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Abstract	
A	major	challenge	in	systems	biology	is	to	infer	the	parameters	of	regulatory	networks	that	
operate	in	a	noisy	environment,	such	as	in	a	single	cell.	In	a	stochastic	regime	it	is	hard	to	
distinguish	noise	from	the	real	signal	and	to	infer	the	noise	contribution	to	the	dynamical	
behavior.	When	the	genetic	network	displays	oscillatory	dynamics,	it	is	even	harder	to	infer	
the	parameters	that	produce	the	oscillations.	To	address	this	issue	we	introduce	a	new	
estimation	method	built	on	a	combination	of	stochastic	simulations,	mass	action	kinetics	
and	ensemble	network	simulations	in	which	we	match	the	average	periodogram	and	phase	
of	the	model	to	that	of	the	data.	The	method	is	relatively	fast	(compared	to	Metropolis-
Hastings	Monte	Carlo	Methods),	easy	to	parallelize,	applicable	to	large	oscillatory	networks	
and	large	(~2000	cells)	single	cell	expression	data	sets,	and	it	quantifies	the	noise	impact	
on	the	observed	dynamics.	Standard	errors	of	estimated	rate	coefficients	are	typically	two	
orders	of	magnitude	smaller	than	the	mean	from	single	cell	experiments	with	on	the	order	
of	~1000	cells.		We	also	provide	a	method	to	assess	the	goodness	of	fit	of	the	stochastic	
network	using	the	Hilbert	phase	of	single	cells.	An	analysis	of	phase	departures	from	the	
null	model	with	no	communication	between	cells	is	consistent	with	a	hypothesis	of	
Stochastic	Resonance	describing	single	cell	oscillators.	Stochastic	Resonance	provides	a	
physical	mechanism	whereby	intracellular	noise	plays	a	positive	role	in	establishing	
oscillatory	behavior,	but	may	require	model	parameters,	such	as	rate	coefficients,	that	
differ	substantially	from	those	extracted	at	the	macroscopic	level	from	measurements	on	
populations	of	millions	of	communicating,	synchronized	cells.			
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Introduction	
	

Gene	regulation	is	an	intrinsically	stochastic	process[1-3].		The	low	copy	numbers	of	
some	molecules,	such	as	genes,	involved	in	gene	regulation	lead	to	a	noisy	time	series	of	
numbers	of	molecular	species	in	a	gene	regulatory	network	within	a	single	cell.	This	
randomness	can	produce	different	phenotypes	for	genetically	identical	organisms[4,	5]and	
for	a	single	transcription	factor[3].		This	randomness	can	also	produce	coordinated	
regulation	of	target	genes[6],	and	for	a	combination	of		2	or	more	transcription	factors,	
combinatorial	regulation	by	changes	in	relative	pulse	timing	between	transcription	
factors[7],	and	have	a	role	in	the	evolution	of	genetic	networks[8].	To	measure	this	
stochasticity	and	to	extract	information	about	the	regulatory	network	from	the	numbers	of	
molecular	species	over	time	has	become	a	major	challenge	in	systems	biology[9,	10].			
Recent	progress	in	addressing	this	task	has	been	due	mainly	to	advances	in	high-
throughput	single-cell	measurement	techniques	for	measuring	gene	expression,	yielding	
large	datasets	on	gene	expression	in	single	cells	and	the	development	of	computational	
models	used	to	explain	these	data[11-15].		
	

Computational	models	should	be	able	to	capture	the	main	features	of	the	
experimental	data,	such	as	the	histories	of	molecular	species	in	a	cell,	and	provide	new	
insights	about	the	biological	process	operating	in	single	cells[16,	17].	To	build	such	a	
model,	a	critical	step	is	to	quantify	the	many	unknown	parameters	that	characterize	the	
behavior	of	a	single	cell[18].	For	genetic	networks	describing	single	cells	these	parameters	
include,	for	example,	reaction	rate	coefficients,	initial	molecular	numbers,	mRNA/DNA	
ratios,	and	Hill	coefficients.	These	quantities	are	difficult	to	measure	directly	on	single	cells.	
Usually	only	a	few	of	those	predicted	by	the	model	are	available	from	experiments,	such	as	
the	levels	of	a	few	proteins	or	mRNAs,	observed	through	their	fluorescence[14,	19].	
	

In	the	context	of	gene	regulation,	we	need	to	simulate	the	behavior	of	whole	gene	
networks	in	single	cells	to	fit	these	models.	One	of	the	earliest	methods	to	simulate	
stochastic	gene	networks	was	developed	by	Gillespie[20].	It	allows	exact	simulation	of	
stochastic	biochemical	networks,	in	principle	for	any	duration	of	time	and	network	size.	By	
measuring	the	trajectories	of	many	cells,	we	can	find	desired	statistical	summaries	of	the	
period,	phase,	and	amplitude		for	the	time	series	of	molecular	numbers	in	a	cell.	By	
comparing	these	with	analogous	summaries	generated	by	a	stochastic	model,	we	can	infer	
parameters	of	the	underlying	stochastic	process.	The	only	drawback	of	Gillespie's	method	
is	that	it	can	take	a	long	time	to	run,	and	generating	summary	statistics	with	a	high	degree	
of	accuracy	can	be	computationally	prohibitive.	Approximate	stochastic	simulation	
methods	can	be	used	to	speed	up	the	computations,	but	introduce	additional	errors	that	
are	difficult	to	account	for	in	the	model	fitting	process.		
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The	𝜏-leaping	methods[21]	is	such	an	approximation	to	the	exact	Gillespie	
algorithm.	Instead	of	simulating	a	succession	of	reactions	one	at	a	time,	a	Poisson	
distribution	is	used	to	approximate	the	number	of	times	each	reaction	is	occurring	in	that	
time	interval.	This	can	decrease	the	simulation	time	significantly	if	certain	conditions	are	
met.	But	the	Poisson	approximation	introduces	additional	error,	and	supplementary	
computations	are	then	needed	to	verify	that	the	approximation	is	accurate.	
	

Maximum-likelihood	methods	have	also	been	used	for	fitting	stochastic	
networks[22].	These	methods	select	those	parameter	values	that	maximize	the	likelihood	
that	the	model	generates	the	observed	data.	The	main	difference	among	these	approaches	
is	the	way	the	maximum-likelihood	estimator	is	calculated.		Some	of	the	methods	use	
Markov	Chain	Monte	Carlo	Methods[23,	24],	to	provide	a	direct	solution	of	the	stochastic	
model’s	maximum	likelihood	estimator	or	linear	approximations	thereof[25].		Although	
these	existing	methods	work	well	for	small	networks,	they	become	too	cumbersome	for	
larger	networks.	Many	of	them	produce	only	point	estimates	of	the	network	parameters,	
which	cannot	capture	the	behavior	of	the	system	due	to	the	noise	in	these	point	estimates.	
Other	approximate	methods	of	stochastic	network	identification	have	been	recently	
proposed	using	either	moment-closure	or	volume	expansion		methods	to	approximate	the	
chemical	master	equation	describing	the	stochastic	network	to	simplify	the	fitting	
problem[26].	
	

Ensemble	methods	solve	this	problem.	Based	on	a	Bayesian	posterior	distribution	
or	likelihood	function,	they	produce	large	samples	of	parameter	values	consistent	with	
observed	data	that	can	then	be	model-averaged	to	capture	the	system	behavior[27].	
Consequently,	they	can	produce	confidence	intervals	of	the	model	parameters[28].	More	
recently,	these	methods	have	evolved	into	Approximate	Bayesian	Computation	(ABC)	and	
have	been	used	successfully	in	other	biological	contexts[27,	29].	For	large	networks,	
ensemble-based	parameter	inference	methods	employ	Markov	Chain	Monte	Carlo	(MCMC)	
simulations	techniques	to	draw	samples	from	the	high-dimensional		model	parameter	
spaces[27,	30,	31].	These	MCMC	simulations	are	highly	CPU	time	consumptive	and	one	of	
the	challenges	is	then	to	find	efficient	computational	approaches	to	make	these	simulations	
feasible	within	reasonable	computation	time	limits.		
	

In	modeling	stochastic	molecular	time	series	data,	it	is	important	to	notice	that	the	
individual	random	trajectories	of	molecule	numbers	cannot,	in	general,	be	compared	
directly	to	individual	observed	single-cell	fluorescence	time	series.	The	stochastic	
variability	of	the	individual	trajectories	in	both	model	and	experiment	preclude	a	
meaningful	comparison.	In	the	context	of	potentially	oscillatory	data,	as	expected	in	the	
biological	clock	system,	it	is	also	not	useful	to	compare	the	average	of	model	molecular	
time	series	to	the	average	over	the	observed	single	fluorescent	data	from	all	cells.	Both	
model	and	observed	trajectories	are	typically	randomly	phase-shifted		relative	to	each	
other,	and	averaging	them	therefore	tends	to	cancels	out	the	oscillatory	part	of	the	signal.	
Consequently,	it	is	important	to	design	meaningful	summary	statistics	which	preserve	the	
information	about	the	oscillatory	signal,	including	oscillation	periods,	phases	and	
amplitudes,	when	averaged	over	all	cells	and	model	trajectories,	respectively[32-34].		
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One	aim	of	this	paper	is	to	provide	a	fast,	computationally	feasible	method	for	
parameter	inference	in	a	stochastic	oscillatory	biochemical	network	and	show	its	
successful	application	to	understanding	one	of	the	best	studied	biological	clocks	at	the	
molecular	level[35].	The	method	proposed	uses	different	MCMC	methods,	such	as	
Metropolis-Hastings	and	parallel	tempering,	to	fit	the	average	periodogram[36],	also	
known	as	the	power	spectrum,	of	the	model	to	the	average	periodogram	of	the	data,	where	
the	average	is	taken	over	the	periodograms	of	individual	cell	fluorescent	trajectories.	The	
periodogram	is	a	summary	statistic	which	preserves	two	of	the	relevant	features	of	an	
oscillatory	process,	its	amplitude	and	period.	We	use	deterministic	mass	action	kinetics	to	
initialize	the	Markov	chains	with	parameter	values	that	produce	small	chi-squared	values	
relatively	fast	on	General	Purpose	Graphics	Processor	Units	(GPGPUs)[37].		Thus,	we	can	
rapidly	obtain	model	parameter	sets	that	capture	the	important	periods	and	amplitudes	in	
the	data.	These	models	can	be	further	used	to	match	the	observed	phases	to	test	the	
adequacy	of	the	models.		
	

A	second	aim	of	the	paper	is	to	explore	whether	the	oscillations	in	such	a	network,	
might	actually	be	caused	by	or	reinforced		by	the	molecular	noise	in	the	cell	through	a	
Stochastic	Resonance-like	phenomenon[38-40].		Stochastic	Resonance	is	a	theory	that	
arose	in	physics[38]	to	explain	the	behavior	of	physical	oscillators.		Under	the	Stochastic	
Resonance	hypothesis	the	stochastic	intracellular	noise	is	assumed	to	have	a	positive	role	
in	generating	periodic	behavior	provided	this	noise	is	not	too	little	or	too	large	in	
magnitude.		The	key	to	the	Stochastic	Resonance	hypothesis	is	that	the	presence	of	
oscillations	has	a	nonlinear	relation	with	the	level	of	stochastic	intracellular	noise.	
	

It	is	therefore	important	in	explaining	oscillations	in	a	stochastic	network	to	infer	
the	impact	that	noise	has	on	cellular	mechanisms	and	to	quantify	how	these	mechanisms	
respond	to	different	noise	levels.	Our	model	and	methods	to	fit	a	stochastic	network	(Fig	1)	
were	developed	with	these	purposes	in	mind.	
	
Model	
	

Our	models	simulate	a	well-stirred	biochemical	system	with	N	molecular	species	
𝑆#, 𝑆%, … , 𝑆' 	having	discrete-valued	molecular	numbers	given	by	𝑋 = 	 𝑋#, 𝑋%, … , 𝑋' .	
These	molecular	numbers	change	in	time	through	the	firing	of	M	reactions	 𝑅#, 𝑅#, … , 𝑅, .	
The	state	of	the	system	at	a	time	𝑡		is	given	by	the	random	vector	𝑋(𝑡) =
	 𝑋#(𝑡), 𝑋%(𝑡), … , 𝑋'(𝑡) 		with	𝑋0 𝑡

	

being	the	number	of	molecules	of	species	𝑆0 	at	time	𝑡,	
𝑖 = 1,… ,𝑁.			

Knowing	the	state	of	the	system	at	time	𝑡,	𝑋 𝑡 = 𝑥,	we	assign	to	each	reaction	𝑅5 	a	
propensity	function	𝑎5(𝑥)	whose	product	with	an	infinitesimal	time	increment	𝑑𝑡	
determines	the	probability	that	reaction	𝑅5 	fires	in	the	next	infinitesimal	time	interval	
[𝑡, 𝑡 + 𝑑𝑡).	These	propensity	functions	𝑎5 𝑥 , 𝑗 = 1,… ,𝑀,	,	are	defined	based	on	mass	action	
kinetics,	𝑎5 𝑥 = 𝑘5𝑏5(𝑥),	where	𝑘5 	is	a	kinetic	constant	specific	to	reaction	𝑅5and	𝑏5(𝑥)	
counts	the	number	of	ways	reaction	𝑅5can	occur	given	state	𝑋.	For	instance,	for	mono-
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molecular,	homo-bimolecular	and	hetero-bimolecular	reactions	𝑏(𝑥)	takes	the	form	𝑥#,	
𝑥# 𝑥# − 1 /2	and	𝑥#𝑥%,	respectively.	The	sum	of	all	propensities	is	denoted	by	𝑎A(𝑥).		

	
										The	parameters	we	need	to	infer	are	initial	molecular	numbers	and	the	kinetic	
constants,	Θ = 𝑋# 0 , 𝑋% 0 , … , 𝑋' 0 , 𝑘#, … , 𝑘, .	Gillespie	showed	that	from	knowing	
these	parameters	we	can	build	an	exact	sample	trajectory	of	the	network	to	find	the	
molecular	numbers	at	any	later	time.	Thus,	a	parameter	set	Θ	gives	a	model	of	the	
network’s	dynamics.	
	
								Our	study	is	focused	on	a	well-studied	oscillatory	network,	the	clock	network	of	
Neurospora	crassa[28]	.	This	network	is	presented	in	Fig	1.	The	species	with	superscript	r	
denotes	an	mRNA;	the	ones	in	capital	letters	are	proteins.	The	rest	are	genes.	As	shown	in	
Yu	et	al.	[28],	we	can	consider	the	protein	WC-2	to	be	constant,	so	we	can	ignore	the	species	
wc-21,	wc-2r1and	the	reactions	in	which	they	are	involved.	Also,	wc-11	is	constant.	Thus,	we	
reduce	the	network	to	12	molecular	species	and	22	reactions,	which	makes	our	parameter	
space	34-dimensional.	Earlier	work[28]		has	shown	this	is	a	good	approximation.	This	
particular	model	is	in	one	of	two	classes	of	negative	feedback	models	for	clocks	in	different	
organisms	termed	a	Hill-type	transcriptional	repression	model[41,	42].		

	Some	essential	features	of	the	model	are	captured	in	the	cartoon	(Fig	1B).	The	
genes	white	collar-1	(wc-1)	and	white	collar-2	(wc-2)	produce	a	heterodimer	WCC	=	WC-
1/WC-2,	which	activates	the	oscillator	gene	frequency	(frq)	and	a	clock-controlled	gene	
(ccg).		The	FRQ	oscillator	protein	in	turn	provides	a	negative	feedback	loop	to	deactivate	
WCC.		The	genes	wc-1	and	wc-2	encode	the	positive	elements	in	the	clock	mechanism,	and	
frq	encodes	a	negative	element[28].		The	FRQ	protein	also	appears	to	have	a	role	in	
stabilizing	the	wc-1	mRNA	(wc-1r)[28]. 
 
 
 
Materials and Methods 
 
Single cell data of N. crassa.   

Two single cell data sets were used[13].  One data set has 868 single cells; the second one 
as a replicate has 1591 single cells. These two data sets were generated through time-dependent 
oscillatory fluorescent measurement on single N. crassa cells encapsulated in aqueous droplets 
of ~100 um in diameter and physically separated from each other as a result. The measurements 
were through the use of a fluorescent recorder (mCherry) linked to a promoter on a clock 
controlled gene-2 (ccg-2)[43]. We obtained one data set including the time series of 868 single 
cells over ten days, and another data set including the time series of 1,591 single cells over ten 
days. The second data set is attached as a supplementary excel file.  An improved cell-tracking 
method was used to bring the data set to 1,644 cells from 1,591 cells as originally described[13].  
In the supplemental spread sheet each column is a different cell, and each row, a different time 
point.  There are 563 time points per cell taken from time 0 to time 261.5 hours every half hour.  
Each single cell time series is Rhodamine B normalized, detrended, and bias-corrected[13].  
Only 61st to 540th time points were used in the analysis to allow each oscillator the opportunity 
to reach a stable limit cycle and to maintain cell viability at the end of the series.  
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Rescaling	from	deterministic	model	units	to	stochastic	molecular	
number	units.		

	In	previous	work[28]	our	clock	network	was	studied	in	a	deterministic	framework.	An	
ensemble	of	oscillating	network	models	quantitatively	consistent	with	available	RNA	and	
protein	profiling	data	was	found.	If	we	wish	to	use	concentration	results	from	these	
deterministic	models	as	inputs	in	a	stochastic	framework,	then	we	need	to	rescale	the	
initial	molecular	concentrations	in	the	deterministic	model	to	molecular	numbers	in	the	
stochastic	model,	that	is	non-negative	integers	counting	molecules	in	Fig	1,	while	
preserving	the	deterministic	dynamics[44].	This	conversion	reduces	to	a	change	in	
measurement	units	for	each	species	such	that	the	total	gene	concentration	of	a	species	in	
the	new	molecular	number	units	is	1	in	a	single	cell,	and	the	time-averaged	mRNA	and	
protein	concentrations	in	molecular	number	units	are	equal	to	the	observed	RNA:DNA	and	
protein:DNA	ratio,	respectively.	The	RNA:DNA	and	protein:DNA	ratios	were	determined	
experimentally,	as	described	below,	and	summarized	in	Table	1.		The	RNA:DNA	and	
protein:DNA	ratios	used	below	were	128.7	and	412,	respectively,		averages	from	Table	1.	
	

Following	an	established	notation[28],	the	12	species	concentrations	[wc-1r0],	[wc-1r1],	
[WC-1],	[WCC],	[frq0	],	[frq1	],	[frqr1],	[FRQ],	[ccg0	],	[ccg1	],	[ccgr1],	and	[CCG]	are	abbreviated	
here	to	𝑢EA, 𝑢E#, 𝑢F, 𝑤, 𝑓A, 𝑓#, 𝑓E, 𝑓F, 𝑔A, 𝑔#, 𝑔E, 𝑔F,	respectively,	with	constant	total	gene	
concentrations	𝑓J = 𝑓A + 𝑓#	and	𝑔J = 𝑔A + 𝑔#.		To	convert	the	parameters	of	the	network	
from	deterministic	model	units	to	molecular	number	units	of	counts	of	molecules	in	a	cell	
we	do	the	following:	

1) divide	the	network	into	separate	components	or	“boxes”	in	such	a	way	that	two	
different	boxes	will	be	connected	only	through	catalytic	reactions	(Fig	1).	So,	there	
will	be	no	net	flow	of	molecules	between	different	boxes.		Thus,	the	scales	of	
measurement	units	between	boxes	can	be	varied	independently	without	changing	
network	dynamics.	We	obtain	9	boxes	denoted	by	letters	from	a	to	i.		They	are,	a:	
𝑤, 𝑣F, 𝑢F,		b:	𝑓A, 𝑓#,			c:	𝑓E ,		d:𝑓F,		e:	𝑢EA, 𝑢E#,		f:	𝑣E ,	
g:	𝑔A, 𝑔#,		h:𝑔E 	and	i:	𝑔F.	
	

2) If	we	denote	the	model	units	by	𝑚𝑢	and	real	molecular	number	units	by	𝑟𝑢,	then	
knowing	the	value	of	a	concentration	parameter	expressed	in	𝑚𝑢,	we	need	to	
convert	it	to	a	value	that	uses	𝑟𝑢.	We	just	need	to	find	the	ratio	NO

EO
.	Each	box	will	

have	its	own	NO
EO
	ratio.		For	an	arbitrary	box	z,	we	denote	by	 NO

EO P
its	conversion	

ratio.		
	
For	the	box	containing	a	gene,	like	box	b	with	species	𝑓A, 𝑓#,	we	have	the	values	
QR
NO
, QS
NO
	=	(.356365,	.0824576)	from	the	deterministic	model	in	Table	1	(column	2),	

so	we	know	𝑓J,NO =
QRTQS
NO

=		0.4388226.		
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We	also	know	QRTQS
EO

= 1	,	because	there	is	just	one	frq	gene	in	the	cell.	

Then	 NO
EO U

= #
QV,WX

=2.278825.	

When	applying	this	conversion	factor,	a	gene	is	converted	to	the	nearest	whole	gene	
so	there	isn’t	a	fractional	gene.	
	

For	boxes	with	an	mRNA	we	take	the	average	value	of	an	mRNA	
concentration	parameter	over	a	simulated	trajectory	obtained	using	the	
deterministic	model	and	compare	it	to	the	RNA:DNA	ratio.	If	the	simulated	
trajectory	contains	a	transient	signal,	we	discard	the	corresponding	part	of	the	
trajectory.	Since	the	deterministic	models	display	sustained	oscillations,	we	want	
our	mRNA	deterministic	values	to	come	from	the	purely	oscillatory	part	of	the	
solution	(not	the	transient	part).	
Thus,	for	box	c	we	find	𝑓E,NO =

QY
NO

= #
ZS[ZR

QY(Z)
NO

ZS
ZR

𝑑𝑡,	where	𝑓E(𝑡)	is	the	value	of	𝑓E 	at	

time	𝑡	in	the	deterministic	simulation	of	the	network	between	times		𝑡A	and	𝑡#.	In	the	
time	interval	[𝑡A, 𝑡#)	the	deterministic	trajectory	traced	10	complete	cycles.	
Also,	QY

EO
= 𝑅\']:_`a` 	is	the	RNA:DNA	ratio	for	frq	species,	namely	128.7.		This	ratio	is	

experimentally	determined	from	Table	1.	
Then,	 NO

EO b
= \cde:fghg

QY,WX

	

=			128.7/	0.02319352=5548.963.	

	

Similarly,	for	boxes	with	a	protein	we	will	use	Protein:DNA	ratio	of	412	of	the	
corresponding	species.		All	box	ratios	can	be	found	in	this	way.			For	box	d,		

𝑚𝑢
𝑟𝑢 i

=
𝑅jEkZ:l']
𝑓F,NO

=
412.1
0.46295

= 890.1612	

	
The	ratios	RNA:DNA	and	Protein:DNA	were	found	experimentally	from	Table	1.	
	
Then,	to	convert	a	molecular	concentration	given	by	a	deterministic	model	to	a	
molecular	number	we	just	multiply	the	molecular	number	by	the	conversion	ratio	of	
the	box	to	which	the	species	belongs.	To	change	from	 s

NO
	to	 s

EO
,	we	need	to	multiply	

the	former	term	by	NO
EO
,	but	this	ratio	depends	on	the	box	in	which	the	species	𝑆	

resides.		The	value	 s
EO
	is	then	rounded	to	the	closest	integer.		If,	as	above,	the	deterministic	

model	contains	a	transient	signal,	we	discarded	it.		We	took	 t
NO

≡ 𝑠 𝑡A ,	that	is	concentration	to	
be	converted	is	the	value	of	species	S	at	the	beginning	of	oscillatory	part	of	deterministic	
trajectory	of	S.	
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3) To	convert	the	reaction	rates	from	model	units	to	real	units	we	use	the	law	of	mass	
action	and	the	conversion	ratios	found	at	step	2.	
We	will	show	how	the	method	works	using	𝐿x,	the	translation	reaction	to	FRQ.	
	
We	have𝑓E

					yz							 𝑓E + 𝑓F.		Then	
iQ{
iZ

= 𝐿x ∗ 𝑓E.	

Using	model	units	we	have		
	
											iQ{/NO}

iZ/~E
= ~E

NO}
∗ 𝐿x ∗

QY
NO

∗ 𝑚𝑢b = 𝐿x ∗ ℎ𝑟 ∗
NO
NO}

∗ QY
NO

= 𝐿x,NO ∗
QY
NO

,	

	
where	hr	stands	for	hour,	our	unit	of	time,	and	𝑚𝑢i 	and	𝑚𝑢b 	are	the	model	unit	of	
concentration	for	species	in	box	d	and	𝑐,	respectively.	
	
𝐿x,NOand	

QY
NO

	are	the	values	of	𝐿x		and	𝑓E 	expressed	in	model	units.	They	are	found	

from	the	deterministic	model.	
	
When	𝐿x	is	expressed	in	molecular	number	units,	we	have			
						𝐿x,EO =

yz
#/~E

= 𝐿x ∗ ℎ𝑟 = 𝐿x,NO ∗
NO}
NO

= 𝐿x,NO ∗
NO/EO }
NO/EO 

	=3.02387ÇÉA.#Ñ#%
ÖÖÜÇ.ÉÑx

= 0.4851.	

	
where	𝐿x,EO	is	the	value	of		𝐿x	expressed	in	molecular	number	units.	
	
Likewise,	the	other	reaction	rates	can	be	converted	from	model	units	to	molecular	
number	units	using	the	deterministic	values	and	the	conversion	ratios	found	in	step	
2.	
	
Note	that	when	converting	the	reaction	rates,	we	keep	the	ratios	𝑑𝑆

𝑑𝑡
	the	same.	

Here	𝑆	is	the	concentration	of	a	species.	We	do	not	change	the	qualitative	behavior	
of	the	system	by	conversion,	just	express	it	in	different	measurement	units.	

Method	of	determination	of	protein:DNA	and	RNA:DNA	ratios	specifying	
the	scale	of	the	stochastic	model.			

The	protein:DNA	and	RNA:DNA	ratios	in	a	cell	were	experimentally	determined	to	
set	the	scale	parameters	for	the	stochastic	network.		Protein,	RNA,	and	DNA	samples	were	
extracted	simultaneously	from	cultures	of	Neurospora	crassa,	strain	FGSC	1858	“bd”	
(Fungal	Genetics	Stock	Center,	4024	Throckman	Plant	Sciences	Center,	Kansas	State	
University,	Manhattan,	KS	66506).	The	cultures	were	grown	over	48	hours	in	the	dark	such	
that	the	total	growth	time	was	kept	constant	as	previously	described[45]	under	the	“cycle	
1”	experiment.			A	kit	from	“Norgen	Biotek	Corporation,”(3430	Schmon	Parkway,	Throld,	
Ontario,	Canada	L2V	4Y6)	was	used	to	extract	RNA,	DNA	and	protein	from	the	same	
sample.	The	kit	used	was	Product	#	47700,	“RNA/DNA/Protein	Purification	Plus	Kit.”	Their	
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protocol	was	followed,	including	the	step	1F,	for	cell	lysate	preparation	for	fungi.	Samples	
were	done	from	thirteen	different	time	points	spaced	at	4	hour	intervals	over	48	hours.	A	
total	of	three	preps	were	done	for	each	time	point,	with	a	useable	sample	detected	in	2-3	of	
the	preps.	The	DNA	and	Protein	amounts	from	each	of	these	preps,	were	determined	on	a	
“Qubit	2.0	Fluorometer”	instrument	(ThermoFisher	Scientific,	168	Third	Avenue,	Waltham	
MA	02451).	The	RNA	concentration	was	determined	using	an	Agilent	BioAnalyzer	RNA	
6000	Nano	chip	(Agilent,	Palo	Alto,	California).	The	amounts	were	converted	to	nanomoles	
[46],	averaged,	and	then	ratios	RNA:DNA	and	DNA:Protein	were	calculated	(Table	1).	
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Stochastic	simulation	algorithm-direct	method.			
For	simulating	exact	trajectories	of	a	network’s	temporal	evolution,	we	used	a	

variant	of	Gillespie’s	simulation	algorithm	called	the	direct	method[13,	20].	Gillespie	
showed	that	knowing	the	state	of	the	network	at	a	time	𝑡,	we	can	infer	the	exact	
distribution	of	the	time	of	next	reaction,	𝑡 + 𝜏,	and	the	probability	of	each	reaction	taking	
place	at	time	𝑡 + 𝜏.	Thus,	we	obtain	an	exact	distribution	of	the	state	of	the	network	at	
time𝑡 + 𝜏.	The	Direct	method	uses	these	distributions	to	sequentially	sample	the	time	of	
the	next	reaction	and	the	reaction	that	occurs	next.	It	works	as	follows.		
Given	a	set	of	parameters	Θ = 𝑋# 0 , 𝑋% 0 , … , 𝑋' 0 , 𝑘#, … , 𝑘, 	and	a	final	time	𝑇,	we	do	
the	following:	

1) Initialize	the	system,	i.e.	set	𝑡 = 0	and	𝑋 = 𝑥 = 𝑥# 0 , 𝑥% 0 , … , 𝑥'(0) ..	
2) Calculate	the	propensities,	𝑎5 𝑥 , 𝑗 = 1, . . . 𝑀,,	and	their	sum	𝑎A = 𝑎5(𝑥),

5à# .	
3) Draw	the	random	time	step	value	to	the	next	reaction,	𝜏,		as	an	exponential	random	

variable	with	mean	1/𝑎A(𝑥)	and	the	next	reaction.	Draw	the	type	of	the	next	
reaction	to	be	executed,	𝑗a`âZ ,	as	a	discrete	random	variable	with	probabilities	
äã â
äR â

, 𝑗 = 1,…𝑀.,.		
4) Update	the	state	𝑋	assuming	reaction	𝑅5hgåçtook	place.	Update	the	time,	𝑡 = 𝑡 + 𝜏.	
5) If	𝑡 < 𝑇	go	to	step	2,	else	stop.	

	
	

The	Direct	method	yields	a	trajectory	of	the	network	state 𝑥 𝑡A , 𝑥 𝑡# , … 𝑥(𝑡è)

	

in	the	
time	interval	[0, 𝑇].		The	trajectory	can	be	thought	of	as	belonging	to	a	single	cell.		We	refer	
to	this	trajectory	as	a	Gillespie	trajectory	(of	a	single	cell).		Here	0 = 𝑡A < 𝑡# < ⋯ < 𝑡è <
𝑇with	𝑡0 ,i=1,…,k,	being	the	reaction	times	of	the	reactions	that	fire	before	𝑇.	Such	a	
trajectory	completely	identifies	the	network	state	at	any	time	in	the	interval	[0, 𝑇].	
	
The	fitting	method.			

To	analyze	the	initial	behavior	of	the	clock	network	we	collected	data	on	a	CCG	
protein	from	868	single	cells.	The	fluorescence	level	of	the	CCG	protein	in	each	cell	was	
recorded	every	half	hour	for	10	days[13].		
	

As	a	first	pass,	we	constructed	a	normalized	periodogram	for	each	cell,	and	then	we	
calculated	the	average	(over	868	cells)	of	these	868	periodograms.	Through	normalization	
we	made	the	sum	of	normalized	periodogram	values	equal	to	1.	Normalization	enabled	us	
to	use	periodogram	values	that	are	invariant	to	scaling[13].		We	did	not	use	this	
periodogram	normalization	in	the	more	sophisticated	analysis	of	the	1591	single	cell	data	
set	where	we	applied	a	bias-correction	to	the	average	observed	periodogram	(See	section	
below	on	removing	the	detection	noise).	

At	the	level	of	millions	of	cells	the	level	of	CCG	is	circadian,	i.e.	cyclical	with	a	period	
of	~24	hours.	To	obtain	stationary	time	series	we	used	the	moving	average	method	to	
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remove	the	24-hour	linear	trend	from	the	original	time	series.	The	periodograms	were	
calculated	on	detrended	data[13].	

		 We	assume	the	average	periodogram	describes	the	dynamical	behavior	of	CCG	
protein	because	it	captures	the	periods	and	amplitudes	in	the	system.		

We	selected	this	summary	statistic	in	fitting	the	stochastic	network	because	we	
looked	for	models	with	periodic	behavior	at	the	single	cell	level.		This	choice	was	first	
proposed	to	describe	stochastic	oscillatory	networks	near	their	Hopf	bifurcation	(i.e.,	a	
point	in	the	parameter	space	where	oscillations	first	appear),	and	the	use	of	the	
periodogram	as	the	statistic	driving	the	fitting	was	successfully	used	in	this	context[36].		
The	periodogram	captures	two	important	features	of	an	oscillation,	amplitude	and	period.	
As	we	expect	the	oscillatory	trajectory	to	be	a	mixture	of	sinusoids	with	only	few	of	them	
being	relevant,	we	think	the	important	features	of	an	oscillatory	trajectory	are	embedded	
in	its	periodogram.	Also,	unlike	other	methods	that	try	to	match	individual	trajectories	
produced	by	a	stochastic	model[23]	[47],	we	try	to	fit	the	average	of	these	periodograms.	
Our	view	is	that	to	compare	two	stochastic	models	it	is	better	to	use	summary	statistics	
that	relates	to	an	average	of	the	stochastic	trajectories	rather	than	comparing	individual	
trajectories	for	four	reasons.	One,	the	individual	stochastic	trajectories	are	very	noisy.		
Two,	averaging	the	periodogram	of	individual	trajectories	reduces	this	noise.		Three,	this	
fitting	approach	has	already	proven	successful[36].	Four,	fitting	using	1000s	of	individual	
trajectories	by	the	method	of	maximum	likelihood	has	not	proved	computationally	
tractable.	

	
Markov	Chain	Monte	Carlo	(MCMC)	methods.		

We	used	MCMC	methods	[13,	27,	28]	to	find	sets	of	parameters	in	the	stochastic	
network	(Fig	1)	that	best	describe	the	observed	average	periodogram	of	a	collection	of	
cells.		In	each	Monte	Carlo	update	we	used	Gillespie’s	direct	method	to	simulate	1024	
Gillespie	trajectories	of	the	system	state	using	a	given	set	of	parameters.	Here	the	
parameters	are	the	12	initial	molecular	numbers	and	22	reaction	rates	as	described	earlier	
in	Materials	and	Methods.	We	calculated	the	average	periodogram	of	simulated	trajectories	
and	determined	how	well	it	matched	the	cell	average	periodogram.	Then	we	updated	a	
randomly	chosen	parameter	using	the	Metropolis	–Hastings	algorithm.	The	1024	simulated	
trajectories	were	run	in	parallel	on	a	GPU.	

The	ensemble	ℚ	used	to	fit	the	average	periodogram	is	

ℚ(Θ) = Ω[# #

%îïñ
óQ 𝑒𝑥𝑝 −

öñ
gõõ[öñ

úùW
ó

%ïñ
ó = 𝑒𝑥𝑝 −𝜒%/2 Ω[# #

%îïñ
óQ 																																				(1)	

	

where	𝑄Qb`††	𝑎𝑛𝑑	𝑄Qt0N		are	average	periodogram	values	of	cell	and	simulated	trajectories,	
respectively,	calculated	at	frequency	𝑓.			The	parameter	𝜎Q%	is	the	variance	of	cell	
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periodogram	values	at	frequency	𝑓	and	is	determined	experimentally	by	bootstrapping	the	
periodograms	of	single	cells.		The	form	of	the	likelihood	entails	invoking	the	Central	Limit	
Theorem.		The	associated	𝜒% = 	−2𝑙𝑛ℚ + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.	

	

We	initialized	our	Markov	chains	with		working	oscillatory	networks	describing	the	
clock	at	the	macroscopic	level	of	107	cells	determined	previously	by	the	ensemble	
method[28].	For	each	chain,	we	took	a	set	of	parameters	from	the	deterministic	ensemble	
family	given	in	Yu	et	al.[28]	and	converted	it	to	a	set	of	stochastic	parameters	as	described	
above.			

To	make	sure	we	are	covering	a	broad	region	of	the	parameter	space,	we	started	4	
Monte	Carlo	chains,	each	one	with	a	different	set	of	parameters.	After	running	these	Monte	
Carlo	chains	for	about	74,000	iterations	we	ended	up	with	chi-squared	values	of	different	
levels,	see	Fig	2A.		

We	concluded	that	each	of	these	chains	might	have	been	trapped	to	a	different	local	
minimum.	To	avoid	being	stuck	at	a	local	minimum	we	introduced	an	alternate	MCMC	
method,	the	parallel	tempering	algorithm[48,	49].	Each	set	of	parameters	used	to	start	a	
Metropolis-Hastings	chain	was	now	used	to	start	a	parallel	tempering	algorithm.	 

 (see Materials and Methods) 

 

Our	Metropolis-Hastings	algorithms	were	designed	as	random	walk	algorithms.	

The	target	density	was	ℚ.	At	iteration	𝑘	we	randomly	picked	a	parameter	𝑥0è 	of	the	
parameter	set	𝑥è = 𝑥#è, 𝑥%è, … , 𝑥xÜè 	and	updated	it	using	a	uniform	proposal	kernel	
	𝑈 𝑥0è − 𝛼0, 𝑥0è + 𝛼0 	,	i.e.	the	proposal	density	was	𝑞 𝑥0èT#|𝑥0è = #

%©ù
𝐼 âù´[©ù,âù´T©ù 𝑥0èT# 	.	

		The	proposed	parameter	set	was	𝑦𝑘+1 = 𝑥1𝑘, 𝑥2𝑘, … 𝑥𝑖
𝑘+1, … , 𝑥34𝑘 .		Then,	we	set	

	𝑥𝑘+1 = 𝑦𝑘+1	𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝜌 𝑥𝑘, 𝑦𝑘+1 ,
𝑥𝑘	𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝜌 𝑥𝑘, 𝑦𝑘+1

,	

where	𝜌 𝑥, 𝑦 = 𝑚𝑖𝑛 1, 𝐿(𝑦)/𝐿(𝑥) .	

It	is	well	known	that	for	random	walk	Metropolis-Hastings	algorithms	the	step-widths	𝛼𝑖	

must	be	fine-tuned	to	ensure	the	chain	is	converging	in	a	manageable	time.	While	we	tried	
to	optimize	the	choice	of	the	𝛼𝑖′𝑠,	we	noticed	that	it	might	take	too	long	for	some	chains	to	
converge	(Fig	2A).	Parallel	tempering	algorithm	avoids	the	calibration	of	these	34	
hyperparameters.	

Parallel	tempering	as	an	ensemble	method.			

Deleted: k
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The	idea	of	a	parallel	tempering	algorithm	is	to	simulate	𝐾	replicas	of	the	original	system,	
each	replica	being	simulated	at	a	different	temperature.	So,	each	replica	is	a	Markov	chain	
having	a	tempered	target	distribution	of	the	form	

		

	 ℚ±(Θ) = Ω[# #

%î±ïñ
óQ 𝑒𝑥𝑝 −

öñ
gõõ[öñ

úùW
ó

%±ïñ
ó = 𝑒𝑥𝑝 −𝜒%/2 Ω[# #

%îïñ
óQ 	

	

For	high	“temperature”	T,	the	peaks	of	ℚ± 	become	flatter	and	broader,	making	the	
distribution	easier	to	sample	via	MCMC	methods.	High-temperature	replicas	can	sample	
large	volumes	of	parameter	space,	whereas	low-temperature	chains	are	usually	sampling	
from	a	local	region	of	the	parameter	space	which	may	trap	them	to	a	local	minimum.	
Parallel	tempering	achieves	superior	results	by	allowing	different	replicas	to	exchange	
their	states.	Thus,	high-temperature	replicas	ensure	that	lower	temperature	chains	can	
access	different	regions	of	the	parameter	space.		

The	way	that	a	parallel	tempering	run	is	set	up	is	as	follows.		To	a	set	of	K	replicas	we	
assign	temperatures	from	a	grid	𝑇1 < 𝑇2 < ⋯ < 𝑇𝑘,	with	𝑇1 = 1corresponding	to	our	target	
replica.	Each	replica	explores	its	tempered	distribution	using	an	MCMC	method.	After	a	
predetermined	number	of	in-chain	iterations,	swaps	between	usually	adjacent	replicas	are	
proposed.	A	proposed	swap	between	replicas	at	temperatures	𝑇𝑖	and	𝑇𝑗is	accepted	with	
probability		

																 	 	 			𝜌05 = 𝑚𝑖𝑛 1,
ℚ≤ù(â ã )ℚ≤ã(å ù )

ℚ≤ù(â ù )ℚ≤ã(å ã )
	

where	𝑥 𝑖 is	the	state	of	ith	replica.	When	a	swap	is	accepted,	the	replicas	exchange	their	
positions	in	the	parameter	space;	replica	i	takes	configuration	𝑥 𝑗 	𝑎nd		j	assumes	the	
position	at	𝑥 𝑖 .	Since	hottest	replicas	can	sample	big	regions	of	the	parameter	space,	then,	if	
their	locations	propagate	to	the	coldest	replica,	they	can	help	it	explore	different	regions	of	
parameter	space.	Thus,	the	goal	in	choosing	an	effective	grid	of	temperatures	is	to	make	
sure	the	hottest	replicas	can	freely	explore	the	parameter	space,	i.e	choose	𝑇𝑘	big	enough,	
and	to	choose	the	intermediate	temperatures	in	such	a	way	that	𝜌𝑖,𝑗′𝑠	are	big	enough	to	
allow	each	replica	to	easily	move	between	configurations	sampled	at	different	
temperatures.	

Choosing	the	grid	(K)	and	temperatures	in	parallel	tempering.			

Now	we	show	how	we	chose	K,	the	number	of	replicas,	TK,	the	maximum	temperature	and	
the	temperature	grid	𝑇1 < 𝑇2 < ⋯ < 𝑇𝑘.		

Our	method	is	based	on	the	procedure	described	previously[50].	
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First,	we	chose	the	number	of	replicas	𝐾 = 𝑑,	where	d	is	the	number	of	components	of	𝜃.	

Then	we	chose	maximum	temperature	𝑇K.		

We	took	𝑇𝑘 =
𝜒2 𝜃0

30
,	i.e.	we	divided	the	chi-square	value	of	our	initial	parameter	set	𝜃 A 	by	

30.	The	hottest	replica	will	start	with	a	chi-square	value	of	30.		We	wanted	the	hottest	
replica	to	have	a	high	in-chain	acceptance	rate	while	having	a	not	too	flat	distribution.	The	
number	of	data	points	used	in	calculating	chi-square	values	was	85.	

Then	we	ran	Metropolis-Hastings	for	a	replica	with	this	temperature	for	200	
iterations.	If	acceptance	rate	was	outside	the	range	(0.6,	0.75),	then	we	changed	𝑇𝐾	and	ran	
M-H	again	for	200	iterations.	We	did	this	until	the	acceptance	rate	fell	within	the	range	(0.6,	
0.75).		

We	made	a	linear	grid	with	K	temperatures	and	set	a	target	swap	rate	of	0.4	for	any	
two	neighboring	replicas.	Then	we	run	the	parallel	tempering	in	the	following	way:		

					1)	every	replica	does	an	update	of	its	parameter	set	𝜃.	

					2)	attempt	swaps	between	replicas	1	and	2,	3	and	4,	5	and	6,…	

					3)	attempt	swaps	between	replicas	2	and	3,	4	and	5,	6	and	7,…	

					4)	repeat	steps	1),	2)	and	3)	200	times	

	

For	every	pair	of	neighboring	replicas	(i,	i+1)	we	calculated	

																																			ℚ0,0T# =
#

'ú¥µ{
ù,ù∂S 𝑙𝑛 𝜌0,0T#†'ú¥µ{

(ù,ù∂S)

†à# ,	

where	𝑁𝑠𝑤𝑎𝑝𝑖,𝑖+1 	is	the	number	of	attempted	swaps	between	replicas	i	and	i+1	and	𝜌𝑖,𝑖+1
𝑙 	is	

acceptance	probability	of	the	𝑙𝑡ℎ 	attempt	at	swapping	i	and	i+1.	

	If	𝑅0,0T# =
ℚù,ù∂S
∑∏	(A.Ü)

> 0,	then	we	add	to	the	grid	𝑅𝑖,𝑖+1temperatures,	evenly	spaced	

between	𝑇𝑖	and	𝑇𝑖+1 .		

We	run	this	add-temperature	process	3	times	to	make	sure	we	have	enough	temperatures	
in	the	grid.		

Then	we	shifted	the	temperatures	between	𝑇1	and	𝑇𝑘

	

as	follows.	

1)Run	parallel	tempering	with	the	new	temperature	set	doing	the	above	steps	1),	2)	and	3)	
350	times.	

2)For	each	temperature	𝑇𝑖	calculate	the	flow	fraction	
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							𝑓 𝑇0 = aX{ ±ù
aX{ ±ù Ta}∫¥h ±ù

	,	

where	𝑛𝑢𝑝 𝑇𝑖 	and	𝑛𝑑𝑜𝑤𝑛 𝑇𝑖 	is	the	total	number	of	replicas	that	were	drifting	upward,	
respectively	downward,	when	they	visited	𝑇𝑖	.	

3)	Linearly	interpolate	f		between	temperatures	

4)	Calculate	g	the	inverse	function	of	f	

5)	Change	the	temperature	values	from	𝑇𝑖	to	𝑇𝑖𝑛𝑒𝑤 = 1 − 	 𝑖−1
𝐾−1

.	

This	process	of	shifting	the	intermediate	temperatures	was	repeated	3	times.	

The	shifting	of	temperatures	was	done	to	optimize	the	flow	of	replicas	through	the	
temperature	grid.	

After	that,	we	ran	the	parallel	tempering	algorithm	for	about	60,000	Monte	Carlo	
updates,	where	by	update	we	mean	the	steps	1),	2)	and	3)	described	in	the	add-
temperature	process.		Some	of	the	control	parameters	and	summary	statistics	for	the	
MCMC	runs	are	also	summarized	in	S1	Table.	

Removing	the	detection	noise	from	the	average	periodogram.			

A	model	to	calculate	the	contribution	of	detector	noise	to	the	periodogram	variance	
was	derived	under	mild	assumptions,	and	the	detector	noise,	propagated	to	the	
periodogram	in	the	supplement[13].	The	assumptions	in	this	calculation	were	that	the	total	
noise	could	be	decomposed	additively	into	stochastic	intracellular	noise	and	detector	noise,	
that	the	stochastic	intracellular	noise	component	is	independent	of	the	detector	noise	
component,	and	that	the	detector	noise	in	the	Rhodamine	B	level	measurements	used	in	
normalization	of	fluorescence	measurements	can	be	neglected[13].		The	detector	noise	was	
independently	quantified	by	replacing	cells	with	fluorescent	beads	in	the	microfluidics	
experiments.		In	this	way	a	universal	system	of	measurement	of	gene	expression	at	the	
single	cell	level	was	developed	and	used	here[13].	

	

Suppose	we	observe	the	fluorescence	values	in	an	experiment	with	K	cells	and	L	
equidistant	observation	times	𝑡𝑗 = 𝑗 − 1 𝑇

𝐿
	.	Here	j=1,…,L	and		T	is	the	duration	of	the	

experiment.	Denote	the	frequencies	of	interest	by	𝑓𝑙 =
𝑙
𝑇
,	l=0,…,	[L/2].	Also	assume	the	cells	

are	treated	with	rhodamine	B	to	reduce	experimental	noise.		

Then,	the	detector	noise	contribution	to	the	periodogram	variance	at	frequency	𝑓𝑙	is	given	
by[13]:	

						 𝜎𝑙𝑒 2 = 2𝜎𝜖2

𝐾𝐿
𝑄 𝑓𝑙 𝛾𝑄 𝑙 + 𝑅𝑒 𝑅 𝑓𝑙 𝛽𝑄 𝑙 ∗ − 𝜎𝜖4

𝐾𝐿2
𝛾𝑄 𝑙

2
+ 𝛽𝑄 𝑙

2
,	

Deleted: Supplement	
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where	 𝑄 𝑓𝑙 		and	 𝑅 𝑓𝑙 	are	the	population	means	of,	respectively,	average	periodogram	
and	average	squared	Fourier	transform	of	the	observed	rhodamine	B-normalized,	
detrended	fluorescence	time	series.		The	quantity	𝜎𝜖2	is	the	variance	of	the	fluorescence	
signal	due	to	the	detector	noise	averaged	over	all	cells	and	time	points.		This	variance	was	
determined	experimentally	by	varying	the	incident	light	intensity	and	measuring	the	
resultant	variance	in	fluorescence	of	fluorescent	beads	replacing	cells	in	a	microfluidics	
experiment	identical	to	that	used	for	cells[13].	The	quantities	𝛾𝑄 𝑙 	and	𝛽𝑄 𝑙 	are	functions	
of	the	weights	used	in	the	moving-average	detrending	process[51],	a	standard	for	the	
literature.	They	do	not	depend	of	the	observed	fluorescence	signals.			

To	compare	the	simulated	average	periodogram	values	with	observed	average	
periodogram	values	we	need	to	remove	the	bias	due	to	detection	error.	

The	bias	formula	is	given	by	

𝑄𝑏𝑖𝑎𝑠 𝑓𝑙 = 𝜎𝜖2

𝐿
𝛾𝑄 𝑙 .	

When	we	try	to	fit	the	cell	average	periodogram,	we	compare	𝑄 𝑓† − 𝑄U0ät 𝑓† 	to	𝑄𝑚𝑜𝑑𝑒𝑙 𝑓𝑙 ,	
with	𝑄 𝑓† 	being	the	average	periodogram	over	K	cells	calculated	at	frequency	𝑓𝑙	and	
𝑄𝑚𝑜𝑑𝑒𝑙 𝑓𝑙 	being	the	average	periodogram	of	the	simulated	time	series	calculated	at	𝑓𝑙	.	
Unlike	the	analysis	of	the	868	single	cell	data	set,	the	analysis	of	1591	single	cell	data	set	
with	the	bias	correction	does	not	normalize	the	periodograms.		The	whole	fitting	process	is	
done	on	an	absolute	scale	without	periodogram	normalization.	

The	ensemble	to	fit	the	average	periodogram	becomes	

	

		ℚU0ät[QE``(Θ) = Ω[# #

%îïñõ
ó† 𝑒𝑥𝑝 − ö Qõ [öæùµú Qõ [öW∫}gõ(Qõ

ó

%ïñõ
ó = 𝑒𝑥𝑝 −𝜒%/2 Ω[# #

%îïñõ
ó† 			(2)	

											

with 𝜎𝑓𝑙
𝑐

2
= 	 𝜎𝑓𝑙

2 − 𝜎𝑓𝑙
𝑒

2
.	The	Central	Limit	Theorem	is	being	invoked	to	obtain	the	

approximate	distribution	of	the	average	periodogram	over	>	1000	single	cells	needed	to	
write	down	the	ensemble	in	(2).		See	[13]	for	details.	

Results	
Parallel	tempering	as	opposed	to	Metropolis	Hastings	(M-H)	Monte	Carlo	
is	sufficient	for	fitting	stochastic	models	with	many	parameters.			

As	seen	in	Fig	2B	the	parallel	tempering	algorithms	greatly	improved	the	mixing	of	
the	chains	and	helped	them	escape	local	minima.	These	algorithms	also	converged	much	
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faster	when	compared	to	M-H	algorithms.	Their	only	downside	is	that	they	are	slightly	
more	computationally	intensive	and	in	general	take	longer	to	run	when	compared	to	the	
simple	Metropolis-Hastings	algorithms.	However,	parallelization	can	greatly	reduce	the	
additional	time	taken	to	run	a	parallel	tempering	algorithm	when	compared	to	Metropolis-
Hastings	algorithm.	Better	mixing	and	faster	convergence	more	than	compensate	for	the	
longer	run	time	of	each	iteration.	

For	the	chains	in	Fig	2A	the	average	computation	time	per	iteration	were	25.76,	
3.62,	0.33	and	2.41	seconds,	respectively.	For	the	four	chains	in	Fig	2B	the	computation	
times	per	iteration	were	on	average	41.98,	34.07,	30.11	and	16.89	seconds,	respectively.		

We	see	that,	when	using	Metropolis-Hastings	algorithm,	computation	time,	
convergence	and	mixing	varies	greatly	with	the	initial	parameters	in	Fig	2A.		

Even	though	the	computation	time	when	using	parallel	tempering	algorithm	was	on	
average	longer	compared	to	the	time	used	by	the	Metropolis-Hastings	algorithm,	we	see	
that	the	parallel-tempering	chains	quickly	set	to	what	is	likely	the	region	of	the	parameter	
space	with	lowest	chi-squared	value.	Beginning	with	iteration	20,000	the	chi-square	value	
varied	between	82.87	and	125.5	for	all	chains.	The	mixing	of	these	chains	was	excellent,		
with	the	swap	acceptance	rate	between	replicas	at	neighboring	temperatures	being	larger	
than	0.5	for	all	parallel-tempering	chains.	The	maximum	number	of	replicas	used	in	a	
parallel-tempering	algorithm	was	7.	The	maximum	temperature	was	10.	

The	best	model	given	by	the	parallel-tempering	algorithm	gave	a	good	fit	to	the	
average	periodogram	of	the	cells	as	can	be	seen	in	Fig	3.	The	model	captures	the	main	
frequencies	in	the	data.	It	does	not	fit	the	data	very	well	at	high	frequencies,	but	at	high	
frequencies	data	are	very	noisy.	

The	fit	of	the	stochastic	model	can	be	improved	substantially	by	
increasing	the	number	of	cells	and	subtracting	the	detection	noise	from	
the	periodogram.		

	To	reduce	the	noise	in	the	periodogram	in	Fig	3	we	increased	the	number	of	
isolated	cells	to	1591	in	a	replicate	experiment	and	removed	the	detection	noise	in	the	
periodogram.	See	Table	2.		Without	normalization	of	the	periodogram	the	final	𝜒% was	
671.332	as	opposed	to	12,024.9,	when	the	bias	correction	was	not	made.		With	240	data	
points	and	34	parameters,	the	chi-squared	contribution	per	data	point	was	2.80,	which	is	
comparable	to	earlier	work	on	a	macroscopic	scale[45].	

	

	
	
There	are	strong	similarities	in	the	rate	constants	between	the	
stochastic	clock	network	and	deterministic	clock	network.			
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The	ensemble	averages	of	parameters	and	their	standard	errors	across	the	
ensemble	are	reported	in	Table	2	and	in	bar	charts	in	supplementary	S1	Fig.		Some	of	the	
parameters	are	key	to	sustained	oscillations	in	the	deterministic	model[28].		Some	of	these	
include		the	activation	(A)	and	deactivation	rate(Abar),	the	decay	rate	of	the	stabilized	wc-1	
mRNA	(D7)[28],	the	decay	rate	(D6)	of	the	FRQ	protein[52,	53].	 	
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The	initial	parameter	values	were	computed	by	MCMC	Metropolis	Hastings	Method[28]	for	
a	deterministic	model,	in	which	the	protein	WC-2	was	treated	as	constant	to	good	
approximation.		The	best	parameter	values	in	this	ensemble	were	then	converted	to	the	
molecular	number	units	of	the	stochastic	network	in	Table	2	(column	3).		For	example,	in	
the	stochastic	network	the	initial	numbers	of	molecules	in	each	cell	in	Table	1	are	given	as	
opposed	to	concentrations	used	in	the	deterministic	model.		This	conversion	is	described	in	
Materials	and	Methods.		Generally	there	is	good	agreement	between	the	estimated	rate	
constants	estimated	from	the	trajectories	of	1,591	cells	(column	6)	and	the	initial	guess	
from	the	deterministic	model	(column	3),	but	no	such	agreement	exists	for	the	smaller	
experiment	with	only	868	single	cell	trajectories.		All	discussion	below	is	for	the	larger	
single	cell	experiment	with	1,591	cells.	In	this	discussion	below	wc-1	and	wc-2	and	their	
products	are	positive	elements	in	the	clock,	while	frq	and	its	products	are	negative	
elements	providing	negative	feedback	to	wc-1	and	wc-2	and	their	products[35]	in	Fig	1.	
	

The	decay	rate	of	FRQ,	D6,	is	thought	to	determine	the	period	of	the	clock	
oscillator[52]	and	be	involved	in	the	phenomenon	of	temperature	compensation	in	the	
clock.		As	the	FRQ	decay	rate	D6	decreases,	the	period	is	expected	to	increase.		This	
coupling	of	period	and	FRQ	may	be	more	complicated[53].		The	stochastic	network’s	decay	
rate	(.194	+/-	.002)	is	in	quite	good	agreement	with	the	macroscopic	deterministic	model	
(0.152).	
	

The	decay	rate	of	the	stabilized	wc-1	mRNA,	D7,	in	Fig	1	is	thought	to	be	critical	
determinant	of	clock	oscillations[28].		The	theory	predicted	(and	experiment	confirmed	in	
previous	work[28]	that	there	should	be	small	decay	rate	or	a	long	half-life	at	the	
macroscopic	level.		The	decay	rate	D7	in	the	stochastic	network	(2.131	+/-	0.090)	appears	
somewhat	higher	than	measured	in	the	deterministic	model	(0.138).		One	possible	
explanation	is	that	the	constraint	on	decay	rates	for	isolated	cells	that	experience	stochastic	
intracellular	noise	in	phase	may	be	relaxed	relative	to	that	in	a	deterministic	model	at	the	
macroscopic	level.		If	the	oscillations	are	actually	supported	by	the	noise,	by	way	of	some	
Stochastic	Resonance	mechanism[38],	then	this	may	impose	less	severe	constraints	on	the	
decay	rate	D7.		
	

Another	critical	parameter	for	oscillations	to	occur	in	the	deterministic	model	is	the	
activation	(A)	and	deactivation	rates	(Abar)	of	the	oscillator	frq	gene	by	WCC	in	Fig	1.		
These	activation	and	deactivation	rates	in	the	stochastic	model	(2.56E-10	+/-	7.31E-12	and	
1.590	+/-	0.036)	tend	to	be	qualitatively	similar	(6.06E-13	and	.0.547),	both	being	quite	
small.	
	

Another	critical	parameter	for	oscillations	in	the	deterministic	model	is	the	rate	of	
deactivation	of	WCC	(the	P	reaction)	by	FRQ	[28].		The	deactivation	rate	(P)	in	the	
stochastic	model	(	2.7E-9	+/-	4.8E-11)	is	similar	to	that	estimated	at	the	macroscopic	scale	
(3.12E-11),	both	being	small.			To	assist	in	comparing	the	fitted	macroscopic	model	with	the	
fitted	single	cell	stochastic	model,	bar	charts	of	the	parameters	in	Table	2	can	be	found	in	
supplementary	S1	Fig.	
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The	new	MCMC	method	for	specifying	the	parameters	from	periodogram	tends	to	
produce	standard	errors	across	the	ensemble	that	are	one	to	two	orders	of	magnitude	
smaller	than	the	ensemble	means.		The	parameter	values	are	quite	tightly	specified	by	the	
new	estimation	method	and	the	use	of	at	least	1,500	cells.	

	
It	is	interesting	to	see	what	this	model	actually	looks	like.		Various	views	of	a	single	

Gillespie	Trajectory	are	shown	for	one	of	the	best	fitting	models	(Fig	4).		In	panel	A	is	
shown	the	molecular	counts	of	the	positive	element	WCC.		The	counts	are	correlated	with	
the	activation	of	the	FRQ	gene	in	panel	B,	but	the	correlation	is	not	perfect.		Switching	on	
the	frq	gene	is	a	stochastic	event	in	this	model.		The	result	of	switching	on	the	frq	gene	is	
transcriptional	bursts	in	its	mRNA	in	panel	C.		There	are	at	least	9	such	bursts	in	Panel	C	
over	a	240	h	interval.		The	width	of	these	bursts	as	shown	is	wider	than	the	time	that	a	frq	
gene	is	active	in	a	cell.	In	turn	there	are	resulting	even	broader	peaks	in	the	FRQ	protein	
production	in	panel	D.		The	noisiest	trajectory	is	what	we	actually	see,	CCG-2	in	panel	E.		
These	views		of	a	Gillespie	Trajectory	give	us	a	picture	of	the	noise	in	a	single	cell	under	one	
fitted	model	in	the	model	ensemble.	
	
	
The	stochastic	intracellular	noise	level	(i.e.,	the	size	of	the	cell)	can	be	
experimentally	determined	as	a	parameter	in	the	model.			

The	mRNA	to	DNA	ratios	and	protein	to	DNA	ratios	in	conidia	have	been	previously	
determined	to	be	~1:18:50[54].	Our	ratios	from	Table	1	tend	to	be	higher	as	1:129:412,	
although	the	protein/RNA	ratio	is	similar	to	previous	reports.	Here	we	report	a	higher	
amplification	in	the	DNA	->	RNA	step	of	the	Central	Dogma.		These	ratios	were	then	used	to	
set	the	noise	in	the	stochastic	network	(Fig	5).		The	network	was	subdivided	into	
independent	blocks	that	were	only	linked	by	catalytic	reactions.		Then	the	ratios	in	Table	1	
were	used	to	convert	concentrations	in	the	deterministic	model	into	molecular	numbers	
within	the	cell	(as	described	in	Materials	and	Methods	for	each	independent	block)	as	
illustrated	in	Table	2.	
	

The	ratios	of	RNA	to	DNA	and	protein	to	DNA	set	the	level	of	noise	in	the	Gillespie	
trajectory	of	CCG-2.		As	the	ratios	get	smaller	the	noise	increases	in	the	expression	of	CCG-2	
in	the	Gillespie	model	trajectories	for	CCG-2	protein.		The	level	of	stochastic	intracellular	
noise	is	then	set	by	the	amplification	at	each	step	in	the	Central	Dogma.	
	
	
	
	

Having	experimentally	determined	these	ratios,	it	is	natural	to	ask	how	these	ratios	
affect	the	goodness	of	fit	of	the	model	(Fig	6).		We	varied	the	ratios	about	the	experimental	
values.		A	slightly	better	fit	could	be	obtained	by	allowing	the	protein/DNA	ratio	to	be	
slightly	higher.		The	values	of	the	chi-squared	statistics	across	an	ensemble	would	suggest	
that	the	fit	of	the	model	ensemble	if	fairly	robust	to	variation	in	these	ratios.	
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	 The	robustness	of	the	ensemble	across	different	RNA/DNA	and	protein/DNA	
ratios	can	be	understood	by	the	fact	that	our	stochastic	models	can	be	well	approximated	
by	a	chemical	Langevin	equation,	which	in	turn	can	be	approximated	by	the	ODE	equations	
of	the	deterministic	model.		The	chemical	Langevin	equation(CLE)[10,	55]	is	a	stochastic	
equation	that	describes	the	rate	of	change	of	the	state	vector	of	molecular	numbers,	X,	as	
follows:		

	 𝑑𝑋 𝑡
𝑑𝑡

= 𝑣𝑗𝑎𝑗 𝑋 𝑡𝑀
𝑗=1 + 𝑣𝑗𝑀

𝑗=1 𝑎𝑗 𝑋 𝑡 Γ𝑗 𝑡 ,																																																												(3)	

The	molecular	numbers	comprised	in	X	are	treated	as	continuous	random	variables.	The	
first	term	on	the	right-hand	side	is	just	the	rate	function	of	the	corresponding	deterministic	
model,	and	the	second	term	represents	the	noise	due	to	the	stochasticity	of	the	reaction	
events.	The	𝑣𝑗	is	the	vector	of	changes	in	molecular	numbers	produced	by	the	firing	of	
reaction	𝑅𝑗	and	Γ𝑗’s	are	statistically	independent	Gaussian	white-noise	processes.		The	crucial	point	
here	is	that	the	strength	of	the	noise	term	in	the	CLE	increases	relative	to	the	deterministic	rate	term	in	
the	CLE,	as	the	molecule	numbers	for	RNA	and	protein	decrease.	

	
The	change	of	RNA/DNA	and	protein/DNA	ratios	in	Fig	5	was	effected	by	rescaling	

the	RNA	and	protein	numbers	in	such	a	way	that	the	corresponding	deterministic	model	
remained	unchanged	and	only	the	noise	term	in	the	CLE	was	affected.	So,	if	the	
deterministic	term	dominates	the	stochastic	term,	the	noise	level	will	not	matter,	hence	the	
robustness.	

	
The	Hilbert	phase	variation	between	cells	provides	an	

independent	test	of	the	goodness	of	fit	of	the	model	to	the	average	of	the	
observed	periodograms	of	single	cells.			

There	are	three	quantities	that	characterize	the	periodic	behavior	of	single	cells,	
their	period,	amplitude,	and	phase[13].		Two	of	these	quantities,	period	and	amplitude,	are	
captured	in	the	periodogram	used	for	fitting	the	model	ensemble	(Fig	3).		The	phase	is	
functionally	independent	of	the	periodogram	and	hence	independent	of	the	first	two	
quantities[13];	therefore,	the	phase	can	be	used	as	a	test	of	the	adequacy	of	the	model.		The	
phase	is	not	used	in	the	fitting	(Fig	3).		The	Hilbert	phase	can	be	calculated	for	each	single	
cell	trajectory	and	each	Gillespie	trajectory	and	measures	the	amount	of	cycles	completed	
in	a	fixed	period	of	time	(and	hence	is	a	function	of	time).	So,	for	example,	4	tires	on	a	car	
would	complete	the	same	number	of	cycles	in	a	fixed	period	of	time	and	be	in	phase.		This	
phase	measure	does	vary	with	time	and	is	a	well	known	measure	of	phase[56].	
	 	

The	histogram	of	Hilbert	phases	for	single	cells	and	Gillespie	trajectories	from	the	
model	ensemble	are	compared	as	a	measure	of	goodness	of	fit	(Fig	7).		There	are	two	
sources	of	variation	in	the	Gillespie	trajectories,	the	random	variation	in	phase	between	
Gillespie	trajectories	of		one	model	and	the	variation	in	phase	between	models	in	the	
ensemble	of	fitted	models.		The	histogram	of	Hilbert	phases	in	Fig	7	reflects	both	sources	of	
variation.	For	each	model,	1024	Gillespie	trajectories	were	simulated,	and	each	Gillespie	
trajectory	has	a	Hilbert	Phase.		In	addition	the	process	was	then	repeated	for	over	1000	
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models	in	the	fitted	ensemble	(Fig	3)	to	generate	all	the	values	for	the	model	histogram	(Fig	
7).		We	see	that	the	histogram	for	the	Gillespie	trajectories	for	over	a	thousand	models	in	
the	fitted	ensemble,	covers	the	histogram	measured	on	single	cells	over	an	85	hour	
window.		The	difference	between	the	two	histograms	is	significant	by	a	Kolmogorov-
Smirnov	(KS)	nonparametric	test.		We	carried	out	a	KS-test	of	the	difference	of	the	two	
histograms	(P	<	0.0001)	with	the	maximum	difference	in	cumulative	histograms	being	
0.1747[57].	 	

	
There	are	three	possible	reasons	for	the	discrepancy	between	phase	predicted	and	

phase	observed.		The	systems	is	experiencing	Stochastic	Resonance[38-40].			A	second	
possible	reason	for	the	discrepancy	is	cell-to-cell	synchronization	by	quorum	sensing.		It	is	
unlikely	that	a	quorum	sensing	mechanism	is	at	work	because	the	cells	are	physically	
isolated	in	droplets	in	Fig	7[13].	A	third	reason	could	be	that	the	Hilbert	phase	results	are	
dominated	by	noise	fluctuations.		
	
	
	
Is	there	an	intermediate	optimum	in	the	oscillatory	signal	as	a	function	
of	the	stochastic	intracellular	noise?			

One	possible	explanation	for	the	results	on	goodness	of	fit	may	be	synchronization	
through	the	Stochastic	Resonance	mechanism	acting	on	isolated	single	cells.		Under	this	
hypothesis	there	is	a	non-monotonic	relation	between	peak	height	(i.e.,	signal	strength)	in	
the	periodogram	(Fig	3)	and	the	estimated	stochastic	intracellular	noise[38].		Here	we	
examine	how	the	periodogram,	which	captures	the	oscillatory	signal,	varies,	as	the	noise	is	
varied	(Fig	8).	
	
	 	

One	of	the	clearest	examples	of	the	effects	of	stochastic	resonance	is	in	a	simple	two-
dimensional	system,	in	which	the	polar	coordinates	(r,𝜃) evolve	according	to	the	following	
dynamical	system[39]:	
	 	 	 𝑟 = 𝑟 1 − 𝑟% 										+ 𝜖#(𝑡)	
	 	 	 𝜃 = 𝑏 − 𝑟% cos 2𝜃 +	𝜖% 𝑡 	
where	the	𝜖-terms	are	the	noise	terms.		There	are	two	fixed	points	to	this	system,	and	a	
limit	cycle	in	the	deterministic	system	without	the	𝜖-terms	exists	for	b	>	1[39].		What	is	
interesting	that	in	the	presence	of	sufficient	noise	and	b	<	1,	there	is	directional	flow	
between	the	fixed	points	and	hence	oscillations.		If	there	is	too	little	noise,	the	dynamical	
system	cannot	escape	from	the	stable	fixed	points	and	does	not	oscillate;		likewise,	too	
much	noise	will	also	wipe	out	the	oscillations.	This	model	illustrates	the	hypothesis	of	
stochastic	resonance.	
	

Consistent	with	the	Stochastic	Resonance	hypothesis,	too	little	noise	may	not	allow	
our	dynamical	system	in	Fig	1	to	escape	stable	fixed	points;		likewise,	too	much	noise	may	
not	allow	the	dynamical	system	in	Fig	1	to	settle	into	a	flow	between	stable	fixed	points.		
Yet,	if	there	is	the	right	level	of	noise,	an	oscillatory	signal	may	emerge	in	the	periodogram.	
Here	we	test	this	hypothesis	in	the	N.	crassa	clock	using	the	single	cell	data.	
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What	we	see	in	Fig	8	is	exactly	what	we	would	predict	under	the	Stochastic	

Resonance	hypothesis.		As	the	noise	is	increased	above	“normal”,	the	peak	in	the	
periodogram	is	diminished,	and	the	oscillatory	signal	is	diminished.		If	the	noise	is	
decreased	sufficiently	from	“normal”,	the	peak	in	the	periodogram	is	also	diminished,	and	
the	oscillatory	signal	is	diminished,	consistent	with	the	trapping	of	the	real	dynamical	
system	in	stable	fixed	points.		Only	at	an	intermediate	level	of	noise	do	we	see	oscillations	
in	single	cells	in	Fig	8	in	the	periodogram.	
	
	 As	a	final	note,	in	Fig	8	the	protein/DNA	and	RNA/DNA	ratios	were	varied	to	cause	a	
change	in	the	stochastic	intracellular	noise	(Fig	5),	while	the	reaction	propensities	were	left	
constant.		Some	might	argue	from	Equation	(3)	that	the	lead	deterministic	term	in	the	CLE	
should	be	kept	constant	while	varying	the	stochastic	intracellular	noise.		In	this	way	the	
limiting	deterministic	dynamics	would	be	kept	constant	while	the	noise	is	varied.		In	
comparing	models	with	the	same	deterministic	dynamics,	it	was	necessary	to	vary	the	
propensities	so	that	the	lead	term	in	the	CLE	did	not	change	using	the	rescaling	method	in	
the	Materials	and	Methods.			The	result	of	this	experiment	was	the	same	outcome	as	in	Fig	8	
with	the	only	change	that	a	much	higher	RNA/DNA	and	protein/DNA	ratio	(~3000)	was	
needed	to	see	the	non-monotonic	response	to	stochastic	intracellular	noise	in	Fig	8.	
	
Discussion	
	
	 In	order	to	describe	the	stochastic	behavior	of	single	cell	oscillators,	a	variety	of	
methodological	challenges	needed	to	be	surmounted.		First	and	foremost,	a	scalable	fitting	
method	that	would	work	with	thousands	of	trajectories	on	single	cells	was	needed.		
Existing	methods	do	not	operate	on	this	scale.		To	overcome	this	challenge	a	fast	scalable	
ensemble	method	for	stochastic	networks	was	developed	using	the	periodogram	or	power	
spectrum	of	an	average	model	trajectory	to	be	compared	with	the	average	periodogram	
over	single	cells.		The	method	is	scalable	to	thousands	or	tens	of	thousands	of	cells	on	GPUs.	
One	of	the	limitations	of	this	approach	is	that	normal	Metropolis	Hastings	ensemble	
methods[28]	are	not	adequate	for	stochastic	networks.		Parallel	tempering	methods	are	
shown	to	work	well	on	the	stochastic	networks	examined	here	(Fig	2).	As	more	
complicated	alternatives	to	the	model	in	Fig	1	are	considered,	surmounting	the	rate	
limiting	step	of	generating	a	Gillespie	trajectory	may	be	achieved	by	other	means	than	
through	GPUs	alone.		A	promising	avenue	is	generating	approximations	to	the	Gillespie	
trajectory	with	Quasi	Steady-State	Approximations	(QSSA)	to	the	full	stochastic	model	
considered	here[58].		The	right	steady	state	approximation	can	help	the	identifiability	of	
fitting	methods	for	stochastic	networks	even	in	simple	networks[59].	
	
	 A	second	challenge	in	the	fitting	process	is	that	there	are	two	sources	of	error	in	
single	cell	trajectories,	the	stochastic	intracellular	noise	and	the	experimental	error[13].		
The	latter	introduces	biases	into	the	fitting	process.		We	developed	a	statistical	
methodology	to	remove	the	experimental	error	from	the	fitting	process	to	the	periodogram	
of	the	model	ensemble	and	thereby	achieved	a	better	specification	of	the	model.		This	new	
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procedure	for	removing	the	bias	of	the	experimental	error	from	the	periodogram	is	
presented	and	utilized.	
	
	 Another	challenge	of	stochastic	network	identification	is	characterizing	the	size	of	
the	cell,	which	sets	the	level	of	stochastic	intracellular	noise,	a	parameter	missing	in	
deterministic	models[44].		We	developed	an	empirical	approach	to	identifying	the	cell	size	
for	a	stochastic	network	from	the	protein/DNA	and	RNA/DNA	ratios	for	the	system	under	
study.		We	showed	that	the	fitted	model	was	quite	robust	to	variation	in	these	ratios	(Fig	
6).		A	final	challenge	is	developing	protocols	to	make	single	cell	measurements[60].	
	
	 In	the	study	of	stochastic	periodic	phenomena	we	need	both	ways	to	fit	such	models	
with	large	amounts	of	single	cell	data	as	well	as	ways	to	test	the	success	of	these	models.		
Three	statistics	provide	useful	summaries	of	periodic	stochastic	networks:	period,	
amplitude,	and	phase	of	single	cell	trajectories.		Fortuitously	the	periodogram	is	
functionally	independent	of	the	phase	of	single	cell	trajectories[13].		A	goodness	of	fit	
statistic	was	then	developed	using	the	phase,	which	included	variation	in	phase	across	
trajectories	and	the	model	ensemble.	
	
	 We	then	applied	these	new	methodologies	to	understand	the	oscillatory	behavior	of	
single	cells	in	N.	crassa.		We	found	that	parallel	tempering	was	quite	successful	in	
identifying	a	stochastic	network	to	describe	the	oscillator	in	single	cells.		In	many	cases	the	
rate	constants	of	macroscopic	deterministic	models	based	on	millions	of	cells	were	similar	
to	those	in	microscopic	stochastic	models	of	single	cells	(Table	2).		Yet,	there	were	also	
some	key	differences.		For	example,	in	macroscopic	models	the	half-life	of	the	wc-1	mRNA	
was	measured	to	be	quite	long	and	found	to	be	a	critical	feature	in	maintaining	
oscillations[28].		Yet	at	the	single	cell	level	the	half-life	was	estimated	to	be	much	shorter.		
One	possible	explanation	may	be	that	single	cells	have	other	mechanisms	to	produce	
oscillations	than	those	that	operate	at	the	macroscopic	scale.		For	example,	single	cells	
experience	stochastic	intracellular	noise	that	can	move	cells	from	one	stationary	state	to	
another[39],	and	this	behavior	may	generate	oscillations.		This	phenomenon	depends	on	
not	having	too	much	or	too	little	stochastic	intracellular	noise.		We	show	this	phenomenon	
of	Stochastic	Resonance[38,	61]	may	play	a	role	in	seeing	clock-like	behavior	in	single	cells	
(Fig	8).		The	kinetics	of	single	cells	may	operate	under	a	set	of	more	relaxed	rules	for	
oscillation	than	those	that	apply	to	millions	or	tens	of	millions	of	cells.	
	

Other	hypotheses	for	explaining	single	cell	oscillations	need	testing[61],	such	as	
quorum	sensing[62]	or	cell-cycle	gated	circadian	rhythms[63].		Cell-cycle	gating	was	
controlled	by	choosing	a	medium	inhibiting	cell	division[13].	The	quorum	sensing	
hypothesis	would	require	communication	between	cells.		Yet,	the	cells	examined	here	were	
isolated	in	droplets.	In	future	work	cells	will	be	allowed	to	share	the	same	droplet,	and	the	
associations	between	cells	within	droplets	provide	additional	statistics	to	supplement	the	
periodogram	to	distinguish	between	quorum	sensing	and	stochastic	resonance.	Here	we	
have	created	both	an	experimental	and	methodological	arrangement	to	study	the	physical	
theory	of	Stochastic	Resonance	in	living	cells.		For	the	first	time,	we	have	a	window	on	a	
new	set	of	dynamics	at	the	single	cell	level	that	play	by	a	different	set	of	rules	potentially	
than	ensembles	of	millions	of	cells.	
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Table 1.  The protein/RNA/DNA ratios used for specifying the scale parameters in a stochastic network were 
measured and reported below.  For each of 13 evenly spaced time points over  48 hours, a sample was taken.  
A commercial kit was used to simultaneously extract DNA, RNA, and protein from each sample.  The 
amounts of DNA, RNA, and Protein were then measured.  To convert these measurements to nanomoles the 
average molecular weight of a protein and RNA was computed.  The average molecular weight of an amino 
acid is 128.0452.  Hence the average molecular weight of a protein in N. crassa was taken as 481*128.0452.  
The average molecular weight of an RNA was taken as 
1673*(propA*329.2+propC*305.2+propG*345.2+propU*306.2)+159, where the proportion of A (propA) etc 
was taken from[46] .  

Time 

DNA 

ng/	𝜇l	
RNA

ng/𝜇l 	
Protein 

ng/	𝜇l	 DNA 
(nanomoles) 

RNA(nanomole
s) 

Prot 
(nanomoles) RNA:DNA Prot:DNA Prot:RNA 

      0 8.8 1063 422 1.70495E-05 0.001974891 0.006851792 115.8330089 401.8772813 3.469453874 

4 6.5 1511 248 1.25934E-05 0.002807206 0.004026645 222.9116944 319.7437035 1.434396273 

8 7.5 1036 292 1.45308E-05 0.001924729 0.00474105 132.4586234 326.2761018 2.463230353 

12 7.6 1062 550 1.47245E-05 0.001973033 0.00893006 133.9962578 606.4748197 4.526057888 

16 15 1092 347 2.90616E-05 0.002028768 0.005634056 69.80927451 193.8661084 2.777082412 

20 4.4 1051 261 8.52473E-06 0.001952596 0.00423772 229.0507852 497.1088646 2.170299762 

24 7.2 1084 683 1.39496E-05 0.002013905 0.011089511 144.3705234 794.9720944 5.506470958 

28 18.2 1216 220 3.52614E-05 0.002259141 0.003572024 64.06840795 101.3012886 1.581142591 

32 5.9 1170 387 1.14309E-05 0.00217368 0.006283515 190.1584354 549.6960677 2.890726707 

36 13.5 1311 343 2.61554E-05 0.002435636 0.00556911 93.12165128 212.9237118 2.286511341 

40 14 1161 369 2.71241E-05 0.002156959 0.005991259 79.5217501 220.8828551 2.777640769 

44 13.8 1159 697 2.67367E-05 0.002153244 0.011316822 80.53526552 423.2698834 5.255708547 

48 7.4 904 626 1.4337E-05 0.001679493 0.010164032 117.1435702 708.9347917 6.051845528 

Ave.        128.7      412  
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Table 2. Ensemble means and standard errors indicate that the parameters in stochastic network for single 
cells are tightly specified by the new fitting method.  The parameters including the initial numbers of 
molecules and the rate constants in Fig 1 are labeled in the first column.  In the second column are the initial 
parameter values used from a deterministic model ensemble[28], in which WC-2 constant over time was used 
to initialize both the Metropolis Hastings MCMC runs (Fig 2A) and the parallel tempering MCMC runs (Fig 2B).  
In the third column the parameters from the deterministic model ensemble are converted into units 
appropriate for the stochastic network as described in Materials and Methods.  The last four columns are the 
ensemble means and standard errors (across the ensemble) generated by parallel tempering (see Materials 
and Methods) for a single cell experiment with 868 single cells or 1591 single cells. 

Parameter 

Initial_Parameter	
value	from	
MCMC	
Deterministic	
model	ensemble	
(Yu	et	al.,	2007) 

Initial	Parameter	
values	from	
Deterministic	
model	ensemble	
(column	2)	re-
scaled	
to_molecular	
number_units	of	
stochastic	
network	(column	
3) 

Mean	
parameter	
values	from	
model	
ensemble	
computed	by	
Parallel	
tempering_ 

Standard	
error	(SE)	
of	
parameter	
value	
across	
ensemble	
computed	
by	parallel	
tempering 

Mean	
parameter	
values	
from	
model	
ensemble	
computed	
by	Parallel	
tempering_ 

Standard	
error	(SE)	
of	
parameter	
value	
across	
ensemble	
computed	
by	parallel	
tempering 

Number	of	cells	 -	 -	 868	 868	 1591 1591 
u_r0 3.99924 113 5015.225951 39.46834951 2156.705728	 68.14603254	
u_r1 0.442441 18 5427.14616 38.81394987 22.46137677	 0.872953544	
u_p 4.24E-07 459 5052.398397 39.86454551 2144.149238	 68.74768856	
f_0 0.356365 1 0.498322148 0.006827531 0.465055176	 0.01143672	
f_1 0.0824576 0 0.501677852 0.006827531 0.534944824	 0.01143672	
f_r 4.90E-06 31 5099.803691 39.65320564 59.15869679	 2.637452857	
f_p 3.0804 345 5661.033184 37.79536413 2534.336311	 77.72114325	
w 9.24126 101 5070.154735 39.25742344 55.40042039	 1.674320488	
g_0 0.0066195 1 0.498508576 0.006827539 0.71623752	 0.010337149	
g_1 2.59E-06 0 0.501491424 0.006827539 0.28376248	 0.010337149	
g_r 1.17E-06 26 3086.66182 44.02007694 35.67840252	 1.030258983	
g_p 1.37E-05 102 5272.938106 41.68301079 59.19075145	 4.920903774	
A 0.000658482 6.06E-13 1.84E-10 3.59E-12 2.56E-10 7.31E-12 
Abar 0.546986 0.546986 50.03130674 0.39493562 1.589532708 0.035661845 
S1 0.061594783 83.70771546 75.50835675 0.195849227 80.12566921 0.302471515 
S3 0.00146575 3.569116497 10.79752752 0.13705406 0.400641074 0.036565894 
S4 2.2396 5453.449297 8229.792075 51.85745823 8316.020583 100.2852188 
D1 0.723678 0.723678 11.6411168 0.125746972 1.294999006 0.030289616 
D3 0.299703 0.299703 13.54885771 0.126263685 4.382612039 0.181101578 
C1 0.0428595 4.81E-05 0.002859534 2.05E-05 0.000932789 2.47E-05 
L1 31.7758 4.244678204 11.73643559 0.073999739 4.777735371 0.106626479 
L3 3.02387 0.485087349 1.339312652 0.010385343 0.665600817 0.011127036 
D4 0.00323262 0.00323262 0.077027847 0.001450665 0.08474029 0.004700587 
D6 0.15183 0.15183 4.114778877 0.068424489 0.193685712 0.002236097 
D7 0.138387 0.138387 3.008652124 0.046190832 2.130911791 0.090030385 
D8 0.00248668 0.00248668 0.159664546 0.00266928 0.007744621 0.000182717 
C2 0.162687246 0.162687246 6.323785664 0.069435513 1.515554675 0.077548547 
P 19.5648 3.12E-11 1.15E-09 1.88E-11 2.72E-09 4.83E-11 
Ac 4.06813 7.82E-09 2.68E-07 4.65E-09 1.86E-08 2.55E-09 
Bc 2.52197 2.52197 66.30689649 0.666502458 2.581096866 0.040197442 
Sc 1.01E-06 73.80414613 1097.22398 6.307615581 61.51499414 1.109629713 
Lc 1.15E-08 2.231095711 3.743285409 0.038176388 1.61524392 0.017335914 
Dcr 0.219758 0.219758 0.625739758 0.02113632 0.150810052 0.00291715 
Dcp 0.696903 0.696903 1.982857699 0.007835124 0.54063952 0.006141903 
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Fig 1. (A) The stochastic clock network of Neurospora crassa in a single cell. From[13, 28] . 
While an exometabolite Sexternal is being produced, there are no other cells in a droplet to 
sense this signal for the data described in Materials and Methods. The boxes outlined (in 
red) with dashed lines and labeled a through i in red, define regions of the network between 
which there is little or no net flow of molecules.  These boxes are utilized to define scale 
factors for converting the concentrations of molecules in the deterministic network to 
molecular numbers in the stochastic network while preserving the network dynamics as 
described in the Materials and Methods. A few reactions are outside the boxes because in 
fitting the model WC-2 was assumed to be constant.  The reaction of WCC to reaction A 
produces a small flow into a box, but to good approximation the role of WCC in the A 
reaction can be viewed as catalytic if the number of molecules of WCC is in the hundreds. 
(B) Cartoon of the stochastic network highlighting important features in panel A. Arrows 
are used to indicate a positive effect.  A line with a bar (-|) is used to indicate a negative 
effect.	
 

Fig 2. Monte Carlo simulations used for fitting average periodogram of the 868 single cell 
data.  (A) 4 chains run using Metropolis-Hastings algorithm. (B) 4 chains starting with the 

same parameters, but run using Parallel Tempering algorithm. No bias-correction was 
applied (see Materials and Methods) 

 

Fig	3.		Fitting	of	average	periodogram	of	the	cells	(red)	by	average	periodogram	
produced	by	best	parallel-tempering	model(blue).	(A)	in	frequency	domain	(B)	using	

period	

	

Fig	4.		Multiple	views	of	one	stochastic	trajectory	for	one	of	the	best	fitting	models	
from	the	1591	cell	data	set.		The	Gillespie	trajectory	shown	in	part	is	derived	from	a	
best	fitting	model	in	Table	2	after	bias-correction.		The	chi-squared	statistic	for	this	
fitted	model	was	671.332.		Time	0	actually	corresponds	to	20	h,	and	the	last	time	
point,	to	240	h.		(A)	Trajectory	of	the	WCC	count.	(B)	Trajectory	of	the	active	frq	gene	
count	f1;	the	gene	is	either	on	or	off;		(C)	Trajectory	of	the	frq	mRNA	count	fr.	(D)	
Trajectory	of	the	FRQ	protein	count.		(E)	Trajectory	of	the	CCG-2	protein	count.	
 

Fig	5.		Stochastic	noise	in	CCG-2	as	a	function	varies	systematically	with	hypothesized	
ratios	of	RNA/DNA	and	Protein/DNA	ratios	within	a	single	cell.		The	total	stochastic	
noise	𝜎𝑓2	averaged	over	frequencies	(f)	in	CCG-2	expression	is	computed	from	
bootstrapping	the	1024	Gillespie	trajectories.		The	red	dot	denotes	the	
experimentally	determined	ratios	(see	Table	1)	and	corresponds	to	a	RNA/DNA	and	
protein/DNA	ratio	of	128.7	and	412,	respectively.		The	model	ensemble	used	is	
described	in	Table	2;	the	model	selected	was	one	with	minimum	chi-squared	statistic	
based	on	the	Likelihood	in	Eqn	(1)	for	868	single	cells.			
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Fig	6.		The	fit	of	ensemble	of	models	(𝜒2)	is	robust	to	variation	in	the	RNA/DNA	and	
protein/DNA	ratios.	Each	ensemble	had	at	least	at	least	1,400	models	derived	from	
an	accumulation	run.		The	equilibration	runs	were	done	with	parallel	tempering	as	
described	in	the	Materials	and	Methods.		A	smooth	interpolation	is	provide	for	each	
histogram.	The	ensembles	were	derived	from	L	in	Eqn	(1)	for	868	single	cells	with	no	
bias	correction.	

	
Fig	7.	Goodness	of	fit	for	the	model	ensemble	is	tested	with	the	Hilbert	Phase	for	868	
single	cells	(blue)	and	Gillespie	trajectories	(red)	under	the	model	with	smallest	chi-
squared	statistic	in	the	fitted	ensemble	(Fig	3).		The	computation	of	the	Hilbert	phase	
for	each	trajectory	is	described	previously	over	a	30		to	115	hour	window.[13].		The	
model	histogram	is	that	of	the	Hilbert	phases	for	1024	Gillespie	trajectories	on	each	
of	>	1000	models	in	the	best	fitting	model	ensemble	(Fig	3).	
	
Fig	8.		There	is	a	non-monotonic	relation	between	the	oscillatory	signal	strength	in	
the	normalized	periodogram	for	the	CCG	protein	species	and	the	stochastic	
intracellular	noise.		The	red	curve	is	for	the	best	fitting	model	(Fig	3B),	using	the	
observed	RNA/DNA	and	protein/DNA	ratios	of	128.7	and	412,	respectively.		The	blue,	
green	and	yellow	curves	have	a	bigger	stochastic	intracellular	noise	than	the	best	
fitting	model,	by	shrinking	the	protein/DNA	and	RNA/DNA	ratios	7-,	100-	and	180-
fold,	respectively,	relative	to	the	observed	values.		The	black	curve	has	a	smaller	
stochastic	intracellular	noise	by	increasing	the	protein/DNA	and	RNA/DNA	ratios	by	
a	factor	of	8.	The	underlying	model	was	determined	without	bias	correction	using	
Eqn	(1)	for	868	single	cells.			
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Supporting	Information	
S1	File.	
Fluoresecent	data	from	a	recorder	downstream	of	a	ccg-2	promoter	from	1591	single	cells	
stored	in	an	excel	file.		Rows	are	different	times,	and	columns	are	different	cells.	Time	
points	are	spaced	at	half-hour	intervals		over	more	than	11	days.	
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S1	Table.		
Summary	features	of	MCMC	runs	with	parallel	tempering	for	the	868	and	1591	single	cell	
data	sets.	
	
S1	Fig.		
Bar	charts	of	the	parameters	from	the	macroscopic	deterministic	model	(Table	2	in	column	
3)	in	blue	and	single	cell	stochastic	model	(Table	2	in	column	6)	in	orange.		Parameters	are	
subdivided	into:	(A)	decay	rates;	(B)	transcription	and	translation	rates;	(C)	interaction	
parameters	between	genes	and	their	products	on	a	log	scale;	(D)	initial	conditions	for	large	
initial	molecular	numbers	per	cell;	(E)	initial	conditions	for	large	initial	molecular	numbers	
per	cell.	
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