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a b s t r a c t

In the framework of quantumchromodynamics (QCD), parton distribution functions (PDFs)
quantify how the momentum and spin of a hadron are divided among its quark and gluon
constituents. Two main approaches exist to determine PDFs. The first approach, based on
QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering
measurements, often using a variety of hadronic observables. The second approach, based
on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some
PDF-related quantities, such as their moments. Motivated by recent progress in both
approaches, in this document we present an overview of lattice-QCD and global-analysis
techniques used to determine unpolarized and polarized proton PDFs and their moments.
We provide benchmark numbers to validate present and future lattice-QCD calculations
and we illustrate how they could be used to reduce the PDF uncertainties in current
unpolarized and polarized global analyses. This document represents a first step towards
establishing a common language between the two communities, to foster dialogue and to
further improve our knowledge of PDFs.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

The detailed understanding of the inner structure of nucleons is an active research field with phenomenological impli-

cations in high-energy, hadron, nuclear and astroparticle physics. Within quantum chromodynamics (QCD), information on

this structure – specifically on how the nucleon’s momentum and spin are divided among quarks and gluons – is encoded

in parton distribution functions (PDFs).
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There exist two main methods to determine PDFs.1

The first method is the global QCD analysis [3–12]. It is based on QCD factorization of physical observables, i.e. the fact

that a class of hard-scattering cross-sections can be expressed as a convolution between short-distance, perturbative, matrix

elements and long-distance, nonperturbative, PDFs. By combining a variety of available hard-scattering experimental data

with state-of-the-art perturbative calculations, complete PDF sets, including the gluon and various combinations of quark

flavors, are currently determined for protons, in both the unpolarized [13–17] and the polarized [18–21] case.

Recent progress in global QCD analyses has been driven, on the one hand, by the increasing availability of a wealth of

high-precision measurements from Jefferson Lab, HERA, RHIC, the Tevatron and the LHC and, on the other hand, by the

advancement in perturbative calculations of QCD and electroweak (EW) higher-order corrections. Parton distributions are

now determined with unprecedented precision, in many cases at the few-percent level. A paradigmatic illustration of this

progress is provided by both the unpolarized and polarized gluon PDFs, which were affected by rather large uncertainties

until recently, due to the limited experimental information available. In the unpolarized case, the gluon PDF is now

constrained quite accurately from small to large x thanks to the inclusion of processes such as inclusive deep-inelastic

scattering (DIS) [22], D-meson production [23,24], the transverse momentum of Z bosons [25], inclusive jet production [26],

and top–quark pair distributions [27,28]. In the polarized case, the gluon PDF is now constrained from double spin-

asymmetries for high-pT jet and pion production in proton–proton collisions [18,29], although only in the medium-to-large

x region.

The second method is lattice QCD [30,31]. It is based on the direct computation of the QCD path integral in a discretized

finite-volume Euclidean space–time, providing a suitable ultraviolet cut-off. To connect with experimental measurements,

extrapolations to the continuum and infinite-volume limits are necessary so that any cut-off dependence and finite-volume

effects, respectively, are removed. Lattice-QCD calculations require minimal external input: one needs only to set the

hadronic scaleΛQCD and the values of the quarkmasses. For calculations relevant to low-energy hadron structure, thismeans

setting the up, down and strange quark masses, which is usually done using the pion and kaon masses as external inputs.

The overall hadronic scale can be set using well-determined baryon masses such as that of theΩ baryon. A variety of QCD

quantities can then be computed using lattice QCD, including moments of PDFs or of certain quark flavor PDF combinations.

Early lattice-QCD attempts to determine the proton PDFs were limited by the available computational resources and

various technical challenges, with most results restricted to the first few moments of nonsinglet PDFs at relatively large

(unphysical) quark masses. Overcoming these limitations, recent progress has been mostly driven by advances in two main

areas. First, by improved systematic control (physical pion mass, excited-state contamination, large volumes) for quantities

such as the nucleon matrix elements corresponding to the low moments of PDFs. Second, by the development of novel

strategies for the computation of the first few moments [32–34], the determination of more challenging quantities such as

gluon and flavor-singlet matrix elements, and for the direct calculation of the Bjorken-x dependence of PDFs [35–38].

These developments have pushed lattice-QCD calculations to the point where, for the first time, it is possible to provide

information on the PDF shape of specific flavor combinations, both for quarks and for antiquarks, and where meaningful

comparisons with global fits can be made. Indeed, one of the main motivations for these lattice-QCD efforts is to achieve a

sufficient accuracy to constrain the PDFs obtained from global analyses.

Despite these developments in both the global QCD analysis and lattice-QCD methods, interplay between the two – and

communication between the respective communities of physicists – has been rather limited so far. This situation led some of

us to organize the first workshop on Parton Distributions and Lattice Calculations in the LHC Era (PDFLattice2017), which took

place in Balliol College, University of Oxford, in March 2017.2 The main goal of this workshop was to establish a common

ground and language for discussions between the two communities. In addition, we aimed to carry out a first quantitative

exploration of how PDF fits can be exploited to benchmark existing and future lattice calculations, and of how lattice-QCD

calculations could be used to improve global PDF fits. In this context, some of the questions that were addressed during this

workshop included the following.

• What information from PDF fits is relevant to constrain, test, or validate lattice calculations?

• What PDF-related quantities aremost compelling to compute in lattice QCD in terms of phenomenological relevance?

• What accuracy do we need from lattice quantities in order to have a significant impact on global PDF fits?

• What information does lattice QCD provide on the shape (Bjorken-x dependence) of the PDFs? Which specific PDF

moments can be computed?

• How do we consistently quantify the systematic uncertainties in lattice-QCD calculations?

• To what extent do available lattice results agree with the results of global PDF fits? Is there a tension between global

PDF fits, PDF fits based on reduced datasets, and PDF calculations from the lattice?

• What is the accuracy that can be expected from lattice-QCD calculations in the near and medium future? What will

be their constraining power on PDFs?

1 In this paper, we do not discuss nonperturbative, QCD-basedmodels of nucleon structure.We refer the reader to [1,2] and references therein for details

on unpolarized and polarized PDFs respectively.
2 http://www.physics.ox.ac.uk/confs/PDFlattice2017/index.asp.

http://www.physics.ox.ac.uk/confs/PDFlattice2017/index.asp
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This white paper summarizes the joint effort between the two communities to address some of these questions, and
follows up on the very fruitful discussions and interactions that took place both during the workshop and in the subsequent
months. While this document does not represent the final word on this topic, it provides a solid starting point for further
collaborative efforts, and should facilitate smooth interactions between the two communities in the future.

The outline of this white paper is the following. In Section 2 we review the global QCD analysis and lattice-QCDmethods
for the determination of polarized and unpolarized PDFs. In Section 3 we present state-of-the-art benchmarks for selected
PDF moments between the most recent lattice-QCD calculations and global QCD analyses. In Section 4 we quantitatively
assess the impact that lattice calculations of PDF-related quantities could have on unpolarized and polarized global analyses,
assuming different scenarios for the uncertainties in the lattice-QCD calculations. In Section 5we conclude and discuss future
interactions between the global-analysis and lattice-QCD communities. In Appendix A we summarize the conventional
notation adopted in this document for the definition of the PDF moments; in Appendix B we compile bibliographical tables
for existing lattice-QCD calculations of PDFmoments; and in Appendix C we collect some additional results of PDFmoments
from global QCD analyses.

2. Theory overview

In this sectionwe summarize the theoretical background that underlies lattice-QCDcalculations of PDF-related quantities,
on the one hand, and phenomenological fits of PDFs, on the other hand. We first review the general framework in
which unpolarized and polarized PDFs are defined, then we present the available lattice-QCD and global-fit approaches to
determine them. The discussion is restricted to the information required to connect the lattice-QCD and global-fit methods.
We have devoted particular attention to ensuring a unified and consistent notation between the two. An extended treatment
of the subjects discussed in this section can be found in dedicated reviews. We refer the interested reader to Refs. [30,31]
for lattice QCD and to Refs. [3–12] for global fits. Details on the framework underlying PDFs can be found in general
textbooks [39–43].

2.1. Parton distribution functions

Quantum chromodynamics is the non-abelian quantum field theory that describes the strong interaction. It provides the
theoretical foundation for the phenomenological ideas of quark model, color charge, and partons as hadron constituents.
The power of QCD to describe physics from the pion mass scale all the way up to the scale of high-energy colliders, such as
the LHC, relies on the remarkable properties of asymptotic freedom [44–47] and factorization [48,49].

At high energies, or short distances, the QCD coupling is small and perturbation theory can accurately characterize the
relevant scattering processes [50]. At lowenergies, or larger distances, nonperturbative effects give rise to quark confinement
and spontaneous chiral symmetry breaking [51]. The connection between low- and high-energy dynamics is provided by
QCD factorization theorems [48,49]: short-distance physics above the factorization scale µ is captured by partonic hard-
scattering cross-sections calculated perturbatively as a power series expansion in the QCD coupling, while the long-distance
physics below the factorization scaleµ is described by nonperturbative quantities. In a collinear, leading-twist factorization
framework, these quantities are universal (i.e. process-independent) PDFs. Depending on the helicity state of the parent
hadron, one usually distinguishes between helicity-averaged (unpolarized, henceforth) and helicity-dependent (polarized,
henceforth) PDFs.

Unpolarized PDFs are denoted as

f (x, µ2) ≡ f→(x, µ2)+ f←(x, µ2), f = {g, u, ū, d, d̄, s, s̄, . . .} , (2.1)

where x is the fraction of the hadron longitudinal momentum carried by the parton, and the sum over parton’s helicities
aligned along (→) and opposite (←) the parent’s nucleon helicity is made explicit. An additional index could be used to
denote the hadronic species (proton, neutron, pion, . . . ). However, we omit such a designation, as we only refer to the proton
in this paper.

At leading order (LO) in the QCD coupling series, unpolarized PDFs describe the probability distribution of a parton with
a specified momentum fraction x. The total momentum carried by each parton flavor is then given by the first moment of
the corresponding PDF, for instance

∫ 1

0

dx x
[
u(x, µ2)

]
= ⟨x⟩u(µ2) , (2.2)

∫ 1

0

dx x
[
u(x, µ2)+ ū(x, µ2)

]
= ⟨x⟩u+ (µ2) . (2.3)

Here, ⟨x⟩u is the momentum carried by the up-quark, and ⟨x⟩u+ is the momentum carried by the sum of up and anti-up
quarks,3 see Appendix A for our notational conventions.

3 We always refer to q+ to indicate the sum of the quark and anti-quark PDFs of the same flavor.
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Polarized PDFs describe the extent towhich quarks and gluonswith a givenmomentum fraction x have their spins aligned
with the spin direction of a fast moving nucleon in a helicity eigenstate. They are denoted as

∆f (x, µ2) ≡ f→(x, µ2)− f←(x, µ2), f = {g, u, ū, d, d̄, s, s̄, . . .} , (2.4)

where, as in Eq. (2.1), x is the fractional momentum carried by the parton, and the parton’s spin alignment along (→) or
opposite (←) the polarization direction of its parent nucleon is made explicit.

Much of the interest in polarized PDFs is related to the fact that their zerothmoments can be interpreted as the fractions of
the proton’s spin carried by the corresponding partons. They are therefore the key to one of themost fundamental, but not yet
satisfactorily answered questions in hadronic physics, i.e., how the spin of the proton is distributed among its constituents.
Specifically, the zeroth moments of the singlet and the gluon polarized PDFs,

∆Σ(µ2) =
Nf∑

q

∫ 1

0

dx
[
∆q(x, µ2)+∆q̄(x, µ2)

]
≡

Nf∑

q

⟨1⟩∆q+ (µ
2) , (2.5)

∆G(µ2) =
∫ 1

0

dx∆g(x, µ2) ≡ ⟨1⟩∆g (µ
2) , (2.6)

where Nf is the number of active flavors, directly contribute to the proton spin sum rule [52].

Beyond LO, PDFs are renormalization scheme-dependent quantities, typically worked out in the MS scheme [53,54].
When PDFs are convolved with the appropriate partonic hard-scattering cross-sections, computed in the same scheme,
the corresponding physical observables are scheme-independent, up to subleading spurious terms in the perturbative
expansion.

Both unpolarized and polarized PDFs are accessible, theoretically and experimentally, through the forward Compton
scattering amplitude

Tµν(p, q, s) =
∫

d4z eiqz⟨p, s|TJµ(z)Jν(0)|p, s⟩ (2.7)

at large virtual photon momenta q2 = −Q 2. Here T is the time-ordering operator, Jµ(z) and Jν(0) are vector currents at
space–time points z and 0 respectively, and the external states are hadronic states with momentum p and spin s.

The most general form of the Compton amplitude Tµν(p, q) reads [55]

Tµν(p, q, s) =
(
−gµν +

qµqν

q2

)
F1(ω,Q

2)+
(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
1

p · qF2(ω,Q
2)

+ i ϵµνλσ q
λsσ

1

p · qG1(ω,Q
2)+ i ϵµνλσ q

λ (p · q sσ − s · q pσ ) 1

(p · q)2 G2(ω,Q
2) , (2.8)

where ω = 2p · q/q2 and F1, F2, G1 and G2 are the Compton amplitude structure functions. They can be related to the
electromagnetic structure functions F1, F2, g1 and g2, used to parametrize the deep-inelastic scattering (DIS) hadronic tensor4

Wµν(p, q, s) =
1

4π

∫
d4zeiqz⟨p, s|[Jµ(z), Jν(0)]|p, s⟩

=
(
−gµν +

qµqν

q2

)
F1(x,Q

2)+
(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
1

p · qF2(x,Q
2)

+ i ϵµνλσ q
λsσ

1

p · qg1(x,Q
2)+ i ϵµνλσ q

λ(p · q sσ − s · q pσ ) 1

(p · q)2 g2(x,Q
2) , (2.9)

where x = 1/ω is the Bjorken variable identified with the parton fractional momentum at Born level; see [55,57] for details.
Specifically, given the definitions in (2.8) and (2.9), the optical theorem implies that twice the imaginary part of Tµν is equal
toWµν times 4π . Neglecting target mass corrections, one has

F1(ω,Q
2) = 2ω2

∫ 1

0

dx
xF1(x,Q

2)

1− (ωx)2
=

∞∑

n=2,4,...
2ωn

∫ 1

0

dx xn−1F1(x,Q
2) , (2.10)

G1(ω,Q
2) = 2ω

∫ 1

0

dx
g1(x,Q

2)

1− (ωx)2
=

∞∑

n=1,3,...
2ωn

∫ 1

0

dx xn−1g1(x,Q
2) . (2.11)

At a sufficiently high momentum transfer Q 2, power corrections can be neglected and QCD factorization allows one to
write the structure functions F1(x,Q

2) and g1(x,Q
2) as a convolution between perturbatively-computable hard-scattering

4 A more general expression of the DIS hadronic tensor including electroweak currents can be worked out, see [56,57].
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cross-sections and nonperturbative parton distributions:

F1(x,Q
2) = x

∑

f

∫ 1

x

dz

z
C1,f

( x
z
, αs(Q

2)
)
f (z,Q 2) , (2.12)

g1(x,Q
2) =

∑

f

∫ 1

x

dz

z
∆C1,f

( x
z
, αs(Q

2)
)
∆f (z,Q 2) . (2.13)

Here, the sums run over the number of active flavors at the scaleQ 2 (including the gluon), C1,f and∆C1,f are the perturbative
partonic hard-scattering cross-sections, αs is the QCD strong coupling, and f (x,Q 2) and ∆f (x,Q 2) are the unpolarized and

polarized PDFs.

Parton distributions allow for a proper field-theoretic definition as matrix elements in a hadron state of bilocal operators

that act to count the number of quarks and gluons carrying a fraction x of the hadron’smomentum. The definitions are usually
stated in the light-cone frame, where the hadron carries momentum p with plus/minus components p± = (p0 ± p3)/

√
2,

and transverse components equal to zero. For example, in the case of unpolarized and polarized quark PDFs, one has

q(x) = 1

4π

∫
dy−e−iy

−xp+⟨p|ψ̄(0, y−, 0⊥)γ
+
Gψ(0, 0, 0)|p⟩ , (2.14)

∆q(x) = 1

4π

∫
dy−e−iy

−xp+⟨p, s|ψ̄(0, y−, 0⊥)γ
+γ 5

Gψ(0, 0, 0)|p, s⟩ , (2.15)

where ψ is the quark field and G is an appropriate gauge link required to make Eqs. (2.14)–(2.15) gauge invariant. See

Refs. [49,58–60] for the definition of G and for explicit light-cone formulæ of unpolarized and polarized gluon PDFs.

While PDFs cannot be calculated perturbatively, their dependence on the scaleµ resulting from factorization can be. This

is done by means of the DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) evolution equations [61–63], a set of integro-

differential coupled equations of the form

∂ f ′(x, µ2)

∂ lnµ2
=

∑

f=g,q,q̄

∫ 1

x

dz

z
Pf ′f

( x
z
, αs(µ

2)
)
f (z, µ2) , (2.16)

∂∆f ′(x, µ2)

∂ lnµ2
=

∑

f=g,q,q̄

∫ 1

x

dz

z
∆Pf ′f

( x
z
, αs(µ

2)
)
∆f (z, µ2) . (2.17)

In short, the logarithmic derivative of the PDF is determined by a convolution of the PDFs with the unpolarized (polarized)

DGLAP kernels Pf ′f (∆Pf ′f ), which can be computed perturbatively in powers ofαs. The unpolarized splitting functions Pf ′f are

currently completely known up to NNLO [64,65] in the MS renormalization scheme. Results for the unpolarized nonsinglet

splitting functions have appeared recently at N3LO [66,67]. The polarized splitting functions ∆Pf ′f are currently known up

to NNLO [68] in the MS scheme. The DGLAP evolution equations can be solved numerically using either x-space or Mellin

N-space techniques that are widely available in various public codes [69–73]. The typical level of agreement for the results

of the PDF evolution has been demonstrated to be of O(10−5) [74,75].

2.2. Lattice QCD

The lattice-QCD method is based on regularizing QCD on a finite Euclidean lattice and is generally studied by numerical

computation of QCD correlation functions in the path-integral formalism [31,76–78], usingmethods adapted from statistical

mechanics [79,80]. To make contact with experimental data, the numerical results are extrapolated to the continuum and

infinite-volume limits. The past decade has seen significant progress in the development of efficient algorithms for the

generation of ensembles of gauge field configurations and tools for extracting the relevant information from lattice-QCD

correlation functions. In this respect, lattice-QCD calculations have reached a level where they not only complement, but

also guide current and forthcoming experimental programs [81,82].

In this section, we discuss the sources of systematic uncertainties that affect current lattice QCD calculations, and we

present lattice-QCD methods to determine either the Mellin moments of PDFs or the complete PDF x-dependence.

2.2.1. Systematic uncertainties

Lattice-QCD calculations must demonstrate control over all sources of systematic uncertainty introduced by the dis-

cretization of QCD on the lattice to make meaningful contact with experimental data. These include discretization effects

that vanish in the continuum limit; extrapolation from unphysically heavy pion masses; finite volume effects; and

renormalization of composite operators. To take the continuum limit requires accurate determinations of the lattice spacing.

We briefly review these main sources of systematic uncertainty here; for a fuller account see, for example, Ref. [83].
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• Discretization effects and the continuum limit. There is a fair degree of flexibility in discretizing the QCD action.
This has led to a variety of formulations, which differ mainly in the choice of the action for quarks. In the continuum
limit, which corresponds to taking the lattice spacing a to zero with all physical quantities fixed, the simplest
discretizations differ from continuumQCD atO(a). In practice, one cannot afford to perform numerical simulations at
arbitrarily small lattice spacings, because the cost of computation increases with a large inverse power of the lattice
spacing, and O(a) effects can be significant even with current lattice spacings ranging from 0.15 fm to 0.05 fm. To
accelerate the convergence to the continuum limit, improved quark and gluon actions are widely used, which include
higher-dimension operators to reduce the discretization errors to O(a2) or better. Chiral fermions with automatic
O(a) improvement and small O(a2) discretization errors are also adopted to admit calculations on coarser lattice
spacings [84–86].
• Pion mass dependence. The computational cost of the fermion contribution to the path integral increases with a

large inverse power of the bare quark mass (or, equivalently, the pion mass). Lattice-QCD calculations are therefore
often performed at unphysically heavy pion masses, although results calculated directly with physical pion masses
have become increasingly common, albeit with larger errors. To obtain results at the physical pion mass, lattice
data are generated at a sequence of pion masses and then extrapolated to the physical pion mass. To control the
associated systematic uncertainties, these extrapolations are guided by effective theories. In particular, the pion-
mass dependence can be parametrized using chiral perturbation theory (χPT) [87], which accounts for the Nambu–
Goldstone nature of the lowest excitations that occur in the presence of light quarks.
• Finite volumeeffects.Numerical lattice-QCD calculations are necessarily restricted to a finite space–timevolume, e.g.,

a hypercube of side L. For most simple quantities, these effects decay exponentially with the size of the lattice [88,89],
and therefore the easiest way to minimize or eliminate finite volume effects is to choose the volume sufficiently large
in physical units. Unfortunately, this can be prohibitively expensive as one approaches the continuum limit, requiring
the number of lattice sites to grow as L/a in all four directions. Finite volume χPT is the preferred tool to develop
systematic expansions that provide quantitative information on finite-volume effects. In general, finite volume effects
of hadrons are dominated by their interactions with pions, which can travel around the (periodic) lattice many times.
Numerical evidence suggests that lattice sizes ofmπL ≥ 4, wheremπ is the pion mass, are generally sufficiently large
that finite volume effects are negligible for mesons, within the current precision of lattice-QCD calculations. From the
studies of the pseudoscalar and electromagnetic form factors of the nucleon, it is evident that larger physical volumes
are needed for the baryons.
• Excited state contamination. At small Euclidean times, a lattice-QCD correlation function is a sum over a tower of

states that behave as e−mit , where mi is the energy of the state and t is the Euclidean time. Thus, at large Euclidean
times, ground-state quantities can be extracted by fitting to the dominant exponential behavior. Unfortunately, the
signal-to-noise ratio is exponentially suppressed as e−(EN−3mπ /2)t , where EN is the nucleon energy [90]. Thus, lattice-
QCD results are extracted from an intermediate region in which excited state contributions are either small or well-
controlled and the signal-to-noise ratio is sufficiently large that the signal can be reliably extracted. This is a particular
challenge for baryons and is one of the largest sources of systematic uncertainties for nucleon matrix elements.
• Renormalization. The matrix elements extracted from a lattice-QCD calculation at a given lattice spacing are bare

matrix elements, rendered finite by the presence of the lattice spacing,which serves as a gauge-invariant UV regulator.
To take the continuum limit, i.e., remove the regulator, one must renormalize the corresponding operators and fields
and match them to some common scheme and scale used by phenomenologists. Although renormalization is tradi-
tionally discussed in the framework of perturbation theory, at hadronic energy scales the renormalization constants
should be computed nonperturbatively to avoid uncontrolled uncertainties due to truncated perturbative results. To
compare with phenomenology, which uses the MS scheme, a conversion factor from the nonperturbative scheme
must be computed perturbatively. This requires a renormalization condition that can be implemented on the lattice
and in continuum perturbation theory. In QCD with only light quarks it is technically advantageous to employ so-
called mass-independent renormalization schemes. A common choice is the regularization-independent/momentum
(RI/MOM) scheme [91].

In addition, on a hypercubic lattice, the orthogonal group O(4) of continuum Euclidean space–time is reduced
to the hypercubic group H(4). Thus, operators are classified according to irreducible representations of H(4) [92].
Different irreducible representations belonging to the same O(4) multiplet will, in general, give different answers at
finite lattice spacing, an effect that can be reduced by improving the operators [93]. Conversely, operators that lie in
different irreducible representations of O(4), but the same irreducible representations ofH(4), will mix at finite lattice
spacing but not in the continuum. When these operators have lower mass dimensions, the mixing coefficients scale
with the inverse lattice spacing to some power, and diverge in the continuum limit. This power-divergent mixing
must be removed nonperturbatively, and is a particular challenge for lattice calculations of the Mellin moments of
PDFs (see Section 2.2.2).
• Lattice-spacing determination. Numerical lattice-QCD calculations naturally determine all dimensionful quantities

in units of the lattice spacing. Thus, extracting physical values requires the determination of the lattice scale. This is
achieved bymatching a quantity withmass dimension to its experimental value or through awell-defined theoretical
procedure, that is referred to as scale-setting. Popular reference scales include light decay constants, hadron masses,
scales defined in terms of the heavy quark potential or, most recently, the length scales

√
t0 [94] andw0 [95] defined
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via the Wilson gradient flow [94]. These scales can be computed cheaply and can be used to match scales between
different gauge ensembles very accurately. However, a hadronmass or a decay constant –which are known accurately
from experiment and can be computed precisely in lattice-QCD – have to be used for absolute scale setting. A popular
hadronic mass for this purpose is the mass of the triply strange Ω baryon [96] or the 2S–1S splitting in the Upsilon
spectrum [97].

These sources of systematic uncertainty all need to be under control when confronting experimental data with lattice
results, or vice versa. For a coherent assessment of the present state of lattice-QCD calculations of various quantities, the
degree to which each systematic has been controlled in a given calculation is an important consideration. In Section 3.1.2,
we characterize the quality of the lattice calculations, based on criteria inspired by the FLAG analysis of flavor physics on the
lattice [83].

2.2.2. Mellin moments of PDFs from lattice QCD
Parton distributions cannot be directly determined in Euclidean lattice QCD, because their field-theoretic definition

involves fields at light-like separations. Instead, the traditional approach for lattice-QCD calculations has been to determine
the matrix elements of local twist-two operators, where twist is the dimension minus the spin, that can be related to the
Mellin moments of PDFs. In principle, given a sufficient number of Mellin moments, PDFs can be reconstructed from the
inverse Mellin transform. In practice, however, the calculation is limited to the lowest three moments, because power-
divergent mixing occurs between twist-two operators on the lattice. Three moments are insufficient to fully reconstruct
the momentum dependence of the PDFs without significant model dependence [98]. The lowest three moments do provide,
however, useful information, both as benchmarks of lattice-QCD calculations and as constraints in global extractions of PDFs.
Here we briefly review the determination of Mellin moments of PDFs from lattice QCD.We emphasize that the order of each
moment is counted from zero (i.e., the lowest moment is the zeroth moment), see Appendix A for explicit definitions.

Using the operator product expansion (OPE) [99], the Mellin moments of the structure functions and the corresponding
PDFs can be expressed, up to higher-twist effects, in terms of matrix elements of local operators:

2

∫ 1

0

dx xn−1F1(x,Q
2) =

∑

a

Cn
1,a(µ

2) vna (µ
2)|µ2=Q 2 =

∑

a

Cn
1,a(Q

2)

∫ 1

0

dx xn−1fa(x,Q
2) , (2.18)

4

∫ 1

0

dx xng1(x,Q
2) =

∑

a

∆Cn
1,a(µ

2) ana(µ
2)|µ2=Q 2 =

∑

a

∆Cn
1,a(Q

2)

∫ 1

0

dx xn 2∆fa(x,Q
2) , (2.19)

where vni (µ
2) and ani (µ

2) are reduced matrix elements of the appropriate twist-two operators [100],

1

2

∑

s

⟨p, s|Oi
{µ1,...,µn}|p, s⟩ = 2vni [pµ1

· · · pµn − traces] , (2.20)

⟨p, s|O5 i
{σµ1,...,µn}|p, s⟩ =

1

n+ 1
ani [sσpµ1

· · · pµn − traces] , (2.21)

and Cn
1,i(µ

2) and∆Cn
1,i(µ

2) are the Mellin moments of the corresponding Wilson coefficients

Cn
1,i(µ

2) =
∫ 1

0

dy yn−1C1,i(y, µ
2) , ∆Cn

1,i(µ
2) =

∫ 1

0

dy yn∆C1,i(y, µ
2) . (2.22)

The trace terms include operators with at least one factor of the metric tensor gµiµj multiplied by operators of dimension
(n+ 2) with n− 2 Lorentz indices. The operators relevant for the lowest two moments are listed in Table 2.1. The operator
O

q
µ1µ2

decomposes into two different representations of H(4) [92], each with different lattice artifacts and renormalization
factors. In the continuum limit, however, both operators should lead to the same result. In contrast, the operator Oq

µ1µ2µ3

splits into several representations of O(4) transforming identically under H(4) and causing the corresponding operators to
mix under renormalization on the lattice.

Higher-twist contributions. The discussion so far has focused on the limit in which higher-twist contributions, suppressed
by powers of the momentum transfer, have been ignored. In fact, higher-twist contributions to the lowest moment of the
structure function F1(x,Q

2) are found to be ofO(1 GeV2/Q 2) [101]. For latticeQCD, typicallyQ 2 ≃ 1/a2, and at present lattice
spacings this corresponds to Q 2 = O(10 GeV2) or a higher-twist contribution of 5–10%. With contributions of higher-twist
included, the OPE for F1 reads

2

∫ 1

0

dx xF
q

1 (x,Q
2) = C2

1,q(µ
2) v2q (µ

2)|µ2=Q 2 +
C̄2
1,q(µ

2)

Q 2
v̄2q (µ

2)|µ2=Q 2 + · · · , (2.23)

where C̄2
1,q and v̄2q (µ

2) are the Wilson coefficient and reduced matrix element of a generic twist-four operator. Both twist-
two and four contributions mix under renormalization, to the extent that the perturbative series for the Wilson coefficients
C2
1,q(µ

2) diverges due to the presence of infrared (IR) renormalon singularities. This ambiguity is canceled by that in the

twist-four matrix element v̄2q (µ
2) that arises as a result of an ultraviolet (UV) renormalon singularity [102]. If mixing effects



H.-W. Lin et al. / Progress in Particle and Nuclear Physics 100 (2018) 107–160 115

Table 2.1

List of operators relevant for the computation of the lowest two Mellin mo-

ments of polarized and unpolarized PDFs. Here we indicate, for each opera-

tor, the corresponding matrix element and the specific PDF moment that can

be evaluated (see Appendix A for the notation used).

Matrix element Operator PDF moment

v2q , v
2
q̄ (i/2) q̄(x)γµ1

←→
D µ2

q(x) ⟨x⟩q+
v3q , v

3
q̄ (i/2)2q̄(x)γµ1

←→
D µ2

←→
D µ3

q(x) ⟨x2⟩q−
a0q q̄(x)γσ γ5q(x) 2 ⟨1⟩∆q+

a1q (i/2) q̄(x)γσ γ5
←→
D µ1

q(x) 2 ⟨x⟩∆q−

v2g −Tr Fµ1αFµ2α ⟨x⟩g

are ignored, the uncertainties will be, at least, comparable to the power corrections themselves. Power corrections can be
assessed most efficiently, and the twist expansion tested, by a direct lattice-QCD evaluation of the Compton amplitude,
which we discuss in Section 2.2.3.

Beyond the first three moments. Moving beyond the lowest three moments requires overcoming the challenge of power-
divergent mixing for lattice-QCD twist-two operators. One novel approach to this problem [103] builds upon the physical
intuition that as long as the scale associated with the operator (for the twist-two operators, this is the renormalization
scale µ) is taken to be much larger than the hadronic scale but much smaller than the inverse lattice spacing, no singularity
necessarily arises as one takes the continuum limit. The operator can still probe the correct hadron structure at the scale µ,
but should be insensitive to the details of the discretization of the operator at shorter distances. A simple way to incorporate
an intrinsic smearing scale for an operator is to sum over bilinears of quark fields that are displaced over many lattice sites
in a small (compared to the scale 1/µ) region of Euclidean space–time (an alternative approach appears in Ref. [104]).

To ensure that the correct SO(4) transformation properties of the matrix elements are recovered in the continuum limit,
one must project the sum using hyper-spherical harmonics. The properties of these operators, such as their mixing patterns
and scaling properties, are discussed in detail in Ref. [103]. In particular, while the classical mixing with lower and higher
spin operators are both suppressed by∼ a2 for spatially improved operators, the mixing at one-loop in lattice perturbation
theory is suppressed byO(αsa) orO(αsa

2). The suppression depends on the lattice action used, provided that the gauge action
adopted to construct the gauge-invariant bilinears is tadpole-improved and smeared over a region whose physical size is
held fixed as the continuum limit is taken. In principle, this allows higher moments of PDFs to be obtained from lattice QCD,
without power divergences. Numerical investigations of this approach, which requires gauge configurations with very fine
lattice spacings, are underway. Other approaches that avoid power-divergent mixing have also been suggested, including
coupling fictitious heavy quarks to light-quark currents [105], and calculating current correlators in position space [106].
The practical application of these ideas is yet to be studied nonperturbatively.

2.2.3. The x-dependence of PDFs from lattice QCD
While the lowest three moments of PDFs can provide important benchmarks for lattice-QCD calculations of nucleon

structure, and useful constraints in global extractions of PDFs, they are not in themselves sufficient to determine the x-
dependence of PDFs. In the following section we summarize recent approaches to determining the x-dependence of PDFs
directly from lattice QCD.

Hadronic tensor. In principle, PDFs can be determined fromhadronic tensors provided the higher-twist contributions, which
have different Q 2 dependence than the leading-twist, can be subtracted. Calculating the hadronic tensor in the Euclidean
path-integral approach has the advantage that no renormalization is required if conserved vector currents are used in
the current–current correlation and only finite renormalizations are needed for the local currents. Furthermore, since the
structure functions are frame-independent, they can be calculated in any momentum frame of the nucleon. One can choose
the nucleon momenta and momentum transfers judiciously to have a desirable coverage of x for a given Q 2. However, the
inverse Laplace transform that is needed to convert the hadronic tensor from Euclidean space to Minkowski space can be
a challenge [107,108]. Three numerical approaches, the Backus–Gilbert method [109], improved maximum entropy, and
fitting with model spectral functions, are suggested to tackle this inverse Laplace-transform problem [110]. In Ref. [107] sea
partons are separated into connected sea and disconnected sea contributions, based on the distinct topologies of the diagrams
in a lattice computation. This distinction can help identify the impact on PDF uncertainties of improving the uncertainties
associated with disconnected diagrams determined using lattice-QCD. The extended evolution equations to accommodate
both the connected sea (CS) and disconnected sea (DS) partons are derived in Ref. [111].

The inversion method. The Compton amplitude Tµν(p, q), Eq. (2.7), can be directly obtained in lattice QCD, including
disconnected contributions, by a simple extension [112] of existing implementations of the Feynman–Hellmann technique
to lattice QCD [113–115]. Provided one works at sufficiently large Q 2, the Compton amplitude will be dominated by twist-
two contributions. Varying Q 2 allows one to test the twist expansion and, in particular, isolate twist-four contributions.
Moreover, one can distinguish between contributions from up, down and strange quarks, connected and disconnected, by
appropriate insertions of the electromagnetic current.
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To compute the Compton amplitude from the Feynman–Hellmann relation, a perturbation to the QCD Lagrangian is
introduced, for example,

L(x)→ L(x)+ λJ3(x) , J3(x) = ZV cos(q⃗ · x⃗) eq q̄(x)γ3q(x) (2.24)

where q is the quark field to which the photon is attached, and eq its electric charge. For simplicity, we consider the local
vector current only, so that the renormalization factor ZV is known and no further renormalization is needed. Taking the
second derivative of the nucleon two-point function

⟨N(p⃗, t)N̄(p⃗, 0)⟩λ ≃ Cλ e
−Eλ(p,q) t (2.25)

with respect to λ on both sides, gives

− 2Eλ(p, q)
∂2

∂λ2
Eλ(p, q)

⏐⏐
λ=0 = T33(p, q) . (2.26)

For p3 = q3 = q4 = 0 this leaves us with

T33(p, q) = 4ω2

∫ 1

0

dx
xF1(x,Q

2)

1− (ωx)2
. (2.27)

Extracting the polarized structure functions requires insertions of two different currents with µ ̸= ν. The idea is then to
solve Eq. (2.27) for F1(x,Q

2) numerically. In Refs. [112,116] it was shown that the unpolarized structure function F1(x,Q
2)

can be computed from a lattice calculation of the Compton amplitude, devoid of any renormalization and mixing issues.
With the samemethod, PDFs can be computed directly without the need to go through the structure functions, provided Q 2

is sufficiently large that power corrections can be neglected.

Quasi-PDFs. Quasi-PDFs provide an alternative approach to determining the x-dependence of PDFs directly from lattice
QCD [117,118]. In the following discussion, we focus on the flavor-nonsinglet quasi-PDF, for which we can ignore mixing
with the gluonquasi-PDF. Theunpolarizedquark quasi-PDF is defined as themomentum-dependent nonlocal forwardmatrix
element

q̃(x,Λ, pz) =
∫

dz

2π
e−ixzpzpzh(z, pz),

h(z, pz) =
1

4pα

2∑

s=1
⟨p, s| ψ̄(z)γαe

ig
∫ z
0 Az (z

′)dz′ψ(0) |p, s⟩ , (2.28)

where Λ is an UV cut-off scale, such as the inverse lattice spacing 1/a. The Lorentz index α of the matrix γα is generally
chosen to be spatial, α = z, but the alternative choice α = 4 is also possible and removes part of the leading order twist-4
contamination [119,120]. Because p is finite, the momentum fraction x can be larger than unity.

The quasi-PDF is defined for nucleon states at finitemomentumandmust be related to the corresponding light-front PDF,5

for which the nucleon momentum is taken to infinity. In the large-momentum effective field theory (LaMET) approach, the
quasi-PDF q̃(x,Λ, pz) can be related to the pz-independent light-front PDF q(x,Q 2) through [117,118]

q̃(x,Λ, pz) =
∫ 1

−1

dy

|y|Z
(
x

y
,
µ

pz
,
Λ

pz

)

µ2=Q 2

q(y,Q 2)+ O

(
Λ2

QCD

p2z
,
M2

p2z

)
, (2.29)

where µ is the renormalization scale, Z is a matching kernel and M is the nucleon mass. Here the O
(
M2/p2z

)
terms are

target-mass corrections and the O
(
Λ2

QCD/p
2
z

)
terms are higher-twist effects, both of which are suppressed at large nucleon

momentum. An alternative, but related, construction is proposed in Refs. [120,121] and explored in Ref. [122].
Preliminary results from lattice calculations of quasi-PDFs have been encouraging [35–38]. However, there are a number

of remaining challenges that must be overcome for an ab initio determination of the x-dependence of PDFs directly from
lattice QCD that incorporates complete control over systematic uncertainties. Lattice calculations of quasi-PDFs are subject
to the same sources of systematic uncertainty that affect all lattice calculations, see Section 2.2. Here we focus on systematic
uncertainties that are more specific to quasi-PDFs. These are uncertainties associated with the finite nucleon momentum of
the lattice calculations and to the renormalization of quasi-PDFs.

• Preliminary nonperturbative studies of the quasi-PDF used nucleonmomenta in the range pz = 2π/L to 10π/L, where
L is the physical extent of the lattice, corresponding to pz = 0.5 to 2.5 GeV [35–38]. At such lowmomenta, higher-twist
and target mass corrections are likely to be considerable.

Target mass corrections can be removed to all orders [37], and twist-4 contributions can be removed in prin-
ciple [37,120], leaving higher-twist contamination. To reduce these remaining effects starting at O(Λ2

QCD/p
2
z ), the

5 In this context the term light-front PDF is used to distinguish ordinary PDFs, Eqs. (2.1)–(2.4) from quasi-PDFs, Eq. (2.28).
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authors of Refs. [35,37] extrapolated to infinite nucleon momentum using the fit ansatz a + b/p2z for each value of
x. Although the effects of finite nucleon momentum can be mitigated, a quark-model study asserts that reducing
systematic uncertainties to less than 20% at moderate values of x requires significantly larger values of nucleon
momentum [123], and at larger values of x (roughly x ≃ 1) requires nucleon momentum as large as pz > 4 GeV.

The size of the nucleon momentum is currently limited by the decreasing signal-to-noise ratio at large momenta,
which requires very high statistics to extract a signal. New approaches to high-momentum nucleons are being
investigated, with the most promising an approach that employs momentum smearing [124]. This method has been
applied to quasi-PDFs in Refs. [38,125], demonstrating a large improvement in the signal-to-noise ratio by reaching
momenta of about 2.5 GeV.
• The leading-twist quasi-PDFs and light-front PDFs are connected through the matching (or factorization) relation,

Eq. (2.29). Provided the quasi and light-front PDFs share the same IR behavior, thematching kernel can be determined
in perturbation theory [119]. The one-loopmatching kernel including gluon channel has been recently reported [126].
The factorization of the IR structure of quasi-PDFs into light-front PDFs and an IR-safematching kernel was claimed to
hold to all orders in Refs. [127–129]. More specifically, Refs. [127,128] claim that the factorization holds to all orders
provided that UV divergences are properly renormalized. However, Ref. [130] asserted that there might be subtleties
beyond leading order in perturbation theory. A distinct, but similar, issue is the IR structure of extended operators in
Euclidean and Minkowski space–time. There are again subtleties in perturbation theory [131], but arguments based
on general field-theoretic grounds demonstrate that the quasi-PDF extracted from an Euclidean correlation function is
exactly the samematrix element as that determined from the LSZ reduction formula in Minkowski space–time [132].

In contrast to the IR structure, the UV structure of the quasi-PDF is quite different from the UV structure of the
light-front PDF: the former has both linear and logarithmic divergences, while the latter contains only logarithmic
divergences. Although there are no power-divergences in dimensional regularization, quasi-PDFs determined on the
lattice are regulatedby the inverse lattice spacing. In the continuum limit (forwhich a→ 0,with all physical quantities
held fixed) there is a divergence, associated with the length of the Wilson line z, that scales as z/a. This divergence
must be removed nonperturbatively.

For a general nonlocal bilinear operator with Lorentz structure Γ , the renormalized operator O
(ren)
Γ (z, µ) is related

to its bare operator O
(0)
Γ (z) by [133–137]

O
(ren)
Γ (z, µ) = eδm(µ)|z|Zψ,z(µ, z)O

(0)
Γ (z), (2.30)

where δm is the mass renormalization of a test particle moving along the Wilson line of length z and Zψ,z(µ, z)
removes the remaining logarithmic divergences associated with the Wilson line endpoints (the quark fields). This
result holds to all orders in perturbation theory: the exponentiated counterterm δm(µ) completely removes the linear
divergence and the quasi-PDF can be renormalizedmultiplicatively [138,139]. The exponentiated counterterm can be
determined using a static heavy quark potential, which shares the same power-law divergence as the nonlocal quark
bilinear [125,140–142]. An alternative approach for controlling the power divergence has been proposed in Ref. [143].

Once the linear divergence has been removed nonperturbatively, lattice perturbation theory can be used to
renormalize the remaining logarithmic divergences in the quasi-PDF [131,141,142,144]. A delicate point regarding the
renormalization is the mixing among certain subsets of these nonlocal operators. Such a mixing has been identified
at one-loop in perturbation theory in Ref. [145] for a variety of fermion/gluon actions or nonperturbatively based on
symmetries [146,147]. The mixing coefficients are necessary to disentangle the individual matrix elements for each
quasi-PDF from lattice calculation data. Of particular interest is the case of the unpolarized quasi-PDF, which mixes
with the scalar quasi-PDF if the Lorentz index of Eq. (2.28) is in the same direction as the Wilson line. In contrast,
the polarized and transversity PDFs with a Lorentz index in the Wilson line direction do not exhibit any mixing (to
one-loop in perturbation theory).

In addition, nonperturbative schemes, such as the RI/MOM scheme [91], can be used to renormalize matrix ele-
ments determined on the lattice. Nonperturbative schemes avoid the use of lattice perturbation theory at low energy
scales (usually chosen to be µ = π/a), although perturbative matching between renormalization schemes is still
necessary for PDFs expressed in the MS scheme. Combining a nonperturbative renormalization scheme with a step-
scaling procedure [148] significantly reduces perturbative truncation uncertainties by providing a nonperturbative
method for reaching high energy scales. Nonperturbative renormalizationmethods for quasi-PDFs have recently been
constructed and applied in Refs. [125,146,149].

These nonperturbative procedures also remove the mixing between the unpolarized quasi-PDF and the twist-3
scalar operator, which occurs for lattice regularization that break chiral symmetry, through the construction of a 2× 2
mixingmatrix. Themixing coefficients do not contain any divergences. Further details can be found in Refs. [146,149].

It was recently observed that potential problems with the power divergent mixing patterns of DIS operators may
arise when lattice regularization is used [150]. Further investigations into this issue would be interesting.

Lattice calculations of the x-dependence of PDFs have notmatured up to the point to control all these sources of systematic
uncertainty. Recent progress, however, has led to preliminary results that are encouraging. Here we highlight these results
for the x-dependence of the unpolarized and polarized PDFs extracted from lattice QCD.
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Fig. 2.1 shows example results for the renormalized unpolarized PDFs from Ref. [146] and polarized PDF from Ref. [149].
In both cases, a nonperturbative renormalization procedure is applied to the bare matrix elements that appeared in earlier
work [35–38,151]. For the unpolarized PDF, the calculation is carried out at a pion mass of 310 MeV, includes one-loop
matching and target mass corrections at the renormalization scale µ2 = 4 GeV2, and the leading higher-twist O(Λ2

QCD/p
2
z )

contributions have been removed [37]. Multiple source–sink separations are used to take into account the effects of excited-
state contamination, which becomemore important at largemomentum.Mixing under renormalization has been estimated
to be a small effect but is not yet computed explicitly. More recent work at the physical pion mass [152] uses a different
operator to avoid mixing effects. The polarized PDF has the advantage that is free frommixing, and is computed in Ref. [149]
with fully renormalizedmatrix element, at a pionmass of 375MeV. Thematching toMS atµ2 = 4 GeV2 does not include any
linearly divergent term, as the matrix element in coordinate space is renormalized. Note that in both cases, the antiquark
asymmetry is compatible with zero within current uncertainties, contrary to earlier unrenormalized results [35–37,151].
This is mainly due to the rapid increase of the renormalization factor with Wilson-line length, which amplifies the finite-
volume effect from truncating long-range correlations. Ref. [152] showed that this truncation causes unphysical oscillations
in the sea-flavor asymmetry and proposed that the oscillations can be removed by either imposing a filter to reduce the
weighting of long-range correlations or by taking the derivative of thematrix element in coordinate space. The effectiveness
of both these two methods is demonstrated in Refs. [152,153].

Pseudo-PDFs. The general dependence of the matrix element h(z, pz) of Eq. (2.28) on the hadron momentum p and the
displacement of the quark and antiquark fields z can be expressed as a function of the Lorentz invariants ν = z · p (Ioffe
time [154,155]) and z2, where z and p are general 4-vectors. We can thus introduce

h(ν, z2) ≡ h(z, pz) . (2.31)

The pseudo-PDF is then defined by the Fourier transform

P(x, z2) =
∫

dν

2π
e−ixνh(ν, z2), (2.32)

which has support only in the physical range x = [−1, 1] [120,121]. As discussed in Refs. [120,121], the pseudo-PDF is
directly related to both the PDFs and the transverse-momentum-dependent PDFs (TMDs). In Ref. [121], using the temporal
gamma matrix in the matrix element, an approximate factorization of the primordial TMD F(x, k2⊥) as

F(x, k2⊥) ≈ K (k2⊥)q(x) (2.33)

was conjectured. Here k⊥ is the transversemomentum of the quark in the hadron and q(x) is the PDF. This conjecture implies
that the ratio

M(ν, z2) = h(ν, z2)

h(0, z2)
(2.34)

is directly related to the PDFs as

M(ν, z2) = Q (ν, µ2)+ O(z2) , (2.35)

with µ2 = 1/z2. Here Q (ν, µ2) is the Ioffe time PDF [154,155], which is the Fourier transform of the PDFs,

q(x, µ2) =
∫

dν

2π
e−ixνQ (ν, µ2). (2.36)

The ratio in Eq. (2.34) has a well-defined continuum limit and requires no renormalization. The polynomial corrections
in Eq. (2.35) are due to violations of the factorization conjecture, while the PDF q(x, µ2) is the PDF in a particular scheme
defined at scale µ2 = 1/z2. Matching to MS can be performed in perturbation theory following standard methodology.
One loop results can be found in Refs. [156,157]. A preliminary study in quenched QCD was presented in Refs. [122,158],
where it was shown that indeed the conjectured factorization is observed and the residual corrections are small. The
same conclusion had also been reached in unquenched studies of TMDs in [140]. Furthermore, evidence of the expected
perturbative evolution of the Ioffe time PDFs was also observed. This methodology is currently under study and results
from realistic calculations are soon to be expected. It should be noted that the basic function h(ν, z2) used here or in the
computation of quasi-PDFs is related to both the longitudinal and transverse structure of the hadron. This relationship is
discussed in detail in [121,140,159].

Finally, both the quasi-PDF and the Ioffe-time PDF approaches are faced with the technical problem of inferring the PDF
from a Fourier transform where data are known only in a limited range of ν or z. This introduces systematic errors that
require careful study. Such effects have been discussed in [152,159,160]. In particular, because x is the Fourier dual of ν,
accessing a limited range of ν (or z) has the effect of introducing uncontrolled systematic errors at small x (roughly x ≲ 0.15
for existing lattice calculations). These systematic errors can be controlled using increasingly large values of ν, although this
requires an increased computational power. Therefore, improved computational methods are required to reliably extract
PDFs at small x.
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Fig. 2.1. LP3’s renormalized unpolarized isovector quark (top left) and antiquark (top right) PDF combinations at physical pion mass with the renormal-

ization scale µ = 2 GeV [152]. ETMC’s renormalized polarized isovector quark (bottom left) and antiquark (bottom right) PDF combinations at pion mass

of 375 MeV [149]. Note that only statistical errors are shown here; the systematics are yet to be addressed. The small-x region (x < 0.2) can suffer larger

systematics than the rest of the distribution due to the limited nucleon boost momentum.

Lattice cross-sections. Similarly to a global QCD analysis of high energy scattering data, PDFs can also be extracted from
analyzing data generated by lattice-QCD calculation of good lattice cross-sections [127,128]. A lattice cross-section is defined
as a single-hadron matrix element of a time-ordered, renormalized, nonlocal operator On(z): σn(ν, z

2, p2) = ⟨p|T {On(z)}|p⟩
with four-vectors p, z and ν defined above, and renormalization scale suppressed. The four-vectors p and z effectively define
the collision kinematics, and the choice of On determines the dynamical features of the lattice cross-section. A good lattice
cross-section should have the following three key properties: (1) it is calculable in lattice-QCD with an Euclidean time, (2)
it has a well-defined continuum limit as the lattice spacing a → 0, and (3) it has the same and factorizable logarithmic
collinear (CO) divergences as that of PDFs, which connects the good lattice cross-sections to PDFs, just like how high energy
hadronic cross-sections are related to PDFs in terms of QCD factorization.

A class of good lattice cross-sections can be constructed in terms of a correlation of two renormalizable currents,
Oj1j2 (z) ≡ zdj1+dj2−2Zj1Zj2 j1(z)j2(0), with dimension dj and renormalization constant Zj of the current j. There could be

many choices for the current, such as a vector quark current, jVq (z) = ψq(z)γ · z ψq(z), or a tensor gluonic current,

j
µν
g (z) ∝ Fµρ(z)Fρ

ν(z) [129]. Different combinations of the two currents could help enhance the lattice cross-sections’
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flavor dependence. If z2 is sufficiently small, the lattice cross-section constructed from two renormalizable currents can
be factorized into PDFs [129],

σn(ν, z
2, p2) =

∑

a

∫ 1

−1

dx

x
fa(x, µ

2)K a
n (xν, z

2, x2p2, µ2)+ O(z2Λ2
QCD) , (2.37)

where µ is the factorization scale, K a
n are perturbatively calculable hard coefficients, and fa is the PDF of flavor a = q, g with

anti-quark PDFs expressed from quark PDFs using the equivalence fā(x, µ
2) = −fa(−x, µ2). PDFs could be extracted from

global fits of lattice-QCD generated data for various lattice cross-sections σn(ν, z
2, p2) with corresponding perturbatively

calculated coefficients K a
n in Eq. (2.37).

The quasi-PDFs and pseudo-PDFs introduced above could be derived by choosing

Oq(z) = Zq(z
2)ψq(z)γ · z Φ(z, 0)ψq(0) , (2.38)

with the renormalization constant Zq(z
2) and the path ordered gauge link Φ(z, 0) = Pe−ig

∫ 1
0 z·A(λz) dλ [129]. With

K
q(0)
q (xν, z2, 0, µ) = 2xνeixν , one finds

∫
dν

ν

e−ixν

4π
σq(ν, z

2, p2) ≈ fq(x, µ) , (2.39)

modulo O(αs) and higher twist corrections. By choosing z0 = 0 and both p⃗ and z⃗ along the ‘‘3’’-direction, one finds that
ν = −z3 p3 and the left hand side of Eq. (2.39) is the quasi-quark distribution introduced in Ref. [117] if the integral is
performed by fixing p3, while it is effectively the pseudo-quark distribution used in Ref. [122] if the integral is performed
by fixing z3. That is, these two approaches for extracting PDFs are equivalent if matching coefficients are calculated at the
lowest order in αs neglecting all power corrections, but different if contributions from either higher order in αs or higher
powers in z2 need to be considered. Furthermore, Eq. (2.39) indicates that the quasi-PDFs and pseudo-PDFs are two special
cases of good lattice cross-sections.

2.3. Global PDF fits

Global PDF fits realize a QCD analysis of hard-scatteringmeasurements, often using a variety of hadronic observables. Par-
ton distributions are parametrized at an initial energy scale, evolved up to the scale of the data via DGLAP equations (2.16)–
(2.17), and used to build up the theoretical predictions for the relevant observables. In the corresponding factorization
formulæ, the factorization scale, µ, is usually set equal to the characteristic scale of the process, Q . The best-fit parameters
of PDFs are then determined by minimization of a proper figure of merit, such as the log-likelihood χ2. In this section, we
present the general global PDF fitting framework. We discuss how PDFs are determined from hard-scattering observables,
paying attention to the assessment of PDF uncertainties. We highlight the theory and the data used to fit both unpolarized
and polarized PDFs and present a brief review of their state-of-the-art determination.

2.3.1. General framework
Fitting PDFs from hard-scattering data. Parton distributions appear in the factorization formulæ of a class of sufficiently
inclusive processes, among which are deep-inelastic scattering (DIS) and proton–(anti)proton collisions. The factorization
formulæ for the unpolarized and polarized structure functions F1 and g1 were introduced in Eqs. (2.12)–(2.13). For the
hadroproduction of a generic final-state X in unpolarized proton–proton (pp) collisions, the corresponding factorized
expression reads

σpp→X (s, µ
2
F , µ

2
R) =

∑

a,b

∫
dx1dx2 fa(x1, µ

2
F )fb(x2, µ

2
F ) σ̂ab→X (x1, x2, s;µ2

F , µ
2
R) , (2.40)

where the unpolarizedhard cross-section σ̂ab→X canbe calculatedperturbatively as an expansion in theQCDand electroweak
(EW) running couplings. The specific values of the momentum fractions xi can be related to the kinematics of the final state.
For example, for the production of a heavy final state, it can be shown that, at LO,

x1,2 =
MX√
s
e±yX , (2.41)

where MX and yX are the invariant mass and rapidity of the produced system and
√
s is the center-of-mass energy. The

factorization and renormalization scales, µF and µR, are usually taken equal to the hard scale of the process, µF = µR =
µ = Q . Factorization formulæ analogous to Eq. (2.40) can be written in the polarized case for pp collisions where only one
or both proton beams are longitudinally polarized, see e.g. Refs. [161,162].

When one performs a global fit, the DGLAP evolution equations of the PDFs, Eqs. (2.16)–(2.17), derive the PDFs at any
scale relevant to comparisons with the data from PDF parametrizations at an arbitrary input scale, typically Q0 ∼ 1 GeV.
The contribution of heavy quark flavors to any process is power-suppressed at scales which are below the threshold for
their production [163]. Therefore, whereas in principle the QCD Lagrangian contains six quark flavors, in practice only a
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smaller number of active flavors Nf are included in loops, and thus in particular in the solution of evolution equations. When
expressing predictions for processes at various disparate scales in terms of a single set of PDFs it is thus necessary to use a
so-called variable-flavor number (VFN) scheme, whereby different numbers of active flavors are adopted at different scales
(with up to Nf = 5 active flavors in most of PDF sets). Use of a fixed-flavor number (FFN) scheme only allows comparison
with the data in a restricted range of scales.

The input PDF parametrization is usually chosen as

f (x,Q0, {ai}) = xa1 (1− x)a2 C(x, {aj}) , (2.42)

where the parameters {ai} determine the PDF shape and are different for each PDF flavor combination probed by the data.
The (1−x)a2 term, with a2 > 0, ensures that the PDFs vanish in the elastic limit x→ 1. Specific values of the exponent a2 are
predicted by counting rules [164], although they are not always clearly supported by phenomenological fits [1,2], and are not
always used. The xa1 term governs the low-x PDF behavior. It is expected from considerations based on Regge theory, which
also provides the values of the exponents a1. However, as for a2, the value of a1 is left free in the global fits. The interpolating
function C(x) in Eq. (2.42) affects the behavior of the PDFs away from the x → 0 and x → 1 extrapolation regions. This is
assumed to be a smoothly varying function of x, for which a variety of parametrizations can be made.

The simplest ansatz, which has been very widely used, is to take a basic polynomial form in x (or
√
x), such as

C(x) = 1+ a2
√
x+ a3x+ · · · . (2.43)

Functional forms of this type are, for example, taken in CJ, HERAPDF and earlier MMHT and CT sets (see below for the
references to each set).More recently, the CT andMMHTcollaborations expand in termsof a basis of Bernstein andChebyshev
polynomials, respectively. While formally equivalent to the simple polynomial expansion Eq. (2.43), these are much more
convenient for fitting as the number of free parameters npar is large. In the latest CT and MMHT sets, there are between 20
and 40 free parameters in total, though some of these are kept fixedwhen evaluating theHessian PDF uncertainties to reduce
redundancy between the parameters. Furthermore, the use of orthogonal polynomials, like Chebyshev polynomials, allows
one to decouple the parameters in C(x) and to uniformly sample its possible functional shapes.

An alternative approach to the PDF parametrization Eq. (2.43) is adopted by the NNPDF collaboration. Here, the
interpolating function C(x) is modeled with a multi-layer feed-forward neural network (NN). In practice, this allows for
a greatly increased number of free parameters, typically an order of magnitude higher than in the sets of other groups. The
form of Eq. (2.42) is still assumed, but now C(x) = NN(x), where NN(x) is a neural network. The xa1 (1 − x)a2 term that
multiplies NN(x) represents a preprocessing factor that speeds up the minimization procedure and that is determined via
an iterative procedure. Because of its parametric redundancy, the neural network parametrization can be overtrained and
learn the statistical noise of the data. In order to avoid such a drawback, the data are split into validation and training sets,
then the best-fit is determined by cross-validation [165,166]. A similar technique is used also in the JAM fits [20,167].

In most of PDF sets currently in use, the PDFs for charm and heavier quarks are not parametrized as in Eq. (2.42), but
rather they are generated by perturbative emission of gluons and light quarks. In the vicinity of the threshold for heavy-
quark production, the quark mass cannot be neglected. It is thus necessary to explicitly include terms suppressed by powers
of the heavy-quark mass in the coefficient functions, while subtracting the logarithmically enhanced, unsuppressed terms
that are already generated by solving the evolution equations in order to avoid double counting. Various schemes exist so
far to do so, see e.g. Refs. [7,12] for an extensive summary. The possibility of parametrizing and fitting the charm PDF on the
same footing as light quark PDFs has been also explored, see e.g. [168–170] and references therein.

Once the PDF parametrization is chosen, and the theoretical details of the analysis are defined (such as the perturbative
order, the treatment of heavy quarks, etc.), the best-fit PDF parameters and their uncertainty should be determined via
a fitting methodology that minimizes a suitable statistical estimator, typically the χ2. There exist different alternative
definitions of the χ2 to be used in the global fits [6,16,22,171]. For instance one frequently used definition is

χ2 =
Ndat∑

i,j

(Ti({ak})− Di)(cov
−1)ij(Tj({ak})− Dj) , (2.44)

where Ndat is the number of data points of a given experiment, Ti and Di are the corresponding theoretical predictions and
experimental data, and (cov−1)ij is the inverse of the experimental covariance matrix. The theoretical predictions Ti({ak})
depend on the input set of parameters {ak} via the PDF parametrization, see Eq. (2.42). Therefore, Eq. (2.44) assesses the
agreement between theory and data.

The covariance matrix (cov)ij accounts for the various sources of experimental systematic uncertainties and also allows

for several different definitions. One example is the so-called t0 prescription [172], where a fixed theory prediction T
(0)
i is

used to define the contribution to the χ2 from the multiplicative systematic uncertainties, namely

(cov)ij = δijσ 2
stat +

Nc∑

α=1
σ

(c)
i,ασ

(c)
j,αDiDj +

NL∑

β=1
σ

(L)
i,β σ

(L)
j,β T

(0)
i T

(0)
j . (2.45)

Here σstat is the uncorrelated uncertainty, and σ
(c)
i,α (σ

(L)
i,β ) are the various sources of additive (multiplicative) systematic

uncertainties. The t0 prescription is needed to avoid the D’Agostini bias [173,174], a downwards bias of the statistical



122 H.-W. Lin et al. / Progress in Particle and Nuclear Physics 100 (2018) 107–160

estimators for the central value and the uncertainty of the theoretical predictions due to the rescaling induced by
multiplicative uncertainties. See [6,172] and references therein for details and the alternative penalty-trick prescription,
and [171] for the alternative extended-t prescription.

PDF uncertainties. Determining the best-fit values of the PDF parameters is not enough: one also needs to estimate the
associated PDF uncertainties, possibly separated into the various sources of experimental, methodological and theoretical
uncertainties. In this respect, there are two main methods to determine PDF uncertainties, the Hessian and the Monte Carlo
(MC) methods.6

The Hessian method [176] is based on the parabolic expansion of the χ2 in the vicinity of its minimum

∆χ2 ≡ χ2 − χ2
min =

npar∑

i=1,j
Hij

(
ai − a0i

) (
aj − a0j

)
, (2.46)

where the npar PDF fit parameters are denoted by {a1, . . . , anpar}, the best-fit values that minimize the χ2 are indicated by

{a01, . . . , a0npar}, and the Hessian matrix is defined as

Hij ≡
1

2

∂2χ2

∂ai∂aj

⏐⏐⏐⏐⏐
{a⃗}={a⃗0}

. (2.47)

By diagonalizing this Hessianmatrix, it becomes possible to represent PDF uncertainties in terms of orthogonal eigenvectors

within a fixed tolerance T =
√
∆χ2. These eigenvectors can then be used to estimate the PDF uncertainty for arbitrary

cross-sections, using the master formula of Hessian PDF sets for the uncertainty of the cross-section F , such as [177]

σF =
1

2

(
npar∑

i

[
F(S+i )− F(S−i )

]2
)1/2

, (2.48)

where S±i correspond to the ith eigenvector associatedwith positive and negative variationswith respect to the best fit value.
The Monte Carlo method [165,166,178,179] is based on constructing a representation of the probability distribution

of the experimental data in terms of a large number Nrep of replicas, which encode all the information on central values,
variances and correlations provided by the experiments. Specifically, given an experimental measurement of a hard-

scattering observable F
(exp)
I , with total uncorrelated uncertainty σ

(stat)
I , Nsys fully correlated systematic uncertainties σ

(corr)
I,c

and Na (Nr ) absolute (relative) normalization uncertainties σ
(norm)
I,n , the Monte Carlo replicas are constructed using the

expression

F
(art)(k)
I = S

(k)
I,NF

(exp)
I

⎛
⎝1+

Nsys∑

c=1
r
(k)
I,c σ

(corr)
I,c + r

(k)
I σ

(stat)
I

⎞
⎠ , k = 1, . . . ,Nrep , (2.49)

where S
(k)
I,N is a normalization prefactor. The variables r

(k)
I,c , r

(k)
I , r

(k)
p,n are univariate Gaussian random numbers. For each

individual replica, the random fluctuations associated with a given fully-correlated systematic uncertainty will be the same

for all data points, r
(k)
I,c = r

(k)

I ′,c .
Parton distribution fits are then performed separately on each of theMonte Carlo replicas. The resulting ensemble of PDFs

samples the probability density in the space of PDFs. The expectation function of a generic observable F[{f }], depending on
the fitted set of PDFs {f }, is evaluated as an average over the replica sample,

⟨F[{f }]⟩ = 1

Nrep

Nrep∑

k=1
F[{f (k)}] . (2.50)

The corresponding uncertainty is determined as the variance of the Monte Carlo sample,

σF =

⎛
⎝ 1

Nrep − 1

Nrep∑

k=1

(
F[{f (k)}] − ⟨F[{f }]⟩

)2
⎞
⎠

1/2

. (2.51)

Likewise, other properties of the underlying PDF probability distribution, such as skewness and kurtosis, could be readily
computed.

Given a PDF set in the Hessian representation, it is possible to construct the corresponding Monte Carlo representa-
tion [180,181] and vice-versa [182,183].

So far, we discussed PDF uncertainties following from propagation of the uncertainty of the experimental data that
underlie the PDF determination. Procedural uncertainties, associated with the methodology used to determine PDFs from

6 The Lagrange multiplier method [175] is also frequently used for dedicated studies of PDF uncertainties.
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data, can also be accounted for in the MC or Hessian approaches, or reduced to a negligible size, as in the NNPDF approach.
There are however additional sources of uncertainty, mostly theoretical, that are not accounted for, either in the Hessian or
in the MC methods. These are extensively discussed in Refs. [7,10–12] and briefly summarized as follows.

• The uncertainty due to finite uncertainties associated with the input values of the physical parameters used in the
global fit, such as αs(mZ ) and the charm mass mc(mc), is evaluated by repeating the fits for different values of the
physical parameters and then by suitably combining the results.
• Themissing higher order uncertainty (MHOU), due to the truncation of the perturbative expansion, is usually inferred

by comparing NLO to NNLO unpolarized PDFs and LO to NLO polarized PDFs. While this is expected to be small for
NNLO fits, currently its size is unknown.
• The uncertainty due to different choices in the treatment of heavy quarks was studied in Refs. [184,185], for

unpolarized PDFs, by looking at their impact. It was found that differences may not be entirely negligible at NLO
in the vicinity of the quark threshold, though they rapidly decrease at NNLO [184].
• Uncertainties associated with missing higher-twist (power-suppressed) corrections (if they are not included in the

factorized description of fit observables) are kept under control by removing data, below some low cut-off scale, that
may be affected by them. Their impact can be studied by varying this cut-off [186,187], or by looking at the stability
of the fit with and without inclusion of higher twist terms [16,17,20].
• Uncertainties associated with nuclear corrections, whenever they are not included, affect some DIS data in which

targets are deuterons or heavier nuclei, rather than just protons. They have been studied by including such corrections
according to various models [17,20,188,189], or by attempting to fit the corrections directly [188,190].
• Extrapolation uncertainties in the region not covered by experimental data are particularly delicate as far as full

moments of PDFs are concerned. They are difficult to quantify, especially in the polarized case at small x due to the
lack of data. The impact of extrapolation uncertainties in the unpolarized case at large x has been studied in [11,191].

At present, the only way of dealing with such uncertainties is to make sure that they are small enough (in comparison
to the data uncertainty) in each PDF set. Therefore, in the remainder of this paper, we will assume that they can be
neglected.Wewill point out to the reader how global-fit results can be affected by underestimation of these uncertainties in
Sections 3.1.3–3.2.

2.3.2. Unpolarized PDFs
Theoretical features. While the general x dependence of the PDFs is determined by nonperturbative QCD dynamics, there are
still a number of theoretical constraints that any PDF set should satisfy. These should be imposed during the fit procedure.

First, since the proton has the quantum numbers of two up quarks and one down quark, the following quark number sum
rules, given in terms of zeroth moments, must be satisfied:

∫ 1

0

dx
[
u(x, µ2)− ū(x, µ2)

]
= ⟨1⟩u− = 2 ,

∫ 1

0

dx
[
d(x, µ2)− d̄(x, µ2)

]
= ⟨1⟩d− = 1 , (2.52)

∫ 1

0

dx
[
s(x, µ2)− s̄(x, µ2)

]
= ⟨1⟩s− = 0 .

Similar constraints hold for heavy quarks: ⟨1⟩c− = ⟨1⟩b− = ⟨1⟩t− = 0. The valence sum rules, Eqs. (2.52), should be satisfied
at any scale µ. Indeed it can be shown that if they hold at the input parametrization scale µ = Q0, they are subsequently
respected by DGLAP evolution. Therefore, for these distributions we must have a1 > −1 in Eq. (2.42), otherwise Eqs. (2.52)
would be ill-defined.

Second, PDFs should satisfy the conservation of energy–momentum derived from the QCD Lagrangian. In other words,
the proton’s total momentum should be equal to the sum of the momentum carried by all its constituents (the so-called
momentum sum rule):

1 = ⟨x⟩g + ⟨x⟩u+ + ⟨x⟩d+ + ⟨x⟩s+ + ⟨x⟩c+ + ⟨x⟩b+ + ⟨x⟩t+ + · · · , (2.53)

where the ellipsis represents any other partonic components (such as a photon). The first moments, ⟨x⟩f , are defined in
analogy to Eqs. (2.2)–(2.3). In order to avoid a divergent contribution, we must have a1 > −2 in Eq. (2.42) for the non-
valence distributions. Typically it turns out that −2 < a1 < −1 for such distributions, hence the number of soft partons
grows very quickly at small x, although the momentum fraction carried by them is well-defined and finite. As in the case of
the valence sum rules, the momentum sum rule is preserved by the DGLAP evolution equations.

Theoretical calculations of DIS and hadronic cross-sections at the highest perturbative order available should be used.
Currently, this implies usingNNLO for theQCD corrections andNLO for the EWand photon-induced effects [192,193]. Thanks
to recent progress in higher-order calculations, these results are available for most of the processes entering the global PDF
fits [25,26,194–196], including differential distributions with colored particles in the final state.
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Fig. 2.2. Representative kinematic coverage in the (x,Q 2) plane of theDIS and proton–(anti)proton hard-scatteringmeasurements that are used as input in a

typical fit of unpolarized PDFs, NNPDF3.1 [13]. Different datasets have been clustered together into families of related processes. For hadronic cross-sections,

leading order kinematics is assumed to map each experimental bin to a pair of points in the (x,Q 2) plane. Additional precise data from SLAC and Jefferson

Lab exist also in the bottom right corner of the (x,Q 2) plane, although they were excluded from the NNPDF3.1 fit by the cut on the invariant mass of the

final stateW 2 < 12.5 GeV2 adopted there.

These calculations should be provided in a format such that the evaluation of the hadronic cross-sections, Eq. (2.40), is
not too burdensome from a computational point of view. To bypass the limitations of the lengthy (N)NLO computations, a
number of fast interfaces have been developed that allow for the efficient calculation of NLO (and NNLO) fully differential
hadronic cross-sections, among which APPLgrid [197], FastNLO [198] and aMCfast [199].

Experimental data. A broad set of input hard-scattering cross-sections from DIS and proton–(anti)proton collisions, pro-
viding information on the PDFs over a wide range of x and for different flavor combinations, is used in modern PDF fits.
Inclusive DIS measurements have been realized with electron, muon and neutrino (and the corresponding antiparticles) off
protons, deuterons and heavy nuclear targets. While traditional PDF fits were based mostly on DIS structure functions, and
Drell–Yan and inclusive jet cross-sections, in recent years many other processes have proved important for constraining
PDFs, among which top–quark pair production [27], the pT distribution of Z bosons [25] and D meson production in the
forward region [24].

In Fig. 2.2 we show the representative kinematic coverage in the (x,Q 2) plane of the DIS and proton–(anti)proton hard-
scatteringmeasurements that are used as input in a typical global fit of unpolarized PDFs, in this case NNPDF3.1 [13]. In order
to facilitate visualization, different datasets have been clustered together into families of related processes. For hadronic
cross-sections, LO kinematics is assumed to map each experimental bin into a pair of points in the (x,Q 2) plane. The fact
that similar regions in the (x,Q 2) plane are covered by different processes is essential to achieve quark flavor separation and
to constrain the gluon PDF.

Abundant precise data from SLAC and Jefferson Lab exist also in the bottom right corner of the (x,Q 2) plane, where
however power corrections need to be accounted for in QCD fits [16,17,200]. They are not shown in Fig. 2.2 because they
are excluded from the NNDPF3.1 fit by the kinematic cut on the invariant mass of the final state W 2 < 12.5 GeV2 adopted
there.

State-of-the-art global PDF fits. Various collaborations provide regular updates of their global unpolarized PDF fits. The latest
fits from the threemain global fitting collaborations are CT14 [15],MMHT14 [14] andNNPDF3.1 [13]. These fits are performed
up to NNLO in the strong coupling (with central value αs(mZ ) = 0.118), and include data from the HERA e±p collider, fixed
(nuclear and proton) target experiments, the Tevatron pp collider and the LHC. The ABMP16 [16] set fits to a similar global
data set (although excluding jet production) but differs in its treatment of errors, heavy flavors and the low-Q 2 and large-x
regions. The HERAPDF2.0 [22] set fits to the final combined HERA Run I + II data set only, with the aim of determining the
PDFs from a completely consistent DIS data sample; in x regions that are less constrained by HERA data, the uncertainties
can be quite large. The CJ15 [17] NLO set focuses on constraining the PDFs at higher x by lowering Q 2 and W 2 cuts in DIS.
This greatly increases the amount of available data, but requires additional modeling of power-like O(1/Q 2) corrections.
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Fig. 2.3. Comparison between the CT14, MMHT2014 and NNPDF3.1 NNLO PDF sets at Q = 100 GeV, normalized to the central value of the latter. From top

to bottom and from left to right we show the u, d̄ and s quark PDFs as well as the gluon. The error bands indicate the 1-σ PDF uncertainties associated with

each set. These PDF comparison plots have been produced using the APFEL-Web online plotting interface [201].

The features of each PDF set have been discussed in detail in Refs. [10,11], including the dataset, the fitting methodology,
the theoretical details of the corresponding QCD analyses, and, most importantly, the uncertainties coming from each of
these aspects.

In Fig. 2.3 we present a snapshot of the current understanding of the proton structure in the global PDF fitting framework.
We compare the CT14, MMHT2014 and NNPDF3.1 NNLO PDF sets at Q = 100 GeV, normalized to the central value of the
last. From top to bottom and from left to right we show the u, d̄ and s quark PDFs and the gluon PDF. The error bands indicate
the 68%-confidence level (CL) PDF uncertainties associated with each set, computedwith the correspondingmaster formula.
We observe that differences for the up quark PDF are small, at the few percent level, but greater differences are observed
for the sea quarks, in particular in the medium and large-x region. For the gluon there is reasonable agreement except in
the large-x region, where NNPDF3.1 is softer than CT14 and MMHT14. Any other comparison plots between PDFs can be
straightforwardly obtained using the APFEL-Web online plotting interface [201].

In addition to these latest versions of the global PDF fits, there has recently been a significant development of techniques
aiming to construct combined PDF sets that are based on a small number of Hessian eigenvectors or MC replicas and thus
are more efficient to use in lengthy higher-order computations or Monte Carlo simulations. In particular, the PDF4LHC15
PDF sets are based on the combination of the CT14, MMHT14 and NNPDF3.1 NNLO PDF sets, subsequently reduced to a small
number of eigenvectors (replicas) using the META-PDF [182] and MC2H [183] (CMC [202]) compression algorithms. In this
respect, Specialized Minimal PDF sets [203] (SM-PDFs) have also been advocated, which are tailored to specific physical
processes and are based on a minimal number of Hessian eigenvectors.

The PDF4LHC15 NLO set [10] is displayed in Fig. 2.4 at µ2 = Q 2 = 4 GeV2 and at µ2 = Q 2 = 102 GeV2. Specifically,
we show the uv = u − ū and dv = d − d̄ valence combinations, the ū, d̄, s and c sea quark PDFs, and the gluon (divided
by a factor 10). The evolution between Q 2 = 4 GeV2 and Q 2 = 102 GeV2 is completely determined by the solution of the
DGLAP evolution equations. The shape of the uv (u

−) and dv (d
−) valence quark combinations reflects the constraints from

the valence sum rules Eq. (2.52). At small x, there is a rapid growth of the gluon and the sea quark PDFs, implying that the
higher the collision center-of-mass energy

√
s, the more important gluon- and sea-quark-initiated processes become. The

bands in Fig. 2.4 represent the 68% CL PDF uncertainties.
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Fig. 2.4. The PDF4LHC15 NLO PDFs at a low scale µ2 = Q 2 = 4 GeV2 (left plot) and at µ2 = Q 2 = 102 GeV2 (right plot) as a function of x. We show the uv

and dv valence combinations, the ū, d̄, s and c sea quark PDFs, and the gluon (note that the latter is divided by a factor 10).

We strongly encourage the community to use the most recent versions of global PDF fits when comparing with existing
or new lattice QCD calculations. Comparing with deprecated sets, based on obsolete methodology and in many cases
experimental data that have been superseded, should always be avoided.

2.3.3. Polarized PDFs
Theoretical features. The dependence on the momentum fraction x, fixed by nonperturbative QCD dynamics, should satisfy
some theoretical constraints. First, PDFsmust lead to positive cross-sections. At leading order (LO), this implies that polarized
PDFs are bounded by their unpolarized counterparts,7 |∆f (x, µ2)| ≤ f (x, µ2) [204]. Second, PDFs must be integrable: this
corresponds to the assumption that the nucleon matrix element of the axial current for each flavor is finite. Third, SU(2) and
SU(3) flavor symmetry, if assumed to be exact, imply that the zeroth moments of the nonsinglet C-even PDF combinations,
∆T3 = ∆u+ − ∆d+ and ∆T8 = ∆u+ + ∆d+ − 2∆s+ (where ∆q+ = ∆q + ∆q̄, q = u, d, s), are respectively related to the
baryon octet β-decay constants, whose measured values are [30]

gA = a3 =
∫ 1

0

dx∆T3(x, µ
2) = ⟨1⟩∆u+ − ⟨1⟩∆d+ = 1.2723± 0.0023 , (2.54)

a8 =
∫ 1

0

dx∆T8(x, µ
2) = ⟨1⟩∆u+ + ⟨1⟩∆d+ − 2 ⟨1⟩∆s+ = 0.585± 0.025 . (2.55)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [205] for a review). In this case,
an uncertainty on the octet axial charge, which could be as large as 30% of the experimental value of a8 in Eq. (2.55), see
Ref. [206].

Experimental data. The bulk of the experimental information on polarized PDFs comes from neutral-current (photon
exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS) with charged lepton beams and nuclear
targets. As photon scattering does not distinguish quarks and antiquarks, inclusive DIS data constrain only the total quark
combinations∆q+, while SIDIS datawith identified pions or kaons in the final state constrain individual quark and antiquark
flavors. In principle, both DIS and SIDIS are also sensitive to the gluon distribution ∆g , as it directly enters the factorized
expressions of the corresponding structure functions beyond LO, and indirectly via DGLAP evolution. In practice, the

7 Beyond LO, more complicated relations hold [204]; however they have little effect on PDFs.
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Fig. 2.5. Representative kinematic coverage, in the (x,Q 2) plane, of the (neutral current) DIS, SIDIS and proton–proton hard-scattering measurements

that are used as input in a global polarized PDF fit. The extended kinematic coverage achieved by JLab-12 [216] and by an EIC [217] (including projected

charged-current (CC) DIS data and denoted as eRHIC) is also shown.
Source: Figure taken from Ref. [218].

constraining power of DIS and SIDIS data on∆g is ratherweak because theQ 2 range covered by the data is limited, especially

if one restricts to the kinematic region not affected by power-suppressed corrections and very precise data from JLab are

therefore excluded.

Note that, in the case of SIDIS, a reliable knowledge of fragmentation functions (FFs) is required in the factorized

expressions of the corresponding observables. Since FFs are nonperturbative objects on the same footing as PDFs, they are

an additional source of uncertainty in PDF determinations, if not a bias. A significant experimental and theoretical effort has

been invested in improving the independent determination of FFs [207–211] and most recently in simultaneously fitting

both PDFs and FFs [167,212].

Besides DIS and SIDIS fixed-target data, a significant amount of data from longitudinally polarized proton–proton

collisions at the Relativistic Heavy Ion Collider (RHIC) has become available recently (see e.g. Ref. [213] for an overview),

although in a limited range of momentum fractions, 0.05 ≲ x ≲ 0.4. On the one hand, longitudinal (parity-violating) single-

spin and (parity-conserving) double-spin asymmetries for W± boson production are sensitive to the flavor decomposition

of polarized quark and antiquark distributions, because of the chiral nature of the weak interaction [214]. On the other

hand, double-spin asymmetries for jet, di-jet and π0 production are directly sensitive to the gluon polarization in the

proton, because of the dominance of gluon–gluon and quark–gluon initiated subprocesses in the kinematic range accessed

by RHIC [215].

The kinematic coverage of the data that can be used to constrain polarized PDFs is displayed in Fig. 2.5. A comparison

with Fig. 2.2 makes it apparent that the quantity of data points, their kinematic coverage and the variety of available hard-

scattering processes are presentlymuchmore limited in the polarized case than in the unpolarized case. Therefore, polarized

PDFs can currently be determined with much less precision than their unpolarized counterparts and only over an x-range

limited to x ≳ 0.005. The kinematic coverage is expected to be significantly extended in the future, with DIS and SIDIS data

from JLab-12 [216] and a polarized high-energy Electron–Ion Collider (EIC) [217]. Such an extended kinematic coverage is

also displayed in Fig. 2.5, where it is denoted as eRHIC.

A representative illustration of polarized PDFs obtained from a global QCD analysis, namelyNNDPFpol1.1 [18], is provided

in Fig. 2.6. The format is the same as for the unpolarized case, Fig. 2.4, in order to ease any comparison between the two. In

particular, note the suppression of all polarized PDFs at small values of x, including polarized sea quark PDFs, with respect

to their unpolarized counterparts.
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Fig. 2.6. Same as Fig. 2.4, but for the polarized NNPDFpol1.1 NLO PDFs [18].

State-of-the-art global PDF fits. Several modern determinations of polarized PDFs of the proton (up to NLO8 and mostly in
theMS factorization scheme) are available in the literature [18–21,29,221–225]. A key goal of these is to unveil the size (and
uncertainty) of∆Σ and∆G in Eq. (2.6). The various determinations differ among each other in the data sets included in the
analysis, in some details of the QCD analysis (like the treatment of higher-twist corrections) and in the procedure used to
determine PDFs from the data (for details, see e.g. Chap. 3 in Refs. [226] and [8,221]). The NNDPF procedure and the standard
(adopted by DSSV) have already been outlined in Section 2.3.1. We note that DSSV has developed a method based on Mellin
moments of the PDFs in order to efficiently incorporate NLO computations of proton–proton cross-sections in the fitting
procedure. The JAM collaboration has implemented a new approach called iterative Monte Carlo procedure [20,167] in their
analyses.

The most recent analyses of polarized PDFs are DSSV14 [29] and NNPDFpol1.1 [18]. Motivated by the interest in
assessing the impact of RHIC proton–proton data, they upgrade the corresponding previous analyses, DSSV08 [19,222]
and NNPDFpol1.0 [227], with data respectively on double-spin asymmetries for inclusive jet production [228] and π0

production [229] (DSSV149), and on double-spin asymmetries for high-pT inclusive jet production [228,230,231] and single-
spin asymmetries for W± production [232] (NNPDFpol1.1). The new data have been included in NNPDFpol1.1 by means of
Bayesian reweighting [233], and in DSSV14 by means of a full refit.

Overall, both the DSSV14 and NNPDFpol1.1 PDF determinations are state-of-the-art in the inclusion of the available
experimental information. The data sets in the two analyses differ between each other only in fixed-target SIDIS and RHIC
π0 production measurements, included in DSSV14, but not in NNPDFpol1.1. The information brought in by these data is
complementary to that provided by RHIC W± production and inclusive jet production data respectively, although fraught
with larger theoretical uncertainties related to fragmentation.

The effect of RHIC data on the polarized PDFs of the proton is twofold:

• The 2009 STAR and PHENIX data sets on jet and π0 production [228,229], included in DSSV14 and NNPDFpol1.1,
provide the first evidence of a sizable positive gluon polarization in the proton. A comparison of the gluon PDF in the
two PDF sets is displayed in Fig. 2.7 (left panel). Comparable results, both central values and uncertainties, are found
in the x region covered by RHIC data. The agreement between the two analyses is optimal in the range 0.08 ≤ x ≤ 0.2,

8 A NNLO QCD analysis of polarized PDFs based on inclusive DIS data only was performed in Refs. [219,220]. Inclusive DIS is the only polarized process

for which coefficient functions are known up to NNLO (all others are known up to NLO).
9 Preliminary RHIC results included in Ref. [222] were replaced in Ref. [29] with final results.
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Fig. 2.7. (Left) The polarized gluon momentum distribution x∆g from the DSSV14 (with 90% C.L. uncertainty band) and NNPDFpol1.1 PDF sets at

Q 2 = 10 GeV2 . The NNPDF3.1 positivity bound is also shown. (Right) 90% C.L. areas in the plane spanned by the truncated moments of ∆g computed

for 0.05 ≤ x ≤ 1 and 0.001 ≤ x ≤ 0.05 at Q 2 = 10GeV2 [29].

where the dominant experimental information comes from jet data; a slightly smaller central value is found in the
DSSV14 analysis, in comparison to NNPDFpol1.1, in the range 0.05 ≤ x ≤ 0.08, where the dominant experimental
information comes from π0 production data. Indeed, these are included in DSSV14 but are not in NNPDFpol1.1.
Nevertheless, best fits lie well within each other’s error bands, though NNPDFpol1.1 uncertainties tend to be larger
than DSSV14 uncertainties outside the region covered by RHIC data. Very consistent values of the zeroth moment of
∆g , Eq. (2.6), truncated over the interval 0.05 ≤ x ≤ 1, are found: at Q 2 = 10 GeV2, this is 0.20+0.06−0.07 for DSSV14 [29],
and 0.23±0.06 for NNPDFpol1.1 [18]. The right plot in Fig. 2.7 shows the corresponding DSSV14 result as an example;
the impact of the RHIC data is clearly visible.
• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of a positive ∆ū

distribution and a negative ∆d̄ distribution, with |∆d̄| > |∆ū| [18]. The size of the flavor symmetry breaking for
polarized sea quarks is quantified by the asymmetry ∆ū − ∆d̄, which, in the NNPDFpol1.1 analysis, turn out to
be roughly as large as its unpolarized counterpart (in absolute value) [13], though much more uncertain [234].
Even within this uncertainty, polarized and unpolarized light sea quark asymmetries show opposite signs, with the
polarized one being clearly positive. This trend is also found from analysis of the polarized SIDIS data, as revealed
by the DSSV08 parton set. This result may discriminate among various models of nucleon structure, see [234] and
references therein.

Open issues. Despite the achievements described above, the polarized PDFs presently cannot be determined in a global
QCD analysis with the same accuracy as their unpolarized counterparts. The experimental data are confined to a relatively
narrow range of x and Q 2. As a consequence, the size of the contributions of quarks, antiquarks and gluons to the nucleon
spin, as quantified by their zeroth moments, Eq. (2.6), are still affected by large uncertainties. These come predominantly
from the extrapolation into the small-x region (x ≲ 10−3). Here potential modifications in the PDF shape induced by small-
x evolution [235–241] could arise, which presently cannot be tested. Significant uncertainties also affect the PDFs in the
large-x valence region (x ≳ 0.7). This regime is less relevant for the determination of the PDF moments, but it is important
for comparisons to nonperturbative models of nucleon structure, especially in terms of ratios of light-quark polarized to
unpolarized PDFs (for a comparison between large-x PDFs and model predictions, see Ref. [2]). Finally, the small lever arm
of the data in Q 2 is a serious limiting factor in the determination of ∆g via evolution, unless the data at low Q 2 and large x
are included in the fit and carefully analyzed. This requires an appropriate treatment of power-suppressed corrections and
possibly a minimization methodology which can iteratively focus on a region in parameter space where constraints are not
too strong, as done in the JAM15 analysis [20].

The determination of the total polarized strange distribution∆s+ is also particularly delicate. Inclusive DIS data, together
with nonsinglet axial couplings, Eq. (2.55), and kaon SIDIS data provide the sole available constraint on ∆s+. A sizable
negative∆s+ is found consistently in all analyses based on inclusive DIS data only, as a result of the constraint from hyperon
decays that is usually adopted. However, the shape of∆s+ may change significantly in analyses that also include SIDIS data.
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Typically SIDIS data lead to a trend for∆s+ to be small or even slightly positive in themedium x-range, although this depends
also on the set of kaon FFs used to compute the corresponding observables [242]. The recent study in Ref. [167] sheds some
light on this issue by performing a simultaneous determination of polarized PDFs and unpolarized FFs using DIS, SIDIS and
single-inclusive annihilation data. In order to avoid biasing the determination of ∆s+ by assumptions on SU(3) symmetry,
the octet axial charge in Eq. (2.55) has been allowed to be determined by the data alone. As a consequence, a slightly positive
∆s+ distribution, but compatible with the negative result found from inclusive DIS within its large uncertainties, has been
obtained. An octet axial charge about 20% smaller than its quoted experimental value, Eq. (2.55), appears to be preferred by
the data. This implies a zerothmoment ⟨1⟩∆s+ = −0.03±0.1 atµ2 = 1 GeV2, and hence a larger∆Σ , Eq. (2.5), than inmost
other present analyses. However, we stress that the determination of∆s+ from SIDIS data also relies on good knowledge of
the unpolarized strange distribution. Furthermore, unpolarized SIDIS data themselves set constraints on FFs and ultimately
need to be included as well to obtain a reliable picture [212]. In any case, further higher precision kaon SIDIS data will be
needed to reduce the uncertainty on∆s+ and further test the degree of SU(3) breaking.

Ongoing and future experimental campaigns at current facilities are expected to provide additional experimental
information useful to clarify some of the issues outlined above (for an assessment of the impact of very recent/forthcoming
data, see e.g. Refs. [213,243–245]). However, a future high-energy, polarized EIC [217] will likely be the only facility to be
able to address all of the above issueswith the highest precision. The extension of the kinematic reach down to x ∼ 10−4 and
up to Q 2 = 104 GeV2 will allow for an accurate determination of ∆g via evolution in DIS/SIDIS, of ∆ū and ∆d̄ via inclusive
DIS at high Q 2 mediated by electroweak bosons, and of∆s via kaon-tagged SIDIS. The potential impact of the longitudinally
polarized program at an EIC has been quantitatively assessed in several dedicated studies [243,246–248].

3. Benchmarking PDF moments

In this section we provide a quantitative comparison between current lattice-QCD and global-fit results of the lowest
moments of unpolarized and polarized PDFs. To this purpose, we identify benchmark quantities and define the criteria to
appraise the determinations available in the literature. For each benchmark quantity, we specify a prescription to select and
combine lattice-QCD calculations and global-fit determinations. We present our benchmark numbers from each side and
compare them.

3.1. Benchmark criteria

We start by describing our benchmark criteria, which include the definition of the benchmark quantities and the
determination of their reference values, based on a careful assessment of the lattice-QCD and global-fit results available
in the literature.

3.1.1. Benchmark quantities
We identify our benchmark quantities with the following moments of unpolarized and polarized PDFs, or of PDF quark

flavor combinations.

• ⟨x⟩u+−d+ , ⟨x⟩u+ , ⟨x⟩d+ , ⟨x⟩s+ and ⟨x⟩g in the unpolarized case;
• gA ≡ ⟨1⟩∆u+−∆d+ , ⟨1⟩∆u+ , ⟨1⟩∆d+ , ⟨1⟩∆s+ and ⟨x⟩∆u−−∆d− in the polarized case.

We adopt the conventional notation described in Appendix A. We focus on the above quantities because current lattice
calculations of higher moments and moments of other PDF combinations are not sufficiently controlled to allow for a
meaningful comparison between lattice-QCD and global-fit results.

3.1.2. Appraising lattice-QCD calculations
To accurately assess current lattice-QCD calculations available in the literature, we follow a procedure inspired by the

review of low-energy mesons undertaken by the Flavor Lattice Averaging Group (FLAG) [83]. For each lattice calculation, we
characterize each source of uncertainty outlined in Section 2.2. We use a rating system inspired by FLAG, awarding a blue
star (⋆) for sources of uncertainty that are well controlled or very conservatively estimated, a blue circle (◦) for sources
of uncertainty that have been controlled or estimated to some extent, and a red square (■) for uncertainties that have not
met our criteria or for which no estimate is given. Specifically, the rating system works as follows.

• Discretization effects and the continuum limit. We assume that the lattice actions are O(a)-improved, i.e., that
the discretization errors vanish quadratically with the lattice spacing. For unimproved actions, an additional lattice
spacing is required. These criteria must be satisfied in each case for at least one pion mass below 300 MeV.

⋆ At least three lattice spacings with at least two lattice spacings below 0.1 fm and a range of lattice spacings that
satisfies [amax/amin]2 ≥ 2.

◦ At least two lattice spacings with at least one point below 0.1 fm and a range of lattice spacings that satisfy
[amax/amin]2 ≥ 1.4.
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To receive a ⋆ or ◦ either a continuum extrapolation must be performed, or the results must demonstrate no
significant discretization effects over the appropriate range of lattice spacings.
• Unphysical pion masses. We define a physical pion mass ensemble to be one with Mπ = 135 ± 10 MeV for the

following criteria.

⋆ One ensemble with a physical pion mass or a chiral extrapolation with three or more pion masses, with at least
two pion masses below 250 MeV and at least one below 200 MeV.

◦ A chiral extrapolation with three or more pion masses, two of which are below 300 MeV.

• Finite-volume effects.

⋆ Ensembles withMπ,minL ≥ 4, or at least three volumes with spatial extent L > 2.5 fm.

◦ Ensembles withMπ,minL ≥ 3.4, or at least two volumes with spatial extent L > 2.5 fm.

For calculations that use a mixed-action approach, i.e., with different lattice actions for the valence and sea quarks,
we apply these criteria to the valence quarks.Mπ,min is the lightest pion mass employed in the calculation.
• Excited-state contamination.

⋆ At least three source–sink separations or a variational method to optimize the operator derived from at least a
3× 3 correlator matrix, at every pion mass and lattice spacing.

◦ Two source–sink separations at every pionmass and lattice spacing, or three ormore source–sink separations at
one pionmass below300MeV. For the variationalmethod, an optimized operator derived froma2× 2 correlator
matrix at every pion mass and lattice spacing, or a 3× 3 correlator matrix for one pion mass below 300 MeV.

• Renormalization.

⋆ Nonperturbative renormalization.

◦ Perturbative renormalization.

For gA we also award a ⋆ for calculations that use fermion actions for which ZA/ZV = 1 or employ combinations
of quantities for which the renormalization is unity by construction.
• Lattice-spacing determination. For lattice-QCD calculations of nucleons, the lattice-spacing determination is gen-

erally sufficiently precise that it is a very small or negligible source of systematic uncertainty. Therefore we do not
include an assessment of the lattice-spacing determination in our criteria.

Another important parameter in lattice-QCD calculations is the number of sea quark flavors, Nf . Following the approach
used by FLAG, we prefer to avoid combining calculations with differing Nf ; for more discussion of this issue, see the FLAG
review [83].

We now summarize the current status of lattice-QCD calculations of our benchmark moments of unpolarized and
polarized PDFs respectively. Following FLAG, we consider only those results that are published in peer-reviewed journals or
that have appeared as preprints. Where recent results are a clear update of previously published work, we do not include
earlier results. A bibliographical compilation of the results available in the literature is given for completeness in Appendix B,
Tables B.5–B.10 .We characterize the results according to the criteria described above, and provide a prescription to combine
those results that satisfy the criteria into a single benchmark value.

Our criteria and the corresponding ratings are chosen to provide as fair an assessment of the relative merits of various
calculations as possible. Where lattice-QCD results do not meet these standards, we hope that the lattice community will
work towards improved calculations and greater precision. Modifications to this rating systemwill occur as the lattice-QCD
results evolve.

Unpolarized parton distributions. We summarize the current status of lattice-QCD calculations of the benchmarkmoments of
unpolarized PDFs listed in Section 3.1.1 in Table 3.1.We indicate: the computedmoment in the first column; the collaboration
who performed the computation in the second column; the corresponding reference in the third column; the number of
sea quark flavors, Nf , in the fourth column. We show whether the calculation has been published (P) or has appeared as a
preprint (PreP) in the fifth column. In the following five columns, we assess each source of systematic uncertainty according
to the criteria listed above. In the last column, we report the computed value at µ2 = 4 GeV2 in the MS scheme. We refer
the reader to the corresponding references for details on the meaning of the errors reported in parentheses. We do not list
results that have not been extrapolated to the physical pion mass, nor do we include quenched results in Table 3.1. For
completeness, we report these results in Appendix B, Table B.1.

As is apparent from Table 3.1, there are no lattice calculations of the considered first moments for which all systematics
have been fully explored and controlled. In the case of ⟨x⟩u+−d+ three different results are available in the literature. We
present the lattice-QCD benchmark value for this quantity as a best-estimate band. This band extends from the mean of the
smallest result minus its error to the mean of the largest result plus its error, and includes all results listed in Table 3.1 with
two or more sea quark flavors. Current studies are not sufficiently precise to distinguish between results with different
numbers of sea quark flavors. In the case of ⟨x⟩u+ , ⟨x⟩d+ , ⟨x⟩s+ and ⟨x⟩g , there is only one lattice result available in the
literature: for these quantities, our lattice-QCD benchmark value is the single result; however, it should be noted that these
results may underestimate some sources of uncertainty.
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Table 3.1

Status of current lattice-QCD calculations of the benchmark first moments of unpolarized PDFs listed in Section 3.1.1. A detailed description of each entry,

including the symbols used to characterize the various sources of systematics, is provided in the text. Values are shown at µ2 = 4 GeV2 . We refer the

reader to the corresponding references for details on the errors reported in parentheses. To denote the various sources of systematic uncertainty, we use

the abbreviations Disc (discretization), QM (quark mass), FV (finite volume), Ren (renormalization) and ES (excited states).

Mom. Collab. Ref. Nf Status Disc QM FV Ren ES Value

⟨x⟩u+−d+ LHPC14 [249] 2+1 P ■ ⋆ ⋆ ⋆ ⋆ 0.140(21)

ETMC 17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ a 0.194(9)(11)

RQCD 14 [251] 2 P ■ ■ ◦ ⋆ ⋆ b 0.217(9)

⟨x⟩u+ ETMC 17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ ac 0.453(57)(48)

⟨x⟩d+ ETMC 17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ ac 0.259(57)(47)

⟨x⟩s+ ETMC 17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ ac 0.092(41)(0)

⟨x⟩g ETMC 17 [250] 2 P ■ ⋆ ■ ◦ ⋆ a 0.267(22)(27)

a Study employing a single physical pion mass ensemble.
b Study employing a single ensemble withmπ = 150 MeV.
c Nonsinglet renormalization is applied.

Table 3.2

Same as Table 3.1, but for the axial coupling, gA ≡ ⟨1⟩∆u+−∆d+ . Studies with three or more red squares are omitted from this table. Values are shown at

µ2 = 4 GeV2 .

Mom. Collab. Ref. Nf Status Disc QM FV Ren ES Value

gA CalLat 17 [252] 2+1+1 PreP ■ ⋆ ■ ⋆ ⋆ 1.278(21)(26)

PNDME16 [253] 2+1+1 P ◦ ⋆ ◦ ⋆ ⋆ 1.195(33)(20)

LHPC14 [249] 2+1 P ■ ⋆ ⋆ ⋆ ⋆ 0.97(8)

Mainz 17 [254] 2 PreP ⋆ ◦ ⋆ ⋆ ⋆ 1.278(68)(+0−0.087)
ETMC17 [255] 2 P ■ ⋆ ■ ⋆ ⋆ a 1.212(33)(22)

RQCD15 [256] 2 P ◦ ◦ ◦ ⋆ ◦ b 1.280(44)(46)

QCDSF14 [257] 2 P ◦ ◦ ◦ ⋆ ■
b 1.29(5)(3)

a Study employing a single physical pion mass ensemble.
b gA is determined via the ratio gA/fπ , employing the physical value for fπ .

The lattice-QCD benchmark numbers for ⟨x⟩u+−d+ , ⟨x⟩u+ , ⟨x⟩d+ , ⟨x⟩s+ and ⟨x⟩g will be further commented below, where
they will be collected together with their global-fit counterparts in Table 3.7.

Finally, we summarize the current status of lattice-QCD calculations of the second moment of the unpolarized valence-
quark PDFs, ⟨x2⟩u− , ⟨x2⟩d− and ⟨x2⟩u−−d− in Appendix B, Table B.2. The study of these moments is not sufficiently mature to
provide benchmark values and we only list the results for completeness.

Polarized parton distributions. The zeroth moment of the isotriplet polarized PDF combination is related to the axial charge
of the nucleon, gA ≡ ⟨1⟩∆u+−∆d+ . This quantity is of central importance to nucleon physics and has long been considered an
important benchmark for lattice calculations. Historically, lattice-QCD calculations of the axial charge have underestimated
the experimental value g

exp
A = 1.2723(23) [30] (see also Eq. (2.54)), which is most precisely determined from neutron weak

decays. Thus, the axial charge has been the single most-studied moment in lattice QCD. We summarize the current status of
these calculations in Table 3.2 using the same format as in Table 3.1. All results are quoted at µ2 = 4 GeV2.

As is apparent from Table 3.2, we consider only three calculations of gA to have all systematics sufficiently controlled to
obtain a blue circle or star. One of them [253] is for Nf = 2 + 1 + 1, while two of them [254,256] are for Nf = 2. In the
former case, our benchmark value corresponds to the single calculation; in the latter case, our benchmark value corresponds
to a weighted average of [254] and [256], assuming correlations between the results, and applying the procedure of [258].
In summary, our benchmark values are

g
Nf=2+1+1
A = 1.195(33)(20) , and g

Nf=2
A = 1.279(50) . (3.1)

We observe that the result of [252], although it does not fulfill all our requirements on systematic uncertainties, uses
the same gauge configurations as those of [253]. Therefore, we also carry out a simultaneous fit to the two results for
completeness. We use a fit function of the form

g fit
A = c0 + f (a)+ c3M

2
π + c4M

2
π exp(−MπL)+ c5M

2
π log

(
M2
π

Λ2
χPT

)
, (3.2)

f (a) =
{
c1a Ref. [253]

c2a
2 Ref. [252]

. (3.3)

The coefficient c1 captures O(a) effects present in the valence-quark action of [253], while [252] has discretization effects
starting at O(a2). The term proportional to c4 captures the leading finite-volume effects, and c3 and c5 represent chiral-
extrapolation terms. Modifications to this fit form, including setting c5 = 0, have a negligible effect on the fit results within
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Fig. 3.1. Summary of the current status of lattice-QCD calculations of the axial charge, gA ≡ ⟨1⟩∆u+−∆d+ . The vertical black line represents the current

experimental world average g
exp
A = 1.2723(23) [30]. The light gray bands for Nf = 2+ 1+ 1 and Nf = 2 represent the benchmark results of Eq. (3.1), and

the dashed gray band for Nf = 2+ 1+ 1 is the fit band of Eq. (3.4).

extrapolation uncertainties, and the final result is in very good agreement with a weighted average of the two calculations,

assuming 100% correlations, which is g
Nf=2+1+1,avg
A = 1.243(36). Based on this fit, we find the best-estimate band of

g
Nf=2+1+1,fit
A = 1.22–1.28. (3.4)

We plot all lattice results for the axial coupling, listed in Table 3.2, in Fig. 3.1. We show the world-average experimental
value as a vertical black line. The light gray bands for Nf = 2+1+1 and Nf = 2 represent the benchmark results of Eq. (3.1),
and the dashed gray band for Nf = 2+ 1+ 1 is the combined fit band given in Eq. (3.4).

In addition to the axial charge, we summarize the zeroth moments of the individual light-quark total polarized
distributions in Table 3.3. We summarize the status of lattice-QCD calculations of the first moments of the polarized PDF
combination ⟨x⟩∆u−−∆d− in Table 3.4.We use the same format as in Table 3.1. All values are atµ2 = 4 GeV2. Available results
that have not been extrapolated to the physical pion mass or quenched results are not reported here, but in Appendix B,
Tables B.3–B.4, for completeness.

In the case of ⟨1⟩∆u+ and ⟨1⟩∆d+ , there is only one result available in the literature for each quantity. Therefore, although
the corresponding systematic uncertainties are not completely under control and possibly underestimated, we take the
individual results as our benchmark values. In the case of ⟨1⟩∆s+ and ⟨x⟩∆u−−∆d− , however, several results are available in the
literature, althoughwithout a full characterization of their systematic uncertainties. We present our lattice-QCD benchmark
value for these quantities as a best-estimate band extending from the mean minus the error of the smallest result to the
mean plus the error of the largest. We include all results with two or more flavors of sea quarks listed in Tables 3.3 and 3.4,
respectively.

The lattice-QCD benchmark numbers for gA, ⟨1⟩∆u+ , ⟨1⟩∆d+ , ⟨1⟩∆s+ and ⟨x⟩∆u−−∆d− will be further commented below,
where they will be collected together with their global-fit counterparts in Table 3.8.

3.1.3. Appraising global-fit results
The current status of global PDF fit determinations and their uncertainties has been carefully assessed in dedicated

reviews recently [7,8], and further summarized in Section 2.3.2. It is now recognized that PDF uncertainties receive various
contributions: the measurement uncertainty propagated from the data, uncertainties associated with incompatible data
sets, procedural uncertainties such as those related to the choice of the PDF parametrization, and the handling of systematic
errors, among others. As outlined in Section 2.3.2, in principle all of these uncertainties can be accounted for with suitable
methods, both in the Hessian and the MC frameworks. In practice, there is a significant spread in the sophistication of these
methods between unpolarized and polarized PDF fits.

In Section 2.3.2, we also emphasized that there are additional theoretical uncertainties on PDFs associated with
uncertainty in the input values of the physical parameters used in the fit (such as the reference value of the strong coupling)
and with missing higher-order uncertainties (given that fits are usually performed with fixed-order perturbation theory).
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Table 3.3

Same as Table 3.1, but for the zeroth moments of the polarized total quark distributions. Values are shown at µ2 = 4 GeV2 .

Mom. Collab. Ref. Nf Status Disc QM FV Ren ES Value

⟨1⟩∆u+ ETMC17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ a 0.830(26)(4)

⟨1⟩∆d+ ETMC17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ a −0.386(16)(6)
⟨1⟩∆s+ χQCD17 [259] 2+1 P ■ ◦ ◦ ⋆ ⋆ bc −0.0403(44)(78)

Engelhardt 12 [260] 2+1 P ■ ■ ◦ ⋆ ⋆ c −0.031(17)
ETMC17 [250] 2 P ■ ⋆ ■ ⋆ ⋆ a −0.042(10)(2)

a Study employing a single physical pion mass ensemble.
b Partially quenched simulation withmπ = 330 MeV. Criteria applied to the valence quarks.
c Some parts of the renormalization are estimated, see references for details.

Table 3.4

Same as Table 3.1, but for the first moment of the polarized valence-quark distribution. Values are shown at µ2 = 4 GeV2 .

Mom. Collab. Ref. Nf Status Disc QM FV Ren ES Value

⟨x⟩∆u−−∆d− RBC/
[261] 2+1 P ■ ■ ⋆ ⋆ ■

0.256(23)/

UKQCD10 0.205(59)

LHPC10 [262] 2+1 P ■ ■ ◦ ◦ ■ 0.1972(55)

ETMC15 [263] 2 P ■ ⋆ ■ ⋆ ⋆ a 0.229(33)

a Study employing a single physical pion mass ensemble.

Table 3.5

Status of current global PDF fit determinations of the benchmarkmoments of unpolarized PDFs listed in Section 3.1.1. All values are shown atµ2 = 4 GeV2 .

See text for details about the calculation of PDF uncertainties in each case.

Mom. NNPDF3.1 CT14 MMHT2014 ABMP2016 CJ15 HERAPDF2.0

⟨x⟩u+−d+ 0.152(3) 0.158(4) 0.151(4) 0.167(4) 0.152(2) 0.188(3)

⟨x⟩u+ 0.348(4) 0.348(3) 0.348(5) 0.353(3) 0.348(1) 0.372(4)

⟨x⟩d+ 0.196(3) 0.190(3) 0.197(5) 0.186(3) 0.196(1) 0.185(7)

⟨x⟩s+ 0.039(3) 0.035(5) 0.035(9) 0.041(2) – 0.035(11)

⟨x⟩g 0.410(4) 0.416(5) 0.411(9) 0.412(4) 0.416(1) 0.401(10)

The size of the former can be accounted for by studying the stability of the results upon variation of the input parameters;
the size of the latter is currently unknown, although it is supposed to be sub-dominant. Therefore, theoretical uncertainties
will not be considered in the following.

As far as full moments of PDFs are concerned, global-fit results involve some degree of extrapolation to the region
not covered by experimental data, that is not necessarily well accounted for in the PDF error estimates. Extrapolation is
particularly delicate to small x values in the case of polarized PDFs: opposite to unpolarized PDFs, the kinematic coverage is
fairly limited (see Section 2.3.3 and in particular Fig. 2.5) and there is no analog of the momentum sum rule, Eq. (2.53), to
further constrain the PDFs. Extrapolation uncertainties are difficult to quantify, unless one naively extrapolates uncertainty
bands from the measured region.

We now summarize the results for our benchmark moments listed in Section 3.1.1, based on current global-fit deter-
minations of unpolarized and polarized PDFs. We specify how the available results are combined into a single benchmark
value.

Unpolarized parton distributions. We summarize the current status of global-fit results of the benchmark moments of
unpolarized PDFs listed in Section 3.1.1 in Table 3.5. In the first column we indicate the computed moment, and in the
subsequent six columns the moment’s value, obtained from the most recent available PDF determinations: NNPDF3.1 [13],
CT14 [15], MMHT2014 [14], ABMP16 [16] (with Nf = 4 flavors), CJ15 [17] and HERAPDF2.0 [22] respectively. The most

relevant features of these PDF sets have been presented in Section 2.3.2. All values in Table 3.5 are displayed atµ2 = 4 GeV2.
They have been obtained from the default PDF sets at the highest available perturbative order, which is NNLO for all of them
except CJ15 for which it is NLO. The uncertainties for the CT14 PDF set have been rescaled by a factor 1/1.65 to convert from
90%-CL bands to 68%-CL bands. Note that tolerance of ∆χ2 = 1 at 68% CL is used in the CJ15 PDF set; hence, the smaller
uncertainties of this set compared to all the other PDF sets. Also, the CJ15 set does not fit ⟨x⟩s+ , therefore the corresponding
number is not displayed in Table 3.5. In the case of the HERAPDF2.0 set, the error band is the sum in quadrature of the
statistical,model and parametrization uncertainties. Taking the results of Table 3.5 at face value, there are clear discrepancies
arising from a variety of factors [10,11]; we examine some of these in the following.

In order to provide a benchmark value for the first moments of unpolarized PDFs listed in Table 3.5, we follow the latest
PDF4LHC 2015 recommendations [10]. Even though the recommendations were primarily formulated for the usage of PDFs
in LHC-related physics, and alternative recommendations have been suggested [11], we find it useful to apply them here
as well. The reason is twofold. First, this benchmark exercise aims at accuracy and precision, two of the guiding principles
underlying the recommendations. Second, they led to the release of a specific PDF set that can be easily used to compute all
the needed benchmark values.
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Table 3.6

Status of current global-fit determinations of the benchmark moments of polarized PDFs listed in Section 3.1.1. All values are shown at µ2 = 4 GeV2 .

Mom. NNPDFpol1.1 DSSV08 JAM15 JAM17

⟨1⟩∆u+−∆d+ 1.250(16) 1.260(18) 1.314(6) 1.240(41)

⟨1⟩∆u+ 0.794(46) 0.814(12) 0.831(21) 0.812(22)

⟨1⟩∆d+ −0.453(52) −0.456(11) −0.476(22) −0.428(31)
⟨1⟩∆s+ −0.120(81) −0.112(23) −0.109(20) −0.038(96)
⟨x⟩∆u−−∆d− 0.195(14) 0.203(9) – 0.241(26)

Whilewe refer the reader to [10] for details, herewe onlymention that the PDF4LHC15 PDF setwas constructed bymeans
of a statistical combination [180,182,183,202] (an unweighted average) of the NNPDF3.0 [264], CT14 and MMHT2014 PDF
sets.10 The three PDF sets were selected among all the publicly available PDF sets based on four criteria [10].

• A global data set from a wide variety of observables and processes should be included in the fit analysis.
• Theoretical hard cross-sections should be evaluated up to NNLO in a general-mass variable-flavor number scheme

with up to Nmax
f = 5 active quark flavors.

• The central value of the strong coupling at the Z-boson mass, αs(M
2
Z ) should be fixed at an agreed common value,

consistent with the PDG world-average [30] (αs(MZ ) = 0.118).
• All known experimental and procedural sources of uncertainty should be properly accounted for.

TheABMP2016 set (aswell as its previous versions) does notmeet the second and third criteria; the CJ15 set does notmeet
the first, second and fourth criteria, while the HERAPDF2.0 set does not meet the first criterion. Hence, these sets were not
included in the PDF4LHC2015 PDF set, although the possibility of including them in future versions of the recommendation
remains open.

In order not to lose important information contained in the PDF sets excluded from the PDF4LHC recommendations, we
also provide alternative benchmark numbers. Specifically, we combined all the numbers quoted in Table 3.5 so that the
mean value is an unweighted average of the mean values and the error is half of the difference between the smallest and the
largest result. The rationale for this choice is that PDF sets entering the PDF4LHC recommendations are not benchmarked
in the x ≳ 0.1 region, which can be relevant for the moment analysis. The combination of all results in Table 3.5, although
sometimes less precise than the PDF4LHC combination, maximizes the amount of experimental information included in the
benchmark numbers. Specifically, it includes the information taken into account at large x and small Q 2 in the CJ15 and
ABMP16 PDF sets, which is otherwise excluded from the PDF4LHC set.

The global-fit benchmark numbers for ⟨x⟩u+−d+ , ⟨x⟩u+ , ⟨x⟩d+ , ⟨x⟩s+ and ⟨x⟩g will be further commented below, where they
will be collected together with their lattice-QCD counterparts in Table 3.7.

Polarized parton distributions. We summarize the current status of global-fit results of the benchmarkmoments of polarized
PDFs listed in Section 3.1.1 in Table 3.6. In the first column, we indicate the computed moment, and in the subsequent
three columns, its value as obtained from the most recent available PDF determinations: NNPDFpol1.1 [18], DSSV08 [19],11

JAM15 [20] and JAM17 [167]. The most relevant features of these PDF sets have been presented in Section 2.3.3. All values
in Table 3.5 are displayed at µ2 = 4 GeV2 at NLO. The uncertainties correspond to 68%-CL bands with tolerance of∆χ2 = 1
for the DSSV08 PDF set. In the case of the JAM15 set, we do not provide a value for ⟨x⟩∆u−−∆d− : the fit is based on inclusive
DIS data only, which are not sensitive to the valence distribution∆u− −∆d−. We emphasize that, because of extrapolation
uncertainties difficult to quantify, the error estimates in Table 3.6 should be interpreted as a lower bound, especially for the
DSSV08 and JAM sets based on conventional parametrizations. In these cases, uncertainty bands are naively extrapolated
from the measured kinematic region, therefore they are likely to underestimate the contribution coming from the small-x
region.

As outlined in Section 2.3.3, polarized PDFs cannot be determined in a global QCD analysis with the same accuracy as
their unpolarized counterparts. Also, because polarized PDFs do not enter precision physics studies at the LHC, the selection
and combination of different PDF sets has received much less attention. No recommendations analogous to those from the
PDF4LHC working group exist for polarized PDFs.

To provide a benchmark value for the relevant moments of polarized PDFs listed in Table 3.6, we apply an unweighted
average of the NNPDFpol1.1, DSSV08 and JAM15 PDF sets. The rationale for this choice is twofold. On the one hand, we
maximize the amount of experimental information that can determine the central value of our benchmark moments. As
explained in Section 2.3.3, the NNPDFpol1.1 and the DSSV08 PDF sets are based on a very similar set of inclusive DIS data,
while the JAM15 PDF set is based on a much wider inclusive DIS data set. This wider set can help constrain the moments
of the total quark distributions. The NNPDFpol1.1 and the DSSV08 PDF sets are based respectively on pp and SIDIS data to
disentangle the quark and antiquark distributions. This can help constrain the moments of the valence distributions. On

10 The NNPDF3.1 PDF set was not available when the recommendations were formulated.
11 The DSSV08 analysis has been updated by the DSSV14 analysis [29] essentially only in the determination of the gluon PDF. The moments in Table 3.6

therefore hardly differ in the two analyses.
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Fig. 3.2. A comparison of the unpolarized PDF benchmark moments between the lattice QCD computations and global fit determinations. Results are

displayed both in terms of absolute values (left) and ratios to the lattice values (right) at µ2 = 4 GeV2 .

Table 3.7

Benchmark values for lattice-QCD calculations and global-fit determinations of the benchmark moments of unpolarized PDFs. All values are shown at

µ2 = 4 GeV2 . Results with a superscript † are from a single lattice calculation; they may underestimate some sources of uncertainty.

Moment Lattice QCD Global Fit (PDF4LHC) Global fit (uw avg)

⟨x⟩u+−d+ 0.119–0.226 0.155(5) 0.161(18)

⟨x⟩u+ 0.453(75)† 0.347(5) 0.352(12)

⟨x⟩d+ 0.259(74)† 0.193(6) 0.192(6)

⟨x⟩s+ 0.092(41)† 0.036(6) 0.037(3)

⟨x⟩g 0.267(35)† 0.414(9) 0.411(8)

the other hand, we balance the rather different uncertainties among the three PDF sets, specifically the larger NNPDFpol1.1
estimate against the smaller DSSV08 and JAM15 values. This way, we avoid a possible underestimation of the procedural
uncertainties induced for example by the choice of a simple PDF parametrization in the DSSV08 and JAM15 fits, or by the
extrapolation to the small-x region. Because the JAM17 set is unique in fitting simultaneously polarized PDFs and FFs, we do
not include it in our benchmark average, but quote it as a useful comparison.

The global-fit benchmark numbers for gA, ⟨1⟩∆u+ , ⟨1⟩∆d+ , ⟨1⟩∆s+ and ⟨x⟩∆u−−∆d− will be further commented below,where
they will be collected with their lattice-QCD counterparts in Table 3.8.

3.2. Comparing lattice-QCD and global-fit benchmark moments

We can now compare the lattice-QCD and global PDF fit results presented in Sections 3.1.2–3.1.3 for the unpolarized and
polarized PDF moments respectively.

Unpolarized parton distributions. The benchmark values of the first moments of the unpolarized PDFs, obtained as described
in Sections 3.1.2–3.1.3, are summarized in Table 3.7. Both the PDF4LHC and the unweighted average (uw avg) are displayed
in the case of global fits. The results from a single lattice calculation,whichmight underestimate some sources of uncertainty,
are denotedwith a superscript †. All values shown here are atµ2 = 4 GeV2. For ease of comparison, these benchmark results
are also graphically compared in Fig. 3.2, both in terms of absolute values (left panel) and of uncorrelated ratios to the lattice
central values (right panel).

As is apparent from Table 3.7 and Fig. 3.2, there is a significant difference in the uncertainties between the lattice QCD and
global fit results, with the latter always about one order of magnitude smaller than the former. Moreover, even within their
large uncertainties, the lattice-QCD results for the first moments of the total up and strange quark and the gluon PDFs are not
compatible with their global-fit counterparts. In the case of quarks, the discrepancy is below 2σ (in units of the lattice-QCD
uncertainty), while in the case of the gluon the discrepancy is slightly larger than 3σ .

On the lattice-QCD side, we note that in the flavor-singlet sector calculations neglected part of the renormalization and
computed some other parts only perturbatively. Most of the discrepancies between lattice-QCD and global-fit results are
observed in the flavor-singlet sector. Progress in taking into account the renormalization properly could shift lattice-QCD
results significantly, and reconcile them with the global fits in the future. We also note that the momentum sum rule,
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Table 3.8

Same as Table 3.7, but for the polarized benchmark moments.

Moment Lattice QCD Global Fit

gA ≡ ⟨1⟩∆u+−∆d+
1.195(39) (Nf = 2+ 1+ 1)

1.275(12)
1.279(50) (Nf = 2)

⟨1⟩∆u+ 0.830(26)† 0.813(25)

⟨1⟩∆d+ −0.386(17)† −0.462(29)
⟨1⟩∆s+ −0.052 –−0.014 −0.114(43)
⟨x⟩∆u−−∆d− 0.146–0.279 0.199(16)

Eq. (2.53), usually is not imposed in lattice-QCD calculations. In the ETMC17 analysis [250], it turns out to be 1.071(93)(72),
see Table 3.1, if uncertainties are assumed to be uncorrelated. Although there is no evidence for a violation of themomentum
sum rule based on this result, one must be careful combining results from different calculations to account for correlations
and other sources of error. Also, note that the ETMC17 analysis is performed with Nf = 2 flavors, hence the strange quark
should not participate in the sum rule.

On the global-fit side, we note that the amount of experimental information that constrains the total up-quark
distribution is the largest among all distributions. Therefore, it seems unlikely that its global-fit central value could vary
significantly in the future, and become compatible with the current lattice result. Conversely, the amount of experimental
information that constrains the total strange distribution in a global fit is less abundant and less accurate. A slight shift in
its central value, towards the current lattice-QCD results, might be observed in the future, as soon as new data sensitive to
the strange quark becomes available. Finally, in an attempt to reconcile the lattice-QCD and the global-fit results of the first
moment of the gluon PDF, one could assume a completely different behavior of the gluon PDF below the HERA kinematic
coverage, x ∼ 10−5 (see Fig. 2.2). While such a kinematic region remains completely unexplored, in general the contribution
of this region to the moments is negligible and thus unlikely to resolve the situation.

All these remarks apply irrespective of the benchmark value used for global fits, either the PDF4LHC or the unweighted
average. They also still hold if individual lattice-QCD and/or global-fit results in Tables 3.1–3.5 are compared instead of
their benchmark values in Table 3.7. These results suggest that both greater accuracy and greater precision are required in
lattice-QCD calculations to match the accuracy and precision of the first moments of unpolarized PDFs determined from a
global fit.

Polarized parton distributions. The benchmark values of the first moments of the unpolarized PDFs, obtained as described in
Sections 3.1.2–3.1.3, are summarized in Table 3.8. Results from a single lattice calculation, whichmight underestimate some
sources of uncertainty, are denoted with a superscript †. In the case of gA, we report the two values with Nf = 2+ 1+ 1 and

Nf = 2 sea quarks from lattice QCD. The value of gA is scale-independent, and we quote all other results atµ2 = 4 GeV2. For
ease of comparison, these values are also displayed in Fig. 3.3 in the same format as in Fig. 3.2. In the case of gA, the result
with Nf = 2+ 1+ 1 is used as normalization factor in the right panel of Fig. 3.3. Results from the JAM17 analysis [167], see
Table 3.6, are displayed separately. The reason for this is that, in contrast with the NNPDFpol1.1, DSSV08 and JAM15 fits, in
the JAM17 fit the experimental value of gA, Eq. (2.54), is not an input of the fit, but it is fitted alongside the PDFs. Furthermore,
in JAM17 PDFs are fitted alongside FFs.

As is apparent from Table 3.8 and Fig. 3.3, the size of the uncertainties on the moments is in general comparable between
the lattice-QCD and the global-fit results, opposite to the unpolarized case.12 The corresponding central values are also in
reasonable agreement within their mutual uncertainties.

In the case of gA, the global-fit result obtained from the unweighted average of the NNPDFpol1.1, DSSV08 and JAM15 fits
shows a preference for the lattice-QCD result obtained with Nf = 2 sea quarks (compared to that with Nf = 2 + 1 + 1
sea quarks). Its uncertainty is, however, four times smaller than that of both lattice results. This is not unexpected, since,
in all the three fits that are combined, the experimental value of gA is imposed in the fits themselves. The final uncertainty
on the global-fit value of gA is thus reduced by the uncertainty of its experimental value g

exp
A , which is almost one order

of magnitude smaller than the uncertainty on the lattice-QCD results (see Fig. 3.1). If the experimental value of gA is not
imposed as a boundary condition in the fit, as in the JAM17 analysis, the size of the uncertainty on gA is comparable to that
of the lattice results, although it is not able to discriminate between the Nf = 2 or the Nf = 2 = 1+ 1 results. Overall, this
is a noteworthy confirmation of SU(2) symmetry in QCD to almost 2%.

In the case of the zeroth moments of the total polarized quark distributions, the uncertainty on the lattice-QCD result
is comparable to (in the case of ⟨1⟩∆u+ ) or smaller than (in the case of ⟨1⟩∆d+ and ⟨1⟩∆s+ ) the uncertainty on the global-fit
result. However, in the case of the zeroth moments of the total down- and strange-quark distributions, the lattice-QCD and
the global-fit results are discrepant by about two σ (in units of the lattice QCD uncertainty). On the one hand, we observe
that the uncertainty on the lattice-QCD results might have been underestimated because of the lack of full control over all
systematics (see Section 3.1.2). On the other hand, we observe that the global-fit result has been obtained by requiring SU(3)
symmetry, i.e., by imposing in the individual fits the experimental value (with a possibly inflated uncertainty) of the octet

12 Note that the uncertainty of ⟨1⟩∆s+ in the right panel of Fig. 3.3 appears much larger than the uncertainty of other quark moments because of the

normalization value, which is very close to zero.
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Fig. 3.3. Same as Fig. 3.2, but for the polarized benchmark moments.

PDF combination, as explained in Section 2.3.3. Relaxing this constraint can reconcile the discrepancy observed between

the lattice-QCD and the global-fit result for the zeroth moments of the total down and strange PDFs. This is demonstrated

by comparison with the JAM17 result, whose uncertainty band nicely includes both the lattice-QCD and the global-fit

benchmark values.

In the case of the first moment of the valence distribution ∆u− − ∆d−, the lattice-QCD and the global-fit results are in

excellent agreement, although the uncertainty of the former is five times larger than that of the latter.

All these remarks still hold if individual lattice-QCD and/or global-fit results in Tables 3.2–3.6 are compared instead of

their benchmark values in Table 3.8. These results suggest that lattice-QCD calculations could provide a useful input to global

fits of polarized PDFs, especially in limiting the extrapolation uncertainty into the completely unknown small-x region. This

will become more and more useful as full control over all sources of systematic uncertainties is achieved.

4. Improving PDF fits with lattice-QCD calculations

In this section, we provide an estimate of the potential impact of future lattice-QCD calculations in global unpolarized and

polarized PDF fits. This study is carried out with two publicly available tools: the Bayesian reweighting method [233,265]

applied to the NNPDF3.1 [13] and NNPDFpol1.1 [18] sets; and the Hessian profiling method [266] applied to HERAPDF2.0

set [22]. Both methods allow us to quantify the impact of new measurements (or of future measurements, if pseudo-data

are used) on PDFs without repeating the global analysis. The main limitation of these methods is that they are maximally

reliable if the amount of information carried in by the new (pseudo-)data ismoderate in comparison to that already included

in the fit.

For simplicity, we limit our study to the impact of a subset of the moments that can be computed using lattice QCD,

focusing on those that can be currently calculated with the highest precision. Therefore, we restrict ourselves to the

benchmark moments discussed in Section 3. We also consider pseudo-data based on x-space lattice-QCD calculations from

the quasi-PDF approach discussed in Section 2.2.3. As we show, particularly in the unpolarized case, the constraining power

of direct x-space calculations is superior to that of PDF moments.

4.1. Impact of lattice calculations of PDF moments

We start by quantifying the constraining power of projected lattice-QCD calculations of PDF moments on both unpolar-

ized and polarized global fits. We define the settings for our study and present our results following Bayesian reweighting

and Hessian profiling, respectively.

4.1.1. Analysis settings

In the unpolarized case, we consider the first moments (momentum fractions) of q+ = q + q̄ (with q = u, d, s), of the

gluon, and of the isovector combination u+ − d+. In the polarized case, we consider the zeroth moments (spin fractions)
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Table 4.1

The three scenarios assumed for the total percentage systematic uncertainty δ
(i)
L in future lattice-QCD calculations. The unpolarized (upper table) and

polarized (lower table) PDF moments included in the analysis are shown. Current systematic uncertainties in state-of-the-art lattice-QCD calculations

are also displayed according to the benchmark exercise performed in Section 3 (see also Tables 3.7 and 3.8 for the unpolarized and polarized cases,

respectively).

Scenario δ
(i)
L for unpolarized moments

⟨x⟩u+ ⟨x⟩d+ ⟨x⟩s+ ⟨x⟩g ⟨x⟩u+−d+
Current ∼ 16% ∼ 30% ∼ 45% ∼ 13% ∼ 60%

A 3% 3% 5% 3% 5%

B 2% 2% 4% 2% 4%

C 1% 1% 3% 1% 3%

Scenario δ
(i)
L for polarized moments

⟨1⟩∆u+ ⟨1⟩∆d+ ⟨1⟩∆s+ ⟨x⟩∆u−−∆d− ⟨1⟩∆u+−∆d+

Current ∼ 3% ∼ 5% ∼ 70% ∼ 65% ∼ 3%

A 5% 10% 100% 70% 5%

B 3% 5% 50% 30% 3%

C 1% 2% 20% 15% 1%

of ∆q+ (with q = u, d, s) and of the isovector combination gA = ∆u+ − ∆d+, and the first moment of the ∆u− − ∆d−

combination. Using the notation outlined in Appendix A, we have

⟨x⟩u+ , ⟨x⟩d+ , ⟨x⟩s+ , ⟨x⟩g , ⟨x⟩u+−d+ for the unpolarized case , (4.1)

⟨1⟩∆u+ , ⟨1⟩∆d+ , ⟨1⟩∆s+ , ⟨x⟩∆u−−∆d− , ⟨1⟩∆u+−∆d+ for the polarized case . (4.2)

We look at three different scenarios, which we denote as Scenario A, B, and C, for the projected total systematic

uncertainty associated with lattice-QCD calculations. Our choice for this uncertainty is denoted by δ
(i)
L . It is summarized

in Table 4.1 for each PDF moment i in Eqs. (4.1)–(4.2) and for each scenario. Current uncertainties on lattice-QCD results

(see Sections 3.1.2–3.2) are also quoted for comparison. We emphasize that, while trying to be reasonably realistic, we do

not associate a given scenario with a specific time scale for the calculation. Our results provide a guide to the potential

constraining power of future lattice-QCD calculations of PDF moments once included in global analyses.

Our choice of uncertainties in Table 4.1 is rather different for the unpolarized and polarized cases. For the unpolarized

case, Scenario A is based on values of δ
(i)
L rather smaller than the typical uncertainties that affect state-of-the-art lattice-QCD

calculations, see Table 3.7. As expected from Fig. 3.2, and as we have explicitly verified, including lattice-QCD pseudo-data

with uncertainties of similar size as those of Table 3.7 leaves unpolarized PDFs essentially unchanged. Significantly reduced

uncertainties δ
(i)
L must be assumed to demonstrate any impact on global fits. We assume that δ

(i)
L is typically larger for ⟨x⟩s+

and ⟨x⟩u+−d+ , compared to the other moments, in line with what is observed from Table 3.7. Scenarios B and C are rather

optimistic, in that they require systematic uncertainties to decrease by roughly a factor of two and a factor of fourwith respect

to Scenario A. For the polarized case, Scenario A assumes that the uncertainties δ
(i)
L are similar to current uncertainties in

state-of-the-art lattice-QCD calculations, see Section 3, and Table 3.8.
We note that a total systematic error of δ

(i)
L ∼ 1% is probably the best that one can achievewithin a lattice-QCD calculation

in the near future, since at that level several other effects, such as QED corrections, become relevant. These are much more

difficult to deal with. For both the polarized and the unpolarized case, the generalization of these projections to other

conceivable scenarios is straightforward and can be obtained from the authors upon request.

4.1.2. Bayesian reweighting analysis

To quantify the impact of future lattice-QCD calculations on global fits in each of the three scenarios in Table 4.1, we

use a procedure based on Bayesian reweighting analysis. We briefly describe this procedure here, and refer to [233,265] for

additional details.

• We first generate pseudo-data for the lattice-QCD calculations of ⟨x⟩u+ , ⟨x⟩d+ , ⟨x⟩s+ , ⟨x⟩g , and ⟨x⟩u+−d+ (for the

unpolarized case), and ⟨1⟩∆u+ , ⟨1⟩∆d+ , ⟨1⟩∆s+ , ⟨x⟩∆u−−∆d− , and ⟨1⟩∆u+−∆d+ (for the polarized case). We denote

generically these moments by Fi.

• We construct the associated pseudo-data, denoted by F
(exp)
i , by taking the central values from the corresponding

NNPDF fits, NNPDF3.1 NNLO for the unpolarized case and NNPDFpol1.1 NLO for the polarized case. That is, we assume

for simplicity that the central value of such future lattice calculations would coincide with the current ones from

the global fit.13 As discussed in Section 2.3.2, this corresponds to computing the mean over the Monte Carlo replica

13 The exercise can be repeated with the actual lattice-QCD central values. However, this requires some choices, such as how to impose the momentum

sum rule. This is beyond the scope of the present studies.
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sample,

F
(exp)
i ≡ 1

Nrep

Nrep∑

k=1
F

(k)
i , i = 1, . . . ,Nmom , (4.3)

where Nmom is the number of PDF moments that will be included in the reweighting; here Nmom = 5 both for the

unpolarized and polarized cases. To be consistent with the calculations in Section 3, the central values of the pseudo-

data, Eq. (4.3), are also evaluated at Q 2 = 4 GeV2 (see Tables 3.5 and 3.6).

• The uncertainty in the pseudo-data, denoted by δF
(exp)
i , is taken to be the value indicated in Table 4.1 for each of the

three scenarios. Thus, the absolute uncertainty on the ith moment is given by δF
(exp)
i = δ(i)L F

(exp)
i .

• Using the pseudo-data (central values and total uncertainties) as defined above, we compute the Bayesian weights

ωk. These weights quantify the agreement between each kth replica in the input PDF set and the corresponding lattice

pseudo-data. We compute the χ2 for each replica k as

χ2(k) =
Nmom∑

i=1

(
F

(k)
i − F

(exp)
i

)2

(
δF

(exp)
i

)2 , k = 1, . . . ,Nrep , (4.4)

assuming that there are no correlations between different Nmom moments. This assumption in general might not be

a good approximation, since most lattice-QCD systematic errors are correlated among different moments, and can be

avoided, provided the full breakdown of systematic errors for each quantity is available.

Once the values of theχ2 have been evaluated,we compute the correspondingweights for each replica. The relation

between the weights wk and the values of the χ2(k) of each replica is [233,265]

ωk =
(
χ2(k)

)(Nmom−1)/2
exp(−χ2(k)/2)

∑Nrep

k=1

[(
χ2(k)

)(Nmom−1)/2
exp(−χ2(k)/2)

] , (4.5)

where the denominator ensures that the weight admits a probabilistic interpretation, that is,
∑

kwk = 1. These

weights represent a measure of the agreement of the individual replicas with the new pseudo-data. For instance,

replicas which have associated values of the moments far from the pseudo-data (within uncertainties) will have a

large χ2 and a very small weight, being thus effectively discarded.

• These weights are used to recompute the PDFs, their moments, and generic cross-sections. This procedure emulates

the impact of adding lattice-QCD pseudo-data to a complete PDF fit. For instance, after reweighting, the mean value

of the PDF moments is

F
(rw)
i =

Nrep∑

k=1
ωkF

(k)
i , i = 1, . . . ,Nmom , (4.6)

with a similar relation for the associated uncertainties.

One limitation of the reweighting procedure is that it is maximally reliable if the effective number of replicas Neff that

survive the reweighting procedure (which is a measure of the amount of information left) is not too small. This effective

number of replicas is quantified in terms of the Shannon entropy [233,265]

Neff ≡ exp

⎡
⎣ 1

Nrep

Nrep∑

k=1
ωk log

(
Nrep/ωk

)
⎤
⎦ . (4.7)

Finding Neff ≪ Nrep means that the pseudo-data have a large impact on the fit, potentially leading to a large reduction of

the PDF uncertainties. If either the effective number of replicas becomes too small (say Neff ≲ 25), or the relative fraction is

small (say, Neff/Nrep ≲ 0.10), then the results become unreliable, since they are affected by large statistical fluctuations.

Therefore, before considering the effects of the lattice-QCD pseudo-data at the PDF level, we need to ensure that the three

scenarios defined in Table 4.1 still lead to values ofNeff large enough for the reweighting procedure to be reliable. In Table 4.2

we indicate the effective number of replicas Neff, Eq. (4.7), remaining when the pseudo-data are included in the global fit

according to the scenarios in Table 4.1. For completeness, we also quote the original number of replicas Nrep for the prior

PDF sets, NNPDF3.1 and NNPDFpol1.1, respectively. As we can see, there is a marked decrease of Nrep for the three scenarios,

indicating that adding the PDFmoments leads to non-trivial constraints on the global fit. For instance, in themost optimistic

scenario, Scenario C, the effective number of replicas is around two (five) times smaller than the starting number of replicas

in the unpolarized (polarized) case.
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Table 4.2

The effective number of replicas Neff , Eq. (4.7), remaining after pseudo-data

on the PDF moments are included in the global fit according to the scenarios

outlined in Table 4.1. For completeness, we also indicate the original number

of replicas Nrep for the prior PDF sets, NNPDF3.1 and NNPDFpol1.1.

NNPDF3.1 NNPDFpol1.1

Nrep original 1000 100

Neff Scenario A 740 72

Neff Scenario B 750 59

Neff Scenario C 510 20

Table 4.3

Values of the unpolarized PDF moments used as pseudo-data, as well as the corresponding results after the reweighting has been performed, for the three

scenarios summarized in Table 4.1. The PDF uncertainties quoted correspond in all cases to 68% CL intervals.

Original Scenario A Scenario B Scenario C

⟨x⟩u+ 0.348± 0.005 0.349± 0.004 0.349± 0.004 0.349± 0.003
⟨x⟩d+ 0.196± 0.004 0.196± 0.004 0.196± 0.003 0.196± 0.002
⟨x⟩s+ 0.0393± 0.0036 0.0389± 0.0030 0.0389± 0.0024 0.0389± 0.0014
⟨x⟩g 0.4097± 0.0042 0.4097± 0.0043 0.4097± 0.0040 0.4097± 0.0029
⟨x⟩u+−d+ 0.1522± 0.0033 0.1521± 0.0037 0.1521± 0.0035 0.1521± 0.0029

Impact on unpolarized global fits. Wenowdiscuss the results of applying the reweighting procedure toNNPDF3.1. In Table 4.3

we summarize the values of the unpolarized PDF moments used as pseudo-data F
(exp)
i , and the corresponding results after

the reweighting has been performed, for the three scenarios summarized in Table 4.1; PDF uncertainties correspond to 68%-

CL intervals. We recall that, as explained above, the three scenarios exhibit uncertainties δ
(i)
L for the lattice-QCD pseudo-data

rather smaller than those of current state-of-the-art calculations (see Table 3.7).

From Table 4.3 we see that a significant reduction in the uncertainties in the unpolarized PDF moments is challenging

to achieve unless we assume the most aggressive scenarios. For instance, in Scenario C, which is about the best precision

that can be achieved from lattice-QCD in the near future, the PDF uncertainties of the first moments (that is, the momentum

fractions) foru+, d+, s+ and g decrease by around30%–60%. Themostmarkeddecrease is for the strangemomentum fraction,

since this is affected by the largest PDF error in the prior fit. In contrast, the nonsinglet combination ⟨x⟩u+−d+ is essentially

unchanged in all three scenarios. Note that, in Table 4.3, the central values of the PDF moments are stable, since we assume

that the central values of the pseudo-data correspond to those of the input PDFs. In a realistic situation, this is not necessarily

the case and central values of the PDFs could also vary.

Further evidence that reducing uncertainties in unpolarized PDFs will be challenging is shown in Fig. 4.1, which displays

the percentage PDF uncertainties in NNPDF3.1 for the gluon and the u+, d+ and s+ quark PDFs at Q 2 = 4 GeV2, compared to

the corresponding results including lattice-QCD pseudo-data. In the case of the u+, d+ and s+, we observe a slight reduction

of the PDF uncertainties, which is more marked as we move from Scenarios A to C. For instance, in the latter case the

percentage PDF uncertainty on u+ (d+ and s+) at x ≃ 0.1 decreases from 1.8% to 1.2% (from 2.2% to 1.7% and from 13% to

10%, respectively). The PDF uncertainties of the gluon PDF, however, are essentially unchanged even in the most optimistic

scenario.

We also observe the trend that the reduction of the uncertainty of the PDF moments (see Table 4.3) is more significant

than the PDF uncertainty as a function of x (Fig. 4.1). We will see that this pattern also persists for the polarized PDF case. As

the PDF moments integrate across all x values (with emphasis on smaller x values), this suggests that there are correlations

which could be driving this result. In particular we note that in Scenario C the uncertainty on the moment for s+ is less than

4% while for the PDF at any x it is always greater than 8%, a result which can only be achieved due to strong anticorrelation

between different x regions. Additional studies examining the PDF correlations before and after inclusion of the lattice-QCD

input could prove enlightening.

Focusing on the large-x region, where the impact of the PDF moments considered here is expected to be more marked,

in Fig. 4.2 we show the ratio of the uncertainty in each scenario to the prior PDF uncertainty in the NNPDF3.1 set, for the

d+ and s+ total quark PDFs. This comparison clearly illustrates that the relative reduction of the PDF uncertainties upon

addition of lattice-QCD pseudo-data is not completely flat, and that it exhibits some structure. The constraints from lattice-

QCD calculations of these PDF moments decrease for larger values of x.

Impact on polarized global fits. Now we turn to apply the reweighting procedure to NNPDFpol1.1. In Table 4.4 we list

the values of the polarized PDF moments used as pseudo-data, and the corresponding results after the reweighting has

been performed for the three scenarios summarized in Table 4.1. As in the unpolarized case, the PDF uncertainties quoted

correspond in all cases to 68%-CL intervals. As we can see from this comparison, in Scenario A (which assumes lattice-QCD

pseudo-data with uncertainties similar to existing calculations) there is amarked impact on the polarized PDFmoments. For

both ⟨1⟩∆u+ and ⟨1⟩∆d+ the PDF uncertainties are roughly halved, with a similar, but less marked, trend for ⟨1⟩∆s+ . At this
level, there is no impact on the nonsinglet combinations ⟨1⟩∆u+−∆d+ and ⟨x⟩∆u−−∆d− .
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Fig. 4.1. The percentage PDF uncertainty in NNPDF3.1 for the gluon and the u+ , d+ and s+ quark PDFs at Q 2 = 4 GeV2 , compared to the results of including

lattice-QCD pseudo-data for moments of PDFs in the fit, according to the three scenarios in Table 4.1. See text for details.

Fig. 4.2. Same as Fig. 4.1, now focusing on the large-x region, and showing the ratio of the PDF uncertainty in the fits based on the three scenarios to the

original PDF uncertainty in the NNPDF3.1 set, for the d+ (left) and s+ (right) total quark PDFs.

Table 4.4

Same as Table 4.3, now for the polarized PDF moments computed with NNPDFpol1.1. The corresponding impact at the PDF level is shown in Fig. 4.3 .

Original Scenario A Scenario B Scenario C

⟨1⟩∆u+ +0.788± 0.079 +0.798± 0.039 +0.797± 0.023 +0.790± 0.009
⟨1⟩∆d+ −0.450± 0.083 −0.450± 0.042 −0.456± 0.026 −0.465± 0.012
⟨1⟩∆s+ −0.124± 0.108 −0.120± 0.070 −0.121± 0.076 −0.111± 0.029
⟨1⟩∆u+−∆d+ +1.250± 0.024 +1.250± 0.022 +1.253± 0.016 +1.256± 0.012
⟨x⟩∆u−−∆d− +0.196± 0.014 +0.195± 0.014 +0.196± 0.016 +0.198± 0.012
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Fig. 4.3. Same as Fig. 4.1, now showing the absolute PDF uncertainties of the NNPDFpol1.1 fit Q 2 = 4 GeV2 , compared to the corresponding results once

the lattice pseudo-data on polarized moments are included in the analysis via reweighting.

As we further decrease the assumed uncertainties in the lattice-QCD pseudo-data, we observe a corresponding reduction
of the uncertainties in the global fit. In Scenario C, the most optimistic, we find that for both ⟨1⟩∆u+ and ⟨1⟩∆d+ there is
an uncertainty reduction by about an order of magnitude compared to the current values, and by about a factor of five for
⟨1⟩∆s+ . Therefore, future lattice-QCD calculations of polarized PDF moments can potentially lead to a much more precise
understanding of the spin structure of the proton. The other quark combinations exhibit less sensitivity to the inclusion of
the PDF moments in the global fit, because they are already quite well constrained by available experimental data. The PDF
uncertainties for ⟨1⟩∆u+−∆d+ are reduced by a factor of two in this quite optimistic scenario, while those of ⟨x⟩∆u−−∆d− are
essentially unaffected even in the most optimistic scenario.

In Fig. 4.3 we compare the absolute PDF uncertainties of the NNPDFpol1.1 fit to the corresponding results once the lattice
pseudo-data on polarized moments are included in the analysis by means of the reweighting. We show absolute rather than
relative uncertainties because, unlike unpolarized PDFs, polarized PDFs often exhibit nodes (in particular for strangeness
and the gluon) and in the nearby regions the concept of relative uncertainty becomes ill-defined.

From Fig. 4.3 we see that for scenarios A and B there is only a very moderate reduction (or even a slight increase) of the
PDF uncertainties, seemingly at oddswith the results for theirmoments in Table 4.4. The reason is that the first PDFmoments
alone provide only limited information on the shape of the PDFs themselves, and therefore in some cases one finds a larger
error reduction on themoments (since these are the fitted quantities) than on the PDFs themselves (which are only indirectly
constrained). Once, however, the lattice-QCD pseudo-data uncertainties decrease beyond a certain level, these uncertainties
start to influence the PDF shape, as we can see from the results of Scenario C. In that case we find that the PDF uncertainties
can decrease by up to a factor of two (three) for ∆d+(x,Q ) (∆s+(x,Q )). We also see the apparently simple feature that
relative reduction of PDF uncertainties is more or less constant along the whole range of x. For the strange quark this is
perhaps roughly consistent with a simple reduction in the normalization uncertainty independent of x. However, similarly
to the unpolarized case, for the down quark this decrease is a much smaller factor than the decrease in the uncertainty of
the moments, meaning that there must be some anticorrelation between PDFs at different x values.

4.1.3. Hessian profiling analysis
To complement the results obtained with the Bayesian reweighting approach, we use a profiling method, suitable

for Hessian PDF sets, to estimate the effect of including lattice-QCD pseudo-data into the fit [266,267]. We choose
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HERAPDF2.0 [22] as a representative set of Hessian PDFs. As in the case of the Bayesian reweighting exercise presented
in the previous section we consistently use the same lattice-QCD pseudo-data on PDF moments to estimate the impact on
HERAPDF2.0. An additional advantage of the HERAPDF2.0 set is the use of a standard tolerance ∆χ2 = 1 for defining the
68%-CL PDF uncertainties, which enables a robust framework for applying the profiling method.

For Hessian PDF sets, the Hessian profiling method can be used to both check the compatibility of new data with a given
PDF set, and also estimate the impact these datawill have on the PDFs. In the followingwe describe the essential components
of the profiling method, and assume that the Hessian PDF set uses a tolerance of ∆χ2 = 1, which corresponds to 68% CL
uncertainties, as is the case with the HERAPDF2.0 set.14 The central values of the considered moments are obtained using
the central PDFs and the corresponding errors are calculated according to:

δFi =
1

2

√∑

k

(
Fi(f

+
k )− Fi(f

−
k )
)2
, i = 1, . . . ,Nmom , (4.8)

where k labels the number of error PDFs (Hessian eigenvectors) which have both a positive and a negative direction. In the
profiling method, one considers a χ2 function in which the χ2 of the new data has been added to the initial χ2

0 , namely

χ2
new = χ2

0 +
Neig∑

k

z2k +
Ndata∑

i=1

(
Fi − F

(exp)
i

)2

(
δF

(exp)
i

)2 , (4.9)

whereχ2
0 is the value of theχ2 function in theminimumof the initial PDF set, zk are the parameters diagonalizing theHessian

matrix of the initial PDF set, Neig is the dimension of the eigenvector space in which initial Hessian errors are defined (half

of the number of error PDFs), F
(exp)
i is the new (pseudo-)data, and Fi the corresponding theory prediction.

In the spirit of the Hessian method, the new theory predictions Fi can be expanded using a linear approximation:

Fi ≃ Fi[S0] +
∑

k

∂Fi[S]
∂zk

⏐⏐⏐⏐
S=S0

zk ≃ Fi[S0] +
∑

k

Dikwk , (4.10)

where S0 represents the central PDF and we have defined

Dik =
1

2
(Fi[S+k ] − Fi[S−k ]) ; (4.11)

here the derivative has been approximated by a finite difference of the Hessian PDF error sets S±k . The new χ2 of Eq. (4.9)
can now be minimized with respect to the parameters wk, which results in:

wmin
k =

∑

n

− B−1kn an , (4.12)

where we have introduced

Bkn =
∑

i

DikDin(
δF

(exp)
i

)2 + δkn, ak =
∑

i

Dik(Fi[S0] − F
(exp)
i )

(
δF

(exp)
i

)2 . (4.13)

The key result of the Hessian profiling method is that now the components of the solutionwmin
k define a new set of PDFs

representing a global minimum after including the new data:

fnew = fS0 +
Neig∑

k=1

fS+
k
− fS−

k

2
wmin

k . (4.14)

A set of new error PDFs can be also defined; in this case the matrix Bkn plays the role of the Hessian matrix from which the
PDF uncertainties can be obtained.

We performed this study using the xFitter program [268] assuming the same three scenarios for the lattice-QCD pseudo-
data as in Table 4.1. The results are shown in Table 4.5, where we tabulate the uncertainties of the input HERAPDF2.0 PDF in
column two and the corresponding uncertainties for each scenario in columns three to five. The analogous results from the
reweighting method, applied to the NNPDF3.1 data set, were listed in Table 4.3.

From a comparison of the constraining power of the lattice-QCD pseudo-data displayed in Table 4.5 to Table 4.3, we
observe a consistent trend between Bayesian reweighting of NNDPF3.1 and Hessian profiling of HERAPDF2.0. The PDF
uncertainties for ⟨x⟩d+ (⟨x⟩s+ and ⟨x⟩g ) reduce by a factor of roughly four (four and three, respectively) compared to the
original HERAPDF2.0 uncertainties. When comparing with Section 4.1.2, the initial uncertainties of the HERAPDF2.0 analysis

14 In this exercise we consider only the experimental HERAPDF2.0 uncertainties, but not the model and parametrization variations, which are not suited

for profiling.
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Fig. 4.4. Comparison of the u+ , d+ , g , and s+ PDFs at the scale of Q 2 = 4 GeV2 between the original HERAPDF2.0 set and the results of the profiling exercise

accounting for the constraints of the lattice-QCDmoments pseudo-data in Scenarios A, B and C. Only the experimental PDF uncertainties are shown, but not

themodel and parametrization variations.

Table 4.5

Values of the unpolarized PDF moments used as lattice-QCD pseudo-data, as well as the corresponding results after the profiling for the three scenarios

summarized in Table 4.1. The HERAPDF2.0 PDFs were used, and the PDF uncertainties quoted correspond in all cases to 68% CL intervals. The corresponding

results of applying the reweighting method to NNPDF3.1 were listed in Table 4.3 .

Original Scenario A Scenario B Scenario C

⟨x⟩u+ 0.3720± 0.0036 0.3720± 0.0030 0.3720± 0.0027 0.3720± 0.0020
⟨x⟩d+ 0.1845± 0.0053 0.1845± 0.0028 0.1845± 0.0023 0.1845± 0.0015
⟨x⟩s+ 0.0346± 0.0037 0.0346± 0.0015 0.0346± 0.0012 0.0346± 0.0009
⟨x⟩g 0.4006± 0.0078 0.4006± 0.0042 0.4006± 0.0035 0.4006± 0.0024
⟨x⟩u+−d+ 0.1875± 0.0074 0.1875± 0.0045 0.1875± 0.0039 0.1875± 0.0027

are affected by the choice of data (DIS data only), and the number and form of the parametrization (14 parameter HERAPDF

form); the final uncertainties are determined by the profiling procedure. In particular the profiling for the HERAPDF2.0 study

assigns an effective uncertainty on the pseudodata corresponding to ∆χ2 = 1, whereas the constraint in the NNPDF study

is weaker, as it would be for a PDF set with eigenvectors, but which applied a tolerance criterion. While these initial studies

are instructive, further comparisons of these analyses would be valuable.

In Fig. 4.4 we present a comparison of the u+, d+, g , and s+ PDFs at the scale of Q 2 = 4 GeV2 between the original

HERAPDF2.0 set and the results of the profiling exercise for Scenarios A, B and C. Only the experimental PDF uncertainties

are shown in this comparison, but not the model and parametrization variations. The corresponding results based on the

reweighting of NNPDF3.1 were shown in Figs. 4.1 and 4.2.

From Fig. 4.4 we see that, as expected, the impact of the lattice pseudo-data is greatest in themedium and large-x regions.

The precise impact on the PDFs is rather similar for the three scenarios, with the most optimistic Scenario C leading to the

largest reduction in uncertainties. The quark flavor combinations that are most affected by the lattice-QCD pseudo-data are

the d+ and s+ PDFs, and, to a lesser extent, the gluon PDF. The improvement in the PDF uncertainties for d+ and s+ occurs

because the DIS data used in HERAPDF2.0 include only limited constraints on quark flavor separation, and, for these PDFs,

the lattice-QCD pseudo-data add important new information.
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Table 4.6

The effective number of replicas Neff , Eq. (4.7), remaining when the pseudo-

data on the lattice-QCD calculations of Eqs. (4.15) and (4.16) are included in

the global unpolarized and polarized fits.

NNPDF3.1 NNPDFpol1.1

Nrep original 1000 100

Neff Scenario D 376 41

Neff Scenario E 173 35

Neff Scenario F 64 22

4.2. Impact of lattice calculations of x-space PDFs

In the previous section, we studied the impact of lattice-QCD calculations of PDF moments. We now perform an
exploration of the potential constraints that future lattice QCD calculations of x-space PDFs can provide on global analyses.
We focus on the isotriplet combination xu−xd (and x∆u−x∆d in the polarized case), the quark combination onwhich initial
studies have been focused, as it is the simplest to calculate, owing to the lack of disconnected diagrams and the absence of
mixing with other quark flavors or with gluons.

Following the same Bayesian reweighting procedure employed for PDF moments in Section 4.1.2, we have generated
pseudo-data for the isotriplet combinations

u(xi,Q
2)− d(xi,Q

2) and ū(xi,Q
2)− d̄(xi,Q

2) , i = 1, . . . ,Nx , (4.15)

for the unpolarized case, and for

∆u(xi,Q
2)−∆d(xi,Q

2) and ∆ū(xi,Q
2)−∆d̄(xi,Q

2) , i = 1, . . . ,Nx , (4.16)

for the polarized case,withNx being the number of points in x-space that are being sampled.We takeQ 2 = 4 GeV2, consistent
with our choices for the exercise performed in Sections 4.1.2–4.1.3.

We consider three scenarios, denoted by Scenarios D, E, and F, for the total uncertainty δ
(i)
L that will be assigned to the

lattice-QCD calculations of the specific quark combinations listed in Eqs. (4.15) and (4.16). Lattice-QCD computations are
expected to have the smallest systematic uncertainties at large x, so we choose the Nx = 5 points to be

xi = 0.70 , 0.75, 0.80, 0.85, 0.90 . (4.17)

For each scenario, we assume the same relative error for each value of {xi}, and we neglect possible correlations between

neighboring x-points. We assume uncertainties of δ
(i)
L = 12%, 6% and 3% for scenarios D, E, and F, respectively. Note that we

assume the same values of δ
(i)
L for the polarized and unpolarized cases, as well as for both the quark and antiquark isotriplet

combinations Eqs. (4.15) and (4.16).
We summarize the results of this exercise in Fig. 4.5, where we plot the ratio of the PDF uncertainties in each Scenarios A,

B and C (D, E and F) to the uncertainty of the original NNPDF3.1 (NNPDFpol1.1) set. We show the impact on the PDF
uncertainties in ū and d̄ at large-x in the upper plots, with the corresponding comparison for∆ū and∆d̄ in the lower plots.
We concentrate on the results for the individual quark flavors, even though the constraints are imposed on differences
between flavors, as the former are of the more direct interest for phenomenology. From this comparison, we find that
lattice-QCD calculations of the x-dependence of PDFs can significantly reduce the uncertainties for both unpolarized and
polarized antiquarks in the large-x region. Taking into account that the PDF uncertainties on the large-x antiquarks are rather
large, and that they enter a number of important Beyond the Standard Model (BSM) search channels (such as for instance
for production of new heavy gauge bosons W ′ and Z ′), our analysis demonstrates that such calculations would have direct
phenomenological implications. We note however that the curves in Fig. 4.5 fluctuate by a rather large amount. This might
be due to the fact that the uncertainties of the original PDFs fluctuate, particularly at low scales.

Fig. 4.5 shows that in the unpolarized case the large-x PDF uncertainties could be reduced to 60% of their original value.
We also find that there are no large differences between the three scenarios, probably because the constraint is on quark
differences not on individual flavors, so there is freedom for ū and d̄ to vary in a correlated fashion while still satisfying the
constraint. However, it does suggest that a direct lattice-QCD calculation of xū − xd̄ does not need to reach uncertainties
at the few-percent level to influence global fits. For the polarized PDFs, Fig. 4.5 demonstrates that the reduction in PDF
uncertainties could be significantly more marked. For instance, in the case of ∆d̄, at x ≃ 0.8 the resulting PDF uncertainty
from Scenario F is less than 50% of the original uncertainty.

In Table 4.6 we indicate the effective number of replicas Neff, Eq. (4.7), remaining when the lattice-QCD pseudo-data for
Eqs. (4.15) and (4.16) are included in the global unpolarized and polarized fits. Here we find a marked decrease in Nrep for
the three scenarios, in particular for the unpolarized case. For example, in the most optimistic Scenario F, only 64 effective
replicas remain out of the original sample of Nrep = 1000 replicas. See Table 4.2 for the corresponding information at the
level of PDF moments.

We emphasize that the results of this exercise must be interpreted with some care. First of all, the results depend
sensitively on the specific values of {xi} that we have assumed for the lattice-QCD calculation, and on the values of the
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Fig. 4.5. The ratio of PDF uncertainties to the original NNPDF3.1 (NNPDFpol1.1) in the fits where lattice-QCD pseudo-data on x-space PDFs have been added

to the global unpolarized (polarized) analysis. Specifically, we show the impact on the PDF uncertainties in ū and d̄ at large-x in the upper plots, with the

corresponding comparison for∆ū and∆d̄ in the lower plots.

associated uncertainties δ
(i)
L . The quantitative results depend on the choice of input PDF set and would vary if, for example,

the input set were the HERAPDF2.0 set used for the Hessian profiling exercise of Section 4.1.3. Even with these caveats,

our analysis makes clear that a direct computation of the isotriplet combination xu − xd on the lattice has the potential

to constrain the large-x PDFs in a more significant way than corresponding PDF moment calculations, particularly in the

unpolarized case. Given the importance of antiquark PDFs in the large-x region for LHC phenomenology (especially for a

high-luminosity run), pursuing these calculations should be high on the list of priorities for the lattice-QCD community.

4.3. Discussion

Weconclude this sectionwith a brief discussion of themain lessons that can be learned from this exercise, which provides

the first quantitative estimate of the impact of present and future lattice-QCD calculations of PDFmoments and x-space PDFs,

for both polarized and unpolarized PDFs.

First, we have demonstrated that in the polarized case, even with current uncertainties, lattice-QCD calculations of

selected PDF moments can impose sizable constraints on several important polarized quark combinations. This suggests

that global polarized PDF analyses should consider including existing lattice-QCD calculations in their fits to constrain some

of the least known quark combinations, such as the total strangeness. The situation is rather different in the unpolarized

case, where a reduction of the current lattice-QCD uncertainties by a factor of between five and ten seems to be required to

influence global fits. This difference arises because unpolarized PDFs are known with much higher precision than polarized

PDFs, thanks to the much wider amount of experimental data sensitive to unpolarized PDFs, including the constraints from

recent high-precision measurements at the LHC. Thus, in addition to the differences highlighted in Fig. 3.2, much more

precise lattice-QCD calculations than in the polarized case need to be used to be competitive with current PDF fits.

Second, lattice-QCD calculations of the quark isotriplet combinations xu − xd and xū − xd̄ would be instrumental in

constraining quark PDFs at large x. Even a calculation with δL ≃ 10% uncertainties at large-x would start to provide useful

constraints on global fits. Moreover, we find that, in the unpolarized case, the information on the PDFs that could be derived
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from a direct x-space calculation from lattice-QCD is clearly superior to the information that can be obtained from PDF
moments alone, at least for the subset of PDFs and moments used in the present exercise.

The profiling studies presented in this section could be extended in a number of directions. In the polarized case, one could
include the current lattice-QCD values of the moments listed in Table 3.8 in global analyses: indeed, we have demonstrated
that at the current level of uncertainties one expects to find some non-trivial constraints. In this respect, a crucial topic
to investigate is the compatibility (or lack thereof) of the existing lattice-QCD numbers compared to constraints from
experimental data. For both unpolarized and polarized PDFs, it would be interesting to include the effects of other moments
and flavor combinations. Higher moments, in particular, typically probe regions of higher x, compared to lower moments,
and in the large-x regions uncertainties in the global-fit PDFs are more marked. One could also consider the effects of the
quark combinations for which x-space calculations might be available, for example those related to the proton strangeness.
Finally, a more refined analysis should include the theoretical correlations expected in lattice-QCD calculations, for instance,
in the case of x-space calculations, one expects neighboring points in x to be highly correlated.

5. Outlook

The study of the PDFs of the proton is an active interdisciplinary research field lying at the crossroads of high-energy,
hadronic and nuclear physics, with important applications in astroparticle physics. In this white paper, we have reviewed
our current knowledge of PDFs as determined from both the global analysis framework and from lattice-QCD computations.
We have established a common language between the two communities, to facilitate interactions between them. We
have presented a first systematic comparison between state-of-the-art lattice-QCD calculations of PDF moments and the
corresponding results from global analyses both in the unpolarized and polarized cases. Our results suggest that the
improvement in accuracy and precision required in lattice-QCD calculations to match the first moments of PDFs determined
from a global fit is larger in the unpolarized case than in the polarized. We have provided additional benchmark numbers
from the global fits for the higher moments not used in this benchmark comparison, which can be used to validate future
lattice-QCD calculations.

Themain outcome of this white paper is the first quantitative study of the impact of lattice-QCD calculations in the global
fits, based on both PDF moments and on Bjorken-x dependence pseudo-data, assuming a number of different scenarios for
the associated uncertainties. In the case of unpolarized PDFs, we have demonstrated that a reduction of the uncertainties
of current lattice-QCD calculations is needed to provide any impact on global PDF fits. In the case of polarized PDFs, we
have shown that current lattice-QCD calculations can provide useful input into global-PDF analyses. Although the studies
presented here are still in an initial exploratory phase, they provide strong motivation for global fitters to begin consider
incorporating lattice-QCD constraints into their global analyses.

The studies presented in this white paper can be extended in a number of directions.
First, we have restricted our benchmark comparison only to the lowest moments of polarized and unpolarized PDFs,

whose various sources of systematic uncertainties have been computedwith the greatest control. Futurework should extend
this comparison to higher PDF moments, which will have some impact on PDF fits, provided the precision and accuracy of
lattice-QCD calculations keep improving. More elaborate benchmarks could be performed, for instance on PDF moments
truncated from below to better take into account the fiducial x region. Appropriate benchmarks could also be devised to test
lattice-QCDmethods that aim at the determination of the x dependence of the PDFs.We emphasize that modifications to the
rating system adopted to characterize lattice-QCD calculations of PDFmoments should require to bemodified as lattice-QCD
results will evolve.

Second, a similar benchmark exercise between global fit results and lattice-QCD calculations should be performed at the
level of x-space calculations. It will be important to compare in detail the available lattice-QCD results with state-of-the-art
global fits, to validate the former and thereby demonstrate to what extent lattice-QCD calculations of x-space PDFs can
contribute to global fits.

Third, it should be possible to assess the impact of lattice-QCD calculations on other nonperturbative objects determined
from global analyses of experimental data. Examples of these include the transversity (see Ref. [269] for a recent study),
transverse-momentum dependent PDFs (TMDs), generalized PDFs (GPDs) (see, e.g., [270–273] and references therein), or
collinear PDFs for hadrons other than protons [274,275]. All these quantities are known with much less precision than
unpolarized and polarized PDFs, given that the corresponding experimental information is rather scarce. In this case, lattice-
QCD calculations could have the potential to provide new information, without the need of high precision.

In summary, the aim of this study has been to build a bridge between the lattice-QCD and global-fit communities. Our
final goal is for lattice-QCD calculations to provide novel inputs into polarized and unpolarized PDF fits. Precise lattice-QCD
results could reduce the uncertainties of global PDF fits and/or discriminate between different sets.We hope thiswhite paper
motivates the lattice-QCD and global-fit communities to continue fruitful interactions to improve our knowledge of PDFs.
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Appendix A. Definition of the PDF moments

In this appendix, we summarize the conventions adopted in this paper to denote the moments of relevant unpolarized
and polarized PDF combinations.We focus on the quantities which can be presently computed in lattice QCD, although those
used for benchmarks in Section 3 are only a subset of them. In the equations below, we use the shorthand notation

q± ≡ q± q̄ and ∆q± ≡ ∆q±∆q̄ , q = u, d, s, c , (A.1)

for unpolarized and polarized PDFs respectively.We identifyµwith the QCD factorization scale andQ with the characteristic
scale of a given hard-scattering process. The use of the following notation is strongly recommended for any comparison
between lattice-QCD computations and global-fit determinations of PDF moments.

• Unpolarized moments.

1. The first moment of the total u+ − d+ PDF combination

⟨x⟩u+−d+ (µ2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x
{
u(x,Q 2)+ ū(x,Q 2)− d(x,Q 2)− d̄(x,Q 2)

}
. (A.2)

2. The second moment of the valence u− − d− PDF combination

⟨x2⟩u−−d− (µ2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x2
{
u(x,Q 2)− ū(x,Q 2)− d(x,Q 2)+ d̄(x,Q 2)

}
. (A.3)

3. The first moment of the individual quark q+ total PDF combination

⟨x⟩q+=u+,d+,s+,c+ (µ2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x
{
q(x,Q 2)+ q̄(x,Q 2)

}
. (A.4)

4. The second moment of the individual quark q− valence PDF combination

⟨x2⟩q−=u−,d−,s−,c− (µ2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x2
{
q(x,Q 2)− q̄(x,Q 2)

}
. (A.5)

5. The first moment of the gluon PDF

⟨x⟩g (µ2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x g(x,Q 2) . (A.6)

• Polarized moments.

1. The zeroth moment of the total u+ − d+ PDF combination

⟨1⟩∆u+−∆d+ (µ
2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx
{
∆u(x,Q 2)+∆ū(x,Q 2)−∆d(x,Q 2)−∆d̄(x,Q 2)

}
. (A.7)
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Table B.1

Status of current lattice-QCD calculations of the first moments of unpolarized PDFs. All results are quoted at µ2 = 4 GeV2 . We use the abbreviations Disc

(discretization), QM (quark mass), FV (finite volume), Ren (renormalization) and ES (excited states) to denote the corresponding sources of uncertainty.

Mom. Collab. Ref. Nf Status Disc [fm] QM FV Ren ES

⟨x⟩u+−d+ ETMC15 [263] 2+1+1 P 0.06, 0.08 – ■, ⋆ ⋆, ⋆ ■, ⋆ Fig. B.1(a)

ETMC15 [263] 2 P 0.06–0.09 – ◦ ⋆ ■ Fig. B.1(a)

RQCD14 [251] 2 P 0.06–0.08 – ◦ ⋆ ◦ Fig. B.1(a)

⟨x⟩q+ ETMC13 [276] 2+1+1 P 0.08 – ⋆ ⋆ ⋆ a Fig. B.1(b)

χQCD13 [277] 0 P ■ ■ ■ ◦ ■
bc ⟨x⟩u+ = 0.451(37),

χQCD13 [277] 0 P ■ ■ ■ ◦ ■
bc ⟨x⟩d+ = 0.188(20),

χQCD13 [277] 0 P ■ ■ ■ ◦ ■
bc ⟨x⟩s+ = 0.024(6)

⟨x⟩g ETMC13 [278] 2+1+1 P 0.08 – ⋆ ◦ ⋆ Fig. B.1(c)

χQCD13 [277] 0 P ■ ■ ■ ◦ ⋆ c 0.334(55)

QCDSF12 [113] 0 P ■ ■ ⋆ ⋆ – b 0.43(7)(5)

a Nonsinglet renormalization is applied.
b The lightest mπ has Lmπ ≥ 4.0, however, L ∼ 1.6 fm.
c The connected contribution is only evaluated at one tsep .

Table B.2

Same as Table B.1, but for second moments of unpolarized PDFs.

Mom. Collab. Ref. Nf Status Disc QM FV Ren ES

⟨x2⟩u−−d− LHPC and SESAM02 [279] 2 P ■ ■ ■ ◦ ■ 0.145(69)

QCDSF05 [93] 0 P ■ ■ ■ ⋆ ■ 0.083(17)

LHPC and SESAM02 [279] 0 P ■ ■ ■ ◦ ■ 0.090(68)

⟨x2⟩u− χQCD09 [280] 0 P ■ ■ ■ ◦ ■
a 0.117(18)

⟨x2⟩d− χQCD09 [280] 0 P ■ ■ ■ ◦ ■
a 0.052(9)

a Only the connected contribution is included.

2. The first moment of the valence u− − d− PDF combination

⟨x⟩∆u−−∆d− (µ
2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x
{
∆u(x,Q 2)−∆ū(x,Q 2)−∆d(x,Q 2)+∆d̄(x,Q 2)

}
(A.8)

3. The zeroth moment of the individual quark q+ total PDF combination

⟨1⟩q+=∆u+,∆d+,∆s+,∆c+ (µ
2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx
{
∆q(x,Q 2)+∆q̄(x,Q 2)

}
. (A.9)

4. The first moment of the individual quark q− valence PDF combination

⟨x⟩∆q−=∆u−,∆d−,∆s−,∆c− (µ
2)
⏐⏐
µ2=Q 2 =

∫ 1

0

dx x
{
∆q(x,Q 2)−∆q̄(x,Q 2)

}
. (A.10)

Some of these moments have a direct physical interpretation, see Section 2.1. For instance, Eq. (A.4) and Eq. (A.9)

correspond respectively to the proton’s momentum and spin fractions carried by a given quark flavor (and its corresponding

antiquark) at the scale µ2 = Q 2. Higher moments and/or moments of other flavor combinations are readily computable

from any phenomenological PDF set. We do not consider them though, as the corresponding lattice-QCD computations are

outside the current reach.

Appendix B. PDF moments from lattice QCD

In this appendix, we summarize additional results for the moments of unpolarized and polarized PDFs from lattice QCD

that were not discussed in Section 3.1.2, either because the calculations were performed in the quenched approximation, or

because they were not extrapolated to the physical pion mass.

• In Table B.1, we show the first moments of unpolarized PDFs ⟨x⟩u+−d+ , ⟨x⟩q+ and ⟨x⟩g that were not included in

Table 3.1.

• In Table B.2, we show the second moments of unpolarized PDFs
⟨
x2
⟩
u−−d− ,

⟨
x2
⟩
u− and

⟨
x2
⟩
d− .• In Table B.3, we show the zeroth moments of polarized PDFs ⟨1⟩∆u+ , ⟨1⟩∆d+ and ⟨1⟩∆s+ that were not included in

Table 3.3.

• In Table B.4, we show the first moments of polarized PDFs ⟨x⟩∆u−−∆d− , ⟨x⟩∆u− and ⟨x⟩∆d− that were not included in

Table 3.4.
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Table B.3

Same as Table B.1, but for zeroth moments of polarized PDFs.

Mom. Collab. Ref. Nf Status Disc [fm] QM FV Ren ES

⟨1⟩∆u+,∆d+ ETMC13 [276] 2+1+1 P 0.08 – ⋆ ⋆ ⋆ a Fig. B.1(e)

LHPC17 [281] 2+1 P 0.11 – ⋆ ⋆ ⋆ Fig. B.1(e)

QCDSF/CSSM15 [115] 2+1 P 0.07 – ⋆ ⋆ ⋆ Fig. B.1(e)

QCDSF11 [282] 2 P 0.07 – ⋆ ⋆ ■ Fig. B.1(e)

⟨1⟩∆s+ ETMC13 [276] 2+1+1 P 0.08 – ⋆ ⋆ ⋆ a Fig. B.1(d)

LHPC17 [281] 2+1 P 0.11 – ⋆ ⋆ ⋆ Fig. B.1(d)

QCDSF/CSSM15 [115] 2+1 P 0.07 – ⋆ ⋆ ⋆ Fig. B.1(d)

QCDSF11 [282] 2 P 0.07 – ⋆ ⋆ ⋆ Fig. B.1(d)

a Nonsinglet renormalization is applied. excited state analysis for ⟨x⟩g is considered.

Table B.4

Same as Table B.1, but for first moments of polarized PDFs.

Mom. Collab. Ref. Nf Status Disc [fm] QM FV Ren ES

⟨x⟩∆u−−∆d− ETMC15 [263] 2+1+1 P 0.06, 0.08 – ■, ⋆ ⋆, ⋆ ■, ⋆ Fig. B.1(f)

ETMC15 [263] 2 P 0.06–0.09 – ◦ ⋆ ■ Fig. B.1(f)

⟨x⟩∆u− ETMC13 [276] 2+1+1 P 0.08 373 MeV ⋆ ⋆ ⋆ a 0.214(11)

⟨x⟩∆d− ETMC13 [276] 2+1+1 P 0.08 373 MeV ⋆ ⋆ ⋆ a 0.083(11)

a Nonsinglet renormalization is applied.

Table B.5

Full details of lattice-QCD calculations of the axial coupling gA ≡ ⟨1⟩∆u+−∆d+ . We omit quenched results, perturbatively renormalized results, and

conference proceedings.

Ref. Sea quarks Valence quarks Renormalization N∆t mπ (MeV)

Mainz ’17ba [254] 2 clover clover Schrödinger functional 4–6 193–473

ETMC ’17b [255] 2 clover-TM clover-TM Rome–Southampton 3 131

CalLat ’17b [252] 2+1+1 staggered domain wall Rome–Southampton all 131–313

LHPC ’17 [281] 2+1 clover clover Rome–Southampton 5 317

NME ’17 [283] 2+1 clover clover Rome–Southampton 1b , 4–5 172–285

Mainz ’17a [284] 2 clover clover Schrödinger functional 4–6 193–456

Dragos et al. ’16 [285] 3 clover clover Rome–Southampton 1, 2b , 5 460

PNDME ’16 [253] 2+1+1 staggered clover Rome–Southampton 3–5 128–319

χQCD ’16 [286] 2+1 domain wall overlap ZA/ZV = 1 3 330

ETMC ’15b [263] 2 clover-TM superseded by ETMC ’17

2 twisted mass twisted mass Rome–Southampton 1 262–470

2+1+1 twisted mass twisted mass 1, 4 213, 373

RQCD ’15 [256] 2 clover clover Rome–Southampton 1–5 150–490

PNDME ’14 [287] superseded by PNDME ’16

QCDSF ’14 [257] 2 clover clover gA/fπ × f physπ 1, 5 157–1591

LHPC ’14 [249] 2+1 clover clover Rome–Southampton 3 149–356

ETMC ’13 [288] superseded by ETMC ’15b

CSSM ’13 [289] 2+1 clover clover Schrödinger functional 1bc 290

Mainz ’12 [290] superseded by Mainz ’17b

ETMC ’11 [291] superseded by ETMC ’15b

LHPC ’10 [262] 2+1 staggered domain wall Aµ/Aµ ratio 1–2 293–758

RBC+UKQCD ’09 [292] 2+1 domain wall domain wall ZA/ZV = 1 1 329–668

RBC+UKQCD ’08 [293] superseded by RBC+UKQCD ’09

RBC ’08 [294] 2 domain wall domain wall ZA/ZV = 1 1–2 493–695

LHPC ’08 [295] superseded by LHPC ’10

Alexandrou et al. ’07 [296] 2 Wilson Wilson Rome–Southampton 1 384–691

LHPC ’06 [297] superseded by LHPC ’10

QCDSF ’06 [298] superseded by QCDSF ’14

a Preprint.
b A variationally optimized interpolating operator is employed.
c Carried out with a single fixed source–operator separation and all source–sink separations.

All results are displayed at µ2 = 4 GeV2. The characterization of each source of systematic uncertainty follows the
conventions delineated in Section 3.1.2, to which the reader is referred for the meaning of each symbol in Tables B.1–B.4.
Moments are denoted according to the notation introduced in Appendix A.

We also provide tables with full bibliographic details.

• In Table B.5, for the axial coupling gA ≡ ⟨1⟩∆u+−∆d+ . We do not include quenched results, perturbatively renormalized
results, and conference proceedings results.
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Table B.6

Full details of lattice-QCD calculations of the non-isovector quark spins. The earliest results are summarized in Ref. [299].

Ref. Flavors Sea quarks Valence quarks Renormalization

ETMC ’17b [255] u, d, s, c 2 clover-TM clover-TM Rome–Southampton

ETMC ’17c [250] u, d, s 2 clover-TM clover-TM Rome–Southampton

χQCD ’17b [259] s, c 2+1 domain wall overlap single-flavor anomalous WI

LHPC ’17 [281] u, d, s 2+1 clover clover Rome–Southampton

CSSM and u+ d+ s 2+1, 3 clover clover Rome–Southampton

QCDSF/UKQCD ’15 [115] conn. / disc.

ETMC ’14 [276] u+ d, s 2+1+1 twisted mass twisted mass nonsinglet Rome–Southampton

Engelhardt ’12 [260] s 2+1 staggered domain wall nonsinglet Aµ/Aµ ratio

QCDSF ’12 [282] u, d, s 2 clover clover nonsinglet Rome–Southampton

+ two-loop singlet-nonsinglet

Babich et al. ’10 [300] s 2 aniso-clover aniso-clover none

SESAM ’99 [301] u, d, s 2 Wilson Wilson one loop

χQCD ’95 [302] u, d, s quenched Wilson one loop

Fukugita et al. ’95 [303] u, d, s quenched Wilson one loop

Gupta and Mandula ’94 [304] singleta quenched Wilson anomalous Ward identity

Allés et al. ’94 [305] singleta quenched Wilson anomalous Ward identity

Altmeyer et al. ’94 [306] singlet 4 staggered staggered anomalous Ward identity

Mandula and Ogilvie ’93 [307] sa quenched Wilson none

a No signal available.

Table B.7

Full details of lattice-QCD calculations of ⟨x⟩u+−d+ . We omit quenched and non-renormalized results.

Ref. Sea quarks Valence quarks Renormalization N∆t mπ (MeV)

χQCD ’16 [286] 2+1 domain wall overlap one loop 3 330

ETMC ’15b [263] 2 clover-TM clover-TM Rome–Southampton 3 131

2 twisted mass twisted mass 1 262–470

2+1+1 twisted mass twisted mass 1, 5 213, 373

ETMC ’15a [308] 2+1+1 twisted mass twisted mass Rome–Southampton 1 302–466

RQCD ’14 [251] 2 clover clover Rome–Southampton 1–6 149–490

LHPC ’14 [249] 2+1 clover clover Rome–Southampton 3 149–356

ETMC ’13 [288] superseded by ETMC ’15b

RQCD ’12 [309] superseded by RQCD ’14

ETMC ’11 [291] superseded by ETMC ’15b

QCDSF/UKQCD ’11a [310] 2 clover clover Rome–Southampton 1 170–670

LHPC ’11a [311] 2+1 domain wall domain wall Rome–Southampton 1 297–403

LHPC ’10 [262] 2+1 staggered domain wall one-loop ZO/ZA 1–2 293–758

RBC–UKQCD’10 [261] 2+1 domain wall domain wall Rome–Southampton 1 329–668

RBC ’08 [294] 2 domain wall domain wall Rome–Southampton 1–2 493–695

LHPC ’08 [295] superseded by LHPC ’10

LHPC and 2 Wilson Wilson one loop 1–2 490

SESAM ’02 [279] and quenched

a Conference proceedings.

Table B.8

Full details of lattice-QCD calculations of the non-isovector momentum fractions.

Ref. Flavors Sea quarks Valence quarks Renormalization

ETMC ’17a [278] g 2+1+1 twisted mass twisted mass one loop

2 clover-TM clover-TM

ETMC ’17c [250] u, d, s, g 2 clover-TM clover-TM Rome–Southampton (q)

one-loop (g)

ETMC ’15a [308] u+ d− 2s 2+1+1 twisted mass twisted mass Rome–Southampton

ETMC ’14 [276] u+ d 2+1+1 twisted mass twisted mass nonsinglet

Rome–Southampton

χQCD ’15 [277] u, d, s, g quenched Wilson sum rule + one-loop

QCDSF–UKQCD’12 [113] g quenched clover nonperturbative

• In Table B.6, for the non-isovector quark spins.

• In Table B.7, for ⟨x⟩u+−d+ . We omit quenched and non-renormalized results.

• In Table B.8, for the non-isovector momentum fractions.

• In Table B.9, for ⟨x⟩∆u−−∆d− .

• In Table B.10 for higher moments of unpolarized and polarized PDFs.
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Table B.9

Full details of lattice-QCD calculations of ⟨x⟩∆u−−∆d− .

Ref. Sea quarks Valence quarks Renormalization N∆t

ETMC ’15b [263] 2 clover-TM clover-TM Rome–Southampton 3

2 twisted mass twisted mass 1

2+1+1 twisted mass twisted mass 1 or 4

ETMC ’13 [288] superseded by ETMC ’15b

ETMC ’11 [291] superseded by ETMC ’15b

QCDSF/UKQCD ’11a [310] 2 clover clover Rome–Southampton 1

LHPC ’10 [262] 2+1 staggered domain wall one-loop ZO/ZA 1–2

RBC–UKQCD’10 [261] 2+1 domain wall domain wall Rome–Southampton 1

RBC ’08 [294] 2 domain wall domain wall Rome–Southampton 1–2

LHPC ’08 [295] superseded by LHPC ’10

LHPC and 2 Wilson Wilson one loop 1–2

SESAM ’02 [279] and quenched

QCDSF ’97 [312] quenched Wilson one loop 1

a Conference proceedings.

Table B.10

Full details of lattice-QCD calculations of higher moments of unpolarized and polarized PDFs.

Ref. Observables Sea quarks Valence quarks Renormalization

LHPC ’10b [262] ⟨x⟩u+−d+ , ⟨x2⟩u−−d− , 2+1 staggered domain wall one-loop ZO/ZA
gA , ⟨x⟩∆u−−∆d− , ⟨x2⟩∆u+−∆d+

χQCD ’09 [280] ⟨x⟩u+,d+,s+ (superseded by χQCD ’15), quenched Wilson one loop

⟨x2⟩u−,d−,s−
LHPC ’08 [295] superseded by LHPC ’10

QCDSF ’05c [313] ⟨x2⟩∆u+−∆d+ 2 clover clover Rome–Southampton

QCDSF ’05b [93] ⟨x⟩u+−d+ , ⟨x2⟩u−−d− , ⟨x3⟩u+−d+ quenched clover Rome–Southampton

QCDSF ’05aa [314] ⟨x⟩u+−d+ , ⟨x2⟩u−−d− , ⟨x3⟩u+−d+ 2 clover clover one loop

LHPC and ⟨x⟩u+−d+ , ⟨x2⟩u−−d− , ⟨x3⟩u+−d+ , 2 Wilson Wilson one loop

SESAM ’02 [279] gA , ⟨x⟩∆u−−∆d− , ⟨x2⟩∆u+−∆d+ and quenched

QCDSF ’01 [315] ⟨x2⟩∆u+−∆d+ quenched clover Rome–Southampton

QCDSF ’96 [100] ⟨x⟩u+−d+ , ⟨x2⟩u−−d− , ⟨x3⟩u+−d+ , quenched Wilson one loop

gA , ⟨x2⟩∆u+−∆d+

a Conference proceedings.
b The moment ⟨x2⟩u−d = Au−d

30 (0) is plotted in the ratio of form factors A30(t)/A10(t), where we can use Au−d
10 (0) = 1. The moment ⟨x2⟩∆u−∆d = Ãu−d

30 (0) is

plotted in the ratio of form factors Ã30(t)/Ã10(t) and we can use Ãu−d
10 (0) = gA .

Table C.1

Second moments of unpolarized valence PDFs from global PDF fits at µ2 = Q 2 = 4 GeV2 .

Mom. NNPDF3.1 CT14 MMHT14 ABMP16 CJ15 HERAPDF2.0 PDF4LHC15

⟨x2⟩u− 0.0851(27) 0.0841(13) 0.0831(14) 0.0845(8) 0.0853(3) 0.0886(29) 0.0833(15)

⟨x2⟩d− 0.0284(27) 0.0295(10) 0.0305(11) 0.0267(7) 0.0305(3) 0.0334(18) 0.0305(17)

⟨x2⟩s− 0.0010(31) – 0.0006(8) – – – 0.0011(11)

⟨x2⟩u−−d− 0.0571(27) 0.0546(19) 0.0526(19) 0.0578(9) 0.0548(3) 0.0553(17) 0.0530(24)

Table C.2

First moments of polarized valence PDFs from global PDF fits at µ2 = Q 2 =
4 GeV2 .

Mom. NNPDFpol1.1 DSSV08 JAM17

⟨x⟩∆u− 0.1493(85) 0.1624(56) 0.181(14)

⟨x⟩∆d− −0.0468(79) −0.0410(55) −0.060(18)

Table C.3

Truncated zeroth moments of the polarized gluon PDF from global fits at

µ2 = Q 2 = 4 GeV2 .

Mom. NNPDFpol1.1 DSSV14 JAM15 JAM17

⟨1⟩[10−5,1]∆g −0.1(1.7) 0.27(+1.72−1.44) 1.08(87) 0.18(28)

⟨1⟩[10−3,1]∆g 0.14(78) 0.27(+0.63−0.54) 0.74(40) 0.20(24)

⟨1⟩[10−2,1]∆g 0.23(24) 0.24(+0.23−0.15) 0.52(19) 0.18(20)

A representative subset of the results contained in Tables 3.1, 3.3, 3.4, B.1, B.3 and B.4 is displayed in Fig. B.1. Specifically,
we show from left to right and from top to bottom results for ⟨x⟩u+−d+ , ⟨x⟩q+ , ⟨x⟩g , ⟨1⟩∆s+ , ⟨1⟩∆q+ and ⟨x⟩∆u−−∆d− ; see the
corresponding entries of each table for details.
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Fig. B.1. Comparison of lattice-QCD results for the zeroth and first moments of unpolarized and polarized PDFs. From left to right and from top to bottom,

we show results for ⟨x⟩u+−d+ , ⟨x⟩q+ , ⟨x⟩g , ⟨1⟩∆s+ , ⟨1⟩∆q+ and ⟨x⟩∆u−−∆d− ; see Tables 3.1, 3.3, 3.4, B.1, B.3 and B.4 for details.

Appendix C. PDF fit results for higher moments

In this appendix, we summarize the current values of the higher moments of unpolarized and polarized PDFs from
global fits, not previously listed in Section 3.1.3. Even though these moments were not selected for the benchmark exercise
performed in Section 3.2, we find it useful to collect them here for future reference.

• In Table C.1we display the values of the secondmoments of the unpolarized quark valence distributions ⟨x2⟩u− , ⟨x2⟩d− ,
⟨x2⟩s− and ⟨x2⟩u−−d− .
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• In Table C.2 we display the values of the first moments of the polarized quark valence distributions ⟨x⟩∆u− , ⟨x⟩∆d− and
⟨x⟩∆s− .
• In Table C.3 we display the value of the zerothmoment of the polarized gluon PDF truncated in the region [xmin, xmax],
⟨1⟩[xmin,xmax]

∆g =
∫ xmax

xmin
dx∆g(x,Q 2). The truncated moment is shown instead of the full moment because the latter

is potentially affected by a large extrapolation uncertainty difficult to quantify (see Section 2.3.3). Three different
truncated ranges are considered: [10−5, 1], [10−3, 1] and [10−2, 1].

All values in Tables C.1–C.3 are computed at µ2 = Q 2 = 4 GeV2. For the description of the corresponding PDF sets and
their uncertainties, see Sections 2.3.2, 2.3.3 and 3.1.3.
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