In the limit where the exchange energyω � T , the
Keldysh Green’s function iΔ(K )

ρ (k, ω) can be approximated as

iΔ(K )
ρ (k, ω) ≈ T

γ 2

κ

(
1

Dck2 + iω
+ 1

Dck2 − iω

)
, (6.17)

whose space–time expression has the form

iΔ(K )
ρ (x, t) ≈ T

γ 2

κ

(
1

4πDc |t|
)
exp

(
− x2

4Dc |t|
)

. (6.18)

Eq. (6.17) is a valid assumption because processes with exchange energy ω � T give the major
contribution to the dephasing time [75]. It is worth mentioning that Eq. (6.17) shows that the density
fluctuations are themselves diffusive. These fluctuations of the H.-S. field destroy the phase coherence
and cut off the weak (anti)localization. So the system serves as its own heat bath, as expected for the
ergodic delocalized phase we have investigated.

6.2. Self consistent calculation

In the following, we employ a different approach to examine the higher order processes that are
responsible for the dephasing of the WAL correction. Instead of expressing the dressed Cooperon in
the form of a path integral, we write it as a partial summation of a diagrammatic series. Moreover,
we take into account the correction from the insertion of the four-point diffusion vertex, besides the
interaction vertex coupling matrix field Ŷ and the H.-S. field ρ. However, we will show below that
the correction from the vertex of the former type can be neglected. The techniques we use here to
treat the WAL and phase relaxation were employed before in several papers [71–73], but not in the
framework of the FNLσM.

The WAL correction to the self energy can still be represented by Eq. (6.8), although the Cooperon
propagator Cε−

1 ,−ε+
2 ;−ε+

1 ,ε−
2
(−l, −l) entering this formula no longer equals N−1

ε−
1 ,−ε+

2 ;−ε+
1 ,ε−

2

(−l, −l) [see
Eq. (3.15)] due to the inclusion of the four-point diffusion vertex. It satisfies the equation

〈C〉ρ = C0 + C0ΣY 〈C〉ρ, (6.19)
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Fig. 18. (Color online) The lowest order self energy diagrams for the Cooperon propagator.

with C0 andΣY being the bare Cooperon propagator and the irreducible self energy of thematrix field
Ŷ , respectively.

In Fig. 18, we show the lowest order self energy diagrams for the Cooperon. We neglect ΣY given
by Fig. 18(f) and 18(g) which are off-diagonal in the frequency space, and focus on the diagonal ones,
i.e., those depicted in Fig. 18(a)–(e). The associated amplitude of diagram in Fig. 18(i), i ∈ {a, b, . . . , e},
has the form

Σ
(i)
Y (−l, −ω) = Σ

(i)
X (−l, −ω), (6.20)

where the explicit expression ofΣ
(i)
X is givenbyEq. (3.47). For each self energy termΣX (ε−, ε+; ε+, ε−)

in the diffuson channel, there is a corresponding ΣY (ε−, −ε+; −ε+, ε−) which shares the same
expression, see Section 3. We have already evaluated these terms in Section 3, and found their
summation can be expressed as follows

ΣY (−l, −ω) = l2δλ − ihλω(−δh) + Σε, (6.21)
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Fig. 19. (Color online) Effective self energy diagrams for the Cooperon.

where δλ, δh andΣε were defined in Eqs. (3.55a), (3.55b) and (3.51), respectively. Note, however, that
the logarithmic denominator of the first term in δλ is not τ−1

φ as in Eq. (3.55a) but ω.
The first two terms in Eq. (6.21) are of linear order in λ and lead to renormalization of the diffusion

parameters: h, λ. Since we are only interested in the WAL correction to lowest order in λ, these two
terms are neglected.

The last term Σε , on the other hand, diverges in the infrared limit and cannot be simply discarded.
To evaluate Eq. (3.51), one can make use of the following approximation

2 coth

(
ξ

2T

)
− tanh

(
ξ + ε

2T

)
− tanh

(
ξ − ε

2T

)
≈ 2 coth

(
ξ

2T

)
− 2 tanh

(
ξ

2T

)

≈
⎧⎨
⎩ 2 coth

(
ξ

2T

)
≈ 4T

ξ
, |ξ | < T ,

0, |ξ | > T ,

(6.22)

in the limit T � ε. Therefore, the leading contribution to the integral comes from the region |ξ | < T .
Associated processes with exchange energy |ξ | > T can be ignored, while for processes with |ξ | < T ,
those carrying a factor of coth( ξ

2T
) give the most singular contribution and need to be retained. Note

also that the coth( ξ

2T
) term in Eq. (3.51) comes from the correlator 〈ρcl(q, ξ ) ρcl(−q, −ξ )〉 [i.e., the

Keldysh Green’s function iΔ(K )
ρ (q, ξ )].We then arrive at the conclusion that, the net contribution given

by the diagonal self energy diagrams in Fig. 18(a)–(e) can be approximated by that from Fig. 19 where
the exchange energy is restricted to the range |ξ | < T .

This explains the assumption we employed in Section 6.1, where we disregard the quantum
component ρq and processes with exchange energy larger than T . In particular, the Cooperon prop-
agator entering the WAL correction can be represented by the one in the classical H.-S. field ρcl with
characteristic frequency smaller than T . Fig. 19 can be considered as a diagrammatic interpretation of
Eq. (6.16) [or Eq. (6.7)], and gives the first few leading order terms in the perturbation expansion of
the Cooperon.

To address the problem of the infrared divergence inΣε , we include diagonal self energy diagrams
with more than one pair of H.-S. field propagator (or equivalently, interaction line). We employ the
self-consistent Born approximation (SCBA) by substituting the bare Cooperon propagator in Fig. 19
with the renormalized one, and obtain the self-consistent equation for τD ≡ −hλ/Σε:

τ−1
D = − i

2
πγλ

∫ T

0

dξ

2π

∫
l

[
Δ̃0(l, ξ ) + Δ̃0(l, −ξ )

] [Δu(l, ξ )

Δ0(l, ξ )
− Δu(l, −ξ )

Δ0(l, −ξ )

]
coth

(
ξ

2T

)
, (6.23)

where Δ̃0(l, ξ ) ≡ 1/(l2 + ihλξ +hλτ−1
D ) gives the renormalized Cooperon propagator. The self energy

Σε = −hλτ−1
D evaluated within the SCBA is a partial summation of the infinite-order diagrammatic

series wherein diagrams with crossed ‘‘interaction’’ lines are ignored. It is easy to check that this
integral does not diverge in the infrared limit anymore, and one would get the weak antilocalization
correction of the form in Eq. (3.48) with infrared cutoff τ−1

D .
Up to logarithmic accuracy, Eq. (6.23) is equivalent to

τ−1
D = − i

2
πγλ

∫ T

τ−1
D

dξ

2π

∫
l
[Δ0(l, ξ ) + Δ0(l, −ξ )]

[
Δu(l, ξ )

Δ0(l, ξ )
− Δu(l, −ξ )

Δ0(l, −ξ )

]
coth

(
ξ

2T

)
, (6.24)



Y. Liao et al. / Annals of Physics 386 (2017) 97–157 151

which leads to the following equation after a straightforward calculation:

τ−1
D = λ

4

γ 2

(2 − γ )
T ln

(
T

τ−1
D

)
. (6.25)

This result is consistent with the one obtained in Ref. [66]. Eq. (6.25) also obtains via the lowest order
cumulant expansion in the path integral Eq. (6.16), when self-consistency is imposed in the infrared
‘‘by hand’’ [50].

7. Prospects for the ergodic-MBL transition as a ‘‘dephasing catastrophe’’

The possibility to approach the ergodic-MBL transition in 2D from the ergodic side (at amany-body
mobility edge corresponding to temperature TMBL) is a primary motivation for this work. We argue
that a key attribute of such a temperature-tuned transition is the failure of dephasing of quantum
conductance corrections as T → TMBL > 0, when approached from above. Conversely, we argue that
dephasing of quantum interference corrections to dc transport is equivalent to the condition that a
system serves as its own heat bath, making transport classical and ergodic on the longest scales.

For a system with localizing quantum conductance corrections, the failure of dephasing means
that quantum coherence is achieved across arbitrarily large length scales at finite energy density. It
alsomeans that localizing quantum interference corrections swamp out AA corrections at all orders in
perturbation theory, since the former diverge (in two dimensions) in the infrared as τ−1

φ → 0, while
AA corrections remain finite even at the transition T = TMBL.

To make this idea concrete, consider the one-loop class CI corrections in Eq. (1.1c). As discussed in
Section 1.2, there are twoWL corrections in this case: the standard orthogonal class correction cut by
dephasing τ−1

φ > 0, and the nonstandard class correction cut by temperature; each term contributes
‘‘half’’ of the total WL correction. Like the nonstandard correction, the third term (AA correction) is
also directly cut by temperature. According to the standard self-consistent solution for τ−1

φ (D, γ ) in
Eqs. (1.7) and (6.25) [50,17], the dephasing rate vanishes only at zero temperature. If instead there is a
many-body mobility edge, then τ−1

φ goes to zero at this energy density, and the first term in Eq. (1.1c)
would diverge, signaling localization.

There are potential practical and conceptual problems with this description. The most obvious
practical problem is that even if the dimensionless bare conductance (defined at the scale of the elastic
mean free path) is large, the divergence of τφ means that WL corrections become comparably big
close to the putative ergodic-MBL transition. Then it appears necessary to calculate ever higher order
corrections to capture the physics close to the transition. However, class C [Eq. (1.1b), [37,36,34]]
provides a scenario in which control might be possible without calculating to arbitrarily high order.
The point is that the interaction strength γ may be marginal to at least three-loop order [37,36,34].
Assume that this is the case, so that γ can be treated as a constant. Then one can tune class C to
a zero temperature metal–insulator transition (MIT) with arbitrarily large critical conductance. The
key idea is to choose the interaction γ so as to exactly balance (e.g.) the one- and two-loop WL
corrections [36,34]; note that the AA correction is antilocalizing for γ < 0, which is the physical sign
choice for direct exchange-mediated spin–spin interactions. Part of the correction that arises at two
loops obtains from theunitaryWigner–Dyson class diffusons that appear at all one-body energies [27],
and must therefore be cut by dephasing at finite temperature. Then, by tuning the interaction slightly
below the required threshold, the T = 0 MIT becomes an arbitrarily low temperature TMBL > 0
transition. It is reasonable to expect that some aspects of both transitions look the same, as approached
from above, since both are characterized by a diverging dephasing time τφ → ∞. A key question is
whether there is a well-defined average conductance at the MBL transition that deforms smoothly to
the large critical conductance as we tune TMBL → 0. Because the one-loop WL correction in class C is
directly cut by temperature instead of dephasing, a test of this idea requires a two-loop calculation in
class C, which we defer to future work. The MBL scenario described above is also explicated in Fig. 20.

Conceptual problems with the ergodic-MBL transition and/or the many-body mobility edge in-
clude the following. It is possible thatmany-bodymobility edges and/orMBL do not exist inmore than
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Fig. 20. Dephasing scenarios for an ergodic-MBL transition in 2D that is continuously connected to a zero temperature,
interacting [27] metal–insulator transition quantum critical point (‘‘MIT QCP’’). A system with weak localizing (WL) quantum
conductance corrections in the absence of interactions can be tuned to the threshold of delocalization at zero temperature
via a competing Altshuler–Aronov (AA) correction, for example in class C [34,36,53]. If we treat the interaction coupling γ as
a strictly marginal parameter (true to one loop, possibly to three loops [37,55]), then the critical conductance G∗ at the zero
temperature transition can be made arbitrarily large relative to e2/h. In this figure for familiarity we use units appropriate
to electrical conductivity, although in the superconductor quasiparticle realization of class C this should be replaced with the
spin conductivity. Figures (a) and (b) present the conductance G and dephasing time τφ in the ‘‘pre-MBL’’ scenario, meaning
the expectation if MBL does not occur. For G tuned slightly less than G∗ or the interaction strength γ tuned slightly less than
the value γc needed to delocalize the system at zero temperature, the pre-MBL scenario has G and 1/τφ vanishing only at zero
temperature. Figures (c) and (d) instead show the MBL scenario, whereby G and 1/τφ vanish at a finite TMBL > 0. By tuning G
or γ sufficiently close to their critical values, the MBL transition can be continuously deformed to the zero temperature MIT,
TMBL → 0. The one-loop WL and AA corrections for class C are given by Eq. (1.1b). Since the former arises due to the special
nonstandard class diffusionmodes near zero energy, it is automatically cut by temperature [52]. The dephasing rate τ−1

φ would
enter at two-loop order, where the localizing unitary class diffuson correction [27] appears at all one-body energies. In this
paper we perform explicit calculations only to one loop, so the confirmation or refutation of the scenario pictured in (c) and (d)
is left to future work.

one spatial dimension due to mobile ‘‘hot bubbles’’, i.e. rare ergodic regions [14,15]. We note that a
precise formulation of finite temperature response theory as presented in this papermay allow one to
test this scenario, by looking for rare dephasing events that always succeed in suppressing quantum
interference on the largest scales. Another potential difficulty with class C and other realizations
of the 10-fold way is the presence of a nonabelian continuous symmetry [spin SU(2) in the case of
classes C and CI]. Arguments have been made [76] that such a symmetry is incompatible with MBL.
However, it is perfectly possible to have a continuous symmetry on the ergodic side that becomes
spontaneously broken in the insulator, whether the latter is a zero-temperature Anderson–Mott or
finite-temperature MBL phase. Indeed, this is one interpretation of the ‘‘magnetic instability’’ in the
spin SU(2) symmetric, interacting orthogonal class metal at zero temperature [26,27,56].
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Fig. A.21. Class AII noncontributing diagrams (1/3).
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A. Renormalization of the interaction strength

The renormalization of the diffusion parameters h and λ can be obtained directly from the previous
calculation, but this does not apply to the interaction strength γ . In this appendix, we calculate
the renormalization of the interaction strength and show that for the symplectic class AII metal
h(1 − γ ) = hR(1 − γR), while for class C superconductor γR = γ .

For notational simplicity, we define dλ, dh and dγ by

λR = λ(1 + dλ), hR = h(1 + dh), γR = γ (1 + dγ ). (A.1)

From Eq. (4.42), we have, to the leading order,

dλ = δλ − δz1 + 2δz2, dh = δh + δz1 − 2δz2. (A.2)
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Fig. A.22. Class AII noncontributing diagrams (2/3).

This applies to class C as well as class AII, which can be considered as a special case where δz2 = 0
and δz1 = δz [see Eq. (3.61)].

We notice that

δΠ (k, ω) = Π (k, ω|λR, hR, γR) − Π (k, ω|λ, h, γ )

= − 2

π
k2Δ2

u(k, −ω)
{
[hdh − hγ (dγ + dh)] k2 + ih2(1 − γ )2λωdλ

}
,

(A.3)

where Π (k, ω|λ, h, γ ) is given by Eq. (3.39). Π (k, ω|λR, hR, γR) can be obtained by replacing the
variables with renormalized ones. Comparing this equation with Eq. (4.43), we have

hR(1 − γR) − h(1 − γ ) = h(1 − γ )dh − hγ dγ = h(1 − γ )2(−δz2). (A.4)
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Fig. A.23. Class AII noncontributing diagrams (3/3).

In Eqs. (A.3) and (A.4), we retain terms to first order in dλ, dh, and dγ , all of which areO(λ). Eq. (A.4)
implies that dγ can be evaluated from

dγ = 1 − γ

γ
[δh + δz1 − (1 + γ ) δz2] . (A.5)

For class AII, δz2 = 0 means that h(1− γ ) does not renormalize. This is the statement that the charge
compressibility [Eq. (3.41)] is preserved in an interacting Wigner–Dyson class system, although the
tunneling density of states receives AA corrections [27]. On the other hand, for non-standard class C,
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this statement does not hold as δz2 �= 0. Substituting the explicit forms of δh [Eq. (4.29)], δz1 [(4.36)]
and δz2 [Eq. (4.39)] into Eq(A.5) leads to dγ = 0, and as a result γR = γ .

B. Class AII vanishing diagrams

Additional diagrams that give vanishing net contribution to the renormalized charge density
polarization function in the symplectic class AII are shown in Figs. A.21–A.23.
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