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We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configu-
rations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned
to approximately reproduce the physical pion mass. In addition, we present results for the disconnected
light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods
are employed leading to high-precision results. The momentum dependence of the disconnected
contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and
the electric and magnetic radii of the proton and neutron by including both connected and disconnected
contributions. We find that the disconnected light quark contributions to both electric and magnetic form
factors are nonzero and at the few percent level as compared to the connected. The strange form factors are
also at the percent level but more noisy yielding statistical errors that are typically within one standard

deviation from a zero value.
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I. INTRODUCTION

The electromagnetic form factors of the nucleon are
important quantities encapsulating information about the
distribution of electric charge and magnetism inside the
proton and neutron. Namely, at zero momentum transfer,
electromagnetic form factors yield the electric charge and
magnetic moment, while from the slope of the form factors
at zero momentum transfer one extracts the nucleon radii.
Obtaining the individual quark contributions is a major
theoretical and experimental challenge, which can reveal
insights on the partonic structure of the nucleon. In
particular, the strange quark contribution, which is sub-
dominant compared to the up and down quark contribu-
tions, is especially challenging to measure. The interference
between the weak and electro-magnetic amplitudes leads to
a parity-violating asymmetry in the elastic scattering cross
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section for right- and left-handed electrons, which gives
information on the strange form factors. Measuring the
parity-violating electroweak asymmetry in elastic scatter-
ing of polarized electrons from protons, the HAPPEX
collaboration [1] extracted the linear combination of
strange form factors Gy + 0.392Gj, = 0.014 - 0.020 £
0.010 at Q% = 0.48 GeV? which was found to be com-
patible with zero, where Gy is strange electric and G, the
strange magnetic proton form factor. The A4 experiment at
MAMI [2] finds a combination G}, + 0.225Gj, = 0.039 +
0.034 at Q* = 0.23 GeV?, slightly non-zero within error-
bars, while the SAMPLE experiment [3] determined the
strange magnetic form factor G3,(Q* =0.1) =0.14 £
0.29 £ 0.31 which is consistent with zero. A combined
analysis of proton and neutron electromagnetic and weak
form factors from elastic electron-nucleon scattering
mediated by photon and Z° exchange provides more
recent estimates for the electric and magnetic form factors
(see Refs. [4-6] for some recent experimental results).
These studies also deliver results consistent with zero for
the strange quark contribution, and as such, provide limits
on the contribution of strange quarks in the distribution of
nucleon charge and magnetization.

Published by the American Physical Society



C. ALEXANDROU et al.

PHYS. REV. D 97, 094504 (2018)

jn
(fins7 tins)

—

(IL’S, ts) (ﬁ)vto)

FIG. 1. Disconnected three-point nucleon correlation function
with source at x, and sink at x; with vector insertion j, at Xjq.

Lattice QCD allows for a first principles calculation of
the nucleon form factors. In lattice QCD, the calculation of
the individual quark contributions to nucleon matrix
elements requires the so called disconnected contributions,
such as the one shown in Fig. 1. A number of lattice QCD
calculations exist for the isovector form factors, or equiv-
alently the combination (G%,, —G},), in which the
disconnected contributions cancel in the isospin limit, as
well as the isoscalar (G% ), + G’ ;) combination neglect-
ing disconnected contributions, of the electric and magnetic
Sachs form factors using simulations with near-physical
[7-10] and higher than physical [11-13] pion masses.
Disconnected contributions have only recently been calcu-
lated, typically using larger than physical pion masses [14].
In this study, we evaluate both the light and strange
disconnected quark loops to high-statistical precision using
an ensemble of two- degenerate twisted mass fermions with
a clover term with quark mass tuned to yield a pion mass of
about 130 MeV [15]. The disconnected quark loops are
estimated using improved stochastic techniques for several
momenta and the nucleon two-point correlation functions
are computed using a number of final momenta, allowing
us to obtain the form factors from multiple nucleon moving
frames. We extract the magnetic moment, electric and
magnetic radii by fitting the momentum dependence of the
form factors to the model-independent z-expansion [16].
We use the connected contributions as calculated in
Ref. [10] to obtain results for the total quark contributions
to the nucleon electromagnetic form factors, present new
results for the strange quark contributions, and update the
disconnected contributions for the light quarks.

The remainder of this paper is organized as follows: In
Sec. II, we explain how we compute the nucleon matrix
element within lattice QCD and in Sec. III we provide the
technical details of the calculation of the disconnected
contributions, the analysis and results. In Sec. IV, a
comparison with other studies is performed and in
Sec. V we summarize and tabulate our findings.

II. LATTICE EXTRACTION

The electromagnetic nucleon matrix element is decom-
posed in terms of two parity preserving form factors, the

Dirac () and Pauli (F,) form factors, given in Minkowski
space by,

2
mN ) XuN(p/’s/)

<N(p’,s’)|jﬂ|N(p,s)>: W

< i)+ 2L )

Xuy(p,s)- (1)

N(p, s) is the nucleon state with initial (final) momentum p
(p) and spin s (s"), with energy Ey(p) (Ex(p’)) and mass
my. q> = q,q" is the momentum transfer squared where
4, = (py — pu) and uy is the nucleon spinor. The vector
current j, is given by

Ju(x) = ju(x) + ji(x) (2)

with

Ju(x) = e, i(x)y,u(x) + eqd(x)y,d(x), (3)

and

Ju(x) = e3(x)y,s(x). (4)

where (e,, ey e,) = (2/3,—1/3,—-1/3) are the electric
charges carried by the up, down and strange quarks
respectively. In this study, we use the local vector current,
therefore renormalization is necessary and has been com-
puted non-perturbatively using the RI},q,, scheme [17,18].
Lattice artifacts have been evaluated in perturbation theory
to 1-loop level and all orders in the lattice spacing and have
been subtracted before taking the chiral and continuum
limits [19].

The nucleon matrix element on the lattice requires the
evaluation of three- and two-point correlation functions.
The three-point function in momentum space is given by

Cﬂ(r ZI) ﬁ/' Iy, Tings tO)

— g e xms_xO qe_l x\_x())p

X Tr[rv<‘](ts7zs)jﬂ(tin37 1ns>'7(t073_60)>]’ (5)

and the two-point function is given by

C(Ty, Pit. 1) ZTr To(J(t,.5,)T (9, %y))] x eI 7,

(6)

where J) is the standard nucleon interpolating field:

In(E.1) = e ut(x)[u’T (x) Cysd®(x)], (7)
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with C = y,y, the charge conjugation matrix and u and d
are the up- and the down-quark fields respectively. I', is a
projector acting on spin space, with I’y = 17" projecting to
unpolarized nucleons and I'y = iysy, Iy projecting to
nucleons polarized in direction k.

The three-point function receives contributions from both
quark- connected and disconnected terms. As mentioned,
the connected contributions have been evaluated and pre-
sented in Ref. [10] for the same ensemble as the one used
here, as have preliminary results for the disconnected light
quark contributions. In this work, we present a thorough
analysis of the disconnected contributions, depicted in
Fig. 1, updating our results for light quarks and showing
results on the strange quark contributions not calculated
previously. We use Osterwalder-Seiler strange quarks [20]
and tune the strange quark mass to reproduce the exper-
imental Q™ mass. This yields au, = 0.0259(3), where the
lattice spacing a = 0.0938(3) fm as determined from the
nucleon mass [21], yielding a renormalized strange quark
mass at 2 GeV in the MS-scheme m® = 108.6(2.2) MeV.

To isolate the electromagnetic matrix element in the
three-point function, an optimized combination of two-
point functions is constructed to form the ratio,

R,(T,. P Dty ting)
_ CM(FZ,, ﬁl, ﬁa tsa til’lS)
C(FO’ ﬁl;tS)

% C(F07ﬁ;ts_tins)C(FO’ﬁ/;tins)c(rovﬁ/;ts)
C(F07ﬁ/;ts - tins)c(l—b?ﬁ; tins)c(rov ﬁ; ts)

(8)

In the large time limit, R,(I,;p', Pt tins) %)oo
I,(I',; p', p) yielding a time independent plateau. Note
that in Eq. (8), ¢, and t;,, are relative to the source, ¢, which
is omitted, and we will adopt this convention for the
remainder of this paper. When taking large time separations
to obtain IT,(I",; p’, p), one cannot set the source-sink time
separation to arbitrarily large values since the noise-to-
signal ratio grows exponentially. Therefore, one seeks a
window within which the source-sink separation is large
enough for the excited states to be suppressed while small
enough to yield a good signal. We employ Gaussian
smearing [22,23] to increase the overlap with the ground
state and apply APE smearing [24] to the gauge links, with
the same parameters used in Ref. [10].

The Dirac and Pauli form factors, F; and F,, are related
to the electric Sachs [Gg(Q?)] and magnetic Sachs
[G(Q?)] form factors via:

Q2
Gp(Q*) = F,(Q?) - my)? Fy(0%), )
Gu(Q?) = Fi(Q%) + F»(Q%) (10)

TABLE 1. Simulation parameters. First row gives the f-value,
the value of the clover parameter cgy, the lattice spacing and the
Sommer parameter r;.

B =21, cgy = 1.57751, a = 0.0938(3) fm, ro/a = 5.32(5)

48% x 96, L = 4.5 fm ap; = 0.0009
m, = 0.1304(4) GeV
m,L = 2.98(1)

my = 0.932(4) GeV
my/m, =7.15(4)

where Q? = —¢? is the Euclidean momentum transfer
squared. The combination of the projector I',, the current
insertion and the initial and final momenta p, p’ leads to an
overconstrained set of equations relating IT,(I',; p’. p) to
Gr and Gj. We solve by using the singular value
decomposition of the minimization problem that arises.
The expressions used are given in Appendix. The same
procedure has been followed for extracting the axial and
induced pseudo-scalar form factors in Ref. [25], where
more details can be found. For the results that follow, the
analysis combines two values of the final momentum,
namely 5 = 0 and p' = 2.

In what follows we use two analysis methods to assess
excited states contamination and extract the matrix element
of the nucleon.

Plateau method: For specific ¢; one identifies a range of
t;ns Where the value of the ratio remains unchanged and
performs a constant fit. This procedure is repeated for
several ¢, seeking for convergence in the matrix element of
the ground state.

Summation method: Summing over f,,, in the ratio of
Eq. (8) between the source and the sink gives,

ty—a

S RUTL P Bty ting) = C+ (M + O(e™E1) (1)

lins=a

where AFE is the energy gap between the ground state and
the first excited state. The nucleon matrix element, M, is
extracted from the slope by fitting to a linear form. The
summation method will be used to provide an estimate of
the systematic error due to potential contamination from
excited states.

In Table I we summarize the parameters of the simu-
lation. Details on the determination of the nucleon and pion
mass and the lattice spacing are given in Ref. [21].

In Table II we tabulate the statistics used in this work.
The disconnected quark loop entering the diagram of Fig. 1
cannot be computed exactly, except for very small lattices.
In this work, we employ stochastic techniques combined
with the so-called one-end trick [26] and specifically its
generalized version explained in detail in Refs. [25,27,28]
to estimate the disconnected quark loops. The light
quark loops are produced using high-precision inversions
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TABLE II. The statistics of our calculation. N, is the number
of gauge configurations analyzed and N is the number of
source position per configuration for the evaluation of the two-
point functions. N2 and NP is the number of high- and low-
precision stochastic vectors used for the evaluation of the quark
loops when employing the truncated solver method.

Flavor Nconf NI;IP N¥P Nsrc
Light 2120 2250 e 100
Strange 2057 63 1024 100

employing deflation of the low modes to overcome critical
slowdown. For the computation of strange quark loops we
employ the truncated solver method (TSM) [29] to increase
the statistics at low cost. Details for the tuning procedure
followed can be found in Ref. [25]. Note that we do not use
dilution, therefore we invert each noise vector once.

III. ANALYSIS AND RESULTS

We demonstrate the quality of our plateaus in Figs. 2
and 3. The disconnected part of the three-point function
can be computed for all source-sink time separations.
However, very large time separations are not useful due
to the increased statistical error. Thus, we restrict to
analyzing separations up to #, = 1.31 fm for which the
signal-to-noise ratio is acceptable. In Fig. 2 the ratio
yielding GL(Q?) is shown. Note that the upper index “I”
is used to denote the light quarks combination introduced in
Eq. (3). For demonstration purposes we choose a repre-
sentative momentum, namely Q? = 0.0753 GeV?, having

0.020 : :
3 t:=0.75fm
O ts=0.94fm
0015} & t=1.13fm il
>
gl 0.010 |
X
% 0.005 |
£ I
i ;
0.000 F-oooo o oo - SO S q
-0.005 :
0.6 -04

(tins — ts/2) [fm]

FIG. 2. Results for the ratio from which GL(Q?) is extracted.
This is a representative example for Q% = 0.0753 GeV>. The
source-sink time separations are for ¢, = 0.75 fm (open red
circles), t, =0.94 fm (open blue squares) and 7, = 1.13 fm
(open black stars). Results for the two larger separations are
shifted slightly to the right for clarity. The gray band is the
extracted value using the plateau method for 7, = 1.13 fm, using
tins-values indicated by the length of the error band.
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FIG. 3. Ratio leading to G},(Q?) for 0* = 0.0753 GeV>. The
notation is as in Fig. 2.

p' = 0. In Fig. 3 the ratio yielding G,(Q?) is presented.
Fitting the form factors within the plateau region for several
separations allows us to check convergence to the ground
state. The extracted results are shown in Fig. 4 including also
the result from the summation method obtained using the fit
range [0.56—1.31] fm. For the case of G~, results using the
plateau method up to 7, = 1.13 fm have a good agreement
with the summation method while larger separations
become noisy. For G/, the value increases in magnitude
as ¢, increases and becomes compatible with the summation
method for #;, = 1.13 fm. Therefore, we show final results
extracted using the plateau method at 7, = 1.13 fm to which
we perform our Q?-fits in what follows. The same procedure
is followed to extract the disconnected contributions to the
form factors at several Q? values where the analysis is
extended to allow for nonzero final nucleon momentum

0.010

0.008 | Summation é Plateau |

0.006 :

S 0004l % i { % { |

0.002

]

-0.01 | ;
¢

<& -0.02| ¢ % ;

-0.03 - E

_0_04 L L L L L L L L
0.6 07 08 09 10 11 12 1.3

ts [fm]
FIG. 4. Extracted values for GZ- and Gfu at 0% = 0.0753 GeV?
using the plateau method (red points) and summation method

(gray band). Open symbols show our chosen value from the
plateau method.
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yielding a large number of closely spaced values for Q2. To
display the results we do a weighted average on results with
close values of Q2. In particular, we use bins with width of
0.02 GeV? for the light disconnected quark contributions
and 0.04 GeV? for the strange since for the latter we have
results available up to higher Q% compared to the light. Note
that the weighted averages are taken only for the purpose of
better displaying the results in the plots and not for fits where
we use the individual data points. A systematic error due to
excited states contamination is given by the difference
between the plateau and the summation values.

The dipole form is widely used to fit the proton electric
and magnetic form factors [30,31] yielding the expected
behavior in the large-Q? region where the form factors are
expected to decrease like Q=% [32]. The z-expansion
[16,33] is a model independent Ansatz that has been
applied recently to fit experimental results. Using a
conformal mapping of Q7 to a variable z defined as,

At 2t
7= cut + Q cut (12)
View + O + Ve

one can expand the form factor into a polynomial

G(0Y) =D at, (13)

where ?.,, is the cut in the timelike region of the form factor.
For light disconnected form factors 7., = (2m,)? is used
while for the strange ., = (2m)?* with my the kaon mass.
The z-expansion should converge as we increase k,,, and
the coefficients a; should be bounded in size for this to
happen. The form factor at Q> = 0 is obtained from the first
coefficient, i.e., G(Q* = 0) = a,. We define the radius as,
2
rr = —6LG(Q2 ) , (14)
dO” |p—o

which is related to the second coefficient, via r* =
—3a; /2t In the case of the proton and neutron electric
form factors the mean square radius is the same as Eq. (14),
whereas for the magnetic, one has to divide with the total
value of the form factor at Q% = 0.

In our fitting procedure, the coefficients a,, a; are free to
vary, while for a;.; we impose Gaussian priors for the
series to converge. The priors are imposed using an
augmented y> where the additional term is

, Kmax (ak _ Elk)z
Xpr = ZT (15)
k>1 Ay

for parameter a;, which is centered at a; with width w, . To
compute &, we start by setting k., =1 to obtain an
estimate for a, and a; using jackknife ensemble averages.
Then, for ky. =2, @ is set to max(|ag|,|a;|) and
the width is chosen as w, = 2[a|. This procedure is

-0.035 -
= -0.045 -
-0.055 -
-0.005 -
& -0.0151
*
& -0.025 -
-0.035 -
1 2 3 4
kmax

FIG. 5. Extracted values for u' and (r?)} as a function of
kmax>» Where results from the plateau method at 7, = 1.13 fm
have been used.

generalized for any k,,,, and the priors are used to restrict
a; inside the jackknife bins. In Fig. 5 we show two
representative observables extracted from the electromag-
netic form factors using the z-expansion as a function of
kmax- We seek for convergence in both mean value and error
as we increase ki, . In the case of the magnetic moment y/,
increasing k., does not affect the result while in the case
of the radius (%)% one needs up to ky.x = 3 to converge.
Therefore, we choose to use k,,,, = 3 for all the extracted

0.010
0.008 H
0.006 f
0.004
£ 0.002
—~ M
0.000 f
0,002 | 5 t,=0.75fm
8 t=0.94fm
-0.004 - & t=113fm
A Summation
-0.006 T T T T T :
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Q?*[GeV?]

FIG. 6. Disconnected light quarks contribution to the nucleon
electric form factor denoted as G%(Q?). Results are extracted
using the plateau method for three source-sink time separations
with ¢z, = 0.75 fm (red open circles), 7, = 0.94 fm (blue open
squares) and ¢, = 1.13 fm (black open stars). Results using the
summation method in the fit range of [0.56—1.31] fm are depicted
with the green open triangles. Results shown are obtained after a
binning of neighboring Q? values as explained in the text. Results
are shifted slightly to the right for clarity. The gray band is a fit to
the results extracted from the plateau method using #;, = 1.13 fm.
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TABLE III.

Our final results for (72); (first row), 4 (middle row) and (7?),, (last row). In the first and second columns we give the light

and strange disconnected contributions, in the third and fourth, the proton connected and total values and in the fifth and sixth the
corresponding ones for neutron. The radius is defined in Eq. (14). In the case of the magnetic radius one has to divide with the total value
of magnetic moment to extract the mean square radius. Results for the connected are taken from Ref. [10].

Quantity Disconnected light Strange p (connected) p (total) n (connected) n (total)
(r}) [fm?] —-0.026(9)(10) 0.0013(8)(8) 0.584(30)(28) 0.559(31)(30) —0.042(23)(6) —0.067(25)(12)
u —0.040(9)(8) 0.006(4)(2)  2.455(127)(155)  2.421(127)(155)  —1.564(94)(123) —1.598(95)(123)
(r?),; [fm?] —0.072(27)(20) 0.0019(28)(4)  1.284(183)(218) 1.214(185)(219) —0.875(139)(180) —0.945(142)(181)

quantities where we have checked the convergence
of Eq. (13).

In Fig. 6 we present the light quarks disconnected
contribution to the nucleon electric form factor. The form
factor is shown up to Q? ~ 0.3 GeV?2. The fits of the form
factor yield a monotonically increasing dependence on the
Q? that flattens out for Q% > 0.2 GeV2. In the case of
GL(0Q?%) we impose a, = 0. Fitting the results extracted
from the plateau method at 7, = 1.13 fm, we find a value
for the radius (%)% = —0.026(9) fm?, whereas using the
summation method we find (r2)L = —0.036(11) fm?. We
assign a systematic error due to possible excited states from
the difference between the values extracted using the
plateau and summation methods obtaining a value for
the electric squared charge radius

()L = —0.026(9)(10) fm>. (16)

It is interesting to check how much the proton and
neutron charge radii are affected by the disconnected
contributions. Using results for the connected contributions
from Ref. [10], tabulated in Table III, we find that the
connected plus disconnected light quark contributions are

()P (total) = 0.558(31)(30) fm?, (17)
()2 (total) = —0.068(25)(12) fm?. (18)

Although the light disconnected contribution to the proton
charge radius is small, it is important to calculate accurately
enough when comparing to experiment, especially in light
of the discrepancy observed in the experimental value of
proton charge radius between the conventional and the
muonic hydrogen measurement. For the neutron, discon-
nected quark contributions are more important making the
value of the charge radius more negative, albeit with large
statistical errors.

In Fig. 7 we show our results for G}, (Q?), which as noted
above, shows a clear trend towards more negative values
when the source-sink time separation is increased, especially
at small values of Q?. Fitting G}, (Q?) using the z-expansion
we find that disconnected contributions to the nucleon
magnetic moment and radius are u' = —0.040(9)(8),
(r*)}, = —0.072(27)(20) fm?. In Fig. 8, we show results

for the strange nucleon electric form factor, which receives
only disconnected contributions. We find that the strange
charge radius of the nucleon is

(rz)f5 = 0.0013(8)(8) fm?, (19)
0.00 A
-0.01 A
S -0.02 A
—=
)
-0.03 1
3 t,=0.75fm
-0.04 - O t=094fm
F t-113fm
X Summation
-0.05 1 i i i i i i
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Q%[GeV?]

FIG. 7. Disconnected light quarks contribution to the nucleon
magnetic form factor G},(Q?). The notation is as in Fig. 6.

0.004 1
0.002 1
0.000 -
S -0.002 -
%54
-0.004 -
-0.0061 @ t=0.75fm b
8 t=094fm
-0.008 { # t=1.13fm
A Summation
-0.010 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Q%[GeV?]
FIG. 8. Strange nucleon electric form factor, G§(Q?). The

notation is as in Fig. 6.
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0.020
® t;=0.75fm
O t=094fm
0.015 - F t-113fm
X Summation
~ 0.010 A
(3]
<
‘CDE
0.005 A
0.000
-0.005

00 01 02 03 04 05 06
Q?*[GeV?]

FIG. 9. Strange nucleon magnetic form factor, G3,(Q?). The
notation is as in Fig. 6.

which is consistent with zero if one takes into account the
systematic error due to the estimate of excited state
contributions.

The strange magnetic form factor G3,(Q?) is shown in
Fig. 9. We find a strange nucleon magnetic moment of

1 = 0.006(4)(2). (20)

The strange magnetic radius s (r%)3, = 0.0019(28)(4) fm?,
consistent with zero, as expected from the flat behavior of
the form factor in Fig. 9. Our results for the proton and
neutron magnetic moments and radii are given in Table III.

IV. COMPARISON WITH OTHER STUDIES

Disconnected quark loop contributions to the nucleon
electromagnetic form factors are available from two recent
works beyond the current one. In Ref. [14], LHPC has
analyzed an ensemble of Ny=2+1 Wilson clover-
improved fermions simulated for heavier than physical
pion mass, namely m, = 317 MeV. The other study, from

ETMC, m;=130 MeV (this work) ——————] H——
XQCD (2017), my, € (135, 403) MeV H——H —
LHPC (2015), m;=317 MeV H@H

0.00 -0.02 -0.04 -0.01 -0.03 -0.05

(3} [fm?] W

FIG. 10. Comparison of our results (blue star) for x! with results
from LHPC (red circle) and yQCD (green square) and for (r2)%
with yQCD. We multiply by a factor of 1/3 the results from
LHPC to match our convention. The inner error band is the
statistical error, while the outer band is the total error.

ETMC, m;=130 MeV (this work)

——%— ——i
XQCD (2017), my € (135,403) MeV » »
LHPC (2015), m;=317 MeV o H@H

0.0007 0.0019 0.0031 0.00 0.01 0.02
(r*)3 [fm?] Y

FIG. 11. Comparison of our results (blue star) for (r?)$, and y*
with results from LHPC (red circles) and yQCD (green square).
The convention is as in Fig. 10.

xQCD, used valence overlap fermions on four Ny =2 + 1
domain-wall fermion ensembles with pion masses in the
range m, € (135,403) MeV [34,35]. Their final values
were extracted by performing a simultaneous chiral, infinite
volume and continuum extrapolation.

In Fig. 10, we compare our result for (72)L to the one
from yQCD, while for x! to those from both yQCD and
LHPC. The dark, inner band indicates the statistical error,
while the outer band is the statistical and systematic error
added in quadrature. The good agreement with yQCD, for
which a continuum and infinite volume extrapolation has
been performed, indicates that lattice artifacts due to finite
lattice spacing and volume on these quantities are small for
our ensemble. On the other hand, the result for ,u[ from
LHPC at higher than physical pion mass is smaller, as
expected from chiral perturbation theory arguments [36]. In
Fig. 11 we compare the strange u* and (r?)3 with the
corresponding results from the two other studies. For (r2),
results from the three studies are in good agreement,
whereas for p°, the result from yQCD differs by one
standard deviation. Given the large statistical errors on
the strange quark contributions such an agreement among
lattice QCD results is welcoming.

V. CONCLUSIONS

In this study, we compute the disconnected quark loop
contributions from up, down and strange quarks to the
nucleon electromagnetic form factors using N, = 2 max-
imally twisted mass fermions at the physical point. While
all source-sink time separations accessible, we opt to use up
to t, = 1.31 fm for which statistical errors are not pro-
hibitively large. Both the plateau and the summation
methods are employed to estimate contamination due to
the excited states. Three-point functions produced with

final nucleon momenta of p'=0 and p' =27 and

analyzed to increase statistics. The form factors, G5 (Q?)
and G),(Q?), are computed up to Q> ~0.3 GeV? while
G4.(0Q?) and G3,(Q?) are computed up to Q* ~ 0.6 GeV>.
The model independent z-expansion is used to fit the Q2
dependence of the form factors and extract the electric and
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magnetic radii as well as the magnetic moment. The size of
the individual contributions as well as the total values for
the extracted quantities are tabulated in Table III. The
disconnected light quark contributions are consistently
nonzero for all Q? for both the electric and magnetic form
factors as demonstrated in Figs. 6 and 7. The strange quark
contributions tend to be nonzero but more noisy and more
precise results are required to exclude zero.

We plan to analyze an Ny =2+ 1 + 1 twisted mass
ensemble with a clover term at the physical point to check
possible quenching effects of the strange and charm quarks
in the sea. Further improvements for the computation of
disconnected quark loops are under investigation to improve
the accuracy of the disconnected loop determination.
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APPENDIX: EXTRACTION OF FORM FACTORS
FROM LATTICE QCD RATIOS

In this Appendix we generalize the equations from
which the form factors are extracted for a nucleon with
nonzero final momentum p’. All expressions are given in
Euclidean space.

ﬁ@kumww@b+ﬂm+mwmmm
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