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ABSTRACT: Macromolecular systems are composed of a very
large number of atomic degrees of freedom. There is strong
evidence suggesting that structural changes occurring in large
biomolecular systems at long time scale dynamics may be captured
by models coarser than atomistic, although a suitable or optimal
coarse-graining is a priori unknown. Here we propose a systematic
approach to learning a coarse representation of a macromolecule
from microscopic simulation data. In particular, the definition of
effective coarse variables is achieved by partitioning the degrees of
freedom both in the structural (physical) space and in the conformational space. The identification of groups of microscopic
particles forming dynamical coherent states in different metastable states leads to a multiscale description of the system, in space
and time. The application of this approach to the folding dynamics of two proteins provides a revised view of the classical idea of
prestructured regions (foldons) that combine during a protein-folding process and suggests a hierarchical characterization of the
assembly process of folded structures.

■ INTRODUCTION

The last several years have seen an immense increase in high-
throughput and high-performance techniques to simulate
molecular systems at a microscopic level,1−3 which has, in
turn, stimulated the surge of powerful data analysis techniques
to extract essential features, collective variables, or representa-
tive states from simulations4−6 in order to reconcile them with
experimental data. These new techniques have provided
tremendous help in advancing our understanding of macro-
molecular processes (e.g., see refs 7 and 8). However, even if
the simulation of considerably sized molecular systems over
milliseconds is now feasible, the same approach is not possible
for large macromolecular complexes, thus leaving a gap when
attempting to scale to cellular signaling.
Empirical and theoretical results indicate that for most

macromolecular processes only a limited fraction of the phase
space is relevant, and most of the dynamics is not “interesting”,
as it consists of fast and local fluctuations around long-lived
(metastable) conformational states.9−12 In contrast, the rarely
observed transitions between metastable states are crucial, as
they govern the switching between biologically relevant
functions. Recent work13,14 has shown that, for medium/long
time scales (generally on the range ≳10 ns), a very small
number of parameters are enough to describe the coarse
dynamics of a large macromolecular system. These results
suggest that it may be possible to reproduce the thermody-
namics and long time scale kinetics of a macromolecular system
by means of reduced models, using a significantly smaller
number of degrees of freedom. Simulation of coarse models

may have a significantly reduced computational burden and
allow the study of larger systems on longer time scales.15−17

Moreover, by filtering out nonessential details, coarse models
allow a more direct identification of the essential physical
ingredients needed to reproduce a macromolecular process, a
key step toward the formulation of the “rules” regulating the
behavior of biomolecular processes at different scales.
However, there is still, as yet, no general solution on how to

select an optimal set of effective degrees of freedom to
reproduce the long time scale dynamics of a given system. The
choice of the coarse coordinates is usually made by replacing a
group of atoms by one effective particle, usually based on
physical and chemical intuition. Because of the local geometric
regularity of a protein backbone or a DNA structure, popular
models reduce the complexity of a macromolecule to a few
interaction sites per residue or nucleotide, e.g., the Cα and Cβ

atoms for a protein.18−22

Complementary mathematical work has suggested how to
define optimal collective variables of macromolecular systems,
that is, descriptors that can identify interesting collective
phenomena over long time scales, and separate macroscopically
different structures or aggregation states.5,6 In a sense, the
description of the macromolecular dynamics in terms of very
few descriptors can be considered as a form of extreme coarse-
graining, where the thermodynamics and kinetics of the slowest
processes are well described by a few variables. However, such a
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mathematically rigorous definition does not readily provide a
physically meaningful coarse-grained representation of a
macromolecular system in terms of clusters of atoms or
collections of internal coordinates (angles, distances). In
practice, one would like to use a coarse representation of the
system that is both physically interpretable and satisfies some
criterion of optimality in reproducing the microscopic
dynamics.
We propose here to use mathematical ideas similar to what

has been developed to identify slow variables6 but extend the
analysis to include the chemical structure of the molecule. The
definition of collective variables associated with the slow
processes allows one to simplify the complex geometry of the
high dimensional configurational space in terms of a few
metastable regions. In the present work, the geometry we want
to represent in minimal form is not only the high dimensional
configurational space but includes the molecular structure itself:
we combine the partitioning of the overall configurational space
visited by the molecule with the partitioning of the three-
dimensional structure of the molecule into groups of atoms that
display dynamical coherence.
The minimal representation of the system dynamics as a

network of few metastable states, their relative population, and
the transition rates between them is usually referred to as a
Markov state model (MSM).4,11,23−25 For each metastable state
of a MSM, we seek an optimal coarse-graining of the molecular
structure in terms of groups of atoms that can be considered
effective dynamical “blocks”. The resulting groups of atoms
preserve some structural integrity during the system dynamics
and at the same time capture the slow processes of the system.
We name this approach as the structure and state space
decomposition (S3D). We show that S3D provides different
coarse-grained representations of a molecular structure in
different metastable regions of the system: the optimal
resolution to describe the system dynamics changes as a
macromolecule visits different metastable states.
We illustrate S3D by applying it to molecular simulation

trajectories of two different protein systems over millisecond
time scales (generated on the Anton supercomputer2,26). The
results illustrate the mechanism of transitions between protein
models at different resolutions associated with different
macroscopic states of the system. The formation and
disassembly of different groups of atoms into coherent domains
in different metastable states present a multiscale character-
ization of the system dynamics, both in conformation space and
chemical structure.
Interestingly, the results provide a quantification and new

interpretation (in terms of coherent dynamical structures) of
the idea of modular units in proteins (foldons),27 and their
hierarchical formation and assembly.28 We show that, while
groups of atoms forming constitutive blocks can be clearly
detected in the dynamics, these groups are highly heteroge-
neous in size and composition, and not always associated with
the formation of secondary structure. The comparison of the
S3D results with what is obtained by using the thermodynamic
definition of foldons, and the consequences for coarse-graining
methods are discussed.

■ RESULTS AND DISCUSSION

Dynamical Coherent Groups of Atoms in a Macro-
molecule. We turn to recent results in dynamical system
theory to define a general and robust approach to identify a
minimal number of dynamically coherent domains in proteins

or protein complexes and obtain a faithful description of
macromolecular conformational rearrangements over long time
scales in a reductionist fashion.
The notion of coherence has attracted considerable attention

in the mathematics community in the recent past.31,32 As a
typical example, consider a number of particles released in close
proximity to each other. The goal is to identify the particles that
will remain mutually close to each other for some time. For
instance, when caught in the same current stream, drifters
released in the ocean will move together as a group, even if the
current carries them around the globe. These groups of
particles form coherent sets.32 Here we demonstrate that this
idea can also be used in the context of a macromolecular
system, where the role of the ocean drifters is played by the
individual atoms, and we want to determine the groups of
atoms that move coherently. In order to preserve the long time
scale processes of a macromolecular system, we combine the
partitioning of the coherent groups of atoms in a molecular
structure with the partitioning of the conformation space (by
means of a MSM analysis4).
The diffusion map approach33 has been shown to provide a

clear geometric interpretation14 in the dimensionality reduction
of high-dimensional systems and to obtain low-dimensional
energy landscapes of macromolecules.12,29,34−37 In order to
solve the problem of finding coherent sets of atoms from
molecular dynamics trajectories, we employ a version of the
diffusion map extended to the time dimension (“time-averaged
diffusion map”) that has been recently proposed in the context
of dynamical systems.31 In a nutshell, the diffusion map
approach applied to the atomic positions in a single molecular
configuration constructs a Markov probability matrix based on
which pairs of atoms are close to each other. The dominant
eigenfunctions of this Markov matrix then capture the
geometry of the given molecular configuration. The time-
averaged dif fusion map considers an ensemble of configurations
generated by molecular dynamics and constructs a Markov
probability matrix based on which pairs of atoms stay close to
each other on average over all configurations in the ensemble.
The ensemble we consider here consists of all configurations
that are in a certain partition of the conformational space
(metastable state), as identified by a MSM analysis. The
configurations could be sampled either from one long or
multiple short trajectories. The eigenfunctions of the time-
averaged diffusion map Markov matrix are dynamical
coordinates, and geometric clustering in their space returns
groups of atoms that are mutually close over the whole time
range considered and are, therefore, coherent. Details on the
time-averaged diffusion map method and its implementation
are provided in the Supporting Information.
We apply this approach to the subset of molecular dynamics

trajectories within each metastable state, as found by a Markov
model analysis, resulting in the definition of a strategy for the
S3D of the macromolecular dynamics.
The identification of coherent structural “domains” in

different regions of the conformational landscape of a
macromolecule allows us to identify the minimal structural
“units” that remain coherent in every region of the landscape
and to illustrate the assembly or disassembly of these units to
form the different functional states. In the following, we
describe the results from the application of S3D to obtain a
minimal representation (both in configuration and structure
space) of the folding dynamics of two different proteins for
which long equilibrium all-atom trajectories are available.2,26
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Details on the implementation of the Markov model, the
time-averaged diffusion map, the spectral clustering, the choice
of parameters, and the validation are provided in the
Supporting Information.
Coarse-Grained Kinetic Models of Proteins. We use

S3D to discover the hierarchical dynamical processes in the
folding of two proteins, for which long equilibrium all-atom
trajectories are available: FIP35 WW-domain2 and NTL9.26

The resulting coarse-grained kinetic model is illustrated in
Figure 1, both for FIP35 (a,b) and NTL9 (c,d). Figure 1a,c
shows that, for both proteins, the folding dynamics mainly
proceeds through two possible pathways. Figure 1b,d illustrates
the decomposition of the structures in each state into coherent
domains (red) and how these domains change along the most
likely folding pathway (see the Supporting Information for the
less probably pathways). The arrows connecting coherent
domains in different metastable states indicate if such domains
preserve their identity, split into separate ones, or merge
together as the proteins proceed along the primary folding
pathways. In the following, we indicate as Xi the ith cluster in
metastable state X ∈ {A, B, C, D}, with i ∈ {1, ..., nX}, where nX
is the total number of coherent domains for state X.

The dynamics of the coherent domains in FIP35 (Figure 1b)
shows that the N and C terminal tails of the proteins move
independently in the unfolded (clusters A1 and A2) and
intermediate state (B1 and B2) and merge into a single
coherent domain (D1) in the folded state. In the FIP35 protein
core, two separate clusters are detected in the unfolded state
(A3 and A4), which undergo a “domain exchange” process
during folding: a piece of A3 corresponding to a hairpin
segment detaches and is absorbed by A4 to generate coherent
domains B3 and B4 in the intermediate state, which, in turn,
split unevenly into domains D2 and D3 in the folded state. In
essence, the major folding pathway of FIP35 consists of the
splitting and merging of clusters A3 and A4 and the assembly of
clusters A1 and A2. A similar scenario occurs in the major
folding pathway of the NTL9 protein. The transition from the
unfolded state to the intermediate corresponds to the assembly
of different coherent clusters into larger coherent domains: A2
+ A3 + A4 merge into B2, and A5 + A6 into B3, while A1
remains an independent domain. The transition from the
intermediate to the folded state involves the splitting and
merging of coherent domains B1 + B2 into C1 + C2, while the
previously assembled α-helical domain B3 is maintained.

Figure 1. Kinetic network and coherent set analysis results obtained by S3D for proteins FIP35 (a, b) and NTL9 (c, d). (a and c) Schematic
representation of the kinetic models; transition fluxes between states are indicated with arrows of widths proportional to the intensity of transition
probabilities. FIP35 (a) folds through the sequence A → B → D or A → C → D, where state A is the unfolded state, D is the folded state, and B and
D are two different intermediate states. Protein NTL9 (c) folds along the sequence A→ B→ D or A→ C→ B→ D. State A is the unfolded state, D
is the folded state, B is an on-pathway intermediate, and C is a misfolded intermediate (not kinetically connected to the folded state). For both
proteins, the first pathway (A → B → D) dominates the folding dynamics, as its transition flux is about 3 orders of magnitude larger than that of the
other pathway. These kinetics models are consistent with previous studies.29,30 (b and d) Results from the time-averaged diffusion map analysis along
the most likely folding pathways. The different structural coherent domains labeled with numbers and highlighted in red on the folded structure in
each metastable state are the coherent sets identified by S3D as different metastable states. Black arrows indicate the changes in the structural clusters
as a molecule transitions between the different metastable states. Results for the less likely folding pathways are reported in the Supporting
Information.
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Not surprisingly, for both proteins the unfolded state is
decomposed into a larger number of coherent domains than the
intermediate or folded states. Coherent domains in the
unfolded states always correspond to connected regions along
the protein sequence, indicating that although the proteins
appear partitioned into stretches of sequence that move
coherently, the different stretches move independently from
each other, as expected in the absence of collective motions. On
the other hand, coherent domains in the intermediate and
native states comprise disconnected regions (i.e., groups of
atoms far apart along the sequence are assigned to the same
coherent domain), signaling the presence of a tertiary structure
and long-range order.
Figure 2 confirms that these coherent domains capture most

of the tertiary structure of a protein in a given metastable state.
The probability of contact formation in states A, B, C, and D is
shown for proteins FIP35 (left) and NTL9 (right). In each
metastable state, the colored areas on the upper contact matrix
indicate all the contacts that can be formed by pairs of residues
inside a given coherent domain, and different colors correspond
to different structural domains. In each metastable state, all
contacts with non-negligible probability of formation essentially
fall inside a colored region of the contact space in Figure 2.
That is, each domain captures a set of contacts occurring in the
metastable state (either native or non-native), and almost no
contact is formed between atoms belonging to separate
coherent domains.
These results offer a complementary view of what is

presented in Figures 1 and S6 (Supporting Information). In
both proteins, metastable state C presents a larger number of
non-native contacts than the other states. The comparison
between the contact maps of state C and the folded state D
shows that the shift in the coherent domain boundaries from C

to D corresponds to a rearrangement from out of register to
native structural packing.
Although the coherent domains capture most of the

secondary and tertiary structure formed in the different
metastable states, the structural content is not distributed
equally and the domain partitioning cannot be easily inferred
from the contact maps alone: some coherent domains contain
only a marginal number of contacts, whereas others capture a
massive number of contacts. This result suggests that the
coherent clusters are amenable to a hierarchical interpretation,
very similar to the interpretation of the diffusion coordinates in
a standard diffusion map.12,14 In the latter, diffusion coordinates
of higher order resolve dynamical details at a finer time
resolution, and clustering in this coordinate space may return
states with different levels of metastability. Similarly, in the
present context, dynamical coordinates of higher order encode
higher “coherence resolution”, and the structural coherent
domains obtained by clustering in this space are expected to a
have different level of coherence.

Minimal Assembly Units as Dynamic Building Blocks.
In order to investigate the variations in the coherent domain
decomposition in the different metastable states and how the
different domains split and merge in the transition between
metastable states, we define the minimal assembly units, { }i as
the smallest set of complete and disjoint structural units that
can be composed to form any coherent domain in any state:

∩ = ⌀i j and ∪ =i i , where represents the whole

protein, and every coherent domain = ∪
∈

Xi Uj J j for some

index set J.
As these units never split into subcomponents across all the

metastable states, they can be considered the elementary
building blocks of the protein, which can assemble in different
ways to form different structural ensembles in different regions
of the energy landscape. A synoptic representation of the

Figure 2. Contact probability versus coherent domains in each metastable state of protein FIP35 (left) and NTL9 (right). Labels (A, B, C, D)
identify the states as in Figure 1. Areas shaded in different colors indicate different coherent domains in a metastable state. The color correspondence
between different panels is arbitrary: colors are used to distinguish the different coherent domains in each metastable state independently. Native and
non-native contacts are shown in blue and red, respectively. The color intensity indicates the value of the contact probability, from white to dark blue
or red. In each panel, the lower triangular matrix always shows the contact map of the folded state of the corresponding protein, as a comparison. A
residue−residue contact is considered formed if the shortest distance among all pairs of heavy atoms is shorter than a threshold value of 0.35 nm.
The contact probability is estimated as the frequency of the contact in a given metastable state. For clarity, only contacts with probability higher than
0.3 are shown. The contact maps of the different metastable states are consistent with what found in previous studies, both for FIP3529 and NTL9.38
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coherent structural domains in terms of their minimal assembly
units is given for both proteins and all states in Figure 3. The
decomposition of each state (A, B, C, and D) into its coherent
domains and the composition of each domain in terms of
minimal assembly units is illustrated by the schematics for
FIP35 (Figure 3b) and for NTL9 (Figure 3f). Coherent
domains are shown linearly along the protein sequence, with
minimal units indicated as differently colored stripes, along with
the protein sequence and location of the secondary structure.
The positions of the minimal units on the native structure are
shown in Figure 3c (FIP35) and Figure 3g (NTL9) [with the
same colors as in Figure 3b (FIP35) and Figure 3f (NTL9)].
Overall, protein FIP35 consists of 13 minimal units and

NTL9 of 14. It is clear from Figure 3 that the units have very
nonuniform sizes. In protein NTL9, one unit comprises a single
peptide plane (between Ile4 and Phe5), and several units in
both proteins are defined by a single residue (Pro6, Arg11,
Tyr19, Tyr20, Ser28, Phe30 in FIP35 and Leu6, Ile27 in
NTL9) or even a single side chain (Lys10, Gln29 in FIP35 and
Phe5, Ile27 in NTL9). On the other hand, in both proteins
there are units encompassing multiple consecutive residues (up
to seven). The detailed atomic composition of each unit is
provided in the Supporting Information.
Interestingly, the larger units do not necessarily correspond

to the location of the secondary structure in the proteins. While
the structural coherent domains in the native state include the
whole helices and most of the strands, assembly units smaller
than the full secondary structure elements need to be
considered in order to accommodate the coherent domains
formed in different metastable states. For instance, the largest
domain in the native structure of FIP35 (domain D2 in Figure
1b and the corresponding area shaded in green in state D in
Figure 2) encompasses the bulk of the protein β-sheet.
However, this coherent domain is composed of seven different

minimal units that can assemble in different ways to form
different coherent domains in other metastable states. A similar
picture appears for NTL9, for which a large coherent domain in
the native state (domain D3 in Figure 1b, corresponding to the
blue area in state D in Figure 2) contains both the α-helix and
the consecutive 310-helix, but it decomposes into three different
minimal units that combine to form other coherent domains in
other metastable states.
The existence of “building blocks” in proteins has been

previously proposed multiple times and explored with different
approaches (e.g., see refs 39−42). Previous studies, however,
have mostly focused on energetic or structural factors. Most
existing methods for decomposing proteins into domains are
based on the analysis of fluctuations of interatomic distances as
indicators of rigidity of different parts of the macromolecule.
Coordinate fluctuations are usually computed over short
trajectories or sets of homologous structures, or by normal
mode analysis. Previous approaches have not included temporal
information or the fact that multiple metastable states can be
visited during the protein dynamics. It is well-known that
structural similarity does not necessarily correlate with kinetic
similarity;29,43,44 therefore, domains based solely on structural
considerations may not capture important dynamical informa-
tion. Additionally, two-point correlations have been shown to
encode partial correlation content only.45

In contrast, S3D provides a coherence-based domain
decomposition by combining the notions of structural and
kinetic similarity. Although S3D shares some resemblance with
parts of previously proposed methods, there are significant
differences in the formulation and implementation. In
particular, the use of the diffusion map construction33 to
build the similarity matrix allows us to capture nonlinear effects
and is supported by mathematical theory,31,32 establishing a
rigorous link with the concept of coherence in dynamical

Figure 3. Minimal assembly units for FIP35 (a−c) and NTL9 (e−g) proteins. The same kinetic network models as in Figure 1 are reported in parts
a and e, as a reference. (b and f) The minimal assembly units are illustrated for each protein; different colors are used to distinguish between the
different units inside a given state, and the same color is used to identify the same unit across different states. In each metastable state (A, B, C, D, as
in Figure 1), the units are assembled in the corresponding coherent domains along the protein primary sequences. Thin black horizontal lines
indicate the different domains in each metastable state, along which the units are placed in a notes-on-the-staff fashion. The locations of the native
secondary structure on the protein are also reported on the sketch of the protein sequence on top of the coherent domain representation for every
state. An α- or 310-helix is marked by dark red or green chained dots and a strand by a dark blue arrow. The secondary structure assignment has been
obtained by parts c and g: The same color palettes as in parts b and f are used to highlight the minimal units on the protein native structures. As a
comparison, the results from a foldon analysis on the two proteins are reported in parts d and h. Four foldons are identified in protein FIP35 (d) and
two in NTL9 (h). The regions corresponding to the different foldons are marked by alternating dark blue and red colors.
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systems and providing an optimality criterion that is missing
from other more heuristic formulations. Additionally, the
combination of structural and space state analysis of S3D
allows a state-dependent definition of coherent domains, each
of them adequately describing subsets of the configuration
space. This is very close in spirit to the idea of “ultra-coarse-
graining”,46 which argues that state-dependent coarse-graining
variables can provide a more suitable protein model and may
improve the performance and the interpretation of the results.
Indeed, the final output of S3D is a kinetic network where each
node represents a metastable state-specific protein decom-
position into coherent domains, which is amenable to a
dynamic interpretation: the conformational transition from one
state to the other is here translated in a stepwise assembly or
disassembly of the minimal units.
Foldons Revisited. The existence of kinetically competent,

quasi-independently folding units of a protein was first
suggested on the base of geometrical considerations,47 tested
by means of an energy landscape analysis,27 and appears in
agreement with experimental results on some proteins.48,49 The
idea of a hierarchical dynamics was also implemented as a
practical method (“zip and assembly”) to speed up protein-
folding simulation.28

So called “foldons” have been identified on a number of
proteins by considering different protein segments, {j} (of

length Nj), and estimating the ratio, θ =
δ

Δ

j

E

E N

j

j j

, between the

energy stability gap, ΔEj, of segment j in the folded
configuration (with respect to misfolded alternatives) and its
energy variance in the misfolded state(s), δEj. The energy
landscape theory of protein folding50 relates this quantity θj to
the ratio between the folding temperature and the glass
transition temperature, therefore providing a measure of the
relative foldability of a protein segment. By invoking the
minimal frustration principle,50 it was proposed27 that
contiguous protein regions that maximize θj could be
considered fundamental units of protein folding.
We apply this idea to the two proteins considered here (see

the Supporting Information for details). The results are
reported in Figure 3d,h and show that foldons include the
secondary structure in both proteins and provide a coarser
structural decomposition than S3D. Interestingly, foldons
identified by a purely thermodynamic criterion correlate with
the largest assembly units identified by S3D on the basis of
dynamic considerations. This result is not entirely surprising in
the light of the energy landscape theory,50 yet it provides an
independent validation for S3D, which is a data-driven
approach. Additionally, it is worth noting that the foldons are
identified here by using an all-atom force field to evaluate the
energy of the protein fragments in the different states, while the
approach was proposed and previously used only with coarse-
grained energy models that may significantly smooth out the
energetic roughness of a protein-folding landscape.
The minimal units shown in Figure 3b,f complement and

revisit the foldons idea, by providing a finer discretization of the
protein structure and adding a dynamical interpretation to the
foldability criterion.

■ CONCLUSIONS

We propose S3D, a rigorous approach to identify dynamically
coherent structural domains in macromolecules, i.e., groups of
molecular components which move collectively and maintain
their identity during the system dynamics. By partitioning both

in structural and state space, S3D extends to the physical space
the idea of data-driven coarse-graining that has been proposed
and used in the macromolecular conformation space for the
definition of optimal reaction coordinates. In principle, S3D can
also be tuned to operate on spaces different from that of the
atomic Cartesian coordinates used here, e.g., the space of
contacts, or other physical observables, which could provide
alternative points of view of the dynamics.
The S3D analysis of the folding mechanism of two proteins,

FIP35 and NTL9, show that although different coherent
domains are formed in different metastable regions along the
folding process, minimal assembly units can be identified.
These structural units can be considered building blocks of the
macromolecular dynamics, as all the relevant regions of the
molecule state space are formed by their assembly and
disassembly. As such, S3D provides a truly multiscale
characterization of the system dynamics both in conformational
space and physical space. Interestingly, this rigorous analysis
also revisits the classic idea of foldons, as “maximally foldable”
segments that assemble during a protein-folding process.27

While we have illustrated S3D with a protein-folding
application, it can be used in general to learn the minimal
dynamical units in large conformational changes in macro-
molecules or in the assembly of supermolecular complexes. As
such, it can offer a link between different resolutions, for a
systematic upscaling of biophysical models.
The picture emerging from the S3D analysis suggests that a

global coarse representation of a macromolecule may be
inadequate and that different minimalist models should be
considered as different metastable states are visited, as has been
advocated in ref 46. A logical consequence is that the minimal
assembly units identified here could provide natural candidates
for a state-dependent coarse-graining approach: the collections
of atoms that preserve their geometric integrity as a function of
time across all the relevant states visited by the molecule could
be considered as effective “beads” in a coarse-grained model, as
pictorially presented in Figure 4. Such a data-driven coarse-

graining could overcome limitations that affect most structural
coarse-grained models, where the choice of the collective
degrees of freedom is mostly guided by intuition.
At the level presented here, the results are system-dependent.

The coarse-grained representation shown in Figure 4 is not
immediately transferable to different molecules. Additional
investigation of common features across a broad range of
systems is needed to draw general conclusions and to

Figure 4. Beads of different colors identify the coarse-grained units for
FIP35 (left) and NTL9 (right). The units are defined as the minimal
set of structural components that can be composed to form all the
different coherent domains in all metastable states of a protein. The
backbone of the folded structure is shown in the background as a
reference.
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understand if and what parts of the minimal assembly units
could be transferable.

■ MATERIALS AND METHODS

Identification of Metastable States. The conformational
space explored by molecular dynamics trajectories was reduced
to a set of metastable states using a MSM approach.4 All
calculations were performed by using implementations available
in the pyEMMA software package (pyemma.org).51 Details on
the implementation, the choice of the model parameters, and
validation of the models are provided in the Supporting
Information.
Clustering into Coherent Groups of Atoms. In each of

the metastable states, coherent structural domains were
identified by performing agglomerative clustering on the first
several dominant eigenvectors. Validation of the clustering was
performed by using both the silhouette scoring and the
distribution of distance thresholds returned by the agglomer-
ative clustering, and it provided a very clear and robust criterion
for the selection of the number of clusters and the cluster
assignment (see Figure S5, Supporting Information). Details on
the clustering implementation and validation are provided in
the Supporting Information.
Codes. A set of python codes for running the S3D analysis

are freely available for download on GitHub (https://github.
com/ClementiGroup/S3D).
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