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Abstract

We study existence of minimizers of the least gradient problem

inf
v∈BVg

∫
�

ϕ(x,Dv),

where BVg = {v ∈ BV (�) : ∫
∂� gv = 1}, ϕ(x, p) : � × R

n → R is a convex, continuous, and homo-
geneous function of degree 1 with respect to the p variable, and g satisfies the compatibility condition ∫
∂� gdS = 0. We prove that for every 0 �≡ g ∈ L∞(∂�) there are infinitely many minimizers in BV (�). 

Moreover there exists a divergence free vector field T ∈ (L∞(�))n that determines the structure of level 
sets of all minimizers, i.e. T determines Du

|Du| , |Du|-a.e. in �, for every minimizer u. We also prove some 
existence results for general 1-Laplacian type equations with Neumann boundary condition. A numerical 
algorithm is presented that simultaneously finds T and a minimizer of the above least gradient problem. 
Applications of the results in conductivity imaging are discussed.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

Let � be a bounded open set in Rn with Lipschitz boundary and ϕ : � × R
n → R be a 

continuous function satisfying
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(C1) there exists α1, α2 > 0 such that α1|p| ≤ ϕ(x, p) ≤ α2|p| for all x ∈ � and p ∈ R
n,

(C2) ϕ(x, ·) ∈ C1(Rn \ {0}) and ϕ(x, ·) is a norm, for every x ∈ �.

This work is a continuation of the author’s work on existence, uniqueness, and structure of min-
imizers of the least gradient problems in [18,25,28]. In this paper we study the general least 
gradient problem

inf
v∈BVg

∫
�

ϕ(x,Dv), (1)

where g ∈ L∞(�) satisfies the compatibility condition

∫
∂�

gdS = 0, (2)

and

BVg := {v ∈ BV (�) and
∫
∂�

gvdS = 1}.

Such problems arise in conductivity imaging (see §1.1) and are closely related to the 1-Laplacian 
type equation

⎧⎨
⎩

∇x · ∇pϕ(x, Du
|Du| ) = 0 in �[

∇pϕ(x, Du
|Du| ), ν�

]
= λg on ∂�,

(3)

where λ > 0 is a constant and Du
|Du| is the Radon–Nikodym derivative of Du with respect to 

|Du|, and the boundary condition is understood in the sense of the integration by parts formula 
(9) below. When ϕ(x, p) = a(x)|p| for some positive function a ∈ C(�̄), then (1) reduces to the 
weighted least gradient problem

inf
v∈BVg

∫
�

a|Dv|, (4)

and (3) reduces to the 1-Laplacian equation

⎧⎨
⎩

∇ · (a Du
|Du| ) = 0 in �[

a Du
|Du| , ν�

]
= λg on ∂�.

(5)

Least gradient and 1-Laplacian problems with Dirichlet boundary condition have been studied 
extensively in [18,21,20,23–25,37–39], and with Neumann boundary condition in [3,22].
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For any v ∈ BVloc(R
n), let ϕ(x, Dv) be the measure defined by

∫
U

ϕ(x,Dv) =
∫
U

ϕ(x,
Dv

|Dv| )|Dv| for any bounded Borel set U. (6)

Standard facts about BV functions imply that (see [2]) if � is an open set, then

∫
�

ϕ(x,Dv) = sup{
∫
�

v∇ · Xdx : X ∈ C∞
c (�;Rn), supϕ0(x,X(x)) ≤ 1}, (7)

where ϕ0(x, ·) is defined by

ϕ0(x, ξ) = sup{ ξ · p
ϕ(x,p)

: p ∈ R
n \ {0}}, (8)

(see [2,18,25]). For v ∈ BV (�), 
∫
�

ϕ(x, Dv) is called the ϕ-total variation of v in �. Let ν�

denote the outer unit normal vector to ∂�. For every V ∈ (L∞(�))n with ∇ · V ∈ Ln(�) there 
exists a unique function [V, ν�] ∈ L∞(∂�) such that

∫
∂�

[V,ν�]udHn−1 =
∫
�

u∇ · V dx +
∫
�

V · ∇udx, ∀u ∈ C1(�̄). (9)

In addition, for u ∈ BV (�) and V ∈ (L∞(�))n with ∇ · V ∈ Ln(�), the linear functional u 
→∫
�

V · Du gives rise to a Radon measure on �, and

∫
∂�

[V,ν�]udHn−1 =
∫
�

u∇ · V dx +
∫
�

(V · Du), ∀u ∈ BV (�), (10)

see [1,4,5]. We are now ready to give a precise definition of solutions of (3) (see Definition 4.2 
in [22]).

Definition 1. We say that u ∈ BV (�) is a solution to (3) if there exists a vector field T ∈
(L∞(�))n such that

∇ · T = 0 on D′(�), (11)

∇pϕ(x,
Du

|Du| ) = T , |Du| − a.e. in �, (12)

[T , ν�] = λg, Hn−1 − a.e. on ∂�. (13)

The conditions (11)–(13) can be viewed as the Euler–Lagrange equations satisfied by the 
minimizers of the least gradient problem (1). However, every solution of the (3) (in the sense 
of Definition 1) is not necessarily a minimizer of (1). We will show that every solution of (3)
satisfying the condition (14) below is a minimizer of (1), and shall refer to such least energy 
solutions as the entropy solutions of (3).
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Definition 2. A function u ∈ BV (�) is said to be an entropy solution of (3) if it is a solution to 
(3) in the sense of Definition 1, and

ϕ(x,p) ≥ T · p, ∀p ∈R
n and a.e. x in �. (14)

We shall prove that minimizers of the least gradient problem (1) are entropy solutions of the 
1-Laplacian type equation (3).

Remark 1.1. Consider the special case ϕ(x, p) = a(x)|p| where a(x) ∈ C(�) is a positive 
function. If u ∈ BV (�) is an entropy solution of the 1-Laplacian equation (5) in the sense of 
Definition 2, then

a
Du

|Du| = T , |Du| − a.e.

for some divergence free vector field T with |T | ≤ a a.e. and [T , ν�] = g (λ = 1). For a physical 
interpretation of this definition, assume J is the current density induced inside a conductive body 
� with electrical conductivity σ ∈ C(�). Then by Ohm’s law ∇ · J ≡ 0 and

J = −σDu.

Hence if we let a = |J |, then the corresponding voltage potential u satisfies the equation (5) and 
the induced current density vector field J plays the role of T in Definitions 1 and 2 (see §1.1
below).

The following theorem, proved in Section 2, settles the question of existence of minimizers 
of (1).

Theorem 1.2. Suppose ϕ : � × R
n → R is a continuous function satisfying the condition (C1)

and (C2), and 0 �≡ g ∈ L∞(∂�) satisfies the compatibility condition (2). Then the least gradient 
problem (1) admits infinitely many minimizers in BVg . Moreover, there exists a vector field T ∈
(L∞(�))n satisfying (11), (13), and (14) with

λ := inf
v∈BVg

∫
�

ϕ(x,Dv)

such that

ϕ(x,
Du

|Du| ) = T · Du

|Du| , |Du| − a.e. in �, (15)

for every minimizer u of (1). In particular all minimizers of (1) have the same level set structure 
and are entropy solutions of the 1-Laplacian equation (3).

Remark 1.3. The above theorem asserts that a fixed divergence free vector field T determines 
the structure of the level sets of all minimizers of the least gradient problem (1). More precisely, 
since
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ϕ(x,p) ≥ T · p

for every p ∈ Sn−1 and a.e. x ∈ �, it follows from (15) that |Du|-a.e., p = Du
|Du| maximizes

T · p
ϕ(x,p)

among all p ∈ Sn−1, determining Du
|Du| , |Du|-a.e. in �. This is a remarkable fact about minimizers 

of least gradient problem (1). In the special case ϕ(x, p) = a|p|, Theorem 1.2 implies that for 
every minimizer u of (1)

Du

|Du| · T = |T | = a |Du| − a.e. in �,

i.e. Du
|Du| is parallel to T , |Du|-a.e. Similar phenomenon occurs for minimizers of general least 

gradient problems with Dirichlet boundary condition [25].

The following proposition, proved Section 2, describes the connection between the solutions 
of (3) and minimizers of the least gradient problem (1).

Proposition 1.1. Suppose ϕ : � ×R
n → R is a continuous function satisfying the condition (C1)

and (C2), and 0 �≡ g ∈ L∞(∂�) satisfies the compatibility condition (2). Then u ∈ BVg is a 
minimizer of (1) if and only if it is an entropy solution of (3) in the sense of Definitions 1 and 2
with

λ := inf
v∈BVg

∫
�

ϕ(x,Dv). (16)

Proposition 1.2. Let u be a solution of (3) and F be an increasing Lipschitz continuous function. 
Then F(u) is also a solution of (3).

Proof of Proposition 1.2 is similar to the proof of Theorem 4.3 in [22] and we will not present 
it in this paper. The next result follows immediately from Theorem 1.2, Proposition 1.1, and 
Proposition 1.2.

Theorem 1.4. Suppose ϕ : � × R
n → R is a continuous function satisfying the condition (C1)

and (C2) and 0 �≡ g ∈ L∞(∂�) satisfies the compatibility condition (2). Then there exists λ∗ > 0
such that the equation (3) with λ = λ∗ has infinitely many entropy solutions in BVg, and for λ �=
λ∗ (3) does not admit any entropy solutions. Moreover, when λ = λ∗, there exists T ∈ (L∞(�))n

satisfying (11), (12), and (13) such that

ϕ(x,
Du

|Du| ) = T · Du

|Du| , |Du| − a.e. in �,

for every solution u of (3). In particular all solutions of (3) have the same level set structure.
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In [22] authors studied the existence of solutions of (3) for the special case ϕ(x, p) = |p| by 
analyzing the behavior of solutions of the p-Laplacian problem

{ ∇ · (|∇u|q−2∇u
) = 0 in �

|∇u|q−2 ∂u
∂ν�

= g on ∂�,
(17)

as q → 1, and showed that if ||g||∗ = 1, then solutions of (17) converge to a solution of

⎧⎪⎨
⎪⎩

∇ ·
( ∇u

|∇u|
)

= 0 in �[
Du
|Du| , ν�

]
= g on ∂�,

(18)

where

||g||∗ := sup
v∈S1\{0}

{ ∫
∂�

gvdS∫
�

|∇v|dx

}
,

and

S1 =
⎧⎨
⎩v ∈ W 1,1(�) :

∫
∂�

vdS = 0

⎫⎬
⎭ .

Note that ||g||∗ = 1 corresponds to the case λ = 1 in (3). If ||g||∗ < 1 or ||g||∗ > 1, then solu-
tions of (17) converge to u ≡ 0, or ∞ on a set of positive measure, respectively [22]. Therefore 
if ||g||∗ �= 1, then solutions of (3) can not be obtained as a limit of solutions of (17) without the 
knowledge of the parameter λ. Moreover, the convergence is extremely unstable with respect to 
perturbations of λ. In Section 3, we shall present a numerical algorithm for solving (3) which si-
multaneously finds λ∗, T , and a solution of the degenerate equation (3). This algorithm converges 
to a solution of (3) with λ = λ∗ independent of the value of ||g||∗.

1.1. Applications in conductivity imaging

The least gradient problem (1) arise in the inverse problem of determining an electrical con-
ductivity σ of a conductive body � from one measurement of the magnitude of the current 
density field |J | generated inside � and the voltage potential f on the boundary ∂�. Indeed if 
the electrical conductivity is isotropic, then the voltage potential inside � is the unique minimizer 
of the least gradient problem

inf
u∈BVf (�)

∫
�

a|Du|dx,

where a = |J | and BVf (�) := {u ∈ BV (�) : u|∂� = f } (see [26,27,29–32]). Once u is deter-
mined inside �, then the conductivity σ can be easily determined inside �.

One can also consider the inverse problem of recovering an isotropic conductivity σ from the 
knowledge of the magnitude of the induced current a = |J | and g = J · ν� on ∂�. Notice that
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∇ · J = ∇ · (a Du

|Du| ) = 0,

and hence the voltage potential is a minimizer of the least gradient problem

inf
u∈BVg

∫
�

a|Du|dx,

or equivalently u is a solution of (5). It follows from Theorem 1.2 that the voltage potential 
u and consequently the conductivity σ can not be uniquely identified from the knowledge of 
|J | inside � and g = J · ν� on ∂�. However, the full current density vector field J can be 
uniquely recovered a(x)dμ-a.e. (dμ is the Lebesgue measure). The current density vector field 
J is indeed the vector field T in Definitions 1 and 2 which is also a solution of the corresponding 
dual problem described in Section 2 below.

In [17] the author and his collaborators presented a method for recovering the conformal factor 
of an anisotropic conductivity matrix in a known conformal class from one interior measurement 
of current density. Suppose the matrix valued conductivity σ(x) is of the form

σ(x) = c(x)σ0(x)

where c(x) ∈ Cα(�) is a positive scalar valued function and σ0 ∈ Cα(�, Mat(n, Rn)) is a known 
positive definite symmetric matrix valued function. The conformal factor σ0 can be determined 
using Diffusion Tensor Magnetic Resonance Imaging. They showed that the corresponding volt-
age potential u is the unique minimizer of the least gradient problem

inf
u∈BVf (�)

∫
�

ϕ(x,Dv),

where ϕ is given by

ϕ(x,p) = a(x)

⎛
⎝ n∑

i,j=1

σ
ij

0 (x)pipj

⎞
⎠

1/2

, (19)

a =
√

σ−1
0 J · J , (20)

and J is the induced current density vector field. One may also similarly consider the problem 
of recovering a current density vector field J induced by an anisotropic conductivity σ from the 

knowledge of the conformal factor σ0, a =
√

σ−1
0 J · J , and g = J · ν� on ∂�. Then the corre-

sponding voltage potential will be a minimizer the least gradient problem (1) where ϕ is given 
by (19). As in the isotropic case, u can not be uniquely recovered. However, by Theorem 1.2, 
the current density vector field J can be uniquely determined |Du|-a.e. in �, where u is an arbi-
trary solution of (1). See also [33] where weighted least gradient problems are utilized to analyze 
conductivity imaging from the knowledge of the magnitude of the induced current density vector 
field with complete electrode model boundary conditions.



A. Moradifam / J. Differential Equations 263 (2017) 7900–7918 7907
This paper is organized as follows. In Section 2, using Fenchel duality, we will present the 
proof of our main results, Theorem 1.2 and Proposition 1.1. In Section 3 we will present a 
numerical algorithm for finding the minimizers of (1) and (4).

2. Proof of the main results

Let � be a bounded open set in Rn with Lipschitz boundary, and 0 �≡ g ∈ L∞(∂�). Choose 
ug ∈ W 1,1(�) with 

∫
∂�

gugdS = 1. Define

W0
g (�) := {u ∈ W 1,1(�) :

∫
∂�

ug = 0},

and

W1
g (�) := {u ∈ W 1,1(�) :

∫
∂�

ug = 1}.

Let E : (L1(�))n → R and G :W0
g (�) → R be defined as follows

E(P ) :=
∫
�

ϕ(x,P + ∇ug)dx, G(u) ≡ 0. (21)

Then the problem (1) can be written as

(P ) inf
u∈W0

g (�)
E(∇u) + G(u).

By Fenchel duality (see Chapter III in [11]) the dual problem is given by

(P ∗) sup
V ∈(L∞(�))n

{−E∗(−V ) − G∗(∇∗V )},

where E∗ and G∗ are the Legendre–Fenchel transform of E and G respectively, and ∇∗ is the ad-
joint of ∇ :W0

g (�) → (L1(�))n. Recall that the Legendre–Fenchel transform E∗ : (L∞(�))n →
R is defined as follows

E∗(V ) = sup{〈V,P 〉 − E(P ) : P ∈ (L1(�))n}.

The following lemma is proved by the author in [25].

Lemma 2.1 ([25]). Let E be defined as in equation (21). Then

E∗(V ) =
{ −〈Dug,V 〉 if ϕ0(x,V (x)) ≤ 1 in �,

∞ otherwise.
(22)
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Lemma 2.2. Let G : W0
g (�) → R ∪ {∞} be defined as G ≡ 0. Then for G∗ : (W0

g (�))∗ → R we 
have

G∗(∇∗b) =
{

0 if b ∈ B
∞ otherwise,

(23)

where

B := {b ∈ (L∞(�))n : ∇ · b ≡ 0 and [b, ν�] = λg Hn−1 − a.e. on ∂�, for some λ ∈ R}.

Proof. By definition

G∗(∇∗b) = sup
u∈W0

g

〈∇∗b,u〉 = sup
u∈W0

g

〈b,∇u〉 = sup
u∈W0

g

⎛
⎝∫

∂�

[b, ν�]udS −
∫
�

u∇ · bdx

⎞
⎠ .

Since W 1
0 ⊂W0

g , the above supremum will be ∞ if ∇ · b �≡ 0. Hence we have

G∗(∇∗b) = sup
u∈W0

g

∫
∂�

[b, ν�]udS

Also since W0
g is a vector space, the above supremum will be infinity unless

∫
∂�

[b, ν�]udS = 0 for all u ∈W0
g . (24)

Now let N = {λg : λ ∈ R} ⊂ L∞(∂�). Then W0
g |∂� = N⊥, and it follows from the second 

geometric form of the Hahn–Banach theorem (see Proposition 1.9 in [8] for a proof) that

(N⊥)⊥ = N̄ = N.

Hence [b, ν�] ∈ N and the proof is complete. �
Define

V := {V ∈ B : ϕ0(x,V (x)) ≤ 1 in �}.

It follows from Lemmas 2.1 and 2.2 that the dual problem can be explicitly written as

(P ∗) sup
V ∈V

∫
∂�

[V,ν�]ugdS,

where ν� is outward pointing unit normal vector on ∂�. The primal problem (P) may not have 
a solution, but the dual problem (P ∗) always has a solution. This is a direct consequence of 
Theorem III.4.1 in [11]. Indeed it easily follows from (7) that I (v) = ∫

ϕ(x, Dv) is convex, 

�
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and J : L1(�) → R with J (p) = ∫
�

ϕ(x, p)dx is continuous at p = 0 (a consequence of C2). 
Therefore the condition (4.8) in the statement of Theorem III.4.1 in [11] is satisfied and the 
following proposition holds.

Proposition 2.1. Let � ⊂ R
n be a bounded open set with Lipschitz boundary and assume ϕ :

� × R
n → R be a continuous function satisfying the condition (C1) and (C2), and 0 �≡ g ∈

L∞(∂�) satisfies the compatibility condition (2). Then there exists a divergence free vector field 
T ∈ (L∞(�))n with ϕ0(x, T ) ≤ 1 a.e. in � such that

inf
v∈BVg

∫
�

ϕ(x,Dv) = max
V ∈V

∫
∂�

[V,ν�]ugdS =
∫
∂�

[T , ν�]ugdS.

In particular the dual problem P ∗ has a solution T ∈ V .

Proof of Proposition 1.1. Let u be a minimizer of the least gradient problem (1). By Propo-
sition 2.1, the dual problem has a solution T ∈ V with [T , ν�] = λg for some λ ∈ R. Since 
ϕ0(x, T (x)) ≤ 1 a.e. in �, (14) holds and

∫
�

ϕ(x,Du) =
∫
�

ϕ(x,
Du

|Du| )|Du| ≥
∫
�

T · Du

|Du| |Du|

=
∫
�

T · Du =
∫
∂�

u[T , ν�]dS

=
∫
∂�

λugdS = λ

=
∫
∂�

[T , ν�]ugdS =
∫
�

ϕ(x,Du).

Thus the inequality is indeed an equality. Hence

ϕ(x,
Du

|Du| ) = T · Du

|Du| , |Du| − a.e. in �. (25)

Now consider the function

K(x,p) = ϕ(x,p) − T (x) · p.

It follows from (14) and (25) that for |Du|-a.e. x ∈ �, Kx(p) = K(x, p) attains its minimum at 
p = Du

|Du| . Thus

∇pK(x,
Du

|Du| ) = ∇pϕ(x,
Du

|Du| ) − T (x) = 0, |Du| − a.e. x ∈ �.

Hence (12) holds and u is an entropy solution of (3).
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Conversely, assume u ∈ BVg is a entropy solution of (3). Since ϕ(x, p) is a homogeneous 
functions of order 1 with respect to the p variable,

ϕ(x,
Du

|Du| ) = ∇pϕ(x,
Du

|Du| ) · Du

|Du| = T · Du

|Du| , |Du| − a.e. x ∈ �.

Therefore it follows from the above computations that T is a solution of the dual problem (P ∗)
and u is a minimizer of the least gradient problem (1). �
Proof of Theorem 1.2. Suppose

β := inf
v∈BVg

∫
�

ϕ(x,Dv) = inf
v∈W 0

g

∫
�

ϕ(x,Dug + Dv).

Let v ∈ BVg . It follows from (C1) and continuity of the trace operator that

1 =
∫
∂�

gvdS ≤ ||g||L∞(∂�)

∫
∂�

|v|dS

≤ C||g||L∞(∂�)

∫
�

|Dv|

≤ C||g||L∞(∂�)

α1

∫
�

ϕ(x,Dv).

Thus β > 0. Now let {un}∞n=1 be a minimizing sequence in BVg , i.e.

lim
n→∞

∫
�

ϕ(x,Dun)dx = β.

Then there exists a subsequence of {unk
}∞k=1 that converges weakly∗ in BV (�) to some u ∈

BV (�), i.e. unk
→ u strongly in L1(�) and Dunk

⇀ Du weakly in the sense of measures. 
Since I (u) = ∫

�
ϕ(x, Du) is weakly lower semicontinuous (see [18]),

∫
�

ϕ(x,Du) ≤ β.

Now let T be a solution of the dual problem (P ∗) whose existence is guaranteed by Proposi-
tion 2.1. Then [T , ν�] = λg for some λ ∈R and we have

∫
�

ϕ(x,Du) =
∫
�

ϕ(x,
Du

|Du| )|Du| ≥
∫
�

T · Du

|Du| |Du|

=
∫

T · Du = lim
k→∞

∫
T · Dunk
� �
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= lim
k→∞

∫
∂�

unk
[T , ν�]dS = lim

k→∞

∫
∂�

λunk
gdS = λ

=
∫
∂�

ug[T , ν�]dS = β.

Therefore β = λ > 0,

∫
�

ϕ(x,Du) = β,

and

ϕ(x,
Du

|Du| ) = T · Du

|Du| , |Du| − a.e. in �. (26)

Moreover ∫
∂�

ugdS = 1

λ

∫
∂�

u[T , ν�]dS (27)

= 1

λ

∫
�

T · Du = 1. (28)

Hence u ∈ Mg is a minimizer of (3).
Let F be an increasing Lipschitz continuous function with 

∫
∂�

F (u)gdS �= 0. Then there 
exists c1, c2 ∈ R such that c1F(u) + c2 ∈ BVg . Thus by Proposition 1.2 equation (3) admits 
infinitely entropy solutions satisfying (11)–(14) for a fixed vector field T ∈ V . By Proposition 1.1
the least gradient problem (1) also has infinitely many minimizers in BVg. �
3. An algorithm for finding solutions

In this section we present a numerical algorithm for solving the equation (3) or equivalently 
finding a minimizer of (1). Since the equation (3) is degenerate and the least gradient problem (1)
does not have a unique minimizer, developing a numerical algorithm for finding such minimiz-
ers is in general challenging. Assuming that (1) has a minimizer in u ∈ H 1(�), we develop an 
algorithm that generates two sequences (uk)k≥1 and (bk)k≥1 such that u ⇀ u weakly in H 1(�)

and bk ⇀ T weakly in L2(�), where u and T are solutions of (1) and its dual problem (P ∗), 
respectively. In applications to conductivity imaging, it is natural to assume that the conductiv-
ity σ belongs to L∞(�), and hence the corresponding voltage potential u belongs to H 1(�). 
Therefore the algorithm we develop here can be applied to problems arising from conductivity 
imaging. We conjecture that even if (1) is only assumed to have a minimizer in BVg , then the 
sequences (uk)k≥1 and (bk)k≥1 produced by our algorithm would still converge to a minimizer u
of (1) weakly∗ in BV (�) and to a solution T of (P ∗) weakly in L∞(�), respectively.

Suppose (1) has a minimizer in H 1(�) and ug ∈ H 1(�) satisfies 
∫
∂�

uggdS = 1. Then (1)
can be written as
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inf
u∈Hg

F (∇u) + G(u) (29)

where

Hg := {v ∈ H 1(�) :
∫
∂�

vdS = 0 and
∫
∂�

gv = 0},

and F : (L2(�))n → R and G :Hg → R are defined as follows

F(d) :=
∫
�

ϕ(x, d + ∇ug), and G ≡ 0. (30)

As described in Section 2, the dual problem can be written as

sup
V ∈(L2(�))n

{−F ∗(−V ) − G∗(∇∗V )}. (31)

Let us aim to find a minimizer T of the dual problem (31) which will determine the structure of 
the level sets of all minimizers of (30). If T is a maximizer of (31), then

0 ∈ A(T ) + B(T ), (32)

where A := ∂(G∗o(−∇∗)) and B := ∂F ∗ are maximal monotone set-valued operators on 
(L2(�))n, since they are sub-gradients of convex, proper, lower semi-continuous functions (see 
[7,34]). We will apply Douglas–Rachford splitting algorithm, described below, to solve (32).

For a set-valued function P : H → 2H , let JP denote its resolvent i.e.,

JP = (Id + P)−1.

Let H be a real Hilbert space and A, B : H → 2H be two set-valued maximal monotone oper-
ators. Note that if P is maximal monotone, then the resolvent JP is single valued [7,34]. Lions 
and Mercier [19] showed that for any general maximal monotone operators A, B and any initial 
element S0, the sequence defined by the Douglas–Rachford recursion:

Sk+1 = (JA(2JB − Id) + Id − JB)Sk, (33)

converges weakly to some point S ∈ H such that T = JB(S) solves the inclusion problem (32). 
Recent results also prove weak convergence of the sequence Tk = JB(Sk) to T (see [40], and 
Chapters 25 and 27 in [6]). The following theorem describes the Douglas–Rachford splitting 
algorithm and summarizes the convergence results in [19,40].

Theorem 3.1. Let H be a Hilbert space and let A, B : H → 2H be maximal monotone operators 
and assume that a solution of (32) exists. Then, for any initial elements S0 and T0 and any α > 0, 
the sequences Sk and Tk defined by
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Sk+1 = JαA(2Tk − Sk) + Sk − Tk

Tk+1 = JαB(Sk+1), (34)

converge weakly to some S and T respectively. Furthermore, T = JαB(S) and T solves

0 ∈ A(T ) + B(T ).

To apply the Douglas–Rachford splitting algorithm to the operators A := ∂(G∗(∇∗)) and 
B := ∂F ∗, we need to evaluate the resolvents JαA(2Tk − Sk) and JαB(Sk+1) at each iteration. 
The following lemma provides a method for computing such resolvents (see [35,36] for a proof).

Lemma 3.2. Let H1 and H2 be two Hilbert spaces, f : H1 → R ∪ {∞} and a bounded linear 
operator L : H1 → H2. Assume that v̂ is a solution of

v̂ = argminv∈H1{
α

2
‖ Lv + q ‖2 +f (v)}.

Then

α(Lv̂ + q) = Jα∂(f ∗o(−L∗))(αq). (35)

Given Sk and Tk , let uk and dk be the minimizers of the functionals

I1(u) =‖ 2Tk − Sk

α
+ ∇u ‖2,

and

I2(d) = F(d) + λ

2
‖ Sk

α
− d ‖2,

respectively. Then by Lemma 3.2 we have

JαA(2Tk − Sk) = α∇uk + 2Tk − Sk,

and

Tk = JαB(Sk) = Sk − αdk.

From (34) we have

Sk+1 := Sk − Tk + [2Tk − Sk + α∇uk+1] = Sk + α[∇uk+1 − dk].

Thus for k ≥ 1 we have

Sk = S0 + α

k−1∑
(∇ui − di) + α∇uk, Tk = S0 + α

k∑
(∇ui − di),
i=1 i=1
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and

2Tk − Sk = S0 + α

k∑
i=1

(∇ui − di) − αdk.

So if we let bk = S0
α

+ ∑k
i=0(∇ui − di), then

Sk = α(bk + dk), Tk = αbk, k ≥ 1. (36)

Therefore to evaluate JαA(2Tk − Sk) and JαB(Sk+1) in (34) for all k ≥ 0, it suffices to find the 
minimizers uk+1 and dk+1 of the functionals

I k+1
1 (u) =‖ ∇u + bk − dk ‖2 (37)

on Hg , and

I k+1
2 (d) =

∫
�

ϕ(x, d + ∇ug) + α

2
‖ bk + ∇uk+1 − d ‖2, (38)

on (L2(�))n, and set bk+1 = bk + ∇uk+1 − dk+1.
Minimizers of (37) in Hg satisfy the Euler–Lagrange equation

�uk+1 = ∇ · (dk − bk) with
∂uk+1

∂ν
= βg + (dk − bk) · ν on ∂�, (39)

for some β ∈R. Conversely, if u ∈Hg is a solution of (42) for some β ∈ R, then u is a minimizer 
of (37). To identify the parameter β and find a minimizer of (37) in Hg , let w be a solution of

�w = 0 with
∂w

∂ν
= g on ∂�. (40)

Since g �≡ 0, we have

0 <

∫
�

|∇w|2dx = −
∫
�

w
∂w

∂ν
dS. (41)

In particular,

∫
�

wgdS �= 0.

Now let uk+1 be a solution of

�uk+1 = ∇ · (dk − bk) with
∂uk+1

= (dk − bk) · ν on ∂�, (42)

∂ν
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and define

βk+1 = −
∫
�

uk+1gdS∫
�

wg
.

Then vk+1 = uk+1 + βk+1w is a minimizer of (37) in Hg . Note that this minimizer is unique up 
to adding a constant.

On the other hand, in general, the minimizer of the functional I k+1
2 (d) can be usually com-

puted explicitly. For instance if ϕ(x, p) = a|p|, then

dk+1(x) =
{

max{|wk+1(x)| − a
λ
,0} wk+1(x)

|wk+1(x)| − ∇ug(x) if |wk+1(x)| �= 0,

−∇ug(x) if |wk+1(x)| = 0,

where wk+1 = ∇uk+1 + ∇ug + bk . Hence we arrive at the following algorithm that simultane-
ously solves the problem (29) and its dual problem (31).

Algorithm 1. Let α > 0, ug ∈ H 1(�) with 
∫
∂�

gugdS = 1, and initialize b0, d0 ∈ (L2(�))n. Let 
w be a solution of (40) with 

∫
�

wdx = 0. For k ≥ 0:

1. (a) Solve

�uk+1 = ∇ · (dk(x) − bk(x)),
∂uk+1

∂ν�

= (dk − bk) · ν,

with 
∫
�

uk+1dx = 0.
(b) Compute

βk+1 = −
∫
�

uk+1gdS∫
�

wg

and set vk+1 = uk+1 + βk+1w.
2. Compute dk+1 by minimizing (38).
3. Let

bk+1(x) = bk(x) + ∇vk+1(x) − dk+1(x).

The following theorem follows directly from Theorem 3.1 and guarantees convergence of the 
above algorithm.

Theorem 3.3. Suppose ϕ : � × R
n → R is a continuous function satisfying the condition (C1)

and (C2), and 0 �≡ g ∈ L∞(∂�) satisfies the compatibility condition (2). Suppose (1) has a 
minimizer in H 1(�) ∩ BVg . Then for any b0, d0 ∈ (L2(�))n the sequences {bk}k∈N , {dk}k∈N , 
and {vk}k∈N produced by Algorithm 1 converge weakly (in (L2(�))n, (L2(�))n, and H 1(�), 
respectively) to some T

α
, d , and v∗. Moreover v := v∗ + ug is a solution of the minimization 

problem (1), T is a solution of the dual problem (31), and d = ∇v∗. In other words u and T
satisfy the conditions of Definition 1 with
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λ := inf
v∈BVg

∫
�

ϕ(x,Dv).

Remark 3.4. Note that each iteration the fist step of Algorithm 1 involves solving a Laplace 
equation, and step 2 and 3 are just explicit computations that can be done very fast. Hence the 
complexity of each iteration of the algorithm is roughly the same as the complexity of solving 
the Laplace equation with Neumann boundary condition. Overall convergence behavior of this 
algorithm is expected to be similar to the algorithm we developed for least gradient problem with 
Dirichlet boundary condition in [26], for which we have carried out several numerical simulations
in [26].

Algorithm 1 is in the spirit of the alternating split Bregman algorithm proposed by Gold-
stein and Osher [16] in finite dimensional settings in image processing. As pointed out by Esser 
[12] and Setzer [36], the idea to minimize I k+1

1 and I k+1
2 alternatingly was first presented for 

the augmented Lagrangian algorithm by Gabay and Mercier [14] and Glowinski and Marroco 
[15]. The resulting algorithm is called the alternating direction method of multipliers (ADMM) 
[13] and is indeed equivalent to the alternating split Bregman algorithm. The convergence of 
ADMM and the alternating split Bregman algorithm in finite dimensional Hilbert spaces was 
established by Eckstein and Bertsekas [10] and independently by Cai, Osher, and Shen [9] and 
Setzer [35,36]. Motivated by least gradient problems arising in conductivity imaging in infinite 
dimensional Hilbert spaces, the second author and his collaborator first proved convergence of 
the split Btegman type algorithms with Dirichlet boundary conditions in [26].
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