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ATTITUDE CONTROL SYSTEM COMPLEXITY REDUCTION VIA
TAILORED VISCOELASTIC DAMPING CO-DESIGN

Chendi Lin; Daniel R. Herber] Vedant! Yong Hoon Lee; Alexander Ghosh;
Randy H. Ewoldt; James T. Alllison’

Intelligent structures utilize distributed actuation, such as piezoelectric strain actu-
ators, to control flexible structure vibration and motion. A new type of intelligent
structure has been introduced recently for precision spacecraft attitude control.
It utilizes lead zirconate titanate (PZT) piezoelectric actuators bonded to solar
arrays (SAs), and bends SAs to use inertial coupling for small-amplitude, high-
precision attitude control and active damping. Integrated physical and control sys-
tem design studies have been performed to investigate performance capabilities
and to generate design insights for this new class of attitude control system. Both
distributed- and lumped-parameter models have been developed for these design
studies. While PZTs can operate at high frequency, relying on active damping
alone to manage all vibration requires high-performance control hardware. In
this article we investigate the potential value of introducing tailored distributed
viscoelastic materials within SAs as a strategy to manage higher-frequency vibra-
tion passively, reducing spillover and complementing active control. A case study
based on a pseudo-rigid body dynamic model (PRBDM) and linear viscoelasticity
is presented. The tradeoffs between control system complexity, passive damping
behavior, and overall dynamic performance are quantified.

INTRODUCTION

High-precision attitude control is crucial for space data gathering. To obtain high quality scientific
data, fast and accurate small angle reorientation and jitter reduction are needed.'™ Many studies
have been performed to diminish the vibration by both structural and control design.>~’ Recent work
has suggested that strain-actuated solar arrays (SASAs) have potential to effectively achieve this
goal by using distributed internal actuation across the SAs.? This internal actuation can be achieved
with piezoelectric actuators bonded to the SAs.® While this control architecture performs well,
additional tailoring of the structure may increase the overall performance as well reduce system
complexity and cost.

As a case study, viscoelastic dampers are introduced at the joints between the SAs and the main
spacecraft body. Using a simplified model of the system, we can investigate how intelligent struc-
tures can effectively achieve enhanced attitude control on the spacecraft. In addition to designing
aspects of the SA geometry, we will consider some design flexibility with respect to the properties
of the viscoelastic material. Previous studies have investigated the design of the linear viscoelastic
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material function (a function-valued material property) using simple parameterizations to improve
system performance.” Other studies have shown that the simultaneous design of physical struc-
ture and material properties enables higher system performance compared to designing structure
only.'? Here we use a general relaxation kernel function with Boltzmann superposition to represent
linear viscoelasticity.!!"12 This model gives the most general representation of linear viscoelastic
behavior, which can be characterized by the relaxation kernel function K () and integro-differential
equations. In this article, we choose some specific kernel function shapes. Using these kernel func-
tions, we will investigate the capability of the viscoelastic material damper to generate improved
designs that can maximize the reorientation capabilities of the bus and minimize vibrations.

MODELING OF THE SPACECRAFT BUS, STRAIN-ACTUATED SOLAR ARRAYS, AND
VISCOELASTIC ELEMENTS

Figure 1. Pseudo-rigid body dynamic model of the SASA system.

Pseudo-Rigid Body Dynamic Model

An illustration of the SASA system is in Fig. 1. Here the spacecraft bus is modeled as a simple
cylinder attached to two flexible SASAs. In this system, actuation is only provided through strain at
the SA structure surface created by applying voltage on the attached piezoelectric actuators and there
is no interaction with anything external to the spacecraft. Then, the total system momentum must be
conserved (in the absence of any external disturbances). Therefore, for a generally counterclockwise
(CCW) movement of the SA, the bus will rotate in the opposing clockwise (CW) direction allowing
for attitude changes.

The key behavior of the SASA system can be captured by a fairly simple pseudo-rigid body
dynamic model (PRBDM),>!3 shown in Fig. 1. Two rigid cantilever beams representing the SAs
are linked to the bus cylinder via a torsional spring. The stiffness of the SAs beams is modeled with
the torsional springs. The rotation angle of the spacecraft bus about its center O is denoted 6, §
denotes the rotation angle of the SA around the joint A (and is an approximation of the strain on the
SA), and M is the moment applied on the array via the piezoelectric actuator. The geometry of the
SA is defined by £ as the length, w as the width, and A as the height.

Equations of Motion for PRBDM SASA System. It was shown by Chilan et al. that the expected
array bending displacement is small.> Therefore, a linearized bus-array PRBDM is appropriate. The
linearized equations are:
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where k is the SA stiffness, boo will help us include the viscoelastic element, the two factors in T
and /C are due to the two symmetrically attached SAs, and ¢ is the potential disturbance on the bus.
By inverting the mass matrix and rearranging, we arrive at the equivalent first-order linear dynamic
system:
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where A1 = (m11m22 — mlgmzl).

We also in this section, want to link the beam stiffness k to the SA geometry for a more realizable
physical system. Using beam theory on a cantilever beam, we have the following relationship
between the strain and the applied moment:

2EIv
where v is the moment applied on the beam, E is the Young’s modulus, v is the deflection of the
beam at the tip, and I = wh?3/12 is the moment of inertia of the beam’s cross section. Using again

the small-angle approximation, we have:

v
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Thus the relationship between k and ¢, both with and without an area constraint, is:
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Modeling the Viscoelastic Element

Here we consider the addition of a viscoelastic damper at the revolute joint that attaches the SA to
the spacecraft bus. The viscoelasticity in the damper in this study is characterized by the relaxation
kernel function K (t). Theoretically, the shape of the kernel function of the linear viscoelasticity in
time domain may have any arbitrary shape, but with a certain constraints: larger or equal to zero
and monotonically decreasing (see the viscoelastic damper design test cases in Refs. 12, 14). Here
we aim to enhance system performance by optimizing the shape of this function using an efficient
parameterization. The torque (or force) induced by the relative motion of the joint (both ¢ and 8)
containing a viscoelastic damper is modeled with the following equation:

Fyp(t) = Fy(t) + For(t) = —kso(t) — /_ t K(t —7)0(7)dr (6)



where Fy g is the torque due to a viscoelastic element, F}, is the torque due to the spring behavior
parameterized by kg, and Fg is the torque due to the convolution integral behavior parameterized
by the relaxation kernel K (t).

Simulation and optimization studies that require the evaluation of a convolution integral can be
computationally expensive.!>1® Fortunately, there are alternative representations that can reduce
the computational expense, such as an linear time-invariant (LTI) system representations.

Representation as an LTI System. Consider the following single-input, single-output LTT sys-
tem:

és (t) = AsEs(t) + Bsus(t) (7a)
Ys (t) = Csﬁs(t) (7b)

where & are the states and the matrices { A, B, Cs} are of the appropriate size. The solution to

Eqn. (7) without & (t) can be represented as :!”

t
ys(t) = CseAs(t_tO)Ss(to) + CseAS(t_T)Bsus(T)dT (®)

to
We can now show an equivalence between Eqns. (6) and (8) with:
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with the assumption that all forces due to the damper at and before ¢( are negligible (i.e., £5(t9) = O
and the lower limit of integration in Eqn. (6) can be replaced with t,).!” However, these representa-
tions are only equivalent if there exists a set of LTI matrices that exactly represent K (¢). Otherwise,
Eqn. (8) is only an approximation of Eqn. (6), but for many forms of K (¢), a reasonably low-order
system can provide a sufficient approximation.'” This approximation is used in other domains such
as the integral in Cummins’ equation for heaving bodies in waves used to compute the radiation
force.!®

The key advantage of the LTI system approximation is that the system of integro-differential
equations is converted into a system of ordinary differential equations.!” Therefore, standard simu-
lation and dynamic optimization techniques can be readily applied. Furthermore, this approximation
adds additional linear dynamics. If the original dynamic model, excluding the convolution integral,
was linear, then the dynamic model with remain linear with this approximation. Therefore, linear
systems theory as well as other techniques suitable for linear systems can be readily applied.

Realization of the LTI System. One method for realizing the required state-space form is to di-
rectly minimize the error between the K (7) and Cse™ By:
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where we would need to choose the number of additional states ng. Since we cannot evaluate
the error at all values of 7, we can define a grid of points, denoted ¢, in the regions of interest and
evaluate the error at those points only. Typically, a large value of n results in a better approximation,
but the system size increases, which can lead to increase computational expense when evaluating
the linear system. Unfortunately, directly tuning the entries in the matrices requires a large number



of optimization variables (exactly n2 + 2n,). Alternatively, as suggested in Ref. 17, we can utilized
the companion-form realization:

000 0 —a by
100 0 —as by
010 0 —as bs
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where we now only need to determine 2n; unknown parameters, denoted a and b.

We can further reduce the number of parameters noting that @ and b are the coefficients of the
numerator and denominator in the transfer function representation of the linear system. Therefore,
we can instead perform the fitting process with respect to the poles p and zeros z directly. This
reduces the number of parameters to 2(ns — 1), but has the additional advantage that we can place
limits on the magnitude of poles. The poles are eigenvalues of the state transition matrix A, and it
can be advantageous to keep them within a certain range for numerical reasons.

The final reduction in the number of parameters is based on that for given values of p, the values
of z can be found with a least square estimate from the resulting overdetermined linear system
(assuming the number of points in ¢ is greater than or equal to ng). Then the final suggestion
nonlinear fitting problem is:
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where [-];—¢ denotes the resulting matrix evaluated on £. We now have only have ns — 1 poles that
need to be placed. We also note that poles may be real valued or come in complex-conjugate pairs;
this is another decision that must be made during the fitting process. Since this a potentially highly
nonlinear problem, global optimization techniques, in conjunction with gradient-based optimiza-
tion, should be utilized to improve the likelihood of finding a suitable approximation. Finally, since
the companion form is not ideal for simulation (typically results in large state values), the modal
form is used instead.

Both the efficiency and robustness of this approach are important if we seek to handle more com-
plex relaxation kernels or directly design the kernel function shape. For instance, the approximation
would need to be updated for every change in the kernel function. Further investigation into meth-
ods of realizing this approximation more robustly and efficiently remains future work. However, we
can explore different variations of the kernel on the single kernel function form using scaling.

Scaling the Kernel Function. Consider the following scaled kernel function K:

K(1) = KK (ts7), K, ts >0 (13)



where K, is the amplitude scale and ¢, is the time scale. We can apply this transformation to the
output equation:
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where A, = t,A;, B, = B, and C; = K,C,. Therefore, we can obtain a scaled state-space
model from a related kernel function.

Combined Model

Here, we combine the models of the SASA system with the viscoelastic element. The damping
force b2od in Eqn. (2) is replaced by the LTI system in Eqn. (7) representing the viscoelastic element.
The complete linear state-space including the scaling parameters for K is:

£=At+Bu+d (15a)
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With the modeling section complete, we can discuss the different design problem formulations.

DESIGN PROBLEM FORMULATION
Maximum Slew Amount

The goal of the first design problem is to investigate if the viscoelastic element can improve the
maximum amount of rotation, or slew, the bus can achieve while still being able to hold the bus
steady. Previous studies have shown fundamental limits on the slew magnitude as a consequence
of the momentum conservation property of the system as well as additional constraints in the sys-
tem.> 13

Multi-Phase Co-Design Problem Formulation. This design problem is formulated as a multi-
phase dynamic optimization problem. The two phases are 1) a slewing phase where the spacecraft
bus is rotated from some orientation to the origin, and 2) a holding phase where the bus is held close
stationary about the origin. The time horizon between 0 and ¢ is split into the two phases by ¢,,, or
the time to perform the slew maneuver. This design problem is also a combined plant and control,
or co-design, problem due to the design variables including the physical aspects of the system as



Table 1. Co-design problem parameters.

Parameter Value Parameter Value
Umax 20 N-m Ag 3 m?
€max 1073 Vo 0.054 m?
Cinin 0.5m E 1.57 GPa
lmax 2.5m Jo 372.49 kg-m?

0, 1072 rad

U, 10712 rad/s

well as the SA control moment.” The complete simultaneous co-design optimization problem is:

o oin, —6(0) (16a)
subject to: £=A(lt,, K€+ B(l)u+d(0) all phases (16b)
[u(t)] < tmax (16¢)

‘5‘ = ‘6(;)‘ < €max (16d)

0 <t Ks (16e)

emin < 14 < gmax (16f)

0(0) = 5(0) =0, 6(0) =0, £&(0) =0  phase 1 only (slew) (16g)

0(t) < Oy, é(t) <0y, phase 2 only (hold) (16h)

where Eqn. (16a) represents the objective of maximum the slew amount of the bus, Eqn. (16b)
enforces the linear dynamics described in the previous section, Eqn. (16¢) is a limit on the max-
imum allowable control moment, Eqn. (16d) is a limit on the maximum allowable strain in the
SA, Eqn. (16e) enforces nonnegativity of the scaling parameters for the viscoelastic element, and
Eqn. (16f) bounds the SA length between a minimum and maximum value. The phase 1 specific
constraints are in Eqn. (16g) and represent zero initial conditions for all the states except the bus an-
gle. The phase 2 specific constraints are in Eqn. (16h) and represent the holding of the bus stationary
about some small tolerances denoted by 6, and ;. We also include both a volume and planform
area constraint on the SAs to meet the same mission power and weight requirements. Therefore, the
width and height of the SAs are defined by /, the specified area Ay, and specified volume {. Many
problem elements are based on the similar problem formulations used by Chilan et al.”> and Herber
and Allison.!® The parameters selected in this study are shown in Table 1.

Scaled Optimization Problem. To achieve higher accuracy and better computational efficiency,
the original optimization problem was scaled according to simple linear scaling relationships.!?
The time continuum, original states &,, and control are all scaled. The control was scaled using
U = Umax, While the time continuum with ¢ = ¢,,t. The states were scaled using the following
matrix:

£ =TE where: T = diag (enom, bhom 4 Efgig I> (17)
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where diag constructs a block diagonal matrix and 6pom = 1073 (selected based on the expected
approximate magnitude of the slew maneuvers).

Solution Method. For fixed values of the plant variables x,, = [/, t,, K|, u is the only remain-
ing optimization variable. Consequently, Prob. (16) is a linear-quadratic optimization (LQDO)
problem. LQDO problems can be solved efficiently using direct transcription and quadratic pro-
gramming.!®?% Therefore, a nested co-design optimization approach is adopted.?! The outer loop
optimizes the plant variables with respect to the plant-only constraints, while for every candidate
plant variable vector, the inner-loop LQDO problem is solved.

Disturbance-to-Output Reduction

The second problem aims to investigate the value of viscoelastic damper in reducing vibrations
induced by disturbances with different frequencies. Intelligent structure has been shown to be ef-
fective in damping out vibrations.?? In this study, the vibration magnitudes are compared between
the case without damper, and the cases with viscoelastic damper involved. The amplitude scale and
the time scale are varied to observe the trend of the disturbance-to-output reduction. The parameters
are the same as what are shown in Table 1. Instead of performing full optimization for K and g,
only several cases are presented to bring insights to future design. The magnitudes of vibrations of
both the bus rotation 8 and the solar array bending ¢ will be discussed.

RESULTS

Comparison with Simple SASA Problem

To validate that the code works correctly, the dimensionless quantities II = % from this study
without damper and from simple SASA problem? '3 are compared, where k is the stiffness of the
solar arrays, ¢ is the end time of the slewing phase, J is a constant relating the inertia of bus and
the solar arrays. 11 is supposed to be a constant with different ¢y posed in the problem.

With the end time of the slewing phase varied, II basically stays the same in the no-damper case.
Column “ratio” in Table 2 shows the comparison of II in simple SASA problem and that in this
study. The ratios are close to 1, which validate the formulation and the code. The small difference
should be attributed to the fact that the simple problem does not link the stiffness and inertia ratio.

Table 2. Comparison of constant IT in simple SASA problem to II in this study without viscoelastic
damper. Good agreements are shown, validating the code.

iy II ratio

Simple SASA - 0.0866 -

Without Viscoelastic Damper 0.02 0.0843 1.0272
Without Viscoelastic Damper 0.2 0.0842 1.0281
Without Viscoelastic Damper 2 0.0842 1.0281
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Figure 2. Kernel function K (t) = (tanh ( — 14 = (¢ — 0.5)) + 1) /2 and its LTI approximation
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Figure 3. Comparison of maximum slewing angle with and without damper when the
range of the length of panel is from 0.5 m to 2.5 m

Improvement in Maximum Slewing Angle
The chosen shape of kernel function is:

_ tanh(—14(¢t — 0.5)) + 1

K (1 5

(18)

The kernel function shape and its LTI approximation is presented in Fig. 2, where ¢ is the time
scale in the material function, and X > 0 when 0 < ¢ < 1. This shape means that the material
behaves closer to a spring, which adds more stiffness to the system at first, and closer to a damper
later, which is more beneficial in the holding phase. The results are obtained using MATLAB™
Optimization Toolbox.

When the length of solar arrays can vary from 0.5 m to 2.5 m, the viscoelastic damper does not
enhance the results. In Fig.3, two curves overlap together, and reach the upper limit of slewing
capability when the slewing time is about 0.25 second. Because the optimal stiffness is inside the
feasible set, the additional stiffness provided by the viscoelastic damper does not help. However,
if we narrow down the range of feasible length of solar arrays to 1.5 m to 2.5 m, improvements



becomes more obvious, especially when the slewing time is relatively short, as shown in Fig. 4.

-3
_ 15710 : : : : :
3
3 3
=
(]
)
é 1t —e— Without Damper| -
e —e— With Damper
5
2
95}
§ 0.5+ A
e
&
3
= . ‘

005 01 015 02 025 03 035
tm (S)

Figure 4. Comparison of maximum slewing angle with and without damper when the
range of the length of panel is from 1.5 m to 2.5 m

In this case, when the slewing time is less than 0.2 second, the design with the damper shows the
advantage of supplying more stiffness to the system. The maximum improvement is around 7%. As
the slewing time becomes longer, the results from Fig. 3 and Fig. 4 gradually match up with each
other, and they both reach the upper limit when the slewing time is longer than 0.25 second.

Improvement in Passive Damping

The viscoelastic damper also has the potential in boosting passive damping.>> The vibration
simulations are done to compare the peak vibration amplitude by disturbances with a range of
different frequencies in the cases of presence and absence of the viscoelastic damper. Figure 5
and 6 are the demonstrations of the comparison.
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Figure 5. Passive damping comparison with different amplitudes of the kernel func-
tion, with optimal stiffness, 7, = 1 and K, varied
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Figure 6. Passive damping comparison with different amplitudes of the kernel func-
tion, with optimal stiffness, K; = 100 and ¢, varied

In both figures, the top graph is the magnitude of the response of 6, and the bottom graph is the
magnitude of the response of §. The x-axis is the frequency of the disturbance in H z. In Fig. 5, the
time scale ¢, is set to be 1 and K is varied from 10 to 10000. A large drop in magnitude and phase
shifts can be observed. While in Fig. 6 , the amplitude of the kernel function is set to be 100, and
ts is varied from 0.1 to 1. With the viscoelastic damper, the peak response for both 6 and § drops
significantly without any phase shifting.

This result provides another insight in design that, the properties of viscoelastic damper can pro-
vide both extra stiffness and passive damping behavior. Such properties improve the reorientation
capabilities for fast pointing, and also reduce the vibrations by passive damping.

CONCLUSION

Using a case study based on a pseudo-rigid body dynamic model with a linearly viscoelastic
damper, the potential benefits of viscoelastic materials within SAs are studied. Because of the char-
acteristics of both springs and dampers, the viscoelastic material damper can provide additional
stiffness to enhance the maximum slewing capability, and can reduce significantly the peak vibra-
tion induced by disturbances. Additional studies are needed, including use of higher-fidelity system
models, more flexible design descriptions both for the viscoelastic material and the SAs. In par-
ticular, additional studies are needed to understand how to use distributed viscoelastic damping
in a tailored manner to reduce control system complexity requirements. In addition, linking the
kernel function description more closely with realizable viscoelastic materials is an important step
toward realizable system designs. One possible strategy for this is to construct kernel function shape
constraints based on data from existing materials. A more involved approach would be to utilize
first-principles models for viscoelastic material designs.
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