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We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configu-

rations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned

to approximately reproduce the physical pion mass. In addition, we present results for the disconnected

light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods

are employed leading to high-precision results. The momentum dependence of the disconnected

contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and

the electric and magnetic radii of the proton and neutron by including both connected and disconnected

contributions. We find that the disconnected light quark contributions to both electric and magnetic form

factors are nonzero and at the few percent level as compared to the connected. The strange form factors are

also at the percent level but more noisy yielding statistical errors that are typically within one standard

deviation from a zero value.
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I. INTRODUCTION

The electromagnetic form factors of the nucleon are

important quantities encapsulating information about the

distribution of electric charge and magnetism inside the

proton and neutron. Namely, at zero momentum transfer,

electromagnetic form factors yield the electric charge and

magnetic moment, while from the slope of the form factors

at zero momentum transfer one extracts the nucleon radii.

Obtaining the individual quark contributions is a major

theoretical and experimental challenge, which can reveal

insights on the partonic structure of the nucleon. In

particular, the strange quark contribution, which is sub-

dominant compared to the up and down quark contribu-

tions, is especially challenging to measure. The interference

between the weak and electro-magnetic amplitudes leads to

a parity-violating asymmetry in the elastic scattering cross

section for right- and left-handed electrons, which gives

information on the strange form factors. Measuring the

parity-violating electroweak asymmetry in elastic scatter-

ing of polarized electrons from protons, the HAPPEX

collaboration [1] extracted the linear combination of

strange form factors Gs
E þ 0.392Gs

M ¼ 0.014� 0.020�
0.010 at Q2 ¼ 0.48 GeV2 which was found to be com-

patible with zero, where Gs
E is strange electric and Gs

M the

strange magnetic proton form factor. The A4 experiment at

MAMI [2] finds a combination Gs
E þ 0.225Gs

M ¼ 0.039�
0.034 at Q2 ¼ 0.23 GeV2, slightly non-zero within error-

bars, while the SAMPLE experiment [3] determined the

strange magnetic form factor Gs
MðQ2 ¼ 0.1Þ ¼ 0.14�

0.29� 0.31 which is consistent with zero. A combined

analysis of proton and neutron electromagnetic and weak

form factors from elastic electron-nucleon scattering

mediated by photon and Z0 exchange provides more

recent estimates for the electric and magnetic form factors

(see Refs. [4–6] for some recent experimental results).

These studies also deliver results consistent with zero for

the strange quark contribution, and as such, provide limits

on the contribution of strange quarks in the distribution of

nucleon charge and magnetization.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

PHYSICAL REVIEW D 97, 094504 (2018)

2470-0010=2018=97(9)=094504(9) 094504-1 Published by the American Physical Society



Lattice QCD allows for a first principles calculation of

the nucleon form factors. In lattice QCD, the calculation of

the individual quark contributions to nucleon matrix

elements requires the so called disconnected contributions,

such as the one shown in Fig. 1. A number of lattice QCD

calculations exist for the isovector form factors, or equiv-

alently the combination ðGp
E;M −Gn

E;MÞ, in which the

disconnected contributions cancel in the isospin limit, as

well as the isoscalar ðGp
E;M þ Gn

E;MÞ combination neglect-

ing disconnected contributions, of the electric and magnetic

Sachs form factors using simulations with near-physical

[7–10] and higher than physical [11–13] pion masses.

Disconnected contributions have only recently been calcu-

lated, typically using larger than physical pion masses [14].

In this study, we evaluate both the light and strange

disconnected quark loops to high-statistical precision using

an ensemble of two- degenerate twisted mass fermions with

a clover term with quark mass tuned to yield a pion mass of

about 130 MeV [15]. The disconnected quark loops are

estimated using improved stochastic techniques for several

momenta and the nucleon two-point correlation functions

are computed using a number of final momenta, allowing

us to obtain the form factors from multiple nucleon moving

frames. We extract the magnetic moment, electric and

magnetic radii by fitting the momentum dependence of the

form factors to the model-independent z-expansion [16].

We use the connected contributions as calculated in

Ref. [10] to obtain results for the total quark contributions

to the nucleon electromagnetic form factors, present new

results for the strange quark contributions, and update the

disconnected contributions for the light quarks.

The remainder of this paper is organized as follows: In

Sec. II, we explain how we compute the nucleon matrix

element within lattice QCD and in Sec. III we provide the

technical details of the calculation of the disconnected

contributions, the analysis and results. In Sec. IV, a

comparison with other studies is performed and in

Sec. V we summarize and tabulate our findings.

II. LATTICE EXTRACTION

The electromagnetic nucleon matrix element is decom-

posed in terms of two parity preserving form factors, the

Dirac (F1) and Pauli (F2) form factors, given in Minkowski

space by,

hNðp0;s0ÞjjμjNðp;sÞi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N

ENðp⃗0ÞENðp⃗Þ

s

× ūNðp0;s0Þ

×

�

γμF1ðq2Þþ
iσμνq

ν

2mN

F2ðq2Þ
�

×uNðp;sÞ: ð1Þ

Nðp; sÞ is the nucleon state with initial (final) momentum p
(p0) and spin s (s0), with energy ENðp⃗Þ (ENðp⃗0Þ) and mass

mN . q
2 ¼ qμq

μ is the momentum transfer squared where

qμ ¼ ðp0
μ − pμÞ and uN is the nucleon spinor. The vector

current jμ is given by

jμðxÞ ¼ jlμðxÞ þ jsμðxÞ ð2Þ

with

jlμðxÞ ¼ euūðxÞγμuðxÞ þ edd̄ðxÞγμdðxÞ; ð3Þ

and

jsμðxÞ ¼ ess̄ðxÞγμsðxÞ; ð4Þ

where ðeu; ed; esÞ ¼ ð2=3;−1=3;−1=3Þ are the electric

charges carried by the up, down and strange quarks

respectively. In this study, we use the local vector current,

therefore renormalization is necessary and has been com-

puted non-perturbatively using the RI0MOM scheme [17,18].

Lattice artifacts have been evaluated in perturbation theory

to 1-loop level and all orders in the lattice spacing and have

been subtracted before taking the chiral and continuum

limits [19].

The nucleon matrix element on the lattice requires the

evaluation of three- and two-point correlation functions.

The three-point function in momentum space is given by

CμðΓν; q⃗; p⃗
0; ts; tins; t0Þ

¼
X

x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗
0

× Tr½ΓνhJðts; x⃗sÞjμðtins; x⃗insÞJ̄ðt0; x⃗0Þi�; ð5Þ

and the two-point function is given by

CðΓ0; p⃗; ts; t0Þ¼
X

x⃗s

Tr½Γ0hJðts; x⃗sÞJ̄ðt0; x⃗0Þi�×e−iðx⃗s−x⃗0Þ·p⃗;

ð6Þ

where JN is the standard nucleon interpolating field:

JNðx⃗; tÞ ¼ ϵabcuaðxÞ½ub⊺ðxÞCγ5dcðxÞ�; ð7Þ

FIG. 1. Disconnected three-point nucleon correlation function

with source at x0 and sink at xs with vector insertion jμ at xins.
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with C ¼ γ0γ2 the charge conjugation matrix and u and d
are the up- and the down-quark fields respectively. Γν is a

projector acting on spin space, with Γ0 ¼ 1þγ0
4

projecting to

unpolarized nucleons and Γk ¼ iγ5γkΓ0 projecting to

nucleons polarized in direction k.
The three-point function receives contributions from both

quark- connected and disconnected terms. As mentioned,

the connected contributions have been evaluated and pre-

sented in Ref. [10] for the same ensemble as the one used

here, as have preliminary results for the disconnected light

quark contributions. In this work, we present a thorough

analysis of the disconnected contributions, depicted in

Fig. 1, updating our results for light quarks and showing

results on the strange quark contributions not calculated

previously. We use Osterwalder-Seiler strange quarks [20]

and tune the strange quark mass to reproduce the exper-

imental Ω− mass. This yields aμs ¼ 0.0259ð3Þ, where the
lattice spacing a ¼ 0.0938ð3Þ fm as determined from the

nucleon mass [21], yielding a renormalized strange quark

mass at 2 GeV in the MS-scheme mR
s ¼ 108.6ð2.2Þ MeV.

To isolate the electromagnetic matrix element in the

three-point function, an optimized combination of two-

point functions is constructed to form the ratio,

RμðΓν; p⃗
0; p⃗; ts; tinsÞ

¼CμðΓν; p⃗
0; p⃗; ts; tinsÞ

CðΓ0; p⃗
0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CðΓ0; p⃗; ts− tinsÞCðΓ0; p⃗
0; tinsÞCðΓ0; p⃗

0; tsÞ
CðΓ0; p⃗

0; ts− tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s

: ð8Þ

In the large time limit, RμðΓν; p⃗
0; p⃗; ts; tinsÞ⟶

ts−tins→∞

tins→∞

ΠμðΓν; p⃗
0; p⃗Þ yielding a time independent plateau. Note

that in Eq. (8), ts and tins are relative to the source, t0, which
is omitted, and we will adopt this convention for the

remainder of this paper. When taking large time separations

to obtain ΠμðΓν; p⃗
0; p⃗Þ, one cannot set the source-sink time

separation to arbitrarily large values since the noise-to-

signal ratio grows exponentially. Therefore, one seeks a

window within which the source-sink separation is large

enough for the excited states to be suppressed while small

enough to yield a good signal. We employ Gaussian

smearing [22,23] to increase the overlap with the ground

state and apply APE smearing [24] to the gauge links, with

the same parameters used in Ref. [10].

The Dirac and Pauli form factors, F1 and F2, are related

to the electric Sachs [GEðQ2Þ] and magnetic Sachs

[GMðQ2Þ] form factors via:

GEðQ2Þ ¼ F1ðQ2Þ − Q2

ð2mNÞ2
F2ðQ2Þ; ð9Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ ð10Þ

where Q2 ¼ −q2 is the Euclidean momentum transfer

squared. The combination of the projector Γν, the current

insertion and the initial and final momenta p⃗, p⃗0 leads to an
overconstrained set of equations relating ΠμðΓν; p⃗

0; p⃗Þ to

GE and GM. We solve by using the singular value

decomposition of the minimization problem that arises.

The expressions used are given in Appendix. The same

procedure has been followed for extracting the axial and

induced pseudo-scalar form factors in Ref. [25], where

more details can be found. For the results that follow, the

analysis combines two values of the final momentum,

namely p⃗0 ¼ 0⃗ and p⃗0 ¼ 2π
L
⃗n̂.

In what follows we use two analysis methods to assess

excited states contamination and extract the matrix element

of the nucleon.

Plateau method: For specific ts one identifies a range of
tins where the value of the ratio remains unchanged and

performs a constant fit. This procedure is repeated for

several ts seeking for convergence in the matrix element of

the ground state.

Summation method: Summing over tins in the ratio of

Eq. (8) between the source and the sink gives,

X

ts−a

tins¼a

RμðΓν; p⃗
0; p⃗; ts; tinsÞ ¼ Cþ tsMþOðe−ΔEtsÞ ð11Þ

where ΔE is the energy gap between the ground state and

the first excited state. The nucleon matrix element, M, is

extracted from the slope by fitting to a linear form. The

summation method will be used to provide an estimate of

the systematic error due to potential contamination from

excited states.

In Table I we summarize the parameters of the simu-

lation. Details on the determination of the nucleon and pion

mass and the lattice spacing are given in Ref. [21].

In Table II we tabulate the statistics used in this work.

The disconnected quark loop entering the diagram of Fig. 1

cannot be computed exactly, except for very small lattices.

In this work, we employ stochastic techniques combined

with the so-called one-end trick [26] and specifically its

generalized version explained in detail in Refs. [25,27,28]

to estimate the disconnected quark loops. The light

quark loops are produced using high-precision inversions

TABLE I. Simulation parameters. First row gives the β-value,

the value of the clover parameter cSW, the lattice spacing and the

Sommer parameter r0.

β ¼ 2.1, cSW ¼ 1.57751, a ¼ 0.0938ð3Þ fm, r0=a ¼ 5.32ð5Þ
483 × 96, L ¼ 4.5 fm aμl ¼ 0.0009

mπ ¼ 0.1304ð4Þ GeV
mπL ¼ 2.98ð1Þ
mN ¼ 0.932ð4Þ GeV
mN=mπ ¼ 7.15ð4Þ
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employing deflation of the low modes to overcome critical

slowdown. For the computation of strange quark loops we

employ the truncated solver method (TSM) [29] to increase

the statistics at low cost. Details for the tuning procedure

followed can be found in Ref. [25]. Note that we do not use

dilution, therefore we invert each noise vector once.

III. ANALYSIS AND RESULTS

We demonstrate the quality of our plateaus in Figs. 2

and 3. The disconnected part of the three-point function

can be computed for all source-sink time separations.

However, very large time separations are not useful due

to the increased statistical error. Thus, we restrict to

analyzing separations up to ts ¼ 1.31 fm for which the

signal-to-noise ratio is acceptable. In Fig. 2 the ratio

yielding Gl
EðQ2Þ is shown. Note that the upper index “l”

is used to denote the light quarks combination introduced in

Eq. (3). For demonstration purposes we choose a repre-

sentative momentum, namely Q2 ¼ 0.0753 GeV2, having

p⃗0 ¼ 0⃗. In Fig. 3 the ratio yielding Gl
MðQ2Þ is presented.

Fitting the form factors within the plateau region for several

separations allows us to check convergence to the ground

state. The extracted results are shown in Fig. 4 including also

the result from the summation method obtained using the fit

range [0.56–1.31] fm. For the case of Gl
E, results using the

plateau method up to ts ¼ 1.13 fm have a good agreement

with the summation method while larger separations

become noisy. For Gl
M, the value increases in magnitude

as ts increases and becomes compatible with the summation

method for ts ¼ 1.13 fm. Therefore, we show final results

extracted using the plateaumethod at ts ¼ 1.13 fm towhich

we perform ourQ2-fits in what follows. The same procedure

is followed to extract the disconnected contributions to the

form factors at several Q2 values where the analysis is

extended to allow for nonzero final nucleon momentum

FIG. 2. Results for the ratio from which Gl
EðQ2Þ is extracted.

This is a representative example for Q2 ¼ 0.0753 GeV2. The

source-sink time separations are for ts ¼ 0.75 fm (open red

circles), ts ¼ 0.94 fm (open blue squares) and ts ¼ 1.13 fm

(open black stars). Results for the two larger separations are

shifted slightly to the right for clarity. The gray band is the

extracted value using the plateau method for ts ¼ 1.13 fm, using

tins-values indicated by the length of the error band.

TABLE II. The statistics of our calculation. Nconf is the number

of gauge configurations analyzed and Nsrc is the number of

source position per configuration for the evaluation of the two-

point functions. NHP
r and NLP

r is the number of high- and low-

precision stochastic vectors used for the evaluation of the quark

loops when employing the truncated solver method.

Flavor Nconf NHP
r NLP

r Nsrc

Light 2120 2250 � � � 100

Strange 2057 63 1024 100

FIG. 3. Ratio leading to Gl
MðQ2Þ for Q2 ¼ 0.0753 GeV2. The

notation is as in Fig. 2.

FIG. 4. Extracted values for Gl
E and Gl

M at Q2 ¼ 0.0753 GeV2

using the plateau method (red points) and summation method

(gray band). Open symbols show our chosen value from the

plateau method.
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yielding a large number of closely spaced values for Q2. To

display the results we do a weighted average on results with

close values of Q2. In particular, we use bins with width of

0.02 GeV2 for the light disconnected quark contributions

and 0.04 GeV2 for the strange since for the latter we have

results available up to higherQ2 compared to the light. Note

that the weighted averages are taken only for the purpose of

better displaying the results in the plots and not for fits where

we use the individual data points. A systematic error due to

excited states contamination is given by the difference

between the plateau and the summation values.

The dipole form is widely used to fit the proton electric

and magnetic form factors [30,31] yielding the expected

behavior in the large-Q2 region where the form factors are

expected to decrease like Q−4 [32]. The z-expansion

[16,33] is a model independent Ansatz that has been

applied recently to fit experimental results. Using a

conformal mapping of Q2 to a variable z defined as,

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þQ2
p

−
ffiffiffiffiffiffi

tcut
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þQ2
p

þ ffiffiffiffiffiffi

tcut
p ð12Þ

one can expand the form factor into a polynomial

GðQ2Þ ¼
X

kmax

k¼0

akz
k; ð13Þ

where tcut is the cut in the timelike region of the form factor.

For light disconnected form factors tcut ¼ ð2mπÞ2 is used

while for the strange tcut ¼ ð2mKÞ2 withmK the kaon mass.

The z-expansion should converge as we increase kmax and

the coefficients ak should be bounded in size for this to

happen. The form factor atQ2 ¼ 0 is obtained from the first

coefficient, i.e., GðQ2 ¼ 0Þ ¼ a0. We define the radius as,

r2 ¼ −6
dGðQ2Þ
dQ2

�

�

�

�

Q2¼0

; ð14Þ

which is related to the second coefficient, via r2 ¼
−3a1=2tcut. In the case of the proton and neutron electric

form factors the mean square radius is the same as Eq. (14),

whereas for the magnetic, one has to divide with the total

value of the form factor at Q2 ¼ 0.

In our fitting procedure, the coefficients a0, a1 are free to
vary, while for ak>1 we impose Gaussian priors for the

series to converge. The priors are imposed using an

augmented χ2 where the additional term is

χ2pr ¼
X

kmax

k>1

ðak − ãkÞ2
wak

ð15Þ

for parameter ak, which is centered at ãk with width wak
. To

compute ãk we start by setting kmax ¼ 1 to obtain an

estimate for a0 and a1 using jackknife ensemble averages.

Then, for kmax ¼ 2, ã2 is set to maxðja0j; ja1jÞ and

the width is chosen as wak
¼ 2jãkj. This procedure is

generalized for any kmax and the priors are used to restrict

ak inside the jackknife bins. In Fig. 5 we show two

representative observables extracted from the electromag-

netic form factors using the z-expansion as a function of

kmax. We seek for convergence in both mean value and error

as we increase kmax. In the case of the magnetic moment μl,

increasing kmax does not affect the result while in the case

of the radius ðr2ÞlE one needs up to kmax ¼ 3 to converge.

Therefore, we choose to use kmax ¼ 3 for all the extracted

FIG. 5. Extracted values for μl and ðr2ÞlE as a function of

kmax, where results from the plateau method at ts ¼ 1.13 fm

have been used.

FIG. 6. Disconnected light quarks contribution to the nucleon

electric form factor denoted as Gl
EðQ2Þ. Results are extracted

using the plateau method for three source-sink time separations

with ts ¼ 0.75 fm (red open circles), ts ¼ 0.94 fm (blue open

squares) and ts ¼ 1.13 fm (black open stars). Results using the

summation method in the fit range of [0.56–1.31] fm are depicted

with the green open triangles. Results shown are obtained after a

binning of neighboringQ2 values as explained in the text. Results

are shifted slightly to the right for clarity. The gray band is a fit to

the results extracted from the plateau method using ts ¼ 1.13 fm.
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quantities where we have checked the convergence

of Eq. (13).

In Fig. 6 we present the light quarks disconnected

contribution to the nucleon electric form factor. The form

factor is shown up to Q2 ∼ 0.3 GeV2. The fits of the form

factor yield a monotonically increasing dependence on the

Q2 that flattens out for Q2 > 0.2 GeV2. In the case of

Gl
EðQ2Þ we impose a0 ¼ 0. Fitting the results extracted

from the plateau method at ts ¼ 1.13 fm, we find a value

for the radius ðr2ÞlE ¼ −0.026ð9Þ fm2, whereas using the

summation method we find ðr2ÞlE ¼ −0.036ð11Þ fm2. We

assign a systematic error due to possible excited states from

the difference between the values extracted using the

plateau and summation methods obtaining a value for

the electric squared charge radius

ðr2ÞlE ¼ −0.026ð9Þð10Þ fm2: ð16Þ

It is interesting to check how much the proton and

neutron charge radii are affected by the disconnected

contributions. Using results for the connected contributions

from Ref. [10], tabulated in Table III, we find that the

connected plus disconnected light quark contributions are

ðr2ÞpEðtotalÞ ¼ 0.558ð31Þð30Þ fm2; ð17Þ

ðr2ÞnEðtotalÞ ¼ −0.068ð25Þð12Þ fm2: ð18Þ

Although the light disconnected contribution to the proton

charge radius is small, it is important to calculate accurately

enough when comparing to experiment, especially in light

of the discrepancy observed in the experimental value of

proton charge radius between the conventional and the

muonic hydrogen measurement. For the neutron, discon-

nected quark contributions are more important making the

value of the charge radius more negative, albeit with large

statistical errors.

In Fig. 7 we show our results forGl
MðQ2Þ, which as noted

above, shows a clear trend towards more negative values

when the source-sink time separation is increased, especially

at small values ofQ2. FittingGl
MðQ2Þ using the z-expansion

we find that disconnected contributions to the nucleon

magnetic moment and radius are μl ¼ −0.040ð9Þð8Þ,
ðr2ÞlM ¼ −0.072ð27Þð20Þ fm2. In Fig. 8, we show results

for the strange nucleon electric form factor, which receives

only disconnected contributions. We find that the strange

charge radius of the nucleon is

ðr2ÞsE ¼ 0.0013ð8Þð8Þ fm2; ð19Þ

TABLE III. Our final results for ðr2ÞE (first row), μ (middle row) and ðr2ÞM (last row). In the first and second columns we give the light

and strange disconnected contributions, in the third and fourth, the proton connected and total values and in the fifth and sixth the

corresponding ones for neutron. The radius is defined in Eq. (14). In the case of the magnetic radius one has to divide with the total value

of magnetic moment to extract the mean square radius. Results for the connected are taken from Ref. [10].

Quantity Disconnected light Strange p (connected) p (total) n (connected) n (total)

ðr2ÞE [fm2] −0.026ð9Þð10Þ 0.0013(8)(8) 0.584(30)(28) 0.559(31)(30) −0.042ð23Þð6Þ −0.067ð25Þð12Þ
μ −0.040ð9Þð8Þ 0.006(4)(2) 2.455(127)(155) 2.421(127)(155) −1.564ð94Þð123Þ −1.598ð95Þð123Þ
ðr2ÞM [fm2] −0.072ð27Þð20Þ 0.0019(28)(4) 1.284(183)(218) 1.214(185)(219) −0.875ð139Þð180Þ −0.945ð142Þð181Þ

FIG. 7. Disconnected light quarks contribution to the nucleon

magnetic form factor Gl
MðQ2Þ. The notation is as in Fig. 6.

FIG. 8. Strange nucleon electric form factor, Gs
EðQ2Þ. The

notation is as in Fig. 6.
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which is consistent with zero if one takes into account the

systematic error due to the estimate of excited state

contributions.

The strange magnetic form factor Gs
MðQ2Þ is shown in

Fig. 9. We find a strange nucleon magnetic moment of

μs ¼ 0.006ð4Þð2Þ: ð20Þ

The strangemagnetic radius is ðr2ÞsM ¼ 0.0019ð28Þð4Þ fm2,

consistent with zero, as expected from the flat behavior of

the form factor in Fig. 9. Our results for the proton and

neutron magnetic moments and radii are given in Table III.

IV. COMPARISON WITH OTHER STUDIES

Disconnected quark loop contributions to the nucleon

electromagnetic form factors are available from two recent

works beyond the current one. In Ref. [14], LHPC has

analyzed an ensemble of Nf ¼ 2þ 1 Wilson clover-

improved fermions simulated for heavier than physical

pion mass, namely mπ ¼ 317 MeV. The other study, from

χQCD, used valence overlap fermions on four Nf ¼ 2þ 1

domain-wall fermion ensembles with pion masses in the

range mπ ∈ ð135; 403Þ MeV [34,35]. Their final values

were extracted by performing a simultaneous chiral, infinite

volume and continuum extrapolation.

In Fig. 10, we compare our result for ðr2ÞlE to the one

from χQCD, while for μl to those from both χQCD and

LHPC. The dark, inner band indicates the statistical error,

while the outer band is the statistical and systematic error

added in quadrature. The good agreement with χQCD, for

which a continuum and infinite volume extrapolation has

been performed, indicates that lattice artifacts due to finite

lattice spacing and volume on these quantities are small for

our ensemble. On the other hand, the result for μl from

LHPC at higher than physical pion mass is smaller, as

expected from chiral perturbation theory arguments [36]. In

Fig. 11 we compare the strange μs and ðr2ÞsE with the

corresponding results from the two other studies. For ðr2ÞsE,
results from the three studies are in good agreement,

whereas for μs, the result from χQCD differs by one

standard deviation. Given the large statistical errors on

the strange quark contributions such an agreement among

lattice QCD results is welcoming.

V. CONCLUSIONS

In this study, we compute the disconnected quark loop

contributions from up, down and strange quarks to the

nucleon electromagnetic form factors using Nf ¼ 2 max-

imally twisted mass fermions at the physical point. While

all source-sink time separations accessible, we opt to use up

to ts ¼ 1.31 fm for which statistical errors are not pro-

hibitively large. Both the plateau and the summation

methods are employed to estimate contamination due to

the excited states. Three-point functions produced with

final nucleon momenta of p⃗0 ¼ 0⃗ and p⃗0 ¼ 2π
L
⃗n̂ and

analyzed to increase statistics. The form factors, Gl
EðQ2Þ

and Gl
MðQ2Þ, are computed up to Q2 ≃ 0.3 GeV2 while

Gs
EðQ2Þ and Gs

MðQ2Þ are computed up to Q2 ≃ 0.6 GeV2.

The model independent z-expansion is used to fit the Q2

dependence of the form factors and extract the electric and

FIG. 9. Strange nucleon magnetic form factor, Gs
MðQ2Þ. The

notation is as in Fig. 6.

FIG. 10. Comparison of our results (blue star) for μl with results

from LHPC (red circle) and χQCD (green square) and for ðr2ÞlE
with χQCD. We multiply by a factor of 1=3 the results from

LHPC to match our convention. The inner error band is the

statistical error, while the outer band is the total error.

FIG. 11. Comparison of our results (blue star) for ðr2ÞsE and μs

with results from LHPC (red circles) and χQCD (green square).

The convention is as in Fig. 10.
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magnetic radii as well as the magnetic moment. The size of

the individual contributions as well as the total values for

the extracted quantities are tabulated in Table III. The

disconnected light quark contributions are consistently

nonzero for all Q2 for both the electric and magnetic form

factors as demonstrated in Figs. 6 and 7. The strange quark

contributions tend to be nonzero but more noisy and more

precise results are required to exclude zero.

We plan to analyze an Nf ¼ 2þ 1þ 1 twisted mass

ensemble with a clover term at the physical point to check

possible quenching effects of the strange and charm quarks

in the sea. Further improvements for the computation of

disconnected quark loops are under investigation to improve

the accuracy of the disconnected loop determination.
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APPENDIX: EXTRACTION OF FORM FACTORS

FROM LATTICE QCD RATIOS

In this Appendix we generalize the equations from

which the form factors are extracted for a nucleon with

nonzero final momentum p⃗0. All expressions are given in

Euclidean space.

ΠμðΓ0; p⃗
0; p⃗ÞÞ ¼ −iGEðQ2ÞC

2mð4m2 þQ2Þ ððp
0
μ þ pμÞ½mðEðp⃗0Þ þ Eðp⃗Þ þmÞ − p0

ρpρ�Þ

þ GMðQ2ÞC
4m2ð4m2 þQ2Þ ðδμ0ð4m

4 þm2Q2 þ 4m2p0
ρpρ þQ2p0

ρpρÞ þ 2im2p0
μðEðp⃗0Þ − Eðp⃗ÞÞ

− 2im3ðp0
μ þ pμÞ − Eðp⃗ÞiQ2p0

μ − Eðp⃗0ÞiQ2pμ − imQ2ðp0
μ þ pμÞ − 2im2pμðEðp⃗0Þ − Eðp⃗ÞÞ

− 2imp0
ρpρðp0

μ þ pμÞÞ; ðA1Þ

ΠμðΓk;p⃗
0;p⃗ÞÞ¼ −GEðQ2ÞC

2mð4m2þQ2Þðm
2εμk0ρðp0

ρ−pρÞ− iεμkρσp
0
ρpσðEðp⃗0ÞþEðp⃗ÞÞþεμ0ρσp

0
ρpσðp0

kþpkÞ−εμk0ρp
0
σpσðp0

ρ−pρÞÞ

−
GMðQ2ÞC

4m2ð4m2þQ2Þ

�

mεμk0ρðp0
ρ−pρÞð2m2þQ2Þþ2imεμkρσp

0
ρpσ

�

2mþEðp⃗0ÞþEðp⃗ÞþQ2

2m

�

−2mεμ0ρσp
0
ρpσðp0

kþpkÞþ2mεμk0ρp
0
σpσðp0

ρ−pρÞ
�

; ðA2Þ

where

C ¼ 2m

Eðp⃗ÞðEðp⃗0Þ þmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðp⃗ÞðEðp⃗0Þ þmÞ
Eðp⃗0ÞðEðp⃗Þ þmÞ

s
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