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Abstract

It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain.
Consistent spike timing between neurons is thought to be one of the key principles for the formation of
these networks. This can involve synchronous spiking or spiking with time delays, forming spike
sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-
shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can
participate in multiple spike sequences at multiple between-spike time delays, the possible complexity
of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike
timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences
with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking
into separate networks, characterizing each network’s spike sequence by a time delay per neuron,
forming a spike sequence timeline. These networks provide a detailed template for an investigation of
the experimental relevance of their spike sequences. Using simulated spike timing networks, we show
network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved
spike sequences. Using rat multi-neuron recordings, we demonstrate the approach is capable of
revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing
networks, the prevalence, structure, and function of complex spike sequences can be investigated in
greater detail, allowing us to gain a better understanding of their role in neuronal functioning.

Significance statement

Spike timing consistencies in neuronal networks are widely thought to be one of several key principles
behind neuronal functioning. They are challenging to investigate, however, because there is effectively
an infinite number of combinations of neurons and their between-neuron time delays for any given
recording. Many techniques have been developed for their analysis, but they are still limited by the
complexity of spike timing patterns they can reveal. Here we present a novel approach that can reveal
spike timing patterns with arbitrary combinatorial complexity. This provides a new opportunity for
investigating spike timing networks, which is crucial to gain a better understanding of the role they play
in neuronal functioning.
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Introduction

Distributed networks of neurons, or cell assemblies, are widely assumed to be fundamental to brain
functioning (Hebb, 1949; Treisman, 1996; Singer, 1999; Varela et al., 2001; Harris, 2005; Buzsaki, 2010).
A subset of these networks is thought to be formed by consistent timing of action potentials, or spikes,
between neurons (Bienenstock, 1995; Singer, 1999; Ainsworth et al., 2012; Feldman, 2012), a feature of
spike recordings across species (Mainen and Sejnowski, 1995; Salinas and Sejnowski, 2001; VanRullen et
al., 2005; Fujisawa et al., 2008; Ratté et al., 2013). The spiking between neurons of such networks can be
synchronous or involve time delays (Izhikevich, 2006; Fujisawa et al., 2008; Sakurai et al., 2013), forming
spike sequences when firing in a consistent order (Lee and Wilson, 2002; Ikegaya et al., 2004; Tiesinga et
al., 2008). Spike sequences can involve the same neurons and occur within the same time window (Mao
et al., 2001; MacLean et al., 2005; Luczak et al., 2007; Matsumoto et al., 2013; Miller et al., 2014).
Though there is still much debate about how important spike timing is in comparison to alternatives
such as rate-based coding schemes (Kumar et al., 2010; Rolls and Treves, 2011; Ainsworth et al., 2012),
the investigation of spike timing networks and their spike sequences remains necessary to further our
understanding of basic neuronal operations.

Finding networks defined by their sequences of consistent time-shifted spikes between neurons,
denoted in the following as spike timing networks, is a tremendous challenge due to their possible
complexity, as neurons can participate in multiple spike sequences at a continuum of between-spike
time delays. The past decades have seen the arrival of many methods that can characterize spike timing
networks (Abeles and Gerstein, 1988; Nadasdy et al., 1999; Chapin and Nicolelis, 1999; Tetko and Villa,
2001; Grin et al., 2002; Lee and Wilson, 2002; Schnitzer and Meister, 2003; lkegaya et al., 2004; Okatan
et al., 2005; Schneider et al., 2006; Nikolic, 2007; Pipa et al., 2008; Schrader et al., 2008; Berger et al.,
2010; Louis et al., 2010; Peyrache et al., 2010; Eldawlatly et al., 2010; Humphries, 2011; Lopes-dos-
Santos et al., 2011; Gansel and Singer, 2012; Torre et al., 2016). Their application has led to important
insights, yet they have several limitations, especially when it comes to their application on large scale
neuronal recordings (Buzsaki, 2004). Namely, either: (1) the complexity of the identified networks is
limited due to combinatorial explosion with increasing network size (e.g. template searching), (2) the
networks are described only by the association of their member neurons without describing spike
sequences, (3) between-spike time delays greater than 0 are either discarded or not recovered, (4)
temporal binning of spike times leads to reduced temporal precision, (5) networks with overlapping
member neurons are not separated, or, (6) a combination of the above. Though not important for every
investigation of interactions in spiking networks (e.g., for higher order interactions see Nakahara and
Amari, 2002; Yu et al., 2009; Eldawlatly et al., 2010; Staude et al., 2010; Balaguer-Ballester et al., 2011;
Shimazaki et al., 2012), they are essential for the exact identification of neurons and their spike
sequences, and investigating their occurrence as a function of experimental variables.

We present a novel approach for revealing spike timing networks that does not suffer from the
above problems. The key features of our approach, are that (1) it can find networks regardless of the
complexity of their spiking sequences, and that (2) it describes these sequences with sub-millisecond
precision by a time coefficient per neuron (per sequence; see Fig 1). This is achieved by applying a
method developed for electrophysiological recordings (intended for revealing phase-coupled oscillatory
networks, such as traveling waves; van der Meij et al., 2015), on the spectral covariance (or, cross
spectra) obtained from a spectral analysis of discrete neuronal spiking time series. In these cross
spectra, consistent between-neuron spike time delays are described by linearly increasing phase
differences over frequencies. The method finds networks and their spike sequences by their unique
patterns of between-neuron phase differences over frequencies and trials (epochs). In the following, we
first show that our approach is capable of recovering simulated spike timing networks and their
sequences under various noise conditions, and then provide a proof-of-concept by showing networks
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extracted from rat hippocampus and medial prefrontal cortex (Fujisawa et al., 2008, 2014), which
reflected peak cross-correlogram time delays with high accuracy. Together, this demonstrates that our
approach is a robust method for revealing and characterizing spike timing networks in neuronal
recordings.
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Materials and Methods

1. Extracting spiking timing networks from neuronal spike recordings

Spike timing consistency between neurons is thought to be a key feature of neuronal spike recordings.
In the following, we describe how a novel application of a recent technique, (SPACE; van der Meij et al.,
2015, 2016) can be used to find sequences of consistent time-shifted spikes between neurons, denoted
in the following as spike timing networks, in large scale neuronal spike recordings, without a priori
information about the involved neurons and their timing. Below we illustrate the procedure for
extracting spike timing networks (with details in dedicated sections), and how to interpret their
characterization.

We start with any kind of multi-electrode neuronal recording over time t of which neurons J and
their spikes have been identified (using e.g. Rossant et al., 2016). Suppose our recording contains 2
groups of 3 neurons that have consistent between-neuron spike timing (i.e., spike timing networks, Fig
1A blue/green, FiglB), embedded in other spiking activity. The blue network has a spiking sequence of
neuron 3 to 4 to 5 with a timeline of 0Oms-1ms-2ms, leading to consistent spike time delays of 1ms for
pairs 3-4 and 4-5, and a 2ms delay of 3-5. The green network has the same pattern but for neurons 5, 6,
and 7. If cross-correlograms would be computed from the neuronal spike recordings (Fig 1B), they would
have peaks at 1ms for neuron pairs 3-4, 4-5, 5-6, 6-7, at -1ms for pair 4-3, 5-4, 6-5, 7-6, at 2ms for pair 3-
5, 5-7, and at -2ms for pair 5-3, 7-5. How often the sequences of the blue and green networks occur,
depends on two experimental conditions. The blue networks occur once per trial of condition A and
twice for those of B, (Fig 1C), the green network vice versa.

To extract a parsimonious description of the above networks, we arrange the detected spikes in
neuron-by-time (J x t) binary matrices S; (1 = spike, 0 = no spike; Fig 1C), per trial [ of the experiment (or
any other meaningful temporal segmentation; throughout the text, J refers to neurons, K to
frequencies, L to trials). Then, we obtain ‘cross spectra’ from these trial-specific matrices. To achieve
this, we first convolve the matrices S, with complex exponentials (Fig 1, Step 1) at multiple frequencies
k, resulting in frequency-specific and trial-specific complex-valued neuron-by-time (J x t) matrices Z,;.
Subsequently, we compute the cross products Z,,Z;, of these matrices over time (Fig 1, Step 2; « =
complex conjugate transpose), resulting in complex-valued frequency-specific and trial-specific neuron-
by-neuron (J X J) matrices X;;: the cross spectra (Fig 1D). The choice of complex exponentials
determines key aspects of the spike timing networks and their extraction, and is discussed in detail in
Materials and Methods section 3. Having obtained the cross spectra, we should apply a neuron-wise
and/or trial-wise normalization (Fig 1, Step 3; see Materials and Methods section 4). After normalization,
we then extract spike timing networks using SPACE (Fig 1E, Step 4; which involves estimating the
number of networks to extract, see Materials and Methods section 2).

Spike timing networks, when defined by their discrete spiking sequences characterized as time-
shifted copies of spikes between neurons, can be extracted from the cross spectra, because the phases
of the off-diagonal elements of the cross spectra contain the consistent time delays between time-
shifted copies of spikes. The crucial principle here, is that the time difference between two binary spikes
in the time domain translates to phase differences in the frequency domain, linearly increasing with
frequency. That is, a 1ms time delay equals 1/20% of a cycle at 50Hz, 1/10™" at 100Hz, 1/5% at 200Hz, etc.
(for types of spiking interactions other than time-shifted copies of spikes, see Lindemann et al., 2001).
The extraction technique uses this property to find the time delays between time-shifted copies of
neuronal spikes that explains the most variance in the cross spectra.

SPACE describes the cross spectra by multiple networks, each network consisting of three
parameter vectors (Fig 1E): the neuron profile (1 x J), the time profile (1 x J), and the trial profile (1 x L).
The neuron profile describes how strongly each neuron is part of the network, by a single number per
neuron. The neuron profile of the blue network has high values for neurons 3, 4, and 5, and low values
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for all other neurons. That is, only neurons 3 to 5 are part of this network. Due to their similar weighting,
neurons 3 to 5 likely have similar firing rates, and similar number of spike sequence’ spikes. If another
neuron would have half the weighting, it will likely have either twice as many total spikes, or only fires in
half of the network’s spike sequences (e.g., a sequence of neuron 3-4-5 in half of the trials, and 3-4 in
the rest). Note, it is possible for the neuron profile to have non-zero loadings for only one neuron, see
Materials and Methods section 4 for a discussion. The time profile describes the spike sequence of the
network, by a single time coefficient per neuron. Because the neuron profile of the blue network only
strongly involves neurons 3 to 5, only these coefficients of the time profile are meaningful. The time
profile of neurons 3 to 5 directly reflects the timeline of the spike sequence, Oms-1ms-2ms. A crucial
observation here, is that all the temporal relationships at the level of neuron-pairs are described at the
level of individual neurons by the network’s neuron profile (relationship strength) and time profile (spike
sequence timing). The above is the same for the green network. Importantly, if the blue and green spike
sequences occur at random intervals between them, the blue and green networks can be separated, as
there are no consistent relationships between neurons 3, 4, and neurons 6, 7. If the blue and green
spike sequences occurred at consistent intervals, they would both be captured by one network. This is
not surprising, as the above means there is, in fact, only one spike sequence. In the schematic of Figure
1, there is also a difference in how often a sequence of each network occurs in each condition, which
can be reflected by the trial profiles. Here, the weights for trials of the blue network reflect the ratio of
spike sequences in each trial of the two conditions, i.e. a trial loading that is twice as large for B as it is
for A. Importantly, the trial profile can provide a convenient way to investigate differences in spike time
consistency at the level of networks, instead of the level of neuron-pairs. For example, the difference
between two conditions can be investigated by comparing the means of the condition-specific trial
profile weights, or variations of trial profile weights can be related to other variables (e.g., reaction
times, parametric stimulus manipulations, etc.). Though in principle possible, the trial profile can be
noise sensitive (see the Results and Discussion sections). Additionally, the absence of an extracted
network is not evidence of a network’s absence (in the recording), various reasons can prohibit a
network to not be found (e.g., noise, see Results and Discussion sections). Finally, see Materials and
Methods section 2 on how to compare values between and within the above profiles.

When interpreting the network profiles, it is crucial to keep in mind that they are estimated to
maximally explain the cross spectra (see Materials and Methods section 2). As such, anything that
affects the phase coupling patterns in the cross spectra, affects the profiles accordingly. For example, in
case a neuron spikes in a spike sequence of a network in some trials, but not in others, then the phase
coupling strength between this neuron and the others of the network will be weaker (or zero) in the
cross spectra for the latter trials compared to the former. Consequently, the neuron profile of this
network will have a lower weight for this neuron than for the others, and the trial profile will have lower
weights for those trials in which it didn’t spike.

2. SPACE describes time consistency induced phase coupling in cross spectra

SPACE is a decomposition technique that describes the structure of phase coupling in cross spectra by
time delays between neurons (or electrodes/sensors/sites). The technique was developed for finding
oscillatory phase coupling structure (e.g., traveling waves) in electrophysiological recordings (van der
Meij et al., 2015, 2016), a type of data of which the frequency content itself is of primary interest. This
contrasts with the application we present here, for which this is not the case. The frequencies of the
used spectral transform are artificial and are chosen only such that they provide an accurate description,
via the networks SPACE extracts, of the temporal structure in discrete neural spike timing time series
(see Materials and Methods section 3). Apart from the manner of constructing the cross spectra, the
usage of the method in the current approach is identical to that in the original publication (referred to as
SPACE-time therein). The algorithm behind the method is extensively treated in its original publication
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(van der Meij et al., 2015, but see also van der Meij et al., 2016 for an alternate presentation), and only
elements essential to its current use will be mentioned here. Briefly, the technique consists of an
Alternating Least Squares (ALS) algorithm to find the least squares estimates of its decomposition
model. The element-wise formulation of this model for the cross spectra can be expressed as:
F
Xjja = ) (@7 aj,r) - exp (izmﬂk(f’jlf - “jzf)) “bip e e + &k
=1
The complex-valued cross spectrum (X;, ;,1;) of neuron pair j; and j, (indexed over all neurons) at

frequency k and trial [ is described as the product of network parameters, summed over networks F,
plus an error term ¢; ;. ;. The phase of the network-specific product is given by the difference in the
time profiles (oj, s — 0j,7) of neuron j; and j, multiplied by the frequency ¢, in Hz, multiplied by 2m. This
phase is then weighted by the product of the two neurons’ neuron profile a;, ¢ - a;,f, the (squared)
frequency profile b? at frequency k, and the (squared) trial profile ¢? at trial [. As is observed here, the
technique also produces a frequency profile per network, describing how important each frequency is
for a network. For the purpose of spike timing networks, we will ignore this, as it does not provide
additional information. It is, however, an essential element of its original application on
electrophysiological recordings, describing frequency band-specific phase-coupled oscillatory networks,
such as traveling waves.

Compared to the reference publications, the above equation squares the trial and frequency
profile. The reason for this, is that spike timing networks are more conveniently thought of, analyzed at,
and simulated in, the description level of cross spectra. This is not the case for the original target of the
technique, phase-coupled oscillatory networks, which are more conveniently thought of as time-varying
oscillations over electrodes described by Fourier coefficients (of which the cross products over time
produce the cross spectra). Due to this, the technique provides trial and frequency profiles that are not
squared, and squaring becomes a necessary step prior to investigating the extracted networks.

The extracted networks are unique up to trivial indeterminacies without requiring constraints
such as orthogonality or statistical independence. Uniqueness is discussed in more detail in the
reference publications (van der Meij et al., 2015, 2016). The indeterminacies are easily resolved by
normalizations. Here, we briefly highlight those normalizations that pertain to the current application of
the technique. The neuron and trial profiles, per network, have undetermined multiplicative scaling, and
are normalized to have a vector L2-norm of 1. The consequence is that the absolute values of neurons
and trials only have meaning with respect to the other neurons and trials of the same network. Crucially,
the ratios between neurons and trials are unaffected by this normalization, and can be compared freely
across networks. Additionally, their sign is also undetermined, and restricted to have a positive average
per network (neuron profile) or to be fully positive (trial profile). The indeterminacy of the time profile is
more complicated. Because the time profile describes circular phases over multiple frequencies, the
time profile is circular as well. In short, we normalize it such that the strongest neuron (of the neuron
profile) has a time profile value of Os. Due to the above normalizations, a network-specific multiplicative
scaling parameter is also extracted, but it does not play a role in the interpretation of the individual
network parameters.

Two practical points need to be made for using the technique to extract networks. The first is
that its algorithm is initialized from random starting values. In order to avoid unfortunate starting values
that lead to a local minimum of its least squares loss function, the algorithm needs to be initialized
multiple times. When identical networks are found in those initializations with the highest explained
variance, it can be assumed that the global minimum is reached. How many initializations are required
in order to achieve this depends on the particular dataset. In our experience, it is extremely rare to find
a different ‘best’ solution to the loss function when increasing the number of random initializations
beyond 50. The second practical point is that, like related decomposition techniques, the number of
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networks to extract needs to be determined. One approach is to estimate the number of reliable
networks. For this, we extract N networks from the full recording, and also from two splits of the
recording, the first containing the odd numbered spikes of each neuron, the second the even numbered
spikes. If the networks from the full recording reasonably match those extracted from of both splits, N is
increased, and the process is repeated until they no longer match. The networks extracted from the full
data are kept, and those of the splits discarded. Other scenarios are also feasible, such as an odd-even
trial split, or a k-split approach, in which networks are extracted from k subsets of the recording and
compared to those extracted from the full recording. The number of splits, and the manner of splitting,
will determine the sensitivity of the approach. It is useful here to make a technical statement regarding
the splitting of individual networks into two or more smaller networks, which would complicate the
above. In order to avoid such splitting, network interaction terms in the decomposition model are forced
to be zero (interaction terms are not visible in the element-wise model above; for optimization details
see van der Meij et al., 2015, 2016). A practical consequence is that spike timing networks that are
nearly perfectly correlated (share spike sequence timing) will likely be extracted as a single combined
network (see van der Meij et al., 2016 for simulations investigating network correlation). Finally,
regarding the maximum number of networks that can be uniquely extracted, though non-trivial to
estimate (Comon et al., 2009), it likely is greater than the number of neurons. Importantly, any kind of
reliability procedure such as the above will prevent exceeding any maximum, as non-unique networks
will, by definition, not be reliable over splits. In our experience, the number of reliable networks is often
much lower than the number of recorded neurons.

To determine whether two networks are similar, such as in the above split-reliability approach, a
coefficient can be computed for the three parameters of the networks. For the neuron and the trial
profiles, this is simply the inner product between the L2-normalized profiles of two networks, and
ranges from 0 to 1 (identical profiles). For the time profile, a coefficient is the following:

time profile similarity: [{A* - exp(i2myat), A% - exp(i2mya?))|
Time profile similarity is computed as the absolute value | | of the inner-product ( , ) over neurons]
of the time profiles o of two networks (superscript 1and 2, denotes complex conjugate), weighted by
the normalized neuron profiles A of each network ( - denotes the element-wise product). Here, y stands
for the greatest common divisor of the frequencies used to extract the networks, in Hz, which
determines the ‘cycle length’ of the circular time profile (van der Meij et al., 2015). This similarity
coefficient also ranges from 0 to 1 (identical profiles). Allowing for some differences in the profiles due
to noise, we considered networks similar enough when coefficients for the neuron, time, and trial,
profiles are all equal to, or greater than, 0.7.

Software and code accessibility

The technique is freely available in a public GitHub repository termed nwaydecomp
(www.github.com/roemervandermeij/nwaydecomp), together with tutorials on its use. The toolbox also
contains software to deal with the practical points above. The code is also available as Extended Data 1.

3. Obtaining cross spectra that are optimal for extracting spike timing networks

To be able to extract spike timing networks we compute cross spectra from binary spike trains, by
convolving the spike trains with complex exponentials (‘wavelets’) and computing their cross products
over time (Fig 1, step 1-2). Doing so transforms the time delays between spikes of different neurons,
into phase differences at multiple frequencies. The length of the complex exponentials, and their
frequency, determines how sensitive the cross spectra are to consistent vs non-consistent time delays,
and is described in the following. Here, it is important to keep in mind that the cross spectrum between
two neurons, is exactly the complex-valued sum, of the phase differences between spikes of neuron 1
and spikes of neuron 2 that are overlapping after the convolution, weighted by their amount of
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temporal overlap. Due to the latter, long time delays necessarily have lower weighting in the cross
spectra than short time delays.

Obtaining the cross spectra can be expressed as follows:

Kokt = ZjyiaZjya

Zjja = S @ exp(iT2m ;)

That is, the cross spectrum between neuron neurons j; and j, at frequency k and trial [ is obtained as
the cross product, over time, of vectors Z; ,Z;, i, (* = complex conjugate transpose). The vector Z;, for
neuron j is obtained by the convolution ® of the binary spike train vector S;, with a complex exponential
(untapered ‘wavelet’, i is the imaginary unit) at frequency ¢,. Here, T is a vector of time points from
—t/2to t/2, with t being the time domain length of the complex exponential, and both S;; and T are
sampled at the maximum achievable sampling rate. Note, the edges of Z;,, for which the complex
exponential was not fully immersed in S;;, are kept.

The time domain length t of the complex exponentials determines which between-spike time
delays can contribute to the cross spectra, and it should be chosen based on the expected range of time
delays. Here, we aim to be sensitive to time delays of 0 +/- 10ms, a range that captures commonly
occurring consistent spike timing (e.g., Nelson et al., 1992; Fujisawa et al., 2008; Sakurai et al., 2013).
The optimal time domain length for this range is a trade-off. The longer the length, the lower the
sensitivity will be to the expected time delays, as the cross spectra will reflect a sum of more spike pairs.
The shorter the length, the bigger the ratio between the weighting (samples overlap) of the shortest and
the longest expected time delay, and thus the stronger the bias in sensitivity towards the former. As a
compromise between the two, we choose a time domain length of twice of the maximum time delay we
wish to be sensitive for, 20ms. This results in an overlap of 50% of the complex exponentials’ samples for
spikes at a delay of +/-10ms, having an acceptable sensitivity bias ratio of Oms (shortest; 100% overlap)
to +/-10ms of 2:1 (compared to 400:1 for Oms:+/-20ms at a sampling rate of 20kHz). When there is no a
priori expectation regarding the length of the time delays, the time domain length t can be based on,
e.g., an investigating of the peak of the between-neuron cross correlograms. In general, it is preferable
to choose a length t that is too long rather than too short, as the sensitivity cost due to additional spike
pairs in the cross spectrum is much less than that of (1) a more skewed sensitivity bias ratio and (2) the
experimental cost of spike time consistency at longer delays being invisible. In order to further reduce
the bias of short time delays to long time delays, the complex exponentials should have constant
magnitude, and not be tapered using a particular windowing function (such as a Hanning window).

The frequencies ¢ of the complex exponentials greatly determine the sensitivity of the cross
spectra to non-consistent time delays. In order to be maximally sensitive to consistent time delays, the
contribution to the cross spectrum of all other time delays should be as small as possible. In the terms of
phase differences in the cross spectra, this is achieved when the average of the complex-valued phase
differences of the non-consistent time delays approaches a magnitude of 0. This is the case for any
frequency whose cycle length is an integer multiple of the time domain length chosen above (for 20ms,
50Hz, 100Hz, 150Hz, etc.), under the assumption that non-consistent spike pairs are equally likely at any
time delay. To arrive here, it is crucial to appreciate the fact that phase differences for large time delays
are weighted lower than those for small time delays. For phase differences originating from time delays
between Oms and the time domain length (20ms above) to have an average magnitude of 0, the
weighting coefficients for phase differences between /2 to —m/2, the left side/quadrant 2 and 3 of the
unit circle, need to have the same sum as those for —m/2 to 7/2, the right side/quadrant 1 and 4 of the
unit circle. Crucially, for the frequency whose cycle length equals the maximum time delay, the 25%
smallest time delays fall in quadrant 1, the middle 50% of time delays fall in quadrant 2 and 3, and the
25% largest time delays fall in quadrant 4. Equally crucial, the weighting is a linear function of the time
delays. As for any linear function the sum of the first 25% and the last 25% of a subset of its values is
equal to the sum of its middle 50%, the frequency with a cycle length equaling the largest time delay will
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have phase differences from non-consistent time delays that approach an average magnitude of 0. This
also holds for any integer multiple N of this frequency, as the above will be the case for N equal splits of
the time delay range. Note that to obtain an average magnitude of 0, it is also required that the sum of
weighting coefficients for quadrant 1 and 2 (top of unit circle) is equal to that of quadrant 3 and 4
(bottom of unit circle). This symmetry is easily achieved however, as the weighting coefficients for -
20ms to Oms progress along the unit circle in opposite direction than those for +20ms to Oms. As a last
note, the frequencies of the complex exponentials also determine the robustness to jitter around a
consistent time delay. The lower the frequency, the closer the phases of jittered but consistent time
delays, the higher their average magnitude, and thus, the more robust to jitter.

Concluding, we compute cross spectra by convolving spike trains with complex exponentials of
20ms length, constant magnitude, and at 20 frequencies from 50Hz to 1000Hz in steps of 50Hz. When
investigating longer time-scale neuronal dynamics, an analogous set would be e.g. 1s length, at 1Hz to
20Hz in steps of 1Hz. The number of frequencies to use is somewhat arbitrary. Initial simulations
showed no noticeable difference beyond 20 frequencies (and 1000Hz is already very sensitive to jitter),
and simulated networks were reliably recovered from simulations as little as 5 frequencies.

4. Normalizations of the cross spectra

The neuron profiles of spike timing networks describe the off-diagonal elements of each cross spectrum,
reflecting between-neuron spike pairs, and the diagonal elements, i.e. power, reflecting the total
number of spikes of neurons. In realistic data, the firing rates of neurons can differ greatly, resulting in
large differences in power. Because the power of each cross spectrum is typically much larger than its
off-diagonal elements, this can lead to spike timing networks whose neuron profiles are driven more by
firing rates of individual neurons, rather than consistent spike timing between neurons. An extreme
example is a neuron profile with a non-zero weighting for only a single neuron. Such a ‘network’ only
describes the diagonal element (i.e. firing rate) of the cross spectra of the respective neuron, and should
be considered as an artefactual network. To increase sensitivity to consistent spike timing, in order to
avoid the above, power differences between neurons can be normalized (Fig 1, step 3). Normalizing
power such that it is equal to an Nth root, summed over frequencies and trials, is one such
normalization:

Xkl = W%Xle%

1

_ e mu[xg T
Ti XX ™

Here, X449 is a diagonal matrix containing only the diagonal elements of X. By increasing N, the power
differences between neurons decrease. Ideally, the power of every neuron becomes equal, i.e. the cross
spectra become coherency spectra, as this will have the highest sensitivity to spike time consistency.
However, this can have the unintended consequence of interfering with the split reliability procedure
for estimating how many networks to extract. Briefly, when extracting fewer than the total number of
networks, which networks are extracted strongly depends on their explained variance; those with the
most, tend to be extracted first (as the networks are found by a randomly initialized least squares
algorithm). When the differences in explained variance between networks decrease, the order in which
they are extracted becomes more variable, which can prematurely stop the split reliability procedure.
Increasing neuron-wise normalization strength can result in decreasing differences in explained
variance. As such, while neuron-wise normalization increases the usefulness of the networks, it can also
result in finding less split-reliable networks. Practically, an optimal normalization strength can be found
as follows. First, a split reliability procedure is run with normalization strength N = 1 (no normalization).
If this results in, (1) split-reliable networks, and, (2) networks that are unlikely to reflect spike time
consistency (neuron profiles that have strong weighting for only one neuron), the normalization

neuron-wise normalization:

10
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strength N is doubled and the split reliability procedure repeated. This is repeated until sufficient
reliable networks are found that reflect spike consistency. A convenient quantification of when
networks are unlikely to reflect spike time consistency is to compute the ratio of the strongest and
second strongest weights of the neuron profile; the higher this ratio, the more likely the second
strongest weight reflects noise and that the network does not reflect spike time consistency. Then, in
the above procedure, a cut-off ratio of 5-to-1 can be used as a conservative criterion (see also Results
section 5). Crucially, the above only affects the probability of uncovering those spike timing networks
that already exist in the recording, the phase coupling structure in the cross spectra induced by the
networks remains unaffected.

The firing rate of neurons can also differ greatly between trials. Because the trial profile reflects
variations in the cross spectra over trials in its weights, it reflects both the trial-specific firing rate of the
involved neurons as well as their trial-specific amount of spike timing consistency. Similar to the above,
normalizing the cross spectra over trials can reduce the impact of firing rate on the trial profile.
Normalizing cross spectral power such that it is equal across trials is one such normalization:

1 1
X = WeaXiaWe
trial-wise normalization: .
Wi = TWZLX,ZMH
Xkl
As above, X499 is 3 diagonal matrix containing only the diagonal elements of X. Importantly, in the

common case of a neuron not spiking in a particular trial, its elements of the cross spectra (X) will be
zero, leading to division-by-zero errors during the above normalization. This is avoided by adding
random noise of trivial strength (close to the used numerical precision) to the respective elements of the
cross spectra prior to normalization. Trial-wise normalization is achieved by first normalizing frequency-
and trial-specific cross spectral power to 1 (by division by itself), and then multiplying it with the
frequency-specific summed power over trials (3, X,’fli“g; computed prior to normalization). Trial-wise
normalization is independent of the above neuron-wise normalization, both normalizations can be
applied jointly. The normalization above is extreme, as it removes all cross spectral power variability
over trials. However, because normalization occurs via a diagonal matrix (as is the case with neuron-
wise normalization), the off-diagonal elements of the cross spectra only undergo a scaling proportional
to their diagonal elements; their magnitudes still reflect the (relative) amount of spike timing
consistency between their involved neurons. As such, the remaining trial-by-trial variations in cross
spectral magnitudes maximally reflects trial-by-trial variations in the amount of spike timing consistency.
Similar to the neuron-wise normalization, the trial-wise normalization can make it harder to uncover
networks that are present in the recording. This can be dealt with more conveniently however. First,
networks are extracted using a split reliability procedure as discussed above, without trial-normalizing
cross spectra. Once reliable networks are obtained, the trial profiles are re-estimated in one final
decomposition using cross spectra that are additionally trial-normalized, in which the neuron and time
profiles are kept constant. Although the above 2-step approach is advised, in the case of our simulations
the differences were negligible, and for simplicity the results that are presented were extracted from
trial-wise normalized cross spectra in one step.

5. Simulating and extracting noisy spike timing networks

To investigate the effects of various kinds of noise on spike timing network extraction, we simulated
spike recordings of 15 neurons at 100 trials of 1s containing 4 spike timing networks. Network spiking
sequences had a fixed temporal structure that was repeated between 0-3x (predetermined) per trial
(1.2Hz average spike sequence rate for each network). Within each trial, each spike sequence could
occur anywhere with uniform probability, with a 25ms offset from trial boundaries. On trials where
spike sequences of multiple networks were present their order was randomized, and with a minimum of
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25ms between sequences. Three kinds of noise were simulated. First, all neurons of a single simulation
had a noise spiking rate of OHz, 5Hz, 10Hz, 20Hz, or 100Hz, as Poisson spiking superimposed on the
network spike sequences. Second, each spike of each spike sequence could have an individual random
jitter (uniformly distributed) at a maximum of Oms, £0.25ms, £0.5ms, £1ms, or £2ms. Third, each spike
in each spike sequence occurrence had an individual deletion probability of 0%, 10%, 20%, 40%, 80%,
resulting in partial spike sequences. Cross spectra of each simulation run were obtained as described
above, using a time-window length of 20ms and frequencies from 50Hz to 1000Hz in steps of 50Hz. The
4 networks were extracted using 10 random initializations of the extraction algorithm. Note that the
purpose of these simulations is to show how well spike sequences can be extracted under noisy
conditions, and not how such a pattern can be generated physiologically, nor whether such a pattern is
physiologically meaningful. As such, we simulated data from the perspective of spikes, instead of model
neurons generating spikes, which also provides a convenient ground truth for calculating recovery.

6. Quantifying recovery of simulated spike timing networks
To quantify the recovery of the extracted neuron profile, time profile, and the trial profile, they were
compared to their simulated equivalents. The simulated neuron profiles were constructed as a binary
1 x J vector per network, its values indicating network membership of each neuron. Similarly, simulated
trial profiles were constructed as 1 x L vector, its values reflecting the number of sequence repeats
(linear modulation of network activity over trials). Finally, simulated time profiles were constructed as a
1 x J vector, its values describing the temporal sequence of spikes in seconds (non-member neurons set
arbitrarily to 0). For display purposes these simulated parameters were normalized in the same manner
as the extracted network parameters. In order to compute recovery, extracted networks were paired to
the simulated networks using the similarity coefficients described above, by first determining the most
similar pair, then the next most similar in the remainder, etc. Recovery of neuron and trial profiles was
determined using a Pearson correlation coefficient. Time profile recovery was judged by the following
coefficient:
|Z] exp(i2myo®) - exp(12mwyo®) -AS|

2 A
Time profile recovery is computed as the absolute value | | of the weighted sum over neurons J of the
complex-valued difference of the circular time profiles o of the extracted and simulated networks
(superscript e and s resp.;  denotes complex conjugate), weighted by the simulated neuron profile 4 ( -
denotes the element-wise product). Similar to the similarity coefficient described above, y is the
greatest common divisor of the frequencies used for extraction (i.e., 50Hz), and is used to deal with the
circularity of the time profile. This coefficient ranges from 0 to 1 (perfect recovery).

time profile recovery:

7. Extracting spike timing networks from recordings of rat medial prefrontal cortex and hippocampus
As a proof of principle, we extracted spike timing networks from real spiking recordings, obtained from a
dataset publically available at CRCNS.org (Fujisawa et al., 2008, 2014). This dataset contains identified
neurons and theirs spikes from recordings obtained from rat medial prefrontal cortex and area CA1 of
the hippocampus, while the rat performed an odor-based delayed matching-to-sample task, requiring it
to run through either the left or right arm of a maze to obtain its reward. Animal recording protocols
were approved by the Institutional Animal Care and Use Committee of Rutgers University, Newark, NJ,
USA. The recording used (rat GG.069) came from 8 and 4 electrode shanks (200um shank separation) in
medial prefrontal cortex and CA1 respectively, each shank containing 8 contacts (20um contact
separation; 160um? contact surface). The recording was sampled at 20kHz, and offline spike sorting was
performed (after band-passing between 0.5-5kHz) using Klustakwik (for spike sorting details see
Fujisawa et al., 2008, 2014). 63 neurons were identified on 9 shanks. The dataset contained 20 left and
20 right trials, having an average duration of 8.04s (SD = 1.73s). Only neurons with average spiking rates

12
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of 1Hz and above were selected. In order to extract networks, we first obtained cross spectra as
described in Materials and Methods section 3, using a time window of 20ms and frequencies from 50Hz
to 1000Hz in steps of 50Hz, dividing each cross spectra by its trials’ duration. Subsequently, cross spectra
were neuron-wise normalized as described above. A normalization such that cross spectral power was
equal to its 32" root normalization was chosen as an optimal normalization, because 64" root
normalization resulted in no split reliable networks (likely due to varying network order mentioned in in
Materials and Methods section 4), and 16" root normalization resulted in many networks mostly
consisting of single neurons (i.e. the bias towards power differences between neurons was too strong to
overcome). The number of networks to extract was determined using odd-even spike split reliability
procedure described in Materials and Methods section 2 with a similarity coefficient cut-off of 0.7, 50
random initializations were used at each step. This resulted in 4 networks being extracted. Continuous
cross-correlograms were obtained at time lags of £20ms at 0.05ms steps by summation of the (lagged)
binary spike trains after they were convolved with a Gaussian with full-width at half-maximum of 0.5ms
(maximum = 1).

13
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Results

Spike timing networks consist of multiple neurons that have consistent time delays between their
spikes, forming a spike sequence. Here, we validate a novel approach for finding and characterizing
these networks in neuronal spike recordings. First, we evaluate its robustness to various noise
conditions. We show how the recovery of simulated spike timing networks is affected by spike jitter in
the network spike sequences and variability of neuron participation in the network, under increasing
spiking noise of all simulated neurons. Then, we show how variable firing rates of neurons affects
recovery, and what actions can be taken to reduce negative effects. Finally, we provide a proof-of-
principle by showing networks extracted from rat hippocampus and medial prefrontal cortex (Fujisawa
et al., 2008, 2014), and compare the extracted spike timing relations to cross-correlograms of the
involved neurons.

1. Simulated spike recordings from spike timing networks

To investigate the robustness of spike-timing network extraction to various kinds of noise we simulated
spike recordings of 15 neurons over 100 trials of 1s containing 4 networks (for simulation details see
Materials and Methods section 5). A network was defined as a group of neurons that spike in sequence,
with between-spike time delays ranging from 0 (synchronous) to 2.5ms. The spike sequence timelines
were 0-0-1-1.5-2.5-3-4.5-6.5ms for network 1, 0-1-2-3-4ms for network 2, 0-0-0-Oms for network 3 (all
synchronous), and 0-2.5-7.5ms for network 4. Each network’s spike sequence was repeated 0-3 times in
groups of trials to simulate linear modulations of network activity across the task. Some of the networks
had neurons that were involved in other networks’ spike sequences: all of the neurons of the spike
sequence of network 2 were also part of network 1, and one neuron was shared between network 1 and
3, and network 3 and 4. In Figure 2A-C we show the networks’ neuron profiles (Fig 2A), time profiles (Fig
2B), and trial profiles (Fig 2C). The simulated recordings of the 15 neurons result in many pair-wise spike
time relationships between neurons, which we show schematically in Figure 2D. These pair-wise
relationships can also be visualized as cross-correlograms for all neurons, which we show in Figure 2E.

The profiles in Figure 2A-C are directly comparable to the three profiles of spike timing networks
extracted using our approach (see Materials and Methods section 1 for how to interpret the profiles),
and are used in Results sections 2-4 for judging recovery of the simulated networks by the extracted
spike timing networks. Note, the absolute values of the neuron and trial profiles are not meaningful,
only the within-network ratios are (see Materials and Methods section 2). As such, it is not the spike
sequence repeats per trial that is described by the trial profile (i.e. 0, 1, 2, 3; Fig 2C), but rather the ratio
between them (e.g. a trial with 3 sequences having a weight 3x that of a 1 sequence trial).

To investigate when the recovery of the simulated networks fails, we varied the strength of
three kinds of noise (see Materials and Methods section 5). These were: (1) spiking noise, or non-
network spikes, superimposed on the spike sequences (see Fig 2F), (2) jitter of each spike in a spike
sequence occurrence, and, (3) partiality of network spike sequences (random spikes missing from the
sequence). The range of each of the noise levels was chosen to provide an intuition for when an
expected network can still be recovered, and to progressively result in failure to recover the simulated
networks. As such, the higher levels are not necessarily physiologically reasonable. The simulated
networks were also different in size, spike sequence timing, spatial overlap, and trial overlap, to increase
the likelihood that any related weaknesses of the technique would be revealed.

2. Recovery of simulated spike timing networks with spiking jitter when surrounded by spiking noise
Neurons can be noisy, and any spike sequence of a spike timing network is likely embedded in other
spikes of the same neurons. Furthermore, precise spike times depend on the fluctuating membrane
potential of the neuron and other factors, potentially adding temporal jitter. To investigate how these
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two factors influence network characterization, we simulated spike timing networks with different levels
of background spiking noise and with different levels of jitter of each spike in the spike sequences.
Networks were simulated 50 times for each combination of the noise factors. We computed recovery of
simulated networks and show the result in Figure 3. Recovery of the neuron and trial profiles was
computed as the Pearson correlation between the recovered and simulated profiles. For the trial
profiles, the correlation also directly reflects the recovery of the linear modulation of network activity
across the task (perfect recovery is 1). Recovery of the time profiles was computed using a recovery
coefficient that ranges from 0 to 1 (perfect recovery; see Materials and Methods section 2).

Firstly, we observe that with reasonable jitter (i.e. £0.25ms compared to 0-2.5ms spike
sequence delays) and spiking noise (e.g. 20Hz vs 1.2Hz average network spiking rate) the neuron and
time profiles were recovered with reasonable accuracy, with the trial profile being the most affected. At
20Hz spiking noise and £0.25ms jitter the linear modulation of network activity was still visible but
weakened (Fig 3, bottom: mean (SEM) over simulations of Pearson’s correlations for network 1-4: 0.78
(0.02), 0.29 (0.02), 0.62 (0.01), 0.44 (0.01)). Shown in the examples (Fig 3, bottom), the effect of noise on
the trial profile can be observed as a shrinking of the ratios between loadings of trials with a different
number of simulated network sequences and an increase in the trial profiles ‘baseline’; the loadings of
those trials which had 0 network sequences. The latter is important in practice, because under the
assumption that a network is not active in all trials, the lowest trial loadings with respect to the higher
trial loadings can be used as an indication of the reliability of network parameters. Secondly, we observe
that, except from the largest jitter case (+2ms), network spike jitter had a similar effect on recovery of
network parameters as spiking noise, as evidenced by the similarity between the 10Hz/Oms and the
5Hz/+0.25ms cases, and the 20Hz/0ms and the 5Hz/+0.5ms cases. Thirdly, we observe that, under
strong noise conditions (>20Hz spiking noise and >+1ms jitter), the linear modulation of network activity
became very weak to largely invisible (maximum mean Pearson’s correlation over simulations of 0.11,
0.04, 0.23, 0.08 for network 1-4). Regarding network specific recovery, though there was some variation
in recovery, apart from the above, the differences were minimal and did not highlight a sensitivity to a
particular aspect of the simulated networks.

3. Recovery of simulated spike timing networks with partial spiking when surrounded by spiking
noise
To investigate how partial spiking in spike timing networks, i.e. not all member neurons joining in each
spike sequence, affects characterization of the full spike sequences, we simulated networks where each
spike of a sequence had a chance to be deleted. Similar to the above, we did so 50 times for each level
of spike deletion probability, and of spiking noise. The results are shown in Figure 4. We observe that,
(1) as the chance of spike deletion increased, recovery accuracy was decreased, (2) as with spiking
jitter/noise, the trial profile was more affected by noise than the neuron profile, (3) as with spiking
jitter/noise, the effects of spike deletion on recovery were similar to those of spiking noise, (4) the full
spike sequences in the time profile were accurately extracted under reasonable noise (20Hz) with 40%
probability of spike deletion, even though the majority of individual spike sequences were incomplete,
and, (5) under the same noise conditions the linear modulation of network activity was weak but
detectable for networks 1 and 3, and nearly invisible for networks 2 and 4 (mean (SEM) Pearson’s
correlation over simulations of 0.39 (0.02), 0.06 (0.02), 0.29 (0.02), 0.08 (0.02) for networks 1-4). These
differences possibly stem from network overlap (network 2 shares all its neurons with network 1) and
network size (network 3 is the smallest).

4. Cross spectra normalization diminishes effects of differential firing rates of units and trials

The spike timing networks simulated above were extracted under noise related firing rates that were
identical over neurons and over trials. This was chosen to show the overall effect of spiking noise, but is
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atypical for real recordings. Here, we show the effect on network recovery of firing rate differences
between neurons and trials, while keeping the number of spike sequences constant.

We first show the recovery of simulated networks when the firing rate differs over neurons (Fig
5). We simulated networks 50 times, with neuron 5 (a member in network 1 and 2) and neuron 12
(member in network 3 and 4) having 100Hz spiking noise, the other neurons 5Hz (Fig 5A). Network
spiking jitter was £0.25ms. The recovery of the networks (Fig 5B; compare to Fig 2) was distorted: (1) the
neuron profiles of the networks for neurons 5 and 12 were strongly increased/decreased, (2) the noise
of neuron 5 led to a strong loading for network 3, of which it was not a member, (3) network 4 was
dominated by neuron 12, (4), the trial profiles showed decreased recovery (compared to Fig 2), and (5)
although the time profile of networks 1, 2, and 4 were not (noticeably) distorted, network 3’s is. Overall,
the differential firing rate can be said to have pulled the estimated network parameters towards those
neurons with more spiking. This effect however, can be substantially reduced by normalizing cross
spectra prior to network extraction. Here, we show the effect of normalizing cross spectra such their
power is equal to their Nth root (see Materials and Methods section 4), reducing differences in firing
rates. We show its effects progressively by using N = 2, 4, 8, 16, 32 (Fig 5C), and ending with N = 64 (Fig
5D). We observe that (1) the recovery of the neuron profiles was improved, with network 1 showing the
most remaining distortion at neuron 5, (2) the trial profiles were similar to the case with 5Hz spiking
noise for all neurons (see Fig 2), and, (3) the recovery of the time profile of network 3 was improved
such that the distortion is minimal.

To investigate the effect of differential spiking rate over trials we simulated networks with 5Hz
spiking noise, except for trials 21 to 60, which had 10Hz spiking noise (Fig 6A). Network spiking jitter was
set at £0.25ms spiking jitter, and networks were simulated 50 times. The trials with additional spiking
noise were chosen such that they both involved 100% of trials of sequence repeats (1x and 2x for
network 1, 1x for network 2, 1x for network 4) and a partial set of sequence repeats (50% of 1x and 2x
for network 3, 50% of Ox for network 2). The recovery without normalization is shown in Figure 6B. We
observe that (1) the recovery of the neuron profiles and time profiles was similar to the case of 5Hz
noise and +0.25ms spiking jitter (see Fig 2) and, as such, they were minimally affected by the differential
noise over trials, (2), the linear modulation of network activity was recoverable, but weakened, for all
networks (especially network 3; mean (SEM) Pearson’s correlation over simulations of 0.93 (<0.01), 0.67
(0.01), 0.76 (<0.01), 0.36 (0.01) for network 1-4) compared to without trial variations of firing rate (0.98
(<0.01), 0.94 (<0.01), 0.89 (<0.01), 0.77 (0.01); Fig 3), and, (3) the trial profile loadings for those trials
affected by increased spiking noise were distorted such that the ratios of loadings no longer reflected
the correct order of the number of sequence repeats (i.e. 1x>2x trials for network 2 and 4). Though the
linear modulation was moderately recoverable, the latter means an investigation of the network
activities in specific trials of network 2 and 4 (supported by e.g., an independent samples t-test) would
have resulted in the incorrect conclusion of more network activity being present in 1x compared to 2x
trials. As was the case for differential noise over neurons, normalization of the affected dimension can
improve recovery. Here, we normalized the cross spectra such that their power for every trial is equal to
their power summed over trials (see Materials and Methods section 4). Crucially, this does not affect the
ratio of the off-diagonal elements to the diagonal (power). As such, trials that have many spike
sequences (strong off-diagonal elements compared to power) are still distinguishable from trials with
few spike sequences (weak off-diagonal elements compared to power). Note, as well, that this trial-wise
normalization is unrelated to the neuron-wise normalization in the above, and they can be applied
jointly. We show the result of the trial-wise normalization in Figure 6C. We observe that, (1) the trial
profile recovery was improved such that the order of their loadings again reflected the order of the
number of sequence repeats, (2), recovery of the linear modulation of network activity was greatly
improved (mean (SEM) Pearson’s correlation over simulations of 0.96 (<0.01), 0.96 (<0.01), 0.82 (<0.01),
0.89 (<0.01)), and, (3) though improved, the trial profiles’ recovery was poorer than those at equal noise
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levels for all trials (see Fig 3). We additionally observe that the normalization also affected the trial
profile loadings of trials that did not have increased noise. This was most noticeable in the loadings for
those trials of network 4 that had 0 and 2 sequence repeats (trials 1 to 20 and 61 to 100): the ratio of
the loading of 0 repeats to that of 2 repeats was much higher without normalization (Fig 6B), than with
normalization (Fig 6C). As trials with 0 repeats should ideally have a loading of 0, the higher this ratio the
better. Interestingly, even though the trial profile showed worse recovery overall, the recovery of the
linear modulation of network activity after trial-wise normalization was better than the recovery at
equal noise levels across trials without normalization, especially for network 4 (mean (SEM) correlation
of 0.89 (<0.01) and 0.77 (0.01) resp.). This was likely caused by the trial profiles of the former showing
less variability than those of the latter (i.e., the coefficient of variation of the trial profile of network 4,
averaged over simulations, was 14.1% and 27.9% resp.).

5. Spike timing networks extracted from real recordings reflect between-neuron spike timing
relationships
To provide a proof-of-principle we extracted spike timing networks extracted from spike recordings from
medial prefrontal cortex and hippocampus of a rat performing an odor-based delayed matching-to-
sample task (Fig 7; see Materials and Methods section 7). After odor presentation, the rat had to run
through the left or right arm of a figure-eight T-maze to obtain its reward. Networks were extracted
similarly to the simulations above, using a neuron-wise 32" root power normalization, and a split-half
reliability approach to determine the number of networks (see Materials and Methods section 2). This
resulted in 4 extracted networks.

We show neuron profiles, time profiles, and trial profiles for each extracted spike timing
network in Figure 7. To provide a ground-truth estimate of whether the between-neuron spike times
from the networks reflect real spike timing relationships in the recordings, we also show for each
network continuous cross-correlograms (computed post-hoc; see Materials and Methods section 7) of
the neurons mostly strongly contributing to each network. Importantly, in each of these cross-
correlograms we indicate when the cross-correlation is expected to be highest, based on the time profile
of the networks.

For network 1, neuron pairs 1-2, 1-3, and 2-3 had peaks in their cross-correlograms that
matched the time profile’s spike timing relationships within 0.03ms, 0.03ms, and 0.06ms respectively.
Neuron 4 does not appear to have consistent spike timing relationship with the first three, which is
unsurprising given that its weight in the neuron profile is much weaker (suggesting its weight reflects, at
least mostly, noise). Although there appears to be a difference in network activity between left and right
trials, this likely due to firing rate differences between conditions, as trial profiles calculated on trial-wise
normalized cross spectra showed no statistically significant difference (see Materials and Methods
section 4; this should be interpreted with caution however, as the profile’s lowest weights suggested
they remained noisy). For network 2, neuron pairs 1-2, 1-3, and 1-4 had cross-correlogram peaks that
matched the time profile within 0.09ms, 0.07ms, and 0.19ms respectively. Neuron pair 2-3 and pair 3-4
did not have single cross-correlogram peak (though their center peaks matched within 0.17ms and
0.12ms resp.), and neuron pair 2-4 appears inhibitory. These observations could indicate that the spike
sequence did not involve all 4 neurons in a subset of trials. It is useful to reiterate here, that the
extracted spike sequence should be considered only at the level of the full recording (i.e. cross spectra
of all trials). That is, the extracted spike sequence should be considered as a description of the N-way
relationship between N neurons, i.e. the largest possible spike sequence for the network, and serve as a
starting point for targeted analyses. Network 3 show a similar pattern as network 1 and 2 according the
cross-correlograms, with the peaks of neuron pairs 1-2, 1-3, 1-4, and 2-3, matching the time profile
within 0.10ms, 0.09ms, 0.05ms, and 0.19ms resp. Network 4 likely reflects consistent spike timing only
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between the strongest two neurons (matching within 0.08ms), as the neuron profile has few neurons
with strong loadings.
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Discussion

Identifying and investigating cell-assemblies with spike timing consistency between neurons is key to
gain a further understanding of their role in neuronal coding (Bienenstock, 1995; Singer, 1999; Tiesinga
et al., 2008; Panzeri et al., 2010), but finding them is a tremendous challenge due to the possible
complexity of patterns of between-neuron spike time delays. Here, we introduced and validated, in
simulated and real data, a novel approach for extracting networks defined by their between-neuron
spike timing consistency, when forming sequences of time-shifted spikes, from neuronal spike
recordings (for other types of interactions, see e.g. Lindemann et al., 2001). The key features of this
approach are that (1) networks and their spike sequences can be extracted regardless of their
complexity in size and spike timing patterns, and (2) the spike sequences of the networks are specified
with high temporal precision. Networks consist of three profiles, describing (1) which neurons are
involved in which networks, (2) with which spike timing pattern, (3) in which trials or conditions. The
latter can in principle be used as an index for network activity. Together, these profiles form a
parsimonious description of the spike timing patterns in the recording, and can used as a basis for
subsequent spike train analyses of experimentally relevant variations in network subsets. Using
simulations, we showed how the extracted networks were affected by spiking jitter, variability in
network participation by its member neurons, and non-network related spiking activity. Networks were
recoverable under reasonable noise conditions, with the time profile being especially robust to the
simulated noise. Though the trial profiles were strongly influenced by noise, they still tracked simulated
network activity to a degree. Using neuronal spike recordings from rats, we showed we were able to
extract networks from real recordings, of which the time profile reflected between-neuron spike timing
consistency that matched cross-correlograms with high accuracy. Together, this shows that our
approach can be useful for the investigation of spike timing networks.

The extracted networks can be of arbitrary complexity in size and time delays. This is a
consequence of the fact that the underlying method finds networks not in the neuron-by-time time
series, but in the neuron-by-neuron cross spectra. These cross spectra contain all of the spike timing
consistencies of the spike sequences, condensed into between-neuron phase coupling. Networks can be
separated when their spike sequences have different between-neuron phase coupling patterns, and
differences in phase coupling patterns over trials (or epochs) increases their separability. Networks are
extracted by finding those neuron, time, and trial profiles whose phase coupling patterns explain the
most variance in the cross spectra. Because the estimated profiles have the same size for each network,
larger networks only differ from smaller networks by their different distribution of weight magnitudes.
As a larger network does not involve estimating a larger number of weights, there is no combinatorial
explosion with increasing network size. In fact, higher complexity networks are likely easier to find than
lower complexity networks, as they will typically explain more variance in the cross spectra. The above is
different from techniques that search for template spike sequences in their original neuron-by-time
representations (Abeles and Gerstein, 1988; Nadasdy et al., 1999; Tetko and Villa, 2001; Lee and Wilson,
2002; Schnitzer and Meister, 2003; Ikegaya et al., 2004; Gansel and Singer, 2012). As these search for
exact spiking templates, they have to do so within some restricted space to avoid a combinatorial
explosion. Although finding high complexity networks is impractical with such approaches, they have the
advantage of being able to find spike sequences that repeat very few times in the course of a recording.
Because our approach is most sensitive to those networks that explain the most variance in the cross
spectra, it is not well suited for finding sequences with very few repeats, as they typically explain very
little variance in the cross spectra. As such, our approach trades sensitivity to such sequences for
sensitivity to sequences with arbitrarily high complexity, but that are more prominent.

An important aspect of the method behind our approach is that it is a decomposition of
between-neuron cross spectra over frequencies and trials into sets of network profiles. Because this
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decomposition attempts to find profiles that parsimoniously explain all of the variance in the cross
spectra, its profiles need to not only describe between-neuron spike pairs, but also their total number of
spikes. Importantly, the latter typically outnumber the former to a strong degree (e.g., Gochin et al.,
1991; Nelson et al., 1992; Kreiter and Singer, 1996; Brosch and Schreiner, 1999). This impacts the
interpretation of the neuron profile weights. For any two neurons, their weights in the neuron profile
need to describe four magnitudes of the cross spectra: their total number of spikes in the magnitude of
their cross spectral power, and their spike timing consistency in the magnitude of their off-diagonal
elements. In the case these magnitudes differ, the neuron profile weights become a compromise, and
are drawn to those magnitudes that explain the most variance. These weights should therefore be
interpreted with caution, and should be considered more as an indication of network membership when
sufficiently away from 0, than as a straightforward index into the strength of their spike timing
consistency. This is also the reason why a neuron-wise normalization of the cross spectra is advisable, as
it will reduce the effect of firing rate differences. In fact, in our experience, when the cross spectra are
not neuron-wise normalized, few extracted networks will consist of more than one neuron (i.e.,
artefactual networks that are not based on spike timing). If it is also the case that the total number of
spikes of neurons differs more over trials than the number of their spike pairs do, then the trial profile
weights will be drawn towards the former, as they will explain more variance in the cross spectra. This
was likely the case for the networks we extracted from rat hippocampus and medial prefrontal cortex
(see e.g. network 1 in Fig 7), and is also likely the reason why the trial profile was strongly impacted by
simulated spiking noise. A trial-wise normalization for this was introduced, that in the specific case of
our simulations, improved recovery of the linear modulation of network activity. Nonetheless, the trial
profile remained sensitive to noise and, as such, should be used with caution, ideally with
complementary analyses (such as a targeted search, see below). The above contrasts with a previous
application on human electrophysiological recordings, where the trial profile was less sensitive to noise
(likely caused by more spatially extended networks; van der Meij et al., 2015, 2016).

Our approach describes the structure of spike timing consistencies in the cross spectra of the
entire recording. This means that the spike sequences represented by each network’s time profile
describe the spike timing consistencies of the involved neurons over the entire recording. As such, the
time profile reflects an aggregate spike sequence, one that does not necessarily exactly repeat in each of
the involved trials. For example, some trials might only contain a part of the sequence. This property can
also be considered beneficial, and it is something we explicitly tested in our simulations with partial
spike sequences. In the case of strong variability in the exact spike sequence of every trial, the ‘main’
sequence could still be identified.

The aggregate nature of our spike sequences contrasts with those of approaches that search for
exactly repeating spike sequences (Abeles and Gerstein, 1988; Nadasdy et al., 1999; Tetko and Villa,
2001; Lee and Wilson, 2002; Schnitzer and Meister, 2003; Ikegaya et al., 2004; Gansel and Singer, 2012).
These approaches typically also incorporate some form of statistical testing of the identified spike
sequences, which is necessary to obtain more certainty that the found sequences are not an accidental
consequence of statistical properties of the firing rates (see e.g. Griin, 2009, for a discussion of surrogate
data for this purpose). Importantly, we consider our approach not as an alternative to the above, but as
complementary. That is, our spike timing network profiles can be used to construct a network-specific
spiking template with between-spike time delays at high temporal resolution, that can be used in
approaches like the above to locate discrete occurrences of the network’s spike sequences. This would
allow for subsequent investigations into, e.g., spike time variability within sequences, variable
occurrence of sequences over conditions, and spike sequence completeness, of network spike
sequences with a complexity that would otherwise be prohibitive.

Arguably the approaches closest to ours are those that also depend on neuron-by-neuron
representations to investigate spike timing consistency. Of these approaches, some start from a
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Principal Component Analysis (PCA) on the between-neuron cross-correlations (Chapin and Nicolelis,
1999; Peyrache et al., 2010; Lopes-dos-Santos et al., 2011). These approaches result in a neuron profile
per component, describing correlated and anti-correlated neurons, and a temporal profile, providing a
component activity time course of some form that can be matched to the original neuronal spiking time
series. The biggest difference to our approach, is that, in those methods, between-neuron timing
information is lost when transforming the neuronal spiking time series to cross-correlation matrices.
Apart from losing the specification of the order and timing of the network spiking sequence, this also
makes it more difficult to distinguish between those networks that involve the same neurons, but at
different between-neuron spike times. This adds unto the rotational ambiguity of PCA that influences
network identification and separation, although (Lopes-dos-Santos et al., 2011) made significant
advances with respect to the latter. In comparison, the method behind our approach (van der Meij et
al., 2015), and related methods (Harshman and Lundy, 1994; Bro, 1998; Kiers et al., 1999; Sidiropoulos
et al., 2000; Morup et al., 2008), extracts networks that are unique without rotational ambiguity, and
separates them on the basis of their different structure across neurons, frequencies, and trials. Several
other approaches use cross-correlation matrices in way that did allow for an investigation of between-
neuron spiking at time delays (Schneider et al., 2006; Nikolic, 2007; Humphries, 2011), but these
approaches were not targeted at identifying and separating networks and their spiking sequences.

In summary, we have presented an approach that can extract networks defined by their
between-neuron spike timing consistency, with arbitrary network size and high temporal precision of
the identified spike sequences. Especially the latter is important considering the growing number of
neurons that can be recorded simultaneously, and the complexity of spike sequences that can thus be
measured. Ultimately, the usefulness of our approach and those related to it, lies in whether spike
timing plays a crucial role in large, distributed, neuronal networks. Being able to search for these
networks with increased sensitivity is essential to the investigation of their existence and function.
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Figure captions

Figure 1. Schematic of extracting spike timing networks. Neuronal spiking time series can contain
consistent spike timing between neurons, forming spike sequences. A, schematic of two spike timing
networks, with their neurons (circles) and sequence spikes (vertical lines) colored blue and green. The
dashed lines reflect the between-neuron consistent spike time relationships resulting from the spike
sequences. The blue network’s sequence goes from neuron 3 to 4 to 5 (dark dashed lines), with 1ms
time delays, resulting in a 2ms delay from 3 to 5 (light dashed line). The green network’s sequence is the
same but from neuron 5 to 6 to 7. B, the spike time consistencies in A can also be visualized as cross-
correlograms between all neuron pairs, at lags ranging from -10ms to 10ms with 1ms bins. C, the
networks in A and B but shown as spike trains per trial of two experimental conditions. The blue
network trials’ have one sequence in condition A and two sequences in condition B, vice versa for the
green network. To extract these two networks, we arrange spike trains of all neurons in a neuron-by-
time binary matrix. These spike trains are then convolved with complex exponentials (or ‘wavelets’) of
equal length at different frequencies, resulting in a complex-valued neuron-by-time matrix per
frequency per trial. D, the cross products are then computed along the time dimension, resulting in a
neuron-by-neuron cross-product matrix per frequency per trial: the cross spectrum. The between-
neuron phase differences of the cross spectra over frequencies, reflect the consistent between-neuron
spike time delays. E, using a recent technique denoted as SPACE, the structure in the cross spectra over
frequencies can be extracted, and described as separate spike timing networks. The blue and green
networks are each described by a neuron profile, describing network membership by a single weight per
neuron, a time profile, describing the spike sequence by a time coefficient per neuron, and a trial profile,
having a single weight per trial, indicating how strongly the network was present. For details see
Materials and Methods section 1, 2, 3.

Figure 2. Simulated spike timing networks. To investigate the robustness of network extraction to
various kinds of noise we simulated spike recordings from 15 neurons containing 4 spike timing
networks across 100 trials. A-C, description of simulated networks in same format as extracted
networks. A, the neuron profile of each network describes non-member neurons by 0s and member
neurons by 1s. Because absolute magnitudes of the neuron and trial profiles of networks are not
meaningful, they are L2-normalized by convention (leading to the visible arbitrary between-network
amplitude differences); the between-neuron/trial ratios are meaningful. B, the spiking sequence of each
network, shown as their time profiles (only member neurons are shown). C, the trial profile. Each
network spiking sequence was repeated 0-3 times in each trial, shown per trial in the first row. The
second row of C shows an alternative visualization of the trial profile, which is convenient for visualizing
recovery (see Fig 3-6). Here, normalized trial profile weights (y-axis) are shown as their mean (SD), per
simulated number of spike sequence repeats (x-axis). D, schematic of all consistent spike timing
relationships resulting from the simulated spike sequences. Each circle is a neuron, each dashed line
reflects a spike timing relationship. For visibility, the first-order relationships are dark colored, all others
are light colored. Numbers indicate the first-order within-sequence spike time delays. E, cross-
correlograms computed for all neuron-pairs from a simulation run with 20Hz spiking noise, at lags
ranging from -10ms to 10ms with 1ms bins. F, raster plots of example spike trains as a function of
spiking noise levels used in the simulations. Each vertical dash is a single spike. Each row consists of 5
concatenated trials, separated by a vertical line. Network spiking sequences are shown by their color as
in A-D. See Materials and Methods section 5.

Figure 3. Recovery of simulated spike timing networks with spiking jitter and spiking noise. Networks
were simulated 50 times at 5 levels of spiking jitter and 5 levels of spiking noise. Recovery of the neuron
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and trial profiles are shown as Pearson correlations between the extracted and simulated networks
(ranged from -1 to 1, visualized from 0 to 1; averaged over simulations; shading = SEM). The recovery of
the time profile is shown by a recovery coefficient ranging from 0 to 1 (perfect recovery; averaged over
simulations; shading = SEM). Networks are colored as in Figure 2. Bottom panels visualize extracted
networks as in Figure 2 at several example jitter and noise levels. Neuron profiles are shown as means
over simulations (shading = SD), with that of individual simulations as thin lines. Time profiles are
displayed as average over simulations (error bar = SD; aligned using average difference between
simulated and recovered networks). Trial profiles show means over trial weights per # of simulated
sequence repeats, averaged over simulations (error bar = SD). The simulated trial profiles and time
profiles are indicated in gray for reference. Note that, (1) when spiking noise and jitter increased, the
trial profiles ‘baseline’ (weights of non-contributing trials that should be 0) gradually increased, (2)
spiking noise had a stronger effect on the trial profiles of networks with fewer neurons, and, (3) the time
profiles were more robust to noise than the neuron profiles and trial profiles, with accurate recovery
even when spike jitter was a multiple of the between-neuron time delays. Also note in the examples
that as noise increased, matching of simulated networks to extracted networks became troublesome,
leading to differences between network-specific recovery becoming less meaningful. See Materials and
Methods section 5 and 6.

Figure 4. Recovery of simulated spike timing networks with partial network spiking and spiking noise.
Networks were simulated 50 times at 5 probability levels of spike deletion, and 5 levels of spiking noise.
Probability is the chance for each individual (non-noise) spike to be deleted. Recovery and examples are
displayed identically to Figure 3. Note that, (1) the effect of spike deletion affected the neuron profiles,
time profiles, and trial profiles similarly to that of spike jitter and spiking noise, and, (2) even when the
spiking sequences of the networks were highly variable (80% chance of each spike’s absence) the
networks could still be identified in the examples at 5Hz spiking noise. See Materials and Methods
section 5 and 6.

Figure 5. Cross spectra normalization diminishes effects of differential neuron firing rates. In realistic
neuron recordings, the firing rate of neurons typically differ. To show the effect of differential firing
rates on network recovery, we simulated spike timing networks (spiking jitter = £0.25ms; spike deletion
=10%) 50 times with two neurons having 100Hz spiking noise, the other neurons 5Hz. To improve
network recovery, the cross spectra can be normalized. One method is to normalize them such that the
power of the cross spectra becomes equal to their Nth root. A, spiking noise as a function of neurons,
with the simulated neuron profiles in the background. B, network recovery without normalization.
Though the networks are recognizable, recovery was clearly affected. Networks are displayed identically
to examples in Figure 3. C, the effect of square, 4™, 8", 16", 32" root power normalization on recovered
networks, culminating in: D, recovered networks after 64"-root power normalization. See Materials and
Methods section 4 and 5.

Figure 6. Trial-wise cross spectra normalization diminishes effects of differential trial firing rates. In
realistic recordings, the firing rate of neurons can differ over trials. To show its effect on network
recovery, we simulated spike timing networks (spiking jitter = £0.25ms; spike deletion = 10%) 50 times
with 40 trials having 10Hz spiking noise (for all neurons), the other trials 5Hz. To improve network
recovery, the cross spectra can be normalized in a similar way as for differential neuron firing rates.
Here, we normalize the cross spectra of each trial such that their power is equal to that summed over
trials. A, spiking noise as a function of trials, with the simulated trial profiles in the background. B,
recovered networks with trial-wise normalization. Networks are displayed identically to examples in
Figure 3. The trial profiles of the recovered networks were strongly affected. C, like B but for networks
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recovered after trial-wise normalization. While the trial profiles still deviated from the simulated
networks, the ratios of their weights w.r.t. the # of simulated sequence repeats were partially restored.
See Materials and Methods section 4 and 5.

Figure 7. Example spike timing networks extracted from rat medial prefrontal cortex and
hippocampus. We extracted 4 spike timing networks from recordings in which a rat either had to take
the left or right arm of a figure-eight T-maze. The number of networks to extract was estimated using a
split-half approach. The first row of each network shows the neuron profile, the time profile, and the
trial profile. The time profile only shows the strongest 5 neurons of the trial profile (as given by the
neuron profile). Several of the strongest neurons are highlighted in each neuron profile. To show that
the networks reflect spike timing consistencies in the data, we also show cross-correlograms in the
second and third row. The cross-correlograms of each pair of the highlighted neurons are shown as spike
densities, the y-axis limit roughly reflects spike counts. The dashed gray line is the time delay between
the neurons as given by the time profile of the network. We observe the following. For network 1,
neuron pairs 1-2, 1-3, and 2-3 the extracted time delays are close to the cross-correlogram. Though the
4™ neuron has a higher weight than the non-highlighted neurons in the neuron profile, the cross-
correlograms are not as strongly peaked as for the other pairs. For network 2, the extracted time delays
of pairs 1-2, 1-3, 1-4 are closest to their cross-correlograms. Though for network 3 the cross-
correlograms show weaker spike timing consistency (higher baseline spike density), the extracted time
delays of pair 1-2, 1-3, 1-4, and 2-3 are close to their peaks. Network 4 involves few strong neurons, as
indicated by the neuron profile; only the neuron pair 1-2 is close to its peak. See Materials and Methods
section 7.
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