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ABSTRACT: Recent methods for the analysis of molecular
kinetics from massive molecular dynamics (MD) data rely on
the solution of very large eigenvalue problems. Here we build
upon recent results from the field of compressed sensing and
develop the spectral oASIS method, a highly efficient approach
to approximate the leading eigenvalues and eigenvectors of
large generalized eigenvalue problems without ever having to
evaluate the full matrices. The approach is demonstrated to
reduce the dimensionality of the problem by 1 or 2 orders of
magnitude, directly leading to corresponding savings in the computation and storage of the necessary matrices and a speedup of 2
to 4 orders of magnitude in solving the eigenvalue problem. We demonstrate the method on extensive data sets of protein
conformational changes and protein−ligand binding using the variational approach to conformation dynamics (VAC) and time-
lagged independent component analysis (TICA). Our approach can also be applied to kernel formulations of VAC, TICA, and
extended dynamic mode decomposition (EDMD).

1. INTRODUCTION

Molecular dynamics (MD) simulation has become an essential
instrument in the study of macromolecular systems. The use of
ensemble simulation methods supported by novel hardware
and middleware solutions in addition to distributed computa-
tional resources has been essential for achieving the sampling of
processes spanning time scales of biological relevance.1−6

However, the ability to generate large amounts of molecular
dynamics data has created a need for tools that help analyze and
interpret these data quickly and reliably. Given a large MD data
set, one would like to extract molecular mechanisms as well as
quantities that can be related to experimental measurements,
such as the structures of long-lived states, their equilibrium
probabilities and lifetimes, and the transition rates between
them.
Recent years have seen a surge of interest in kinetic models

to compute such structural and quantitative information,
including Markov state models (MSMs) or Master-equation
models,7−14 multiensemble Markov models,15−18 diffusion
maps,19,20 and VAMPnets.21 The variational approach of
conformation dynamics (VAC)22,23 has shown that the
approximation of the molecular kinetics, including transition
rates and structural mechanisms, can be cast as a problem of
combining basis sets in molecular state space. The recently
developed variational approach of Markov processes (VAMP)24

has generalized these results to dynamical processes that are out
of equilibrium.
The key step in the VAC is the computation of matrices of

time-correlations between basis functions and the solution of a
generalized eigenvalue problem with these matrices. This

approach is so general that many kinetic models can be cast
as special cases of it, including MSMs, Master-equation models,
VAMPnets,21 core MSMs,11,25 Markov transition models,26 the
time-lagged independent component analysis (TICA),27,28

kernel TICA,29 and kinetic maps.30,31 Moreover, methods to
extract dynamical components from high-dimensional time
series have been developed in other fields as well, leading to
equivalent mathematical problems. These include blind source
separation,32,33 dynamic mode decomposition,34,35 extended
dynamic mode decomposition (EDMD),36 and their kernel
formulations37,38see refs 39 and 40 for recent reviews.
These developments suggest that the step of data clustering

used in MSMs could be overcome if the state space were
instead covered by many basis or kernel functions and the
corresponding variational problem could be solved. Unfortu-
nately, large MD data sets comprise millions of sampled
configurations, and at present variational problems of only a
few thousand samples can be solved efficiently. The main
bottleneck is the calculation of the covariance matrices
themselves that is linear in time and quadratic in the number
of dimensions. Since these large matrices are dense, it is
intractable to even compute all matrix entries and sparse
eigenvalue solvers such as Krylov subspace methods are not
efficient. The problem is even more dramatic in kernel
approaches, such as diffusion maps, kernel TICA, or kernel
EDMD, where the matrix sizes are quadratic in the number of
timesteps. Unless most data points are discarded, this would

Received: January 29, 2018
Published: April 16, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 2771−2783

© 2018 American Chemical Society 2771 DOI: 10.1021/acs.jctc.8b00089
J. Chem. Theory Comput. 2018, 14, 2771−2783



lead to matrices of several millions of rows and columns, which
cannot be efficiently computed or stored.
At the same time, compressed sensing and sparse sampling

methods41,42 have emerged in mathematical research. This class
of methods aims at accurately reconstructing a signal from
sparse (i.e., compressed) samples. Sparse sampling has been
applied successfully in different fields, such as image
segmentation and matrix factorization.43 Here we employ
sparse sampling in the column space of the covariance matrices
with the Nyström method in order to obtain a low-rank
approximation of the matrices.44,45

The Nyström approximation has previously been used in
related application areas. It has first been used in conjunction
with Markov state models in order to define a coarse-graining
(lumping) of states.46 More recently, it has been employed to
make the kernel TICA approach tractable.47 The main
difficulty, however, lies in making the choice of matrix columns
such that the computed matrix eigenvalues and eigenvectors are
sufficiently accurate. Recently, it has been shown that adaptive
sampling strategies, which iteratively choose matrix columns
one-by-one, enable highly accurate eigenfactorization approx-
imations without having to compute the entire matrix.48 For
example, Figure 1 demonstrates the accurate reconstruction of

a 1000 × 1000 matrix from only 10 of its columns (i.e., 1% of
the data).
While adaptive sampling is far more efficient than random

column selection, applying this idea to MD data analysis is
hampered by two problems: (i) Each adaptive iteration requires
a pass over the data and one would thus lose the gained
efficiency by spending more I/O time; (ii) It is unknown how
to efficiently approximate the eigenvalues and eigenvectors of a
generalized eigenvalue problem in a sparse sampling frame-
work, as this involves the simultaneous approximation of two
matrices. Here we address (i) by developing a spectral adaptive
method that samples columns suitable for approximating
specific eigenvalue/eigenvector pairs. This is generalized to a
spectral sampling method that selects m columns simulta-
neously to approximate the first m eigenvalue/eigenvector pairs,
thus reducing the number of passes over the data. We address
(ii) by arguing that a selection of columns for the Nyström
approximation of the instantaneous correlation matrix can be
understood as a selection of a subset of basis functions in the
variational approach, whence approximate generalized eigen-
values and eigenvectors may be computed from a small-scale
problem derived from a sparse approximation of the overlap
matrix.

Figure 1. Sparse matrix approximation using the Nyström method. (a) 1000 × 1000 correlation matrix and a subset of 10 columns (white) chosen
by an adaptive method. The correlation matrix was computed as described in the text (see section 3.1). (b) Reconstruction of the full correlation
matrix using only the 10 chosen columns. The reconstruction is almost perfect, using only 1% of the data. Using this principle, eigenvalues and
eigenvectors of large matrices can be approximated with very little computational effort. (c) Energy landscape of the Prinz potential13 that was used
to generate the covariance matrix in a and b. (d) Illustration of the oASIS algorithm. The gray area shows the oASIS reconstruction error of the
diagonal elements of C(0). In the first iteration, a random column of C(0) is chosen and the Nyström approxim is made. The oASIS error at this
column drops to zero. In each subsequent iteration, the column with the largest oASIS error is chosen. The first four iterations choose columns in
different metastable states; then transition states are selected.
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We demonstrate the validity of our approach and show that
the otherwise prohibitively expensive analysis of complex
macromolecular systems becomes feasible. The versatility of
our approach is illustrated by applying it to two popular analysis
approaches for MD data: the variational principle of
conformation dynamics (VAC) and the time-lagged independ-
ent component analysis (TICA). We demonstrate the efficiency
on extensive simulation data of protein conformational changes
in bovine pancreatic trypsin inhibitor (BPTI)49 and protein−
ligand binding in the Trypsin−Benzamidine complex,50,51

achieving a dimension reduction down to between 20% and
1% and thus a gain in efficiency of 2 to 4 orders of magnitude
without significant accuracy loss.
Our method is implemented in PyEMMA (version 2.5.2 or

later).

2. THEORY AND METHODS

2.1. Molecular Dynamics (MD). MD simulation can be
described as a Markov process in a state space Ω sampling from
an equilibrium distribution π(x), assumed here to be the
Boltzmann distribution. An MD trajectory {xt} is a stochastic
realization of this process. There is a probability density pτ(y|x)
of making a transition, that is, to find the system in state y at a
later time t + τ during the MD trajectory, given that it is in state
x at time t. Under mild conditions, the time-evolution of
probability distributions of molecular structures can be
described with a finite number of eigenvalues and eigenfunc-
tions of the so-called backward propagator (see the literature13

for details):
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where ei
−τκ = λi(τ) is the i-th eigenvalue, which decays with

relaxation rate κi or time scale ti=κi
−1, ψi is the corresponding

eigenfunction, and ⟨ψi|ut⟩π = ∫ ψi(x)ut(x)π(x) dx is a weighted
scalar product. The function ut can be thought of as an
indicator function identifying which conformations the system
resides in at time t. By multiplying it with the stationary
distribution, ρt = πut, it becomes the instantaneous probability
density at time t; that is, ρt measures what fraction of the
population is in which conformation for an ensemble of copies
of a molecular system.
The first process is stationary, with rate κ1 = 0, and has the

associated constant eigenfunction ψ1 = 1, while all other rates
are positive: 0 = κ1 < κ2 ≤ .... Thus, for τ → ∞, eq 1 becomes
u∞ = 1 and ρ∞ = π; that is, the dynamics relax toward the
Boltzmann density.
If we knew the significant eigenvalues λi and corresponding

eigenfunctions ψi, we would have a complete description of the
kinetic and equilibrium properties of the molecular system and
could compute the long-lived structures, their equilibrium
probabilities or free energies, and the transition rates between
them.13 Unfortunately, the eigenvalue/eigenfunction pairs
(λi,ψi) are not directly available but must be estimated using
trajectory samples {xt}.
2.2. Approximation Methods for Eigenvalues and

Eigenfunctions. Different approaches can be used to
approximate the eigenvalue/eigenfunction pairs (λi,ψi). Here
we discuss two of the most popular methods.
2.2.1. Variational Approach to Conformation Dynamics

(VAC). A very general variational approach has been proposed22

to approximate the eigenfunctions and eigenvalues of the MD

backward propagator. The idea is similar to the well-known
variational principle used in quantum mechanics to approx-
imate the ground state eigenfunction and energy of a given
Hamiltonian operator. The variational principle states the
following: Suppose we construct a set of n orthogonal trial
functions ψ̂1, ..., ψ̂n, ⟨ψ̂i|ψ̂j⟩π = δij. Then their normalized
autocorrelation functions are Rayleigh coefficients and will
systematically underestimate the true eigenvalues:
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where the equality holds only if the trial functions are the true
eigenfunctions ψ̂i(x)=ψi(x), and the approximation is better
when the eigenvalue estimates λ ̂i are larger. This leads to the
following variational principle: Given a set of basis functions
(χ1(x), ..., χM(x)), an approximation of the eigenfunctions can
be constructed as a linear combination of such functions

∑ψ χ̂ =
=

a(x) (x)
i

j

M

ij j
1

The optimal linear combination coefficients ai = {aij}j = 1
M that

simultaneously maximize each λ ̂i in the orthogonal set of
functions (and at the same time maximize the partial eigensum
∑i = 1

n λ ̂i)
22,52 is given by the solution of the generalized

eigenvalue problem

τ λ=C a C a( ) (0)i i i (3)

where C(τ) and C(0) are correlation matrices. When a
realization of the trajectory {x1,x2, ..., xt, ..., xT} is given, these
correlation matrices can be approximated by time averages:

χ χ

τ χ χ

≈ ⟨ · ⟩

≈ ⟨ · ⟩τ+

c

c

x x

x x

(0) ( ) ( )

( ) ( ) ( ) .

ij i t j t t

ij i t j t t (4)

In many cases one would like to use a very large basis set, as
clearly the quality of the approximation depends on the quality
of the basis set. Therefore, one is presented with a generalized
eigenvalue problem involving huge matrices and this forms the
bottleneck for the practical application of this technique. We
show below that the Nyström approach can be used to tackle
this problem.

2.2.2. Time-Lagged Independent Component Analysis
(TICA).27,28,32 TICA is a dimensionality reduction method
that can be considered as a special case of the application of the
variational principle presented above. In practice, given MD
data, TICA performs a variational optimization using a set of
input features yi(xt) (distances, angles, ...) and defining mean-
free basis functions as

χ = − ⟨ ⟩y yx x( ) ( )
i t i t i t

These functions are then used to solve the generalized
eigenvalue problem (eq 3) and find the optimal coefficients
to obtain an approximation of the eigenfunctions as a linear
combination of the input features. The low dimensional space
spanned by the first few TICA coordinates provides an
approximation for the subspace where the system’s slowest
processes live. Although TICA only provides a rather rough
approximation to individual eigenvalues and eigenfunctions, the
dominant space of eigenfunctions is generally well represented.
For this reason the first few TICA coordinates can be used to

define a distance metric in the clustering stage in the
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construction of Markov state models,30,31 or in the diffusion
map approach.53 It has been shown recently54 that heavy-atom
distances are an excellent set of features to conduct a TICA
analysis. Unfortunately, even for a small to medium protein
(with about 1000 heavy atoms) there are nearly n = 500,000
distinct distances, making the ∼ Nn2 effort of computing the
elements of the correlation matrices on a trajectory of N time
frames in eq 4 completely intractable. Similarly, kernel TICA29

requires the calculation of correlation matrices with n = 2N
dimensions, which also leads to intractable problems unless the
MD data are massively downsampled.
In both of the above approaches, huge eigenvalue problems

need to be solved in order to achieve a small discretization
error. Note that the main computational problem is actually not
the solution of eq 3 (which is O(n3) for the full solution and
O(n2) for single eigenvalue/eigenvector pairs) but rather the
calculation of the matrix entries (which is O(Nn2) ≥ O(n3)).
The key to solving the computational problem therefore does
not lie in the eigenvalue solver but rather in ways to avoid
computing the full correlation matrices.
2.3. Nyström Approximation and Incomplete Cho-

lesky Methods. A common approach to avoid the
computation and storage of full symmetric matrices is to use
the Nyström approximation.45 Suppose that S is a set of column
indices of the symmetric matrix ∈ ×C n n with |S|=k ≪ n and

forms the column-submatrix = ∈ ×SC C[: , ]k
n k . The

Nyström approximation C̃ ≈ C is then given by

̃ = −C W CC k k k
1 T

where S is assumed to be such that the quadratic matrix

= ∈ ×SW C [ , : ]k k
k k is invertible. It can be shown that the

leading eigenvalues λi and eigenvectors ui of C can be
approximated by a scaled version of the corresponding
eigenvalues λi

(k) and eigenvectors ui
(k) of Wk as follows:
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Since ∈ ×Wk
k k, this computation is much faster than

solving the eigenvalue problem directly for the full matrix

∈ ×C n n, reducing the complexity from n( )3 to k( )3 with k
≪ n.
The quality of the Nyström approximation evidently depends

on which k columns are selected. Adaptive column sampling
methods work by iteratively selecting columns in a greedy way
so as to maximize the accuracy of the Nyström approximation
with each selection. An optimal selection can only be made if
the full matrix C is known, rendering the method useless for
our purposes. Alternatively, it is possible to use adaptive
column sampling strategies that intelligently choose which
columns to sample even before these columns have been
formed. This is possible by exploiting the symmetry of the
matrix C, as in this case sampling a number of columns is
equivalent to sampling a subset of rows. These rows give us
partial information about the unseen columns that can be used
to make informed selections for subsequent columns.
The recently introduced oASIS method48 provides an

excellent choice of the k columns, and only the n diagonal
elements of C need to be precomputed. The Nyström

approximation produced by this adaptive method is equivalent
to the more classical incomplete Cholesky decomposition
(ICD).55,56 Starting with a small initial number k of randomly
selected columns, oASIS computes the error Δi of predicting
each diagonal element i by virtue of the current Nyström
approximation:

Δ = − −c W bbi ii i k i
T 1

(5)

where = ∈ S ib C[ , ]i
k indicates the k entries of the i-th

column of C that are already available (remember that C is
symmetric). The column with the maximal error is then
selected as the next column to add, and the procedure is
repeated until the diagonal error becomes smaller than a given
cutoff or until some convergence criterion (for instance on the
resulting eigenvalues) is satisfied.
oASIS can provide high-quality approximations while using

only a very few columns. Figure 1 demonstrates this by
reconstructing the covariance matrix C(0) generated by the
Prinz potential13 with only 10 out of 1000 columns. Whenever
the oASIS method selects a column, the diagonal prediction
error (eq 5) drops to zero at this column. Interestingly, the
columns within the same metastable set (energy minimum) are
highly correlatedwhen a column from one metastable set is
selected, the errors of other columns in the same metastable
state also drop. Hence, the first four columns selected by the
oASIS procedure are selected to be close to the minima of the
four metastable sets (Figure 1d).

2.4. Spectral oASIS. For our purpose of the analysis of MD
simulation data, we propose a modified version of oASIS that
we call spectral oASIS. The motivation for spectral oASIS is that
when working with massive data, it is often not possible to store
the entire data set in memory. In this case, one typically streams
through data, reading one chunk at a time, and then uses this
chunk to update the calculation of columns of C. This
procedure requires significant time to read the data from disk. It
is thus undesirable or prohibitive to only add one column per
pass through the data, as the resulting I/O cost will most likely
dominate the computation and the computational advantage of
only selecting a subset of columns to obtain a good
approximation to the eigenvalue problem is lost.
Hence we aim at selecting multiple columns at a time. We

start by m randomly selected columns and then add m new
columns in each roundthis approach is called batch selection.
Unfortunately the oASIS method is not suitable for batch
selection, as illustrated by Figure 1d. If m columns would be
selected in iterations 2 to 5 based on the diagonal prediction
error shown in Figure 1d, all columns in a given iteration would
be in the same metastable set. Thus, only one column from the
batch is informative, while the remaining m−1 columns are
ineffective as they are redundant with the first selected column.
This intuition is confirmed by Figure 2. While oASIS is effective
when choosing one column at a time (Figure 2a), its efficiency
is lost and may become no better than random when using
oASIS with batch selection (Figure 2b).
Based on the intuition from Figure 1d that informative

columns not only have a high diagonal reconstruction error (eq
5) but also are in distinct metastable states, we define the
following spectral oASIS error:

ψΔ = Δ ·( )i
j

i j i
( )

(6)

where the diagonal error for each column i is scaled by the
corresponding component of the j-th eigenvector. When
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selecting m columns in a batch, we will simultaneously consider
the first m eigenvectors. In spectral oASIS, we first select the
row vector with maximum error in the first m eigenvectors and
its index i defines the column which will be first selected and
computed. As a second choice we select another vector with
large spectral error, but as different as possible from the already
selected vector, etc. With this approach we avoid making
redundant choices within one selection round.
More formally, spectral oASIS is implemented as follows. We

first define the weight matrix

Δ = Δ Δ Δ[ , , . . . , ]m(1) (2) ( )

where

Δ = Δ Δ( , . . . , )j j
n
j( )

1
( ) ( ) T

and Δi
(j) is defined in eq 6 above.

We then use the following column selection algorithm:

1 Select m initial columns at random without replacement.
Perform Nyström approximation and calculate Δ

2 Define the set of selected row vectors V, and initialize it
with a zero vector V = {0T}.

3 Repeat until convergence:
(a) For j = 1, ..., m:

i. Select column = ′ ∑ − Δ
′

c Vargmax
c i i c

2

ii. Add column to V ← V + c

Figure 2b compares the results obtained using batch
selection with oASIS and spectral oASIS and random selection,
for the same matrix as shown in Figure 1. While the efficiency
of oASIS is lost when performing batch selection, spectral
oASIS is still highly efficient and outperforms both regular
oASIS and random selection in terms of the eigenvalue
approximation error.
2.5. Variational Interpretation of the Nyström

Approximation. The key insight for the derivation of a
small-scale generalized eigenvalue problem whose eigenpairs
approximate those of the full problem lies in the fact that the
Nyström approximation of the overlap matrix C(0) in eq 4

allows an interpretation in terms of the variational approach. In
fact, it has been pointed out57 that the Nyström approximation
C̃ of a Gram matrix C=XTX using k columns Ck = C[:,S], |S| =
k, can be expressed using the orthogonal projection Pk = XkXk

+

onto the selected data points Xk = X[:,S], that is,

̃ = =C X PX PX PX( ) ( )k k k
T T

In the same spirit, we may consider the projection k in
function space onto the basis functions {χi:i∈S} used in the
definition of the correlation matrices (eq 4). In Appendix A we
argue that the overlap matrix constructed from the projected
basis functions χk i

corresponds to the Nyström approximation

C̃ of C(0), whereby we conclude that the choice of columns for
the Nyström approximation of the overlap matrix is directly
linked to a choice of a subset of basis functions for the
variational approach, to which again the variational principle
applies. In essence, this means that a good approximation of the
overlap matrix should provide us with a selection of basis
functions in whose span the sought-after eigenfunctions can be
well approximated.

2.6. Sparse Sampling of the Generalized Eigenvalue
Problem. As a consequence of the previous section we
propose the following new method to approximate the
eigenpairs of the MD propagator: Instead of applying the
variational approach to all basis functions χ1, ... ,χM, we directly
employ the subset {χi:i∈S} corresponding to the selected
indices S. Note that the space spanned by these k functions is
identical to the space spanned by the projected basis functions

χ χ, . . . ,k k M1 by construction. The result is the k-by-k
generalized eigenvalue problem

τ λ=C a C a( ) (0)k
i

k
i i

where τ ∈ ×C C(0), ( )k k k k denote the instantaneous and
time-lagged correlation matrices of the k selected basis
functions {χi:i∈S}. Since this method is a direct application
of the variational approach, albeit to a smaller set of basis
functions, the generalized eigenpairs retain their well-known
meaning. The eigenfunctions of the propagator, for example,
are approximated by the linear combination

∑ψ χ̂ =
=

ax x( ) ( )
i

j

k

ij S j
1

( )

Algorithmically, we proceed as follows. First, by means of the
spectral oASIS method, we construct a Nyström approximation
of the overlap matrix C(0),

≈ −C C W C(0) (0) (0) (0)k k k
1 T

and store the chosen indices in the set S. Second, we note that,
in our notation above,

=C W(0) (0)k
k

so that the required entries of the overlap matrix have already
been computed over the course of the oASIS algorithm.
Moreover, we compute the small-scale time-lagged correlation
matrix

τ τ= S SC C( ) ( )[ , ]k

Finally, we solve the above generalized eigenvalue problem to
yield the eigenpairs (λi,ai) which can then be used in further
analysis as usual.

Figure 2. Comparison of different column selection methods
evaluated on the covariance matrix shown in Figure 1: random
selection, oASIS, and spectral oASIS. Errors (2-norm) of the four
largest eigenvalues of C(0) are shown. (a) Single column selection
(oASIS and spectral oASIS are equivalent in this case). (b) Batch
selection of three columns at a time.
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2.7. Alternative Methods for the Sparse Sampling of a
Generalized Eigenvalue Problem. Besides the direct
application of the VAC to the small basis set as determined
by the selected columns of the overlap matrix C(0) presented
above, we have considered three other possibilities to obtain a
small-scale generalized eigenvalue problem whose solutions
approximate those of the full problem (3). In short, they are
based on the following: (i) a Nyström approximation of the
time-lagged correlation matrix C(τ), (ii) the CUR decom-
position, a matrix decomposition more general than the
Nyström approximation (that is restricted to symmetric
positive semidefinite matrices), and (iii) the definition of a
projected generalized eigenvalue problem in a lower dimen-
sional space. A detailed description and comparison of these
alternative methods is given in Appendix B. We assess their
accuracy and compare them to the approach introduced above
by means of the numerical examples of the following section.
Although they still achieve significant dimensionality reduction
in the practical examples, overall they appear less robust than
the procedure presented above. Therefore, only the latter is
used in the applications discussed below.

3. RESULTS

3.1. Illustration of a Low-Dimensional Dynamical
Model. We first demonstrate the accuracy of our approach
on a one-dimensional dynamical system for which the exact
results can be computed without trajectory sampling. Figure 3a
shows the potential of the model with four metastable states
introduced in Prinz et al.13 We approximate a diffusion process
on this potential as described in Appendix C and define a basis
set using 1000 Gaussian basis functions along the x coordinate.
The resulting correlation matrix C(0) has been used in Figures
1 and 2. Using the VAC, we express the eigenfunctions of the
system in this basis set, resulting in a nearly exact agreement
between the true eigenfunctions and the variational approx-
imation solving the full 1000-dimensional generalized eigenval-
ue problem (Figures 3c−f, compare light blue and violet).
The oASIS method was used to select columns of the overlap

matrix C(0). As already illustrated in Figure 1, the matrix C(0)
itself appears to be excellently approximated by using only 10
columns, but we are interested in the approximation of the
generalized eigenfunctions and eigenvalues in eq 3. In order to
present a critical convergence test, we compute the relaxation
time scales ti = κi

−1, which exhibit an exponential magnification
of approximation errors in the eigenvalues and are therefore
very sensitive observables. In Figure 4 we report the error in the
top four generalized eigenvalues and time scales, respectively,
while Figure 3b shows the convergence of the estimated time
scales as a function of the number of columns selected in the
approximation. In Figures 3c−f we compare the first four
eigenfunctions approximated with spectral oASIS using only 20
out of 1000 columns (red) and the full solution (violet). Both
time scales and eigenfunctions are indistinguishable from the
full solution when only 2% of the columns are used, indicating
the possibility for massive computational savings without
significant accuracy loss.
3.2. Variational Approach for BPTI. The small protein

bovine pancreatic trypsin inhibitor (BPTI) is a natural inhibitor
of the serine protease Trypsin. A 1 ms trajectory generated on
the Anton supercomputer49 has previously been subject to a
number of Markov model analyses.54,58 As another proof of
concept, we apply our sparse sampling methods to a set of basis
functions

χ =
−

−
=x x

x r

x r
i N( , . . . , )

1 ( / )

1 ( / )
, 1, . . . ,

i N
i

i

1

64

96

evaluated on N = 1540 coordinates x1, ..., xN given by the
distances between pairs of Cα atoms that are at most four slots
apart in the molecular chain. The values of the basis functions
change smoothly from one to zero around xi = r, where r = 0.7
nm is a cutoff parameter.
We used sparse sampling with three different column

selection strategies and evaluated the quality of the column
sampling procedures by computing the relaxation time scales, as
described above, and comparing to the relaxation time scales of
the full solution shown in Figure 5a. We compare the following
strategies: oASIS (i.e., selection of a single column at a time,
requiring many passes over the data), spectral oASIS (selecting
m = 20 columns at a time, greatly reducing the required
number of passes over the data), and random selection (Figure
5b−e). Each experiment was performed as a function of the
number of columns selected and was repeated 50 times in order
to compute mean and average errors. Random column

Figure 3. Sparse approximation of the dominant eigenvalues and
eigenfunctions of 1-dimensional diffusion dynamics in a four-well
potential. (a) Potential energy. (b) Approximated relaxation time
scales as a function of the number of selected columns of the overlap
matrix C(0) sampled with spectral oASIS. (c−f) Exact (light blue) and
approximated eigenfunctions using the full variational approach
(violet) and the sparse approximation (red) from 20 columns.
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selection generally exhibits very large relative errors even when
a comparatively large number of columns is used. The adaptive
oASIS methods outperform random sampling by several orders
of magnitude. Both oASIS and spectral oASIS reach an error
level that can be considered as numerical noise using much less
than 20% of all available columns (even when considering the
exponential magnification of errors from eigenvalues to time
scales). This means that oASIS and spectral oASIS achieve
accurate results while using only a fraction of the data, resulting
in a substantial speedup.
3.3. Slow Coordinates of the Trypsin−Benzamidine

Complex. Trypsin is a serine protease that can be reversibly
inhibited by benzamidine, which competes with trypsin’s
natural substrates. Trypsin has been the subject of many
computational studies in the past.50,51,59−61 It was found that
trypsin has multiple long-lived conformations that exchange on
the time scale of microseconds. The Markov state model
previously used in Plattner and Noe ́51 was based on a relatively
coarse TICA analysis which employed the pairwise distances
between groups of two subsequent residues as input
coordinates. The reason for this choice was that the 223
residues involved in the simulated system would lead to a full
set of 24753 pairwise distances, and thus dense correlation
matrices with 247532 elements. The computational effort of
estimating such matrices over approximately 106 frames and the
storage of the resulting matrices are unpractical. Equipped with
the present sparse sampling methods we can now solve the full
system.
Here we use 100 μs of MD simulations in trajectories of 1 or

2 μs length that were generated in Plattner and Noe ́51 in order
to explore the conformational dynamics of the trypsin−
benzamidine complex. Heavy-atom distances were calculated
for each pair of residues separated by two or more residues, and
additionally the distance of benzamidine to each of the residues
in the trypsin molecule was computed, for a total of 24533

Figure 4. Comparison of the random, oASIS, and spectral oASIS
selection methods when selecting three columns at a time for the
system shown in Figure 3. (a) Errors (2-norm) of the four largest
generalized eigenvalues. (b) Errors (2-norm) of the four largest
implied time scales.

Figure 5. (a) Dominant implied time scales associated with the
dynamics of BPTI as approximated by the sparse sampling method
using spectral oASIS (selecting 20 columns at a time) as well as
reference values computed from the full basis set (dashed). (b−e)
Relative error of the slowest time scales as a function of the number of
columns used in the Nyström approximation. Different methods
(oASIS, violet lines, and spectral oASIS, red lines) are compared with
the results obtained by choosing the columns at random (blue lines).
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distances. The inverses of these distances were used as input
features for the TICA analysis with a lagtime τ = 140 ns in the
calculation of the time-lagged correlation matrix C(τ).
Figures 6a−b show the sparse sampling results for TICA on

the full 24533-dimensional basis set using spectral oASIS (with

m = 50 columns selected at a time). The fully converged TICA
time scales are around 1.29, 1.13, and 0.85 μs. Note that these
time scales cannot be compared directly with those obtained
previously,51 as in that study a Markov state model analysis was
performed where all the system configurations were presorted
into bound, associated, and unbound. Since the purpose of the
present study is the demonstration of the sparse computation
and not the analysis of the binding kinetics of this complex, we
used TICA without presorting the configurations. Using
spectral oASIS, only about 20% of the basis functions were
needed to estimate the TICA time scales and eigenvectors

accurately. This results in massive savings in computer time and
storage, making the use of the full TICA basis set feasible.
In agreement with the result in the literature,51 we find

benzamidine bound in either of the two binding pockets 1 and
1*.50,59−61 In both pockets benzamidin forms a salt bridge to
Asp170 but in each pocket benzamidine can bind either above
or below the binding loop. Figures 6c−d show that the first two
TICA eigenvectors clearly indicate an open/close conforma-
tional change of the Trp215 side-chain that acts as a lid in front
of the binding pocket. This finding is in agreement with the
previous Markov state model analysis51 where the opening and
closing of the binding pockets were associated with the slowest
transitions.

4. CONCLUSIONS

We used recent results from the field of compressed sensing to
significantly reduce the computational effort in the analysis of
molecular kinetics from molecular dynamics simulations. In
particular, starting from the adaptive oASIS approach for
eigenvalue approximation we propose a spectral adaptive
method that samples m columns of a dense matrix
simultaneously to approximate the first few eigenvalue/
eigenvector pairs, additionally reducing the number of passes
over the molecular dynamics trajectory in the data analysis. In
addition, we propose the use of the Nyström approximation as
a selection method for a subset of basis functions in the
variational approach to conformation dynamics, hence
extending the oASIS approach to approximate a generalized
eigenvalue problem.
The power of this approach is illustrated on a number of

examples, including the analysis of massive molecular dynamics
data such as the binding of the ligand benzamidine to the
protein trypsin. We show that in all cases considered the
spectral oASIS method for the generalized eigenvalue problem
achieves a dimension reduction between 20% and 1%. As the
problem scales cubically with the number of basis functions
used, such a reduction corresponds to a gain in efficiency of 2
to 4 orders of magnitude without significant accuracy loss. We
believe that the proposed approach can facilitate the analysis of
complex molecular dynamics data for large systems over long
time scales, a problem that is becoming increasingly prominent
as the data become easier to generate.

■ APPENDIX A: NYSTRÖM APPROXIMATION OF THE
OVERLAP MATRIX

Let C̃ denote the Nyström approximation of the correlation
matrix C(0) using k columns, and let S be the set containing
their indices. Without loss of generality, we may assume that S
= {1, ..., k}. Moreover, let k be the orthogonal projection onto
the space spanned by the k functions {χi:i∈S}. Suppose that
C(0) = XTX, so that C̃ = XTPkX, where Pk = XkXk

+ is the
orthogonal projection onto the space spanned by the selected
data points Xk = X[:,S].57 Similarly, the projection k in
function space is given by

∑ α χ=
=

f f( )k

k

1

where α ∈ k solves the linear system

α β=f fC ( ) ( )k

with β ∈ k defined by

Figure 6. Application of spectral oASIS to TICA of trypsin−
benzamidine. (a) Convergence of the estimation of the first three
TICA time scales (in μs) as a function of the number of columns used.
The full matrix has 24533 columns. About 20% of the total number of
columns are needed to obtain a reliable estimate. (b) Relative error of
the estimation of the three slowest time scales associated with the
spectral oASIS method. (c-d) Comparison of structures at opposite
extremes of the first (c) and second (d) TIC projections. The first TIC
corresponds to the flipping of Trp215 and fluctuations of the loop
215−221 and its flanking loops. The second TIC corresponds to
fluctuations in the calcium binding loop.51
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β χ= ⟨ ⟩ =πf f j k( ) , , 1, . . . ,
j j

By the linear independence of the basis functions χi, the exact
correlation matrix Ck is an invertible matrix, so that the unique
solution to the linear system is given by

α β= −f fC( ) ( ) ( )k 1

Denoting the s-th row of Xk by (Xk)(s), i.e., (Xk)(s) = X[s,S] =
(χ1(xs), ..., χk(xs)), where {x1, x2, ..., xt, ..., xT} is a realization of
the trajectory, we thus obtain

χ β χ= ⟨ ⟩−x X C( )( ) ( ) , ( ) ( )k i s k s
k

i( )
1

On the other hand, writing the i-th column of X as
X(i)=X[:,i], for the orthogonal projection Pk we get

γ χ= ⟨ ⟩+PX X C( ) ( ) , ( ) ( )k
i

s k s
k

i
( )

( )

where Ck explicitly denotes the estimate of Ck from data as in
eq 4, and γ(χi) is the estimate of β(χi) from data:

β χ γ χ χ χ≈ = ⟨ · ⟩x x( ) ( ) ( ) ( )
j i j i j t i t t

Consequently, it can be shown that for long enough
sampling trajectories the difference between the estimated
correlation matrix of the smaller basis set and the Nyström
approximation of the estimated correlation matrix of the full
basis set can be made arbitrarily small. The remaining error
between the exact correlation matrices of the full and the
projected basis set, respectively, thus only stems from the error
caused by the Nyström approximation, which is a quantity we
can control using the column selection algorithm.

■ APPENDIX B: ALTERNATIVE SPARSE SAMPLING
METHODS FOR THE GENERALIZED EIGENVALUE
PROBLEM

Nyström Approximation of the Time-Lagged Correlation
Matrix
While in principle the time-lagged correlation matrix C(τ) is
neither symmetric nor positive semidefinite, in practice one
might assume that it is still possible to construct a Nyström
approximation that is reasonably close to it. Indeed, this seems
to be the case when the time lag employed is small compared to
the length of the sample trajectory. Using the same set of
columns as previously selected for the purpose of the Nyström
approximation of the overlap matrix C(0), we write both
approximations as

̃ = −C W CC(0) (0) (0) (0)k k k
1 T

τ τ τ τ̃ = −C W CC( ) ( ) ( ) ( )k k k
1 T

where Ck(·) denotes the submatrix of selected columns and
Wk(·) is the intersection matrix of rows and columns with the
same indices. We proceed by computing a square root

∈ ×L k k
0 of Wk(0) that is numerically full-rank and form

the product = ∈ ×L C L(0)k
M k

0 . Consequently,

≈ ̃ =C LL(0) C(0) T

Using the pseudoinverse L+ of L as a transformation of the
data, that is,

̂ = +X LX ( )T

we get

̂ = = ∈+ + ×L C L IC(0) (0)( ) k
k kT

τ τ̂ = ∈+ + ×C L C L( ) ( )( ) k kT

As a result, the generalized eigenvalue problem (eq 3)
reduces to the standard eigenvalue problem

τ λ̃ =+ +L L b bC( )( ) i i i
T

so that the generalized eigenvectors ai in (eq 3) satisfy

=b L ai i
T

Note that we can compute the product

τ τ τ τ̃ =+ + + − +L C L L C W C L( )( ) [ ( )][( ( ) ( ) )( ) ]k k k
T 1 T T

without the need for storage of full-size matrices.

CUR Decomposition
n order to relax the assumption that the Nyström
approximation of the time-lagged correlation matrix C(τ) be
accurate even in the absence of symmetry and positive
definiteness, we can replace the Nyström approximation by a
more general matrix decomposition. Specifically, the CUR
decomposition62−65 is applicable to any matrix. Using a selected
set of rows Rk and columns Ck of a matrix C, the CUR
decomposition of C is given by

=C C U Rk k k

where Uk is usually defined as the pseudoinverse of the
intersection matrix of columns and rows. Given a selection of
columns, corresponding row indices that provide for maximum
accuracy within the constraint of the initially selected column
indices can be found using the maximal volume algorithm.66−68

Proceeding as in the previous paragraph, we thus obtain

τ τ τ τ̃ =+ + + +L C L L C U R L( )( ) [ ( )][( ( ) ( ))( ) ]k k k
T T

Projected Generalized Eigenvalue Problem
Suppose that the matrices C(0), C(τ) are given by

=C X X(0) T

τ =C X Y( ) T

respectively. We then define the associated matrices

=G XX(0) T

τ =G YX( ) T

Consider the generalized eigenvalue problem

τ λ=G v G v( ) (0)i i i (7)

Denoting a submatrix of k columns of X by X·k, we may
approximate the generalized eigenpairs (vi,λi) by the solutions
(ũi,λ ̃i) of the small-scale problem69

τ λ= ̃
· · · ·X G X y X G X y( ) (0)k k i i k k i
T T

(8)

where ũi = X·kyi.
There is an interesting relationship between the generalized

eigenvalue problem (eq 7) and our original problem (eq 3):
Every generalized eigenpair (λi,vi) of eq 7 yields a generalized
eigenpair (λi,ai) of eq 3, as we now show.
Let X = QSVT be the thin singular value decomposition of X.

Then G(0) = QS2QT, and multiplying eq 7 by G(0)+ yields

τ λ=+G G v QQ v(0) ( ) i i i
T
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However, it is also true that G(τ)QQT = G(τ), so that (λi,vî)
=(λi,QQTvi) is an eigenpair of the matrix G(0)+G(τ):

τ λ̂ = ̂+G G v v(0) ( ) i i i

We multiply this equation by XT to get

λ̂ = ̂−VS Q YX v X vi i i
1 T T T

or equivalently

τ λ̂ = ̂+C C X v X v(0) ( ) i i i
T T

Thus, (λi,ai) = (λi,X
Tvî) = (λi,X

Tvi) is an eigenpair of the
matrix C(0)+C(τ). Multiplication of the equation

τ λ=+C C a a(0) ( ) i i i

by C(0)+ from the left finally results in the generalized
eigenvalue problem (eq 3).
Interestingly, the matrices involved in the generalized

eigenvalue problem (eq 8) can be computed without the
need to store full-size matrices. Observe that

= =· · · · · ·X G X X X X X C C(0) ( )( ) (0) (0)k k k k k k
T T T T

τ τ= =· · · · · ·X G X X Y X X C C( ) ( )( ) ( ) (0)k k k k k k
T T T T

where Ck·(·) denotes the submatrix containing the first k rows
of the respective matrix. We thus have to solve the generalized
eigenvalue problem

λ τ=· · · ·C C y C C y(0) (0) ( ) (0)k k i i k k i
T T

and set ai = Ck·(0)
Tyi to obtain an approximate generalized

eigenpair of eq 3.
Note that this approach has two shortcomings: First, there

might be eigenpairs of eq 3 that are not approximated by
eigenpairs of the small-scale problem. Second, the approx-
imation is not guaranteed to be exact even if the Nyström
approximation of C(0) for which the column selection is
performed is exact.

Comparison of Methods

In order to assess the approximation properties of these
alternative methods for sparse sampling of our generalized
eigenvalue problem, we compare them among each other and
also to the direct method of applying the VAC to the small
basis set (as presented in the manuscript), which is called the
“reduced” method in what follows.
In Figure 7, we compare the relative approximation error in

the slowest implied time scale in the numerical examples
discussed in the manuscript. For the four-well example, only the
solution obtained from the projected generalized eigenvalue
problem is significantly less accurate than the other three. In
the case of the BPTI data, the reduced problem provides the
best result, while the methods using low-rank decompositions
and the projected problem perform worse by several orders of
magnitude. Since the data for the trypsin−benzamidine
example consists of many short trajectories, we observe a
very unstable behavior of the Nyström-based method. It is
worth noting that the method using the CUR decomposition
performs best in this example. However, as the condition
number of this particular problem is rather high, this result
should be taken with reservations.
All in all, we conclude that the direct application of the VAC

to the small basis set provides a competitive performance whilst
incurring the least computational effort of all methods

presented. Still, we believe that further investigation and
comparison of the proposed methods would prove to be
interesting.

■ APPENDIX C: ONE-DIMENSIONAL MODEL SYSTEM

The one dimensional energy function V(x) from ref 13 used in
section 3.1 is given by

= + −

+ − −

+ − +

V x x x

x

x

( ) 4( 0.8 exp( 80 )

0.2 exp( 80( 0.5) )

0.5 exp( 40( 0.5) ))

8 2

2

2

A plot of the potential over the interval [−1,1] is shown in
Figure 3a.
We sample the energy landscape by using the discrete

dynamics defined as follows. Let (q1, ..., qN) be a regular grid
finely approximating the x-axis (N = 1000 in the reported
results). We define the dynamics by considering the probability
of taking steps between neighbors given by a tridiagonal

transition probability matrix ∈ ×P N N defined by

Figure 7. Comparison of the approximation behavior of the four
sparse sampling methods. We show the norm of the relative error in
the dominant implied time scales for (a) the four-well example, (b)
BPTI, and (c) the Trypsin−Benzamidine system.
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=
+ +

p vM V q V q( ( ), ( ))
i i i i, 1 1

= − −
+ −

p vM V q V q vM V q V q1 ( ( ), ( )) ( ( ), ( ))
i i i i i i, 1 1

=
− −

p vM V q V q( ( ), ( ))
i i i i, 1 1

with the Metropolis function

β= − −M a b b amin exp( , ) {1, ( ( ))}

In the following, we use v = 0.5 and β = 1.
We employ the variational principle to estimate the

eigenfunctions and eigenvalues associated with the Markov
operator by defining a basis set of N Gaussian functions

χ
σ

= −
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j a

q q
( ) exp

( )

2i

i j

2

2

each of them centered at a grid point qi and evaluated at every
grid point qj. In the above expression, a and σ are parameters
set to a = 1 and σ = 0.15.
The exact correlation matrix elements can be easily

computed by

∑ ∑τ χ π χ= τc k lP( ) ( ) ( ) ( )ij

k l
i i ij j

The exact eigenfunctions ψk and eigenvalues λk(τ) can be
calculated directly from Pτ.
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