

1 Method for Manufacturing Membranes with Ultrathin Hydrogel 2 Selective Layers for Protein Purification: Interfacially Initiated Free 3 Radical Polymerization (IIFRP)

4 Ilin Sadeghi, Hyunmin Yi, and Ayse Asatekin*[†]

5 Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States

6 Supporting Information

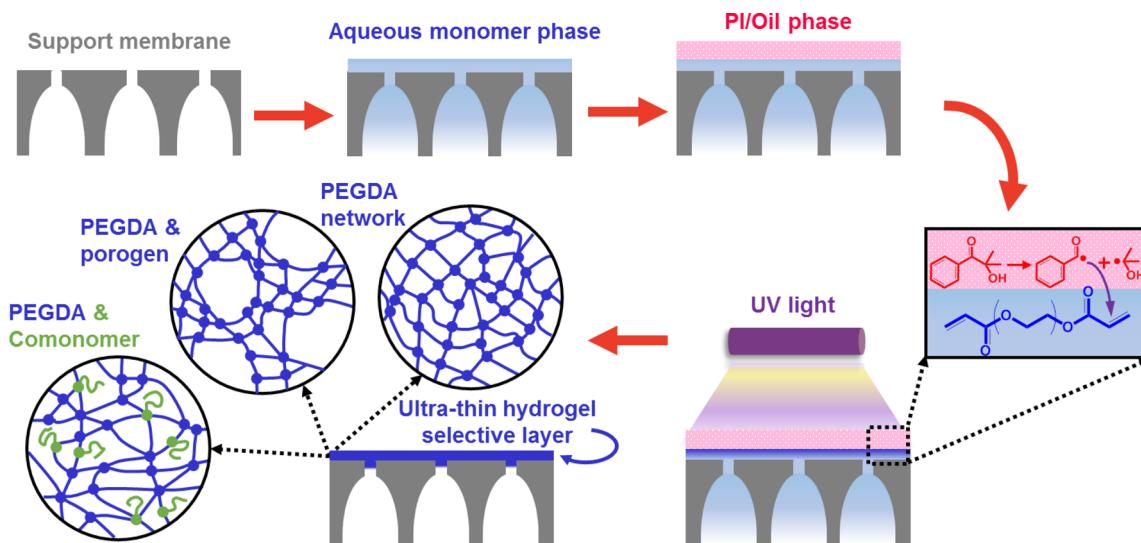
7 **ABSTRACT:** Hydrogels are promising materials as membrane selective layers due to their fouling-resistant nature, tunable mesh
8 size, and functionalizability. These features are especially critical for protein purification applications. However, the fabrication of
9 thin, uniform hydrogel membrane selective layers using a simple, scalable process is an unmet challenge. We demonstrate a new
10 method, interfacially initiated free radical polymerization (IIFRP), for fabrication of ultrathin hydrogel selective layers on porous
11 supports in a simple and reproducible process. This method utilizes segregation of the monomer and the photoinitiator into two
12 separate, immiscible phases to form a very thin, uniform, and defect-free hydrogel layer at the interface upon
13 photopolymerization. The resulting hydrogel-coated membranes have selective layers as thin as <100 nm, and can separate
14 the proteins based on their size with a sharp molecular weight cutoff. The method is readily tunable for a broader range of
15 separations simply by altering experimental parameters (e.g., UV exposure time, monomer concentration) or addition of inert
16 porogens/comonomers. Membranes prepared using this method exhibit extremely high antifouling properties upon extended
17 exposure to protein solution providing a promising approach for protein purification. Taken together, these findings illustrate a
18 significant step toward simple, robust, and scalable fabrication of ultrathin, functional hydrogel selective layers in a controlled
19 manner, with potential applications in bioseparations, wastewater treatment, and gas separation.

20 ■ INTRODUCTION

21 Protein purification is of great importance in a wide range of
22 applications including the pharmaceutical, biotechnology,
23 cosmetics, and food industries as well as in enzymatic
24 catalysis.^{1,2} Membrane separation processes are attractive for
25 these applications due to their high throughput, ease of
26 implementation, and cost effectiveness.^{3,4} However, critical
27 challenges remain in the use of membranes for protein
28 purification. First, protein separations require membranes
29 with well-controlled selectivity.^{5–8} Second, fouling due to the
30 adsorption of the proteins and other biomolecules in the feed
31 leads to substantial decline in membrane permeance and
32 lifetime,^{9,10} and can cause shifts in membrane pore size.^{9,11,12}
33 Addressing these concerns can broaden the use of membrane
34 processes in the manufacture and purification of biopharma-
35 ceuticals.

36 Hydrogels are especially promising materials for membranes
37 targeted at protein purification, because they are effective,
38 versatile, tunable, functionalizable, and inherently fouling-
39 resistant.¹³ Selectivity can be controlled by the mesh size of

40 the cross-linked polymer, with effective pore sizes typically in
41 the ultrafiltration (UF) range (1–5 nm), suitable for protein
42 purification.¹⁴ Functional groups can be easily integrated into
43 these selective layers, enabling more targeted control of
44 membrane selectivity and broadening their potential applica-
45 tions to protein separations. Moreover, hydrogels are inherently
46 hydrophilic, which makes them very fouling-resistant.^{15–18}
47 Despite these promising features, if the hydrogel will serve as
48 the selective layer of a membrane, it has to be as thin as
49 possible, because membrane flux is inversely proportional to the
50 layer thickness. However, the fabrication of hydrogels as thin,
51 defect-free membrane selective layers remains a major
52 challenge.


53 Existing literature on hydrogel membranes focuses mainly on
54 free-standing films.^{14,17,19,20} These hydrogel films are prepared
55 by dissolving the monomer and initiator in an aqueous solution,

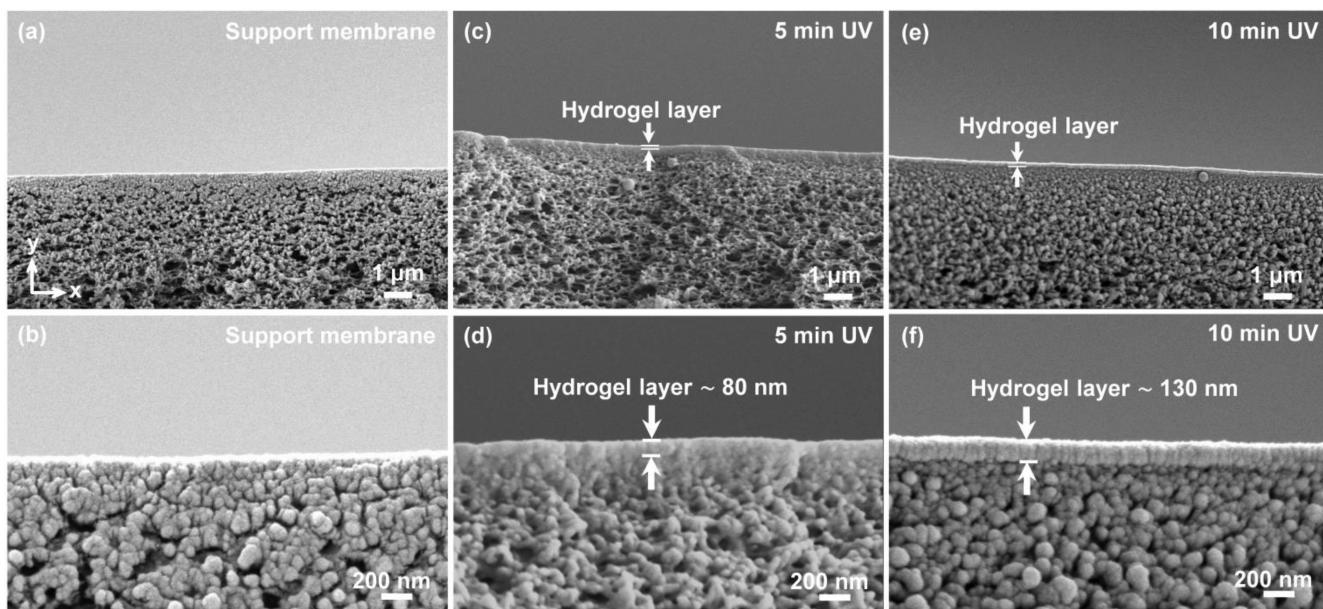
Received: November 2, 2017

Revised: February 2, 2018

Published: February 3, 2018

Scheme 1. Schematic Showing Fabrication^a of Membranes with Ultrathin Hydrogel Selective Layers by Interfacially Initiated Free Radical Polymerization (IIFRP)

^aA porous support membrane is immersed in an aqueous monomer solution, which fills its pores and leaves a thin layer on its surface. The membrane is then covered with an oil phase containing a photoinitiator (PI), and irradiated with UV light. The hydrophobic photoinitiator dissociates and reacts with the aqueous monomer at the interface, forming a thin hydrogel layer covering the support. The monomer solution can contain PEGDA with or without porogens or comonomers, which can alter layer permeability and control selectivity.


spreading this mixture into a thin layer, and initiating polymerization, typically by UV illumination. This results in the formation of a very thick hydrogel layer (100–900 μm), and the resultant membranes have very low flux. To decrease film thickness while maintaining mechanical integrity, 1–10 μm hydrogel layers can be formed on porous supports by carefully designed coating methods.^{13,21} However, this approach requires a high-viscosity monomer solution and specific wetting properties to achieve a good coating that remains on top of the membrane. The viscosity can be increased with additives (e.g., high-molecular-weight inert polymers),¹⁶ but this can simultaneously change coating properties such as pore size.^{16,22,23} Another surface modification approach, grafting from the membrane surface, creates a polymer brush lining the membrane pores and surface rather than a continuous selective layer.^{24,25} To form a selective layer by grafting, the pore diameter has to be spanned by growing polymer chains from a limited number of initiating sites on pores followed by cross-linking. This can require long reaction times and is prone to defects due to pore size polydispersity in the support membrane. Thus, there is a critical need for a simple and reproducible fabrication method that enables the formation of a very thin, defect-free hydrogel selective layer using processes that can be easily integrated into large-scale manufacturing schemes. Such a method would enable the development of a wide range of membrane materials not only for protein purification, but also for wastewater treatment^{16,26} and gas separation applications.^{27,28}

The most common method for the large-scale fabrication of membranes with ultrathin selective layers is interfacial polymerization (IP).^{29,30} Thin film composite (TFC) membranes fabricated using this method feature a very thin selective layer (typically <100 nm) on a porous support that provides mechanical integrity.^{31–33} IP involves the polymerization of two highly reactive monomers segregated in two immiscible phases (i.e., a diamine in aqueous solution and a diacyl chloride in an organic phase). The polymer forms as a thin film at the

interface of the two phases covering the surface of the porous support. Although this method is established, simple, and scalable to a roll-to-roll process, it is limited to a narrow range of polymer chemistries that are formed by condensation polymerization. IP cannot be applied to polymers prepared by free radical polymerization (FRP) such as hydrogels. It also cannot be used to fabricate inherently hydrophilic layers, because one of the monomers has to be oil-soluble. Furthermore, IP also generates a highly cross-linked and dense layer that limits the application of this method to desalination and reverse osmosis (RO). Larger pore sizes suitable for protein purification are typically not easily accessible.

Our approach to addressing these challenges centers on a novel, scalable, and robust fabrication method inspired by IP, called interfacially initiated free radical polymerization (IIFRP). The novelty of this approach arises from its ability to create ultrathin, fully hydrophilic selective layers from a wide range of water-soluble monomers that propagate by free radical polymerization (e.g., acrylates, methacrylates, acrylamides). In IIFRP, as illustrated in **Scheme 1**, the monomer(s) and initiator are segregated into two immiscible phases: an aqueous monomer, and an organic/oil phase containing photoinitiator. The support membrane is first immersed in the aqueous monomer solution, which fills its pores and leaves a thin layer on its surface. The organic/oil layer containing an oil-soluble photoinitiator is then added to cover the top of the membrane. Upon irradiation with a UV lamp, a uniform and thin hydrogel layer is formed at the oil–water interface spanning the surface of the support membrane. Limited solubility of the initiator in the monomer layer, and the interfacial tension between the aqueous and oil layers creates a uniform, continuous, defect-free selective layer at the interface.

This report is the first demonstration of this new, simple, scalable, reliable, and robust technique for manufacturing membranes with ultrathin, defect-free hydrogel selective layers. We first show that IIFRP can be used to create layers as thin as

Figure 1. Morphology of (a) support membrane, PS. (b) Higher magnification of PS support. (c) Hydrogel layer at 5 min UV exposure time. (d) Higher magnification of hydrogel at 5 min UV exposure time. (e) Hydrogel layer after 10 min UV exposure time. (f) Hydrogel layer at 10 min UV exposure time at higher magnification. Continuous and uniform hydrogel layers are formed on the support membrane upon exposure to UV at varying times. Longer UV exposure time leads to formation of a thicker layer.

130 <100 nm on commercially available porous supports. We then
 131 show that the permeance and pore size of selective layers
 132 formed by our method can be readily altered through simple
 133 parameters (e.g., monomer concentration, UV exposure time)
 134 or through the addition of comonomers or inert polymers in
 135 the monomer solution. Finally, we demonstrate the stability
 136 and extremely high fouling resistance of the hydrogel layer in
 137 filtering protein solutions. We envision that this new technique,
 138 IIFRP, could serve as a platform for manufacturing membranes
 139 with a broad range of properties (e.g., selectivity, affinity) for
 140 several applications beyond protein purification, such as
 141 wastewater treatment, natural gas upgrading, and water
 142 purification.

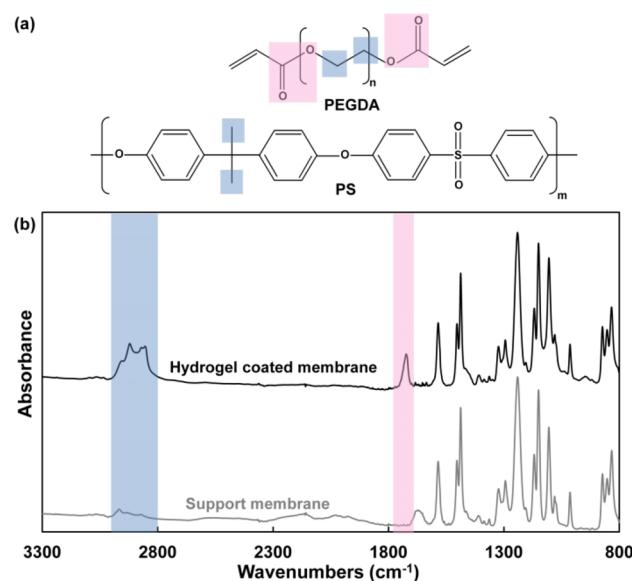
143 ■ RESULTS AND DISCUSSION

144 **Hydrogel Layer Morphology.** As the first demonstration
 145 of the IIFRP method to manufacture membranes with hydrogel
 146 selective layers, we first immersed a commercial UF membrane
 147 (PS3S, Nanostone), which will act as the porous support, into
 148 an aqueous solution containing the poly(ethylene glycol)
 149 diacrylate (PEGDA) monomer. In most cases, we added an
 150 inert hydrophilic polymer, poly(ethylene glycol) with an
 151 average molar mass of 200 g mol⁻¹, PEG200, as an additive.
 152 The selection was based on the previous literature stating that
 153 inert short-chain PEG can create a porous network,^{34–36} which
 154 in turn would be expected to lead to an increase in membrane
 155 permeance. The effect of additives on membrane permeance
 156 and selectivity is further discussed in the following section.
 157 Next, we removed the support from the aqueous solution,
 158 dabbed off the excess, and covered it with the oil solution, *n*-
 159 hexadecane containing 0.1% v/v of the hydrophobic photo-
 160 initiator (PI), Darocur 1173. We then exposed it to UV light,
 161 which caused the initiator to form free radicals in the oil phase
 162 that then diffused to the aqueous phase and started the
 163 polymerization of PEGDA (**Scheme 1**). The membrane surface
 164 was covered by a glass plate during UV exposure to prevent
 165 initiation from PS support membrane upon exposing to UV

light, as reported in previous studies.^{37,38} A control experiment 166 performed without the addition of PI into the oil phase did not 167 lead to a significant change in permeance. 168

Our approach, IIFRP, is in direct contrast to the established 169 photoinitiated free radical polymerization (FRP) methods for 170 preparing hydrogel layers, where monomers and PI are both in 171 the aqueous phase. Using this method, a solution containing 172 only the monomer and the PI cannot typically be coated onto a 173 porous support. The solution is instantly absorbed into the 174 membrane pores through capillary action, and the whole 175 support is filled with hydrogel. Indeed, when the above 176 procedure was performed using a monomer solution containing 177 a water-soluble initiator, this was the result (**Supporting** 178 **Information**). The viscosity of the solution can sometimes be 179 increased by increasing the concentration of the solution 180 (**Figure S1**, Supporting Information) or adding high-molecular- 181 weight polymers,¹⁶ but this often results in the formation of a 182 very thick layer and changes the resultant membrane properties. 183 Furthermore, the uneven exposure to UV light and polymer- 184 ization-induced phase separation (PIPS) can lead to macroscale 185 porosity in the film.^{19,39} 186

In contrast, IIFRP segregates the reactants (i.e., monomers 187 and PI) into two separate phases. Free radicals formed by PI 188 upon UV exposure diffuse to the oil–water interface and react 189 with the monomers in the aqueous monomer solution to 190 initiate polymerization. Since the PI is insoluble in water, the 191 polymer layer starts forming at and growing from the oil–water 192 interface. When UV irradiation is stopped, the polymerization 193 process also ends, arresting the growth of the selective layer. 194 Thus, longer UV irradiation times are expected to result in 195 thicker selective layers. This would not necessarily be the case 196 for homogeneous FRP, where longer exposure would likely 197 increase the degree of cross-linking but not necessarily the 198 coating thickness once the gel point is reached. It is also in 199 contrast to traditional IP, where the formation of the highly 200 cross-linked selective layer at the interface hinders the diffusion 201 of the monomers, leading to a self-limiting reaction. The mesh 202


size of the hydrogel layer that forms in IIFRP is much larger in comparison to the monomer size. This means monomers easily diffuse to the interface and react with the initiating radicals, enabling the hydrogel layer to build as long as radicals are generated through UV irradiation.

To test this hypothesis, we prepared membranes with varying UV irradiation times and analyzed the resultant membrane morphology by field-emission scanning electron microscopy (FESEM). Figure 1a,b shows the commercial polysulfone (PS) membrane with nominal molecular weight cutoff (MWCO) of 20 kDa that we utilized as the porous support throughout the study. Typical of asymmetric ultrafiltration membranes, the membrane has smaller pores on top and larger macrovoids in the sublayers. When IIFRP was applied to this support membrane using 5% v/v PEGDA as the monomer solution and a UV exposure time of 5 min, a very thin hydrogel coating layer was formed (Figure 1c,d). The higher-magnification image of this membrane (Figure 1d) shows the presence of the layer more clearly. The layer is well-integrated into the support, penetrating slightly below the top surface pores and anchoring into the support as envisioned. This morphology prevents the delamination of the layer, but also makes it difficult to clearly identify the boundaries of this layer and determine the thickness. To further confirm the evenness and uniformity of the hydrogel layer formed on the support membrane, we dissolved the support layer in dichloromethane and transferred the hydrogel layer to a wire lasso (Figure S2, Supporting Information). Although, the layer is very thin, it formed an integral surface across the whole 1 cm diameter of the lasso, providing solid evidence of the uniform and continuous nature of the hydrogel layer.

When IIFRP was performed using 10 min UV exposure under identical conditions, a more distinct layer is formed compared with the shorter irradiation time of 5 min (Figure 1e,f). Notably, the layer appears to be uniform throughout the membrane imaged along the *x*-direction labeled in the figure. This uniform layer is maintained throughout the entire membrane sample, imaged in different frames sampling the length of the sample (data not shown), clearly indicating the consistent nature of this simple method. A higher-magnification image of this membrane (Figure 1f) shows that the layer is also uniform across the layer thickness (*y*-direction). The coating is thicker and more distinct in this sample compared to 5 min UV exposure time, allowing a rough estimation of the thickness to be around 130 nm. Longer UV exposure appears to increase the dry thickness of the hydrogel layer. For example, an even longer exposure time of 20 min led to the formation of a hydrogel layer with thickness of 260 nm, about twice the one formed at 10 min UV exposure time (Figure S3, Supporting Information). Accounting for the uniform thickness of the aqueous prepolymer layer during the polymerization and the status of the membrane sample during SEM imaging (i.e., dried), the observed difference in the thickness is likely due to the polymerization process penetrating into the membrane to different extents. Importantly, this result suggests that simple fabrication parameters such as UV irradiation time can be used to impart various membrane properties (e.g., layer thickness and penetration).

Chemical Structure of the Hydrogel Layer. In order to further confirm the formation of the ultrathin hydrogel layers, we performed attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) on membranes prepared by IIFRP using a monomer solution containing 5% v/v

PEGDA, 2.5% v/v PEG200, and a UV exposure of 5 min (Figure 2). PEGDA (Figure 2a) forms a cross-linked PEGDA

Figure 2. (a) Chemical structure of PEGDA and PS. (b) ATR–FTIR spectra of PS support membrane (bottom) and coated with an ultrathin hydrogel layer (top) with 5 min UV exposure. Absorption bands corresponding to CH (blue) and ester (pink) groups are marked to demonstrate the formation of a cross-linked PEGDA hydrogel selective layer in the PS support.

network upon photoinduced free radical polymerization on the membrane surface. This leads to an increase in the density of C–H bonds (blue) in comparison with the support membrane material PS, and also introduces ester groups (pink).

Indeed, upon the deposition of the cross-linked PEGDA selective layer by IIFRP, the broad absorbance peak around 2800–3000 cm⁻¹ (top spectrum) corresponding to the C–H stretching vibration increases in intensity.^{40,41} This peak is very weak in the support membrane (bottom spectrum), which does not contain as high a concentration of C–H groups (labeled blue in Figure 2). This clearly confirms the presence of the PEG hydrogel layer. The presence and chemical structure of the coating layer is also confirmed by the appearance of the C=O stretching peak at 1723 cm⁻¹ arising from the ester bond at each end of the PEGDA (labeled pink),⁴⁰ while the IR spectrum of the support membrane (bottom) shows no such peak.

In addition, the coating shows no significant absorbance at 1620–1640 cm⁻¹. This wavelength range corresponds to the vinyl groups in PEGDA that are converted to single bonds upon polymerization.⁴⁰ The lack of a peak in this range in the IR spectrum of the coated membrane suggests that the formed hydrogel layer is mostly or fully polymerized, mostly free of unpolymerized or partially polymerized PEGDA monomer.

Given the chemical structure and low thickness of these selective layers, the resultant membranes are expected to be highly permeable. However, this needs to be verified by filtration experiments that demonstrate their performance in more realistic situations. Thus, we next examined the permeation properties of the hydrogel-coated membranes.

Permeation Properties. To characterize how membranes prepared by IIFRP perform in aqueous filtration applications, we performed filtration experiments using a dead-end system.

301 First, we aimed to understand the effect of IIFRP process
 302 parameters such as the UV exposure time on membrane
 303 permeance. For this, monomer solution containing 5% v/v
 304 PEGDA and 2.5% v/v PEG200 was used to form hydrogel
 305 layers by IIFRP at different UV exposure times (4–20 min) on
 306 identical support membranes. Deionized water was filtered
 307 through the membrane until the flow rate stabilized. Pure water
 308 permeance, defined as the water flux through the membrane
 309 normalized by the applied pressure difference of 40 psi, was
 310 calculated. This permeance was stable over a wide range of
 311 transmembrane pressures, up to 60 psi (see Figure S4,
 312 Supporting Information). The support membrane was
 313 measured to have a water permeance of $1250 \pm 60 \text{ L h}^{-1}$
 314 $\text{m}^{-2} \text{ bar}^{-1}$.

315 Figure 3 shows the water permeances of these hydrogel-
 316 coated membranes. Even the membrane prepared with the

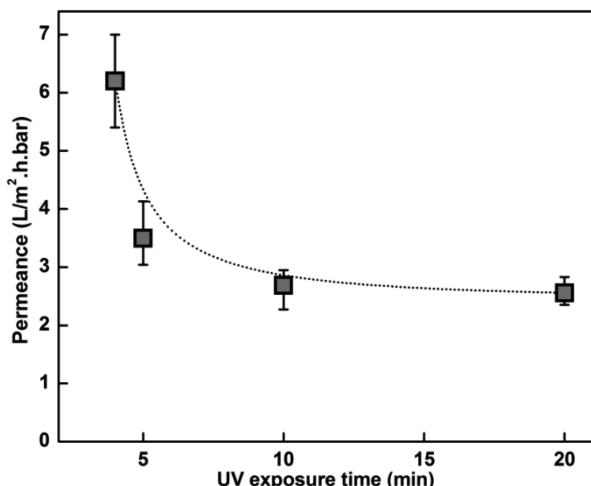
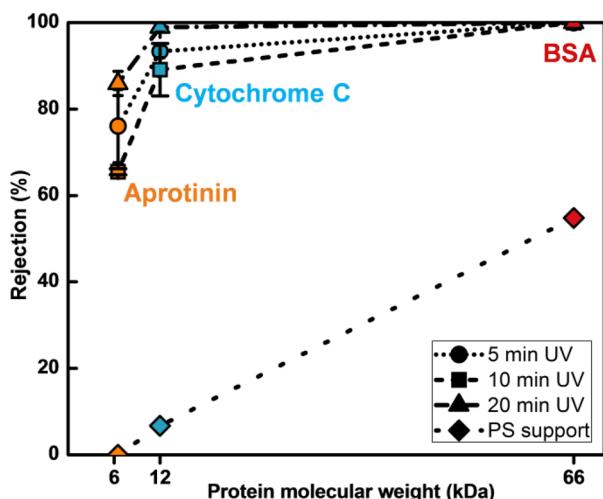


Figure 3. Effect of UV exposure time on membrane permeance; all membranes are prepared with monomer solution containing 5% PEGDA and 2.5% PEG200. Significant difference between the permeance of the support membrane and hydrogel-coated membranes indicates the formation of the hydrogel layer, with permeances depending on UV exposure time.

317 shortest UV exposure time of 4 min had a substantially lower
 318 permeance than the support membrane, $6.2 \text{ L h}^{-1} \text{ m}^{-2} \text{ bar}^{-1}$.
 319 This indicates the formation of the hydrogel layer. Membranes
 320 prepared with 5–20 min UV exposure times also showed
 321 substantially lower permeances compared with the support
 322 membrane. Longer UV exposure initially led to lower
 323 permeance, but the values reached a plateau after 10 min,
 324 indicated by the dotted line (B-Spline fitting). A minimum UV
 325 exposure time of 4 min was needed for the formation of a
 326 uniform hydrogel layer with permeation properties that are
 327 distinctly different from the support membrane. Shorter
 328 exposure times (1–3 min) lead to membranes with permeances
 329 comparable with the support membrane, indicating that a
 330 complete hydrogel layer integrated into the support had not yet
 331 formed at this time. These results correlate well with and
 332 further confirm the morphological results acquired via FESEM
 333 (Figure 1). The membrane featuring a thinner hydrogel layer (5
 334 min, Figure 1d) exhibits 1.4 times higher permeance than the
 335 ones with thicker layers (20 min, Figure 1f).

336 The error bars shown in Figure 3 represent the maximum
 337 and minimum permeance values measured during the test of at
 338 least 5 samples for each condition. The narrow range of


339 resultant permeances, indicated by the small error bars, clearly
 340 depicts the reproducible, consistent, robust, and reliable nature
 341 of our simple IIFRP method.

342 The permeance range we have achieved in this study is
 343 comparable to commercial thin film composite (TFC) membranes
 344 with cross-linked selective layers prepared by IP with the largest
 345 available pore size. These membranes are tight ultrafiltration (UF)
 346 membranes, typically designed for nominal molecular weight
 347 cutoff (MWCO) values between 1000 and 3000 Da. For example,
 348 according to industrial specification sheets, UF membranes
 349 manufactured by GE with nominal MWCOs between 1000 and
 350 3000 Da have permeances between 1.12 and $5.65 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$.⁴² It is also significantly
 351 higher than free-standing hydrogel membranes reported in the
 352 literature, $0.002\text{--}0.31 \text{ m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$.

353 At this stage, the water permeance of our membrane is lower
 354 than values listed for commercial membranes commonly used
 355 for bioseparations, such as regenerated cellulose UF membranes.⁴³ However, as discussed below, the fouling behaviors of
 357 hydrogel membranes are significantly different from most
 358 commercial membranes, which are prone to severe fouling
 359 upon exposure to solutions containing organic macromolecules
 360 (e.g., proteins, polysaccharides) and oil.^{44–46} The IIFRP
 361 method presented here enables the preparation of membranes
 362 with highly hydrophilic hydrogel selective layers with excellent
 363 antifouling properties. These membranes retain their initial
 364 permeance fully even when filtering protein solutions, as
 365 demonstrated in the data below. In contrast, commercial
 366 membranes, including those made of the relatively hydrophilic
 367 regenerated cellulose, often exhibit severe declines in
 368 permeance during the filtration of protein solutions due to
 369 fouling. For example, even though the Ultracel PLCGC
 370 membrane manufactured by EMD Millipore with MWCO of
 371 10 kDa has a higher permeance when tested with pure water, its
 372 permeance declines severely during the filtration of protein
 373 solutions. Some reported permeances during the filtration of
 374 representative protein solutions (bovine skim colostrum whey
 375 or surfactin) range between 1.7 and $7 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$,^{47,48}
 376 comparable with the permeances documented for membranes
 377 reported here. Similarly high flux decline has also been reported
 378 for larger MWCO Ultracel membranes.^{49–51} Thus, the
 379 exceptional fouling resistance of membranes prepared by
 380 IIFRP can enable comparable and more stable membrane
 381 permeance during the filtration of protein solutions encoun-
 382 tered in bioseparations.³⁸³

384 Furthermore, we believe that the IIFRP process has the
 385 potential to be tuned and optimized by changing other
 386 parameters (e.g., photoinitiator concentration, monomer
 387 concentration, additives) to further improve the permeance of
 388 resultant membranes. Improved flux can also be achieved by
 389 identifying the optimal support membrane for each application.
 390 The literature shows that the selection of the support
 391 membrane can change the permeance of the TFC membranes
 392 by up to an order of magnitude.⁵² Therefore, highly
 393 competitive and stable permeances can be achieved upon the
 394 optimization of the IIFRP process for each targeted
 395 bioseparation.³⁹⁵

396 **Membrane Selectivity and Protein Rejection.** Next, we
 397 examined the performance of hydrogel-coated membranes
 398 prepared by IIFRP for the filtration of protein solutions in a
 399 dead-end filtration setup (Figure 4). For this, different protein
 400 solutions were filtered through the hydrogel-coated membranes
 401 prepared with a monomer solution of 5% v/v PEGDA and
 402

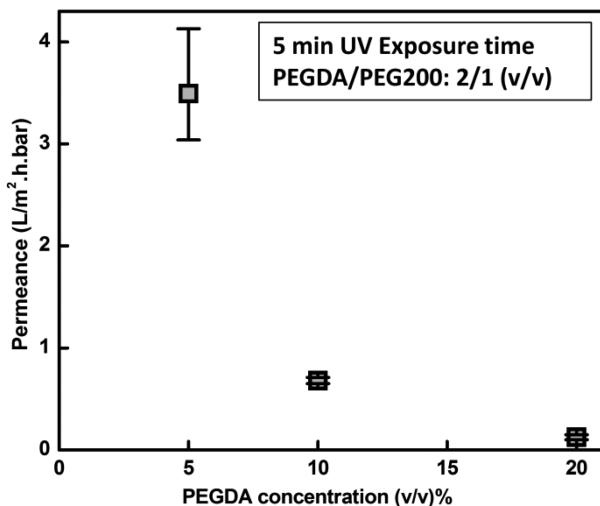
Figure 4. Rejection properties of hydrogel-coated membranes. The PS support membrane shows limited rejection for all three proteins, whereas cross-linked PEGDA-coated membranes prepared by IIFRP reject Cytochrome C and BSA by >90%, indicating a MWCO around 8–10 kDa.

2.5% v/v PEG200 at different UV exposure times (5–20 min). The membranes were first compacted by filtering deionized water for at least 3 h. Three proteins with different molecular weights and hydrodynamic radii (R_H) were tested: Aprotinin (6.5 kDa, $R_H \sim 1.3$ nm), Cytochrome C (12 kDa, $R_H \sim 1.7$ nm), and bovine serum albumin (BSA, 66 kDa, $R_H \sim 3.5$ nm).⁵³ Each protein was dissolved in phosphate buffered saline (PBS) at a concentration of 100 ppm and filtered through the membrane one at a time. Rejection (R) was calculated by measuring the UV absorbances of feed and permeate at 280 nm for BSA and Aprotinin and 410 nm for Cytochrome C according to

$$R\% = \left(1 - \frac{C_p}{C_f} \right) \times 100$$

where C_f and C_p are the concentration of feed and permeate, respectively.

Figure 4 shows the rejection of these three proteins by the support membrane and three hydrogel-coated membranes prepared by IIFRP using different UV irradiation times. All hydrogel-coated membranes exhibit similar rejection properties, with an effective pore size significantly smaller than the support membrane. For the smallest protein Aprotinin (6.5 kDa), all the membranes prepared by IIFRP show moderate rejection (65–85%). In contrast, Aprotinin passes through the support membrane with no measurable rejection. All three hydrogel-coated membranes show higher rejection (90–99.9%) for the slightly larger Cytochrome C (12 kDa) than the support membrane, which shows only 6% rejection. Finally, for the largest protein, BSA (66 kDa), complete rejection within the detection limit (>99%) was obtained for all the three hydrogel-coated membranes, whereas 55% rejection was observed for the support membrane. This is consistent with a MWCO of about 8–10 kDa for the hydrogel-coated membranes, clearly illustrating the formation of a selective layer that controls membrane selectivity and protein rejection. It is worth noting that the protein rejections remained unchanged upon changing the ionic strength of the solution (Table S1, Supporting Information).


All three hydrogel-coated membranes had similar rejections, within error margins of each other. This suggests that UV exposure time mainly affects hydrogel layer thickness and not the hydrogel mesh size. Importantly, all the consistent protein rejection results with small error bars (indicating the rejection range from minimum 3 membrane samples per condition) confirm minimal defects throughout the membrane area (4.1 cm²), providing evidence of the reliable and robust nature of IIFRP for preparing membrane selective layers. Furthermore, the hydrogel selective layer shows a much sharper size-based cutoff in comparison to the support membrane.

Since membranes are usually delivered in dry state, we investigated the effect of drying and rehydration on membrane permeance and rejection properties. The membrane was air-dried overnight and soaked in water afterward. Then, membrane permeance and rejection were measured. Both permeance and rejection properties of the membranes remained unchanged after two drying and rehydration cycles. This confirms the absence of any cracks, pore collapse, or defects upon loss of water (Supporting Information).

Effect of Monomer Solution Composition on Membrane Selectivity and Permeance. Membrane selectivity and permeance is affected by various parameters that can be adjusted in the IIFRP process, including the composition of the aqueous monomer solution. These parameters can be used to tune membrane pore size, optimize the process to achieve high permeance while maintaining desired selectivity, and to incorporate desired functional groups in the selective layer for various purposes. For example, the PEGDA concentration in this solution can be changed. Alternatively, other components can be added to this solution. Inert polymers such as low-molecular-weight poly(ethylene glycol) (PEG) can act as porogens by altering the cross-link density and hence mesh size, or create larger-scale voids through PIPS. Comonomers can also alter the mesh size by increasing the distance between cross-links, but also incorporate functional groups in the selective layer. The IIFRP process allows a wide selection of such components; as long as these components are water-soluble, they can be used.

To demonstrate this, we prepared PEGDA hydrogel-coated membranes by IIFRP using different PEGDA concentrations (5–20% v/v) in the monomer solution, and also using PEG200 as an additive at a volume ratio of 2:1 PEGDA:PEG200. The pure water permeance of these membranes, prepared with 5 min UV exposure, was measured in a dead-end filtration system at a transmembrane pressure (TMP) of 40 psi.

Figure 5 shows the change in membrane pure water permeance with varying PEGDA concentration in the monomer solution. When the PEGDA concentration increased from 5% to 10% v/v, membrane permeance decreased by 5 times. The permeance decreased further upon increasing PEGDA content to 20% v/v. This trend could be attributed to the formation of a selective layer with higher polymer content and cross-link density, and therefore a smaller effective pore size of the hydrogel network. These results are consistent with the literature on free-standing PEG hydrogels in that the monomer content directly controls the hydrogel layer cross-link density, which would in turn determine the effective mesh size and MWCO.^{54,55} The IIFRP hydrogel-coated membranes also show thicker dry thickness upon increased PEGDA concentration (Figure S5, Supporting Information) due to faster polymerization achieved at higher monomer concentrations,

Figure 5. Effect of PEGDA concentration on membrane permeance. Error bars indicate the range of permeances obtained for a minimum of three samples.

and to higher polymer content in the resultant hydrogel layer leading to a thicker film when dried for SEM imaging.

We next examined the effect of different inert additives such as low-molecular-weight PEG (PEG200 and PEG600, with average molar masses of 200 and 600 Da, respectively) on the permeation and rejection properties of membranes prepared by IIFRP of PEGDA (Table 1). For this, we added the PEG oligomers at varying concentrations (0–30% v/v) to the monomer solution and performed IIFRP using a 5 min UV exposure time. The presence of PEG oligomers during the gelation of PEGDA in water is reported to cause phase separation between PEG and PEGDA during photopolymerization, termed polymerization-induced phase separation (PIPS).⁵⁴ PEG oligomers are inert porogens that do not polymerize with PEGDA, and are washed away upon rinsing.⁵⁶ This leads to the formation of pores or voids.^{54,57,58} The presence of voids within the selective layer leads to an increase in the permeance and/or pore size of the resultant membranes, enabling us to tune their separation properties to the desired application.

Table 1 shows the pure water permeances of these membranes, and the rejections of two proteins, BSA and Cytochrome C, as an indicator of their effective pore size. The two top rows of Table 1 show that a small amount of PEG200 (2.5% v/v) increases the permeance by 1.8 times over the hydrogel-coated membrane without the PEG200 while maintaining similar protein rejection properties. Increasing

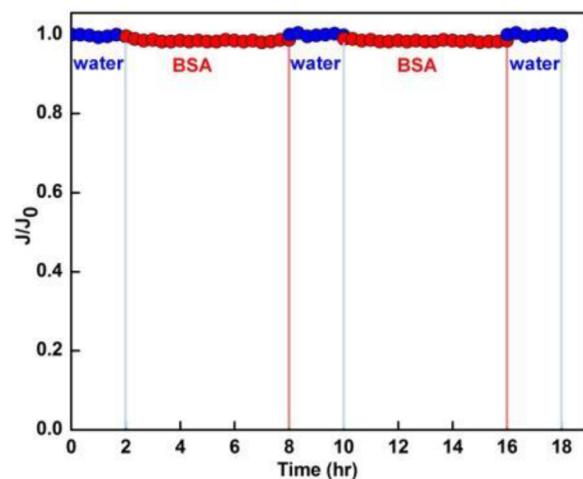
PEG200 content further to 10% v/v increases the membrane permeance to about 3 times the value for the membrane prepared without PEG200, but causes no significant change in rejection. Our hypothesis is that PIPS during this process does not create interconnected large pores, but discrete voids, or cells, similar to those observed in closed-cell foams. The voids are enclosed with continuous hydrogel “walls” within the selective layer, so membrane selectivity is unchanged. However, the enclosed voids do not pose resistance to flow. Hence, the “effective film thickness”, or the net thickness that will pose resistance to flow, is lower than the depth polymerization progresses to. This can improve the permeance subsequently, without changing the mesh size of the PEGDA network.⁵⁹ As an interesting parallel, recent studies have reported the presence of interspersed voids within the thin polyamide selective layers of RO membranes manufactured by IP method.^{31,60} These voids are filled with water during filtration and result in the creation of a shorter diffusion path and thus higher permeance. Our results indicate that a similar mechanism of increased permeance may be at play when PEG200 is used as an additive at low to moderate concentrations, though these results warrant further morphological characterization as a future study. In addition, PIPS may lead to an increase in the fractional free volume of the selective layer by creating voids smaller than the size of the protein within the layer, again leading to a higher permeance without a change in selectivity.

Upon further addition of PEG200 (20% v/v), the permeance decreases, yet similar rejection properties are obtained. This decrease in permeance could be explained by the fact that high amount of PEG200 ($\delta = 19.1 \text{ MPa}^{1/2}$)⁶¹ can increase the solubility of the PI ($\delta = 24.3 \text{ MPa}^{1/2}$, calculated using Molecular Modeling Pro software) in the water phase ($\delta = 47.9 \text{ MPa}^{1/2}$).⁶² This may cause some of the PI to partition into the monomer solution before UV exposure, leading the polymerization reaction to no longer occur just at the interface, allowing the hydrogel layer to penetrate into the membrane pores. However, when 30% v/v PEG200 was used in the monomer solution, the resultant permeance was about 3 times the value for the membrane prepared without any PEG200. This was accompanied with a decrease in the rejection of both BSA and Cytochrome C. This is likely due to the formation of interconnected pores by PIPS at this high concentration of PEG200. Inert additives such as PEG oligomers can also interfere with the polymerization reaction when present at high concentrations.⁶³ This could also have resulted in the observed decrease in protein rejection.

Table 1. Effect of Comonomer/Porogens as Additives in Monomer Solution on Hydrogel-Coated Membranes’ Permeance and Rejection Properties^a

membrane sample	permeance ($\text{L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$)	BSA rejection %	Cytochrome C rejection %
5% PEGDA	1.9 ± 0.3	>99 ^b	92.5 ± 1.1
5% PEGDA/2.5% PEG200	3.5 ± 0.5	>99	93.4 ± 2.0
5% PEGDA/10% PEG200	5.9 ± 0.4	>99	96.7 ± 1.3
5% PEGDA/20% PEG200	3.8 ± 1.2	>99	94.9 ± 0.9
5% PEGDA/30% PEG200	6.3 ± 1.6	85 ± 2	71 ± 7
5% PEGDA/30% PEG600	8.1 ± 1.5	70 ± 7	65 ± 9
5% PEGDA/2.5% PEGMEA	2.6 ± 0.7	>99	95.0 ± 0.6
7.5% PEGDA	1.1 ± 0.3	>99	99.5 ± 0.3

^aError margins indicate standard deviation from at least three samples. ^bDetection limit.


PEG600 has been documented to create larger pores in cross-linked PEG gels than PEG200 due to PIPS occurring more significantly than with PEG200.³⁵ However, our results indicate that addition of 10–20% v/v PEG600 leads to similar results as those obtained with similar amounts of PEG200. Similar to PEG200, higher permeance (more than 4 times in comparison to the one without porogen) and lower protein rejections were obtained at 30% v/v PEG600. These changes, however, were more significant than those observed for PEG200. The formation of larger pores by PEG600 can be attributed to either PIPS occurring to a larger extent in comparison to the PEG200 porogen,³⁵ or to PEG600 inhibiting polymerization to a greater extent than PEG200.⁵⁹ This shows that the hydrogel network can be easily tuned using different porogens.

Cross-link density and PIPS can also be influenced by the presence of a monofunctional comonomer such as poly(ethylene glycol) methyl ether acrylate (PEGMEA) mixed with PEGDA in the monomer solution.³⁹ The results in the two bottom rows of Table 1 show that copolymerization of PEGMEA with PEGDA leads to a higher membrane permeance in comparison with a membrane made with PEGDA only (7.5% v/v). BSA is fully retained by both membranes, whereas the rejection of smaller Cytochrome C decreases somewhat, indicating a slight increase in the effective pore size of the membrane. The replacement of some PEGDA with PEGMEA would decrease the cross-link density in comparison with the membrane containing only PEGDA, leading to this higher mesh size that controls protein selectivity.^{19,39} Long pendant chains introduced by the addition of PEGMEA to the hydrogel network can disrupt polymer chain packing and thus decrease cross-link density.⁶⁴ Also, PEGMEA with free methoxy chain end-groups decreases the cross-link density by decreasing the fraction of polyfunctional monomers that create cross-links and providing more fractional free volume in the network.^{19,39} Unlike PEG porogens, PEGMEA also participates in the polymerization reaction. This increases the effective monomer concentration in solution (compared with, for example, the membrane prepared from 5% PEGDA and 2.5% PEG200) and hence leads to a higher polymer content and lower permeance in comparison with membranes prepared with inert porogens from 5% PEGDA.

Finally, consistently small deviations (i.e., permeance range shown by error bars in Figure 5 and standard deviations in Table 1) were obtained for each condition tested using these additives. This indicates the robustness and reliability of our simple process for forming hydrogel membrane selective layers. Combined, the results in Figure 5 and Table 1 demonstrate that our robust IIFRP technique yields readily tunable membrane parameters widening the scope for various protein separation applications. Also, while not fully explored in this study, the selective layer can be modified to include many other water-soluble components (e.g., comonomers, porogens, nanomaterials). By carefully tuning the parameters, a hydrogel selective layer can be designed for targeted separations (e.g., charged- or affinity-based separations).

Fouling Resistance. Fouling resistance is crucial for the successful use of membranes.⁶⁵ Fouling is a particularly prominent challenge in protein separation applications, because proteins are especially prone to adsorb on the membrane surface and inside the pores.^{9,10} This can cause substantial flux decline and cause changes in membrane selectivity due to pore narrowing.^{9,11,12} Therefore, it is crucial for newly developed

membrane materials to resist fouling to ensure reliable, long-term operation, especially for such high-fouling applications.⁶³⁸ We thus examined the fouling of hydrogel-coated membranes prepared by IIFRP during the filtration of a protein solution over an extended period of time. For this, we performed a cyclic filtration experiment with 100 ppm BSA solution as a model protein in a cross-flow setup at a TMP of 40 psi and feed flow rate of 135 mL min⁻¹, corresponding to a shear rate of 9.4 s⁻¹ over two 6 h periods of protein filtration, between which deionized water was filtered through the membrane for 2 h (Figure 6). Experiments were performed using a round

Figure 6. Long-term fouling resistance of hydrogel-coated membrane upon exposure to a model protein (BSA) solution. Tests performed in a cross-flow setup at a TMP of 40 psi; flux is normalized by average initial water flux. The hydrogel-coated membrane is extremely fouling-resistant, suitable for protein purification.

membrane swatch with an effective filtration area of 4.1 cm². For the fouling experiment, we chose the membrane prepared with 5% v/v PEGDA and 2.5% v/v PEG200 at UV exposure time of 5 min as an example. This membrane showed high permeance and high rejection for BSA (>99%), so no internal pore fouling was expected, emphasizing the fouling resistance of the hydrogel layer covering the surface.

The membrane was first equilibrated and compacted by filtering deionized (DI) water for 5 h. The initial water flux at the end of this period, termed J_0 , was measured to be 12.5 L m⁻² h⁻¹, corresponding to a permeance of 4.6 L m⁻² h⁻¹ bar⁻¹. Next, BSA solution was filtered through the membrane for 6 h. The membrane initially showed <2% reduction in flux during the filtration of this solution, and no further noticeable decline in flux throughout the 6 h period. It is worth noting that the 2% drop in the flux of protein solution could arise from the osmotic pressure difference caused by the presence of retained solutes in the feed and from concentration polarization rather than an indication of any fouling.^{66,67} The lack of further flux decline during operation implies no build-up of foulants occurs on the membrane surface, due to the adsorption of proteins or due to cake formation.^{68,69} Next, to test the reversibility of this minor decline in flux and confirm its cause, the feed was switched to DI water for two hours. The membrane immediately returned to its initial flux without the need for backwashing or chemical cleaning, clearly indicating excellent resistance to fouling by this protein. Comparable results were achieved during the second protein filtration cycle. No fouling was observed in this second

676 protein filtration cycle either. BSA molecules were retained by
 677 >99%. The membrane immediately returned to its initial water
 678 flux upon water filtration afterward. This result clearly illustrates
 679 the excellent antifouling property and robustness of our
 680 hydrogel-coated membrane over extended exposure to protein
 681 solutions. In contrast, commercial UF membranes used in
 682 protein separations (e.g., made of PS) are known to foul
 683 extensively and immediately upon exposure to protein
 684 solutions, often leading to severe flux decline during the
 685 filtration of the solution, as well as flux declines of more than
 686 50% that cannot be reversed even by more complex physical
 687 cleaning procedures compared with those used in this
 688 experiment.^{12,16,70} The excellent fouling resistance demon-
 689 strated in this experiment illustrates the potential of IIFRP to
 690 prepare highly fouling-resistant membranes for protein
 691 separation.

692 ■ CONCLUSION

693 This report is the first demonstration of a new, robust
 694 interfacial polymerization-based technique, IIFRP, to manufac-
 695 ture membranes with ultrathin hydrogel selective layers, their
 696 key performance parameters relevant to protein purification
 697 and separation applications. As an initial demonstration of this
 698 technique, this study focused on membranes with cross-linked
 699 PEGDA selective layers, prepared using varying UV irradiation
 700 times and with comonomers or inert additives. The formation
 701 of uniform hydrogel layers as thin as <100 nm was documented
 702 at different UV exposure times using FESEM, and confirmed
 703 via FTIR. Water filtration experiments showed that membranes
 704 prepared by IIFRP exhibited reliable and consistent perform-
 705 ance. Uniform selective layers with complete coverage were
 706 formed at a UV irradiation time of 4–5 min, with longer
 707 exposures leading to thicker selective layers and lower
 708 permeance without any significant shift in selectivity. The
 709 filtration of proteins with different molecular weights revealed
 710 the formation of defect-free and uniform selective layers,
 711 indicated by complete rejection of higher-molecular-weight
 712 solutes. Initial membranes prepared with solutions containing
 713 5% v/v PEGDA and 2.5% v/v PEG200 had a MWCO of
 714 around 8–10 kDa. The permeance can be further improved,
 715 and MWCO can be adjusted, by adjusting simple fabrication
 716 parameters such as the monomer concentration or by the
 717 incorporation of comonomers or inert additives that act as
 718 porogens in the monomer solution. Lastly, extended protein
 719 filtration experiments showed that the membranes exhibit
 720 excellent antifouling properties and stability for protein
 721 purification. Taken together, these results indicate that the
 722 newly described IIFRP is a facile and robust fabrication strategy
 723 to manufacture membranes with uniform and defect-free
 724 hydrogel selective layers with tunable protein filtration
 725 properties. Unlike common single-phase polymerization
 726 methods used to prepare membranes with hydrogel selective
 727 layers, IIFRP allows for the formation of ultrathin hydrogel
 728 layers. Furthermore, IIFRP leads to uniform selective layers due
 729 to the formation of the hydrogel layer at an interface spanning
 730 the surface of the support, minimizing defects. We envision that
 731 this novel fabrication method can open up promising routes for
 732 industrial-scale fabrication of ultrathin hydrogel selective layers.
 733 Furthermore, IIFRP can be readily extended to the fabrication
 734 of hydrogels with additional functionalities via incorporation of
 735 different comonomers (e.g., charged monomers, zwitterions,
 736 etc.) in a reliable and reproducible manner for a variety of
 737 applications.

738 ■ EXPERIMENTAL METHODS

Materials. Poly(ethylene glycol) diacrylate (PEGDA, average M_n 739
 700 Da), poly(ethylene glycol) methyl ether acrylate (PEGMEA, 740
 average M_n 480 Da), poly(ethylene glycol) (PEG, average M_n 200 or 741
 600 Da), 2-hydroxy-2-methylpropiophenone also known as Darocur 742
 1173 (photoinitiator, PI), and bovine serum albumin (BSA) were 743
 purchased from Sigma-Aldrich (St. Louis, MO). *n*-Hexadecane (99%) 744
 was purchased from ACROS Organics. Cytochrome C, equine heart, 745
 +90%, and Aprotinin, from bovine lung, were purchased from Alfa 746
 Aesar (Ward Hill, MA). Phosphate buffered saline (PBS) packs (0.1 M 747
 sodium phosphate, 0.15 M sodium chloride, pH 7.2) were purchased 748
 from Thermo Scientific (Rockford, IL). Reagent alcohol was obtained 749
 from VWR (West Chester, PA). Ultrapure deionized water generated 750
 by Biolab 3300 RO, a building-wide RO/DI water purification unit by 751
 Mar Cor Purification, was used for all experiments. All the chemicals 752
 were analytical grade, and used without further purification. 753
 Polysulfone (PS3S, 20 kDa) ultrafiltration membranes purchased 754
 from Nanostone Water, Inc. (Oceanside, CA) were used as the 755
 support membrane to provide mechanical stability. 756

Fabrication of Ultrathin Hydrogel Layer. The support 757
 membrane (Polysulfone, PS, Nanostone) was first washed with 758
 ethanol, dried, and then taped along all edges onto a glass plate. An 759
 aqueous solution containing 5–20% v/v PEGDA (700 g mol⁻¹), with 760
 or without additives (PEG200, PEG600, or PEGMEA), was poured on 761
 the support membrane. The support membrane was equilibrated with 762
 this aqueous monomer solution for 3 min to provide enough time for 763
 monomers, comonomers, and porogens to diffuse into the pores. The 764
 penetration of PEGDA into PS helps further stability of the coating 765
 layer on PS. The aqueous solution was then poured out, and the 766
 membrane surface was gently dabbed using a filter paper to remove 767
 any residual droplets. A solution of 0.1% v/v of oil-soluble PI 768
 (Darocur) in *n*-hexadecane was poured on the membrane surface. The 769
 membrane surface was covered with a glass plate to prevent initiation 770
 from PS support membrane.^{37,38} Subsequently, the membrane was 771
 exposed to 365 nm UV light with an 8 W hand-held UV lamp 772
 (Spectronics Corp., Westbury, NY) for varying times (1–20 min). The 773
 excess solution covering the membrane was then poured out, and the 774
 membrane surface was washed with a water/ethanol mixture 1:1 ratio 775
 several times and kept in DI water overnight to ensure the complete 776
 removal of unreacted monomer, additives, initiator, and hexadecane. 777

Field-Emission Scanning Electron Microscopy (FESEM). The 778
 microstructure of the membrane was characterized by Field-emission 779
 scanning electron microscopy (Supra 55) at 4 kV and 7 mm working 780
 distance. Dried membranes were frozen in liquid nitrogen and cut with 781
 a razor blade for cross-sectional imaging. Samples were sputter-coated 782
 (Cressington 108 manual, Ted Pella Inc., CA) with Au/Pd (60/40) in 783
 an argon atmosphere.⁷⁸⁴

**Attenuated Total Internal Reflectance–Fourier Transform 785
 Infrared (ATR–FTIR).** ATR–FTIR spectra of membranes were 786
 collected using a FTIR-6200 spectrophotometer (JASCO Corp, 787
 Tokyo, Japan) over the range 4000–600 cm⁻¹ at a 2 cm⁻¹ resolution. 788
 Prior to analysis, membranes were air-dried for 24 h.⁷⁸⁹

Membrane Performance. Filtration experiments were performed 790
 using an Amicon 8010 dead-end stirred cell (Millipore) with a cell 791
 volume of 10 mL and an effective filtration area of 4.1 cm² attached to 792
 a 1 gal reservoir. The cell was stirred at 500 rpm. Tests were 793
 conducted at an applied transmembrane pressure (TMP) of 40 psi.⁷⁹⁴
 Water flow rate through the membranes was measured by collecting 795
 the permeate in a container placed on a scale (Ohaus Scout Pro)⁷⁹⁶
 connected to a computer and recording the increase in permeate 797
 weight over time. The membrane permeance (L_p) was calculated by 798
 normalizing flux (J), defined as the water flow rate divided by active 799
 membrane area, with applied transmembrane pressure (ΔP).⁸⁰⁰

$$L_p = \frac{J}{\Delta P}$$

Membrane performance in protein filtration was studied by filtering 801
 solutions of a series of proteins with different sizes at a concentration 802
 of 100 ppm in PBS buffer one at a time. The first 1 mL of filtrate was 803

804 discarded, and the subsequent 1 mL was collected. The concentration
 805 of protein in this filtrate was measured using UV-vis spectroscopy
 806 (Thermo Scientific Genesys 10S spectrometer, Waltham, MA) at 285
 807 nm for BSA and Aprotinin and 410 for Cytochrome C. Protein
 808 rejection was calculated according to

$$R\% = \left(1 - \frac{C_p}{C_f} \right) \times 100$$

809 where R is the solute rejection, and C_f and C_p are the concentration of
 810 feed (100 ppm) and permeate, respectively. Membranes were washed
 811 (soaked in DI water, and DI water was filtered through overnight)
 812 before subsequent protein filtration experiments. No significant shift in
 813 water permeance was noted between protein filtration experiments.

814 The fouling properties of the membrane were investigated in a
 815 cross-flow system with a flat-frame membrane module (Sterlitech
 816 CF016A, Kent, WA) integrated with a KrosFlo Research II TFF
 817 System (Spectrum Laboratories, Inc., Compton, CA). The CF016 cell,
 818 with an as-manufactured effective membrane area of 20.6 cm² and a
 819 channel depth of 2.3 mm, was fitted with an impermeable plastic mask
 820 that allowed the installation of round membrane swatches with an
 821 effective filtration area of 4.1 cm². Experiments were performed at
 822 transmembrane pressure (TMP) of 40 psi and feed flow rate of 135
 823 mL min⁻¹, corresponding to a shear rate of 9.4 s⁻¹ and a Reynolds
 824 number of 120, indicating laminar flow. This value was selected based
 825 on the literature that reports more severe irreversible fouling occurring
 826 at low Re numbers.⁷¹⁻⁷³

827 ■ ASSOCIATED CONTENT

828 ■ Supporting Information

829 The Supporting Information is available free of charge on the
 830 ACS Publications website at DOI: [10.1021/acs.chemmater.7b04598](https://doi.org/10.1021/acs.chemmater.7b04598).

832 Control experiment with monomer and initiator in single
 833 aqueous phase, and effect of monomer solution
 834 concentration on hydrogel layer thickness (PDF)

835 ■ AUTHOR INFORMATION

836 Corresponding Author

837 *E-mail: Ayse.Asatekin@tufts.edu.

838 ORCID

839 Ayse Asatekin: [0000-0002-4704-1542](https://orcid.org/0000-0002-4704-1542)

840 Notes

841 The authors declare no competing financial interest.

842 ■ ACKNOWLEDGMENTS

843 We gratefully acknowledge financial support from Tufts
 844 University, the Tufts Collaborates program, and the National
 845 Science Foundation (NSF) under Grants CBET-1703549 and
 846 CBET-1553661. FESEM imaging was performed at the Center
 847 for Nanoscale Systems (CNS), a member of the National
 848 Nanotechnology Infrastructure Network (NNIN), which is
 849 supported by the National Science Foundation under NSF
 850 Award ECS-0335765. CNS is part of Harvard University.

851 ■ REFERENCES

- 852 (1) Labrou, N. E. Protein Purification: An Overview. *Methods Mol. Biol.* **2014**, 1129, 3–10.
- 853 (2) Hettiarachchy, N.; Sato, K.; Marshall, M.; Kannan, A. *Food Proteins and Peptides: Chemistry, Functionality, Interactions, and Commercialization*; CRC Press: Taylor & Francis Group: FL, 2016.
- 854 (3) van Reis, R.; Zydny, A. Membrane separations in biotechnology. *Curr. Opin. Biotechnol.* **2001**, 12 (2), 208–211.
- 855 (4) Charcosset, C. Membrane processes in biotechnology: An overview. *Biotechnol. Adv.* **2006**, 24 (5), 482–492.

- 856 (5) Zhao, Y. H.; Wee, K. H.; Bai, R. B. A Novel Electrolyte-Responsive Membrane with Tunable Permeation Selectivity for Protein Purification. *ACS Appl. Mater. Interfaces* **2010**, 2 (1), 203–211.
- 857 (6) Huang, R.; Kostanski, L. K.; Filipe, C. D. M.; Ghosh, R. Environment-responsive hydrogel-based ultrafiltration membranes for protein bioseparation. *J. Membr. Sci.* **2009**, 336 (1–2), 42–49.
- 858 (7) Li, Q.; Bi, Q. Y.; Lin, H. H.; Bian, L. X.; Wang, X. L. A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation. *J. Membr. Sci.* **2013**, 427, 155–167.
- 859 (8) Adrus, N.; Ulbricht, M. Novel hydrogel pore-filled composite membranes with tunable and temperature-responsive size-selectivity. *J. Mater. Chem.* **2012**, 22 (7), 3088–3098.
- 860 (9) Nilsson, J. L. Protein Fouling of UF Membranes - Causes and Consequences. *J. Membr. Sci.* **1990**, 52 (2), 121–142.
- 861 (10) Tang, C. Y. Y.; Chong, T. H.; Fane, A. G. Colloidal interactions and fouling of NF and RO membranes: A review. *Adv. Colloid Interface Sci.* **2011**, 164 (1–2), 126–143.
- 862 (11) Kang, S.; Asatekin, A.; Mayes, A. M.; Elimelech, M. Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. *J. Membr. Sci.* **2007**, 296 (1–2), 42–50.
- 863 (12) Marshall, A. D.; Munro, P. A.; Tragardh, G. The Effect of Protein Fouling in Microfiltration and Ultrafiltration on Permeate Flux, Protein Retention and Selectivity - a Literature-Review. *Desalination* **1993**, 91 (1), 65–108.
- 864 (13) Yang, Q.; Adrus, N.; Tomicki, F.; Ulbricht, M. Composites of functional polymeric hydrogels and porous membranes. *J. Mater. Chem.* **2011**, 21 (9), 2783–2811.
- 865 (14) Ju, H.; McCloskey, B. D.; Sagle, A. C.; Kusuma, V. A.; Freeman, B. D. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. *J. Membr. Sci.* **2009**, 330 (1–2), 180–188.
- 866 (15) Andrade, J. D.; Hlady, V.; Jeon, S. I. Poly(ethylene oxide) and protein resistance - Principles, problems, and possibilities. *Adv. Chem. Ser.* **1996**, 248, 51–59.
- 867 (16) Ju, H.; McCloskey, B. D.; Sagle, A. C.; Wu, Y. H.; Kusuma, V. A.; Freeman, B. D. Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. *J. Membr. Sci.* **2008**, 307 (2), 260–267.
- 868 (17) Kang, G. D.; Cao, Y. M.; Zhao, H. Y.; Yuan, Q. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate membranes with excellent antifouling and solvent-resistant properties. *J. Membr. Sci.* **2008**, 318 (1–2), 227–232.
- 869 (18) Sagle, A. C.; Van Wagner, E. M.; Ju, H.; McCloskey, B. D.; Freeman, B. D.; Sharma, M. M. PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance. *J. Membr. Sci.* **2009**, 340 (1–2), 92–108.
- 870 (19) Sagle, A. C.; Ju, H.; Freeman, B. D.; Sharma, M. M. PEG-based hydrogel membrane coatings. *Polymer* **2009**, 50 (3), 756–766.
- 871 (20) Wu, Y. H.; Park, H. B.; Kai, T.; Freeman, B. D.; Kalika, D. S. Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels. *J. Membr. Sci.* **2010**, 347 (1–2), 197–208.
- 872 (21) van Rijn, P.; Tutus, M.; Kathrein, C.; Zhu, L. L.; Wessling, M.; Schwanenberg, U.; Boker, A. Challenges and advances in the field of self-assembled membranes. *Chem. Soc. Rev.* **2013**, 42 (16), 6578–6592.
- 873 (22) Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. *Science* **2006**, 312 (5775), 885–888.
- 874 (23) Allen, M.; Willits, D.; Mosolf, J.; Young, M.; Douglas, T. Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. *Adv. Mater.* **2002**, 14 (21), 1562–1565.
- 875 (24) Bhattacharya, A.; Misra, B. N. Grafting: a versatile means to modify polymers - Techniques, factors and applications. *Prog. Polym. Sci.* **2004**, 29 (8), 767–814.
- 876 (25) Carroll, T.; Booker, N. A.; Meier-Haack, J. Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. *J. Membr. Sci.* **2002**, 203 (1–2), 3–13.

930 (26) La, Y. H.; McCloskey, B. D.; Sooriyakumaran, R.; Vora, A.;
931 Freeman, B.; Nassar, M.; Hedrick, J.; Nelson, A.; Allen, R. Bifunctional
932 hydrogel coatings for water purification membranes: Improved fouling
933 resistance and antimicrobial activity. *J. Membr. Sci.* **2011**, *372* (1–2),
934 285–291.

935 (27) Lin, H. Q.; Van Wagner, E.; Freeman, B. D.; Toy, L. G.; Gupta,
936 R. P. Plasticization-enhanced hydrogen purification using polymeric
937 membranes. *Science* **2006**, *311* (5761), 639–642.

938 (28) Lin, H. Q.; Kai, T.; Freeman, B. D.; Kalakkunnath, S.; Kalika, D.
939 S. The effect of cross-linking on gas permeability in cross-linked
940 poly(ethylene glycol diacrylate). *Macromolecules* **2005**, *38* (20), 8381–
941 8393.

942 (29) Cadotte, J. E. *Reverse osmosis membrane*. U.S. Patent 3,926,798
943 A, December, 1975.

944 (30) Cadotte, J. E. *Interfacially synthesized reverse osmosis membrane*.
945 U.S. Patent 4,277,344 A, July, 1981.

946 (31) Lin, L.; Lopez, R.; Ramon, G. Z.; Coronell, O. Investigating the
947 void structure of the polyamide active layers of thin-film composite
948 membranes. *J. Membr. Sci.* **2016**, *497*, 365–376.

949 (32) Lin, L.; Feng, C. C.; Lopez, R.; Coronell, O. Identifying facile
950 and accurate methods to measure the thickness of the active layers of
951 thin-film composite membranes - A comparison of seven character-
952 ization techniques. *J. Membr. Sci.* **2016**, *498*, 167–179.

953 (33) Soroush, A.; Barzin, J.; Barikani, M.; Fathizadeh, M. Interfacially
954 polymerized polyamide thin film composite membranes: Preparation,
955 characterization and performance evaluation. *Desalination* **2012**, *287*,
956 310–316.

957 (34) Appleyard, D. C.; Chapin, S. C.; Doyle, P. S. Multiplexed
958 Protein Quantification with Barcoded Hydrogel Microparticles. *Anal.
959 Chem.* **2011**, *83* (1), 193–199.

960 (35) Choi, N. W.; Kim, J.; Chapin, S. C.; Duong, T.; Donohue, E.;
961 Pandey, P.; Broom, W.; Hill, W. A.; Doyle, P. S. Multiplexed Detection
962 of mRNA Using Porosity-Tuned Hydrogel Microparticles. *Anal. Chem.*
963 **2012**, *84* (21), 9370–9378.

964 (36) Yang, C. X.; Choi, C. H.; Lee, C. S.; Yi, H. M. A Facile
965 Synthesis-Fabrication Strategy for Integration of Catalytically Active
966 Viral-Palladium Nanostructures into Polymeric Hydrogel Micro-
967 particles via Replica Molding. *ACS Nano* **2013**, *7* (6), 5032–5044.

968 (37) Yamagishi, H.; Crivello, J. V.; Belfort, G. Development of a
969 Novel Photochemical Technique for Modifying Poly(Arylsulfone)
970 Ultrafiltration Membranes. *J. Membr. Sci.* **1995**, *105* (3), 237–247.

971 (38) Pieracci, J.; Crivello, J. V.; Belfort, G. Increasing membrane
972 permeability of UV-modified poly(ether sulfone) ultrafiltration
973 membranes. *J. Membr. Sci.* **2002**, *202* (1–2), 1–16.

974 (39) Wu, Y. H.; Park, H. B.; Kai, T.; Freeman, B. D.; Kalika, D. S.
975 Water uptake, transport and structure characterization in poly-
976 (ethylene glycol) diacrylate hydrogels. *J. Membr. Sci.* **2010**, *347* (1–
977 2), 197–208.

978 (40) Peter, M.; Tayalia, P. An alternative technique for patterning
979 cells on poly(ethylene glycol) diacrylate hydrogels. *RSC Adv.* **2016**, *6*
980 (47), 40878–40885.

981 (41) Xiao, Y. H.; He, L.; Che, J. F. An effective approach for the
982 fabrication of reinforced composite hydrogel engineered with SWNTs,
983 polypyrrole and PEGDA hydrogel. *J. Mater. Chem.* **2012**, *22* (16),
984 8076–8082.

985 (42) <https://www.sterlitech.com/flat-sheet-membranes-specifications.html>.

986 (43) <https://www.lenntech.com/Data-sheets/Millipore-Ultrafiltration-Membranes-L.pdf>.

987 (44) Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen,
988 W.; Leysen, R. A review of pressure-driven membrane processes in
989 wastewater treatment and drinking water production. *Environ. Prog.
990 2003*, *22* (1), 46–56.

991 (45) Sadeghi, I.; Aroujalian, A.; Raisi, A.; Dabir, B.; Fathizadeh, M.
992 Surface modification of polyethersulfone ultrafiltration membranes by
993 corona air plasma for separation of oil/water emulsions. *J. Membr. Sci.*
994 **2013**, *430*, 24–36.

995 (46) Sadeghi, I.; Aroujalian, A.; Raisi, A.; Fathizadeh, M.; Dabir, B.
996 Effect of solvent, hydrophilic additives and corona treatment on
997 performance of polyethersulfone UF membranes for oil/water separation. *Procedia Eng.* **2012**, *44*, 1539–1541.

998 (47) Lu, R. R.; Xu, S. Y.; Wang, Z.; Yang, R. J. Isolation of lactoferrin from bovine colostrum by ultrafiltration coupled with strong cation exchange chromatography on a production scale. *J. Membr. Sci.* **2007**, *303* (1–2), 152–161.

(48) Isa, M. H. M.; Coraglia, D. E.; Frazier, R. A.; Jauregi, P. Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. *J. Membr. Sci.* **2007**, *296* (1–2), 51–57.

(49) Kwon, B.; Molek, J.; Zydny, A. L. Ultrafiltration of PEGylated proteins: Fouling and concentration polarization effects. *J. Membr. Sci.* **2008**, *319* (1–2), 206–213.

(50) Lim, Y. P.; Mohammad, A. W. Effect of solution chemistry on flux decline during high concentration protein ultrafiltration through a hydrophilic membrane. *Chem. Eng. J.* **2010**, *159* (1–3), 91–97.

(51) Jermann, D.; Pronk, W.; Boller, M.; Schafer, A. I. The role of NOM fouling for the retention of estradiol and ibuprofen during ultrafiltration. *J. Membr. Sci.* **2009**, *329* (1–2), 75–84.

(52) Ghosh, A. K.; Hoek, E. M. V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. *J. Membr. Sci.* **2009**, *336* (1–2), 140–148.

(53) Talmard, C.; Guilloueau, L.; Coppel, Y.; Mazarguil, H.; Faller, P. Amyloid-beta peptide forms monomeric complexes with Cu-II and Zn-II prior to aggregation. *ChemBioChem* **2007**, *8* (2), 163–165.

(54) Jung, S.; Yi, H. Facile Micromolding-Based Fabrication of Biopolymeric-Synthetic Hydrogel Microspheres with Controlled Structures for Improved Protein Conjugation. *Chem. Mater.* **2015**, *27* (11), 3988–3998.

(55) Jung, S.; Abel, J. H.; Starger, J. L.; Yi, H. Porosity-Tuned Chitosan-Polyacrylamide Hydrogel Microspheres for Improved Protein Conjugation. *Biomacromolecules* **2016**, *17* (7), 2427–2436.

(56) Le Goff, G. C.; Srinivas, R. L.; Hill, W. A.; Doyle, P. S. Hydrogel microparticles for biosensing. *Eur. Polym. J.* **2015**, *72*, 386–412.

(57) Dusek, K. Phase Separation in Ternary Systems Induced by Crosslinking. *Chem. Zvesti* **1971**, *25* (3), 184–189.

(58) Boots, H. M. J.; Kloosterboer, J. G.; Serbutoviez, C.; Touwslager, F. J. Polymerization-induced phase separation 0.1. Conversion-phase diagrams. *Macromolecules* **1996**, *29* (24), 7683–7689.

(59) Lee, A. G.; Arena, C. P.; Beebe, D. J.; Palecek, S. P. Development of Macroporous Poly(ethylene glycol) Hydrogel Arrays within Microfluidic Channels. *Biomacromolecules* **2010**, *11* (12), 3316–3324.

(60) Wong, M. C. Y.; Lin, L.; Coronell, O.; Hoek, E. M. V.; Ramon, G. Z. Impact of liquid-filled voids within the active layer on transport through thin-film composite membranes. *J. Membr. Sci.* **2016**, *500*, 124–135.

(61) Li, M. G.; Humayun, M.; Hughes, B.; Kozinski, J. A.; Hwang, D. K. A microfluidic approach for the synthesis and assembly of multi-scale porous membranes. *RSC Adv.* **2015**, *5* (121), 100024–100029.

(62) Zeng, W.; Du, Y.; Xue, Y.; Frisch, H. Solubility Parameters. In *Physical Properties of Polymers Handbook*; Mark, J., Ed.; Springer: NY, 2007; pp 289–303.

(63) Pregibon, D. C.; Doyle, P. S. Optimization of Encoded Hydrogel Particles for Nucleic Acid Quantification. *Anal. Chem.* **2009**, *81* (12), 4873–4881.

(64) Stevens, M. P. In *Polymer Chemistry: An Introduction*; Oxford University Press: New York, 1998; pp 70–74.

(65) Guo, W. S.; Ngo, H. H.; Li, J. X. A mini-review on membrane fouling. *Bioresour. Technol.* **2012**, *122*, 27–34.

(66) Schafer, A. I. *Natural Organics Removal Using Membranes: Principles, Performance, and Cost*; CRC Press: Boca Raton, FL, 2001.

(67) Fathizadeh, M.; Tien, H. N.; Khivantsev, K.; Song, Z.; Zhou, F.; Yu, M. Polyamide/nitrogen-doped Graphene Oxide Quantum Dots (N-GOQD) Thin Film Nanocomposite Reverse Osmosis Membranes for High Flux Desalination. *Desalination* **2017**, *10.1016/j.desal.2017.07.014*.

1067 (68) Vandenberg, G. B.; Smolders, C. A. Flux Decline in
1068 Ultrafiltration Processes. *Desalination* **1990**, *77* (1–3), 101–133.

1069 (69) Palacio, L.; Ho, C. C.; Zydny, A. L. Application of a pore-
1070 blockage - Cake-filtration model to protein fouling during micro-
1071 filtration. *Biotechnol. Bioeng.* **2002**, *79* (3), 260–270.

1072 (70) Matthiasson, E. The Role of Macromolecular Adsorption in
1073 Fouling of Ultrafiltration Membranes. *J. Membr. Sci.* **1983**, *16* (Dec),
1074 23–36.

1075 (71) Culfaz, P. Z.; Haddad, M.; Wessling, M.; Lammertink, R. G. H.
1076 Fouling behavior of microstructured hollow fibers in cross-flow
1077 filtrations: Critical flux determination and direct visual observation of
1078 particle deposition. *J. Membr. Sci.* **2011**, *372* (1–2), 210–218.

1079 (72) Razi, B.; Aroujalian, A.; Fathizadeh, M. Modeling of fouling layer
1080 deposition in cross-flow microfiltration during tomato juice
1081 clarification. *Food Bioprod. Process.* **2012**, *90* (C4), 841–848.

1082 (73) Rezaei, H.; Ashtiani, F. Z.; Fouladitajar, A. Fouling Behavior and
1083 Performance of Microfiltration Membranes for Whey Treatment in
1084 Steady and Unsteady-State Conditions. *Braz. J. Chem. Eng.* **2014**, *31*
1085 (2), 503–518.