On the Convergence Rate of Distributed Gradient Methods
for Finite-Sum Optimization under Communication Delays

THINH T. DOAN, University of Illinois at Urbana-Champaign, USA
CAROLYN L. BECK, University of Illinois at Urbana-Champaign, USA
R. SRIKANT, University of Illinois at Urbana-Champaign, USA

Motivated by applications in machine learning and statistics, we study distributed optimization problems over
a network of processors, where the goal is to optimize a global objective composed of a sum of local functions.
In these problems, due to the large scale of the data sets, the data and computation must be distributed over
processors resulting in the need for distributed algorithms. In this paper, we consider a popular distributed
gradient-based consensus algorithm, which only requires local computation and communication. An important
problem in this area is to analyze the convergence rate of such algorithms in the presence of communication
delays that are inevitable in distributed systems. We prove the convergence of the gradient-based consensus
algorithm in the presence of uniform, but possibly arbitrarily large, communication delays between the
processors. Moreover, we obtain an upper bound on the rate of convergence of the algorithm as a function of
the network size, topology, and the inter-processor communication delays.

CCS Concepts: « Machine learning — Distributed optimization;

ACM Reference Format:

Thinh T. Doan, Carolyn L. Beck, and R. Srikant. 2018. On the Convergence Rate of Distributed Gradient
Methods for Finite-Sum Optimization under Communication Delays. Proc. ACM Meas. Anal. Comput. Syst. 1, 2,
Article 37 (December 2018), 27 pages. https://doi.org/10.1145/3219617.3219654

1 INTRODUCTION

There has been much recent interest in large-scale optimization problems, especially in machine
learning and statistics. Due to the explosion in the size of data sets, it is important to be able to
solve such problems efficiently. In addition, very often large data sets, on the order of terabytes,
cannot be stored or processed on one single processor. As a result, both the data and computation
must be distributed over a network of processors, necessitating the development of distributed
algorithms. Moreover, the computation and communication in these algorithms should be efficient
enough so that network latencies do not offset the computational gains.

In this paper, we study distributed algorithms for optimization problems that are defined over a
network of nodes', while explicitly accounting for network delays, one of the most critical issues
in distributed systems. The objective function is defined by a sum of local functions where each
function is known by only one node. Problems of this nature arise in a variety of application domains
within the information sciences and engineering. A standard example from statistical machine
learning [7] is the problem of minimizing an average loss function over large training data. The data

!The terms nodes and processors will be used interchangeably.

Authors’ addresses: Thinh T. Doan, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA, ttdoan2@illinois.edu;
Carolyn L. Beck, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA, beck3@illinois.edu; R. Srikant,
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA, rsrikant@illinois.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2476-1249/2018/12-ART37

https://doi.org/10.1145/3219617.3219654

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

is distributed across a network of processors, where each processor computes the empirical loss
over a local subset of data. The processors, therefore, must communicate to determine parameters
that minimize the loss over the entire data set. Distributed algorithms for these problems have
received a surge in interest in recent years. In particular, there are three widely-studied algorithms
for distributed optimization:

(1) Alternating direction method of multipliers (ADMM): This method has a provably fast con-
vergence rate, i.e., an exponential convergence rate under assumptions of strong convexity
and smoothness of objective functions; see for example the work in [3, 13, 14, 25, 32]. How-
ever, the computations of ADMM are not truly parallelizable. The algorithm is often said to
have a distributed implementation, which means that different processors compute different
variables, but the updates of these variables must be performed sequentially.

(2) Distributed dual averaging: In this algorithm, processors maintain estimates of variables
and gradient-like quantities, which are exchanged in a truly parallel fashion. However, dual
averaging has a slower convergence rate than ADMM,; see for example, the work in [6, 28-30].

(3) Distributed gradient algorithms: These algorithms are the most popular and well-studied
since they have the benefits of both ADMM and dual averaging; see for example, the work in
[8, 18, 19, 21, 23, 26, 27]). In particular, distributed gradient algorithms are parallelizable like
dual averaging and have fast convergence rates like ADMM. Moreover, the computation cost
of each iteration is smaller than either dual averaging or ADMM.

In this paper, we study distributed gradient methods because of the advantages stated above. In
particular, we focus on the convergence in the presence of inter-processor communication delays,
which has been identified as an important problem in [5] (see chapter 10). Communication delay,
which is one of the most fundamental issues in distributed systems, has been studied in other
contexts, such as distributed dual averaging [28]. The analysis in [28] is based on adding fictitious
nodes corresponding to the number of time delay steps, thus requiring a modification of the
true network topology. As a result, the influence of the delays on the convergence rate for the
original network topology is not clear. Convergence under delays are also considered in distributed
consensus algorithms [2, 4, 15, 20, 31], which are special cases of distributed gradient algorithms.
However, these results do not apply to the general distributed algorithms considered here. Our
goal in this paper, therefore, is to address this open problem of proving convergence and obtaining
convergence rates for distibuted gradient algorithms with inter-processor communication delays.

Main Contributions. The main contribution of this paper is to derive the convergence rate of
distributed gradient algorithms under uniform communication delays between nodes. In particular,
we first show that under some appropriate choice of stepsizes the nodes’ estimates asymptotically
converge to the solution of the problem, implying that the impact of communication delays is
asymptotically negligible. This step allows us to study the rate of convergence of the algorithm,
nt3In(t)
(1-y)pvt
variable, and 7 is the delay constant. In addition, y is a constant in (0, 1) that depends on o, the
spectral properties of network connectivity of the processors. We note that such an explicit formula
for the convergence rate is not available for dual averaging methods. As remarked, the existing
analysis in distributed optimization literature cannot be extended to show this result. We, therefore,
introduce a new approach by considering a new candidate Lyapunov functional, which takes into
account the impact of delays. Finally, while we do not analyze dual averaging methods in the
presence of delays, we provide simulation results comparing it to distributed gradient methods,
which indicate that distributed gradient methods perform significantly better.

The remainder of this paper is organized as follows. We give a formal statement of distributed
optimization problems in Section 2. We then study distributed gradient algorithms for the uniform

i.e., the convergence occurs at rate O(), where n is the number of processors, t is the time

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

delay case in Section 3 and present their convergence results in Section 4. In Section 5 we compare
the performances of distributed gradient methods and dual averaging methods by simulations for
both the delay-free and uniform delay cases. The proofs of our main results in Sections 4 are given
in Section 6. Finally, we conclude this paper with some discussion of potential future extensions in
Section 7.

Notation 1. We use boldface to distinguish between vectors x in R" and scalars x in R. Given any
vector x € R", we write x = (x1, Xs, .. .,X,) and let ||x||; denote its Euclidean norm. Given a vector x
and a set X we write the projection of x on X as Px[x]. Finally we denote by 1 and I a vector whose
entries are 1 and the identity matrix, respectively.

2 PROBLEM FORMULATION

In this paper, we consider an optimization problem where the objective function is distributed
over a network of n nodes. In particular, let G = (V, &) be an undirected graph over the vertex
set V = {1,....n} with the edge set & = (V X V). Associated with each node i € V is a convex
function f; : R — R. The goal of the network is to solve the following minimization problem:

minimize Z fi(x) over x € X, (1)

i=1

where X C R? is compact, convex, and known by the nodes. We assume no central coordination
between the nodes and since each node knows only a local function f;, the nodes are required
to cooperatively solve the problem. We are interested in studying distributed consensus-based
methods for problem (1) implying that each node i maintains its own parameter estimate x; € R¢
which is used to estimate the solution of (1). The nodes are only allowed to exchange their estimates
with their neighbors through communication constraints imposed by a graph G: in particular, node
i can communicate directly only with its neighbors j € N; where N; := {j € V|(i,j) € &} is the set
of node i’s neighbors. The goal is to asymptotically drive the nodes’ estimates x; to x*, a solution
of (1).

A concrete motivating example for this problem is distributed linear regression problems solved
over a network of processors. Regression problems involving massive amounts of data are common
in machine learning applications. Each function f; is the empirical loss over the local data stored
at processor i. The objective is to minimize the total loss over the entire dataset. Due to the
difficulty of storing the enormous amount of data at a central location, the processors perform
local computations over the local data, which are then exchanged to arrive at the globally optimal
solution. Distributed gradient methods are a natural choice to solve such problems since they
have been observed to be both fast and easily parallelizable in the case where the processors can
exchange data instantaneously. The goal of this paper is to show that the algorithm continues to
be convergent in the presence of delays, and to derive expressions for the convergence rate as
a function of the delays. Another possible application of the model is the problem of estimating
the radio frequency in a wireless network of sensors where the goal is to cooperatively estimate
the radio-frequency power spectrum density through solving a regression problem [14]. In this
application, each function f; is the empirical loss over the local data measured by the sensors, which
are scattered across a large geographical area. The objective function is the total loss over the entire
measured data, which is the sum of f;. Due to privacy concerns, the sensors may not be willing
to share their measurements, but only their own estimates. Thus, distributed consensus-based
methods seem to be a proper choice for this problem.

We conclude this section with additional notation and assumptions which facilitate our develop-
ment given later. We make the following assumptions throughout the paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

AssuMPTION 1. The functions f; are convex and differentiable.
AssuMPTION 2. The graph G is undirected and connected.

Under Assumption 1 and since the set X is compact, there exists a point x* which solves problem
(1). However, x* may not be unique. We will use X* to denote the set of optimal solutions to problem
(1). Moreover, given a solution x* € X* we denote f* = X1, f;(x*). Under Assumption 1 it is
obvious that the functions f; are Lipschitz continuous, which we present below as a Proposition
for future reference.

PropPOSITION 2.1. Let Assumption 1 hold. Then each function f; is Lipschitz continuous, i.e., there
exists a positive constant C; such that

lfix) = fiy)l < Cillx—yll2, VxyeX, VieV. (2)
Given a vector x € X we denote by D x(x) the set of feasible directions of x in X, i.e.,
Dx(x)={yeR? |30 >0stx+0yeX}. 3)
In the sequel we use the following results from [1].

PROPOSITION 2.2 (PROPOSITION 4.6.2 [1]). Let X be a closed convex set. Then the tangent cone
Tx(x) atx € X is closed, convex, and Tx(x) = cl(D x(x)), where cl(Dx(x)) is the closure of D x(x).

Finally, for ease of exposition, in the rest of this paper we consider problem (1) when the variable
X is a scalar, i.e., d = 1. Extensions for the case d > 1 are presented in the appendix.

3 DISTRIBUTED GRADIENT METHODS UNDER COMMUNICATION DELAYS

Discrete-time distributed gradient methods were studied and first analyzed rigorously in [19, 21]
for the case of no communication delay; in this framework each node i € V maintains a variable
x; € R updated as,

xi(k +1) = Px [Zjen, aijxj(k) = a®)f (xi(k)) |, 4)
where a(t) is some sequence of positive stepsizes and a;; is some positive constant. In this paper
we focus on the continuous-time version of (4) under the impact of uniform communication delays
between nodes. In particular, we assume that at any time ¢ > 0 node i only receives a delayed value
xj(t — 7) of x;(t) from node j, where 7 is a constant representing the time delay of communication
between nodes. Each node i (for all i € V) then uses these values to update its estimate as formally
stated in (5), where Tx(x, (1)) is the tangent cone of X at x;(t), f is some postive constant, and a(t)
is a sequence of positive stepsizes. The conditions of § and () to guarantee convergence of the
algorithm will be explicitly given later. In addition, the initial conditions, ¢;(t), are assumed to be
continuous functions of time. Thus, the estimates x;(t) are now functionals since they are functions
of ¢;(¢). We assume that the delays are uniform across agents, represented by the positive constant
T.

This update has a simple interpretation: at any time ¢ > 0, each node i first combines its estimate
x;(t) with the weighted, delayed values received from its neighbors j € Nj;, with the goal of
seeking consensus on their estimates. Each node then moves along the gradient of its respective
objective function to update its estimate, pushing the consensus point toward the optimal set
X*. The projection on the tangent cone Tx(x,(;)) guarantees that x;(t) € X for all ¢ > 0. Here the
positive constant a;; represents the weight which node i assigns to the value x; received from
node j. Moreover, the nodes use the positive constant , which is inversely proportional to the
delay constant 7, to control the speed of their updates. The distributed gradient algorithm with
communication delays is formulated in Algorithm 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

In the sequel, we denote by A the n X n weighted adjacency matrix corresponding to the graph
G, whose (i, j)-th entries are a;;. We make an assumption on A which is standard in the consensus
literature to guarantee the convergence of the nodes’ estimates to a consensus point. The assumption
given below also imposes a constraint on the communication between the nodes in Algorithm 1 in
which the nodes are only allowed to exchange messages with neighboring nodes, i.e., those are
connected to them, as defined by G.

ASSUMPTION 3. A is a doubly stochastic matrix, i.e., },}— a;; = Z;’zl a;j = 1. Moreover, A is
assumed to be irreducible and aperiodic. Finally, the weights a;; > 0 if and only if (i, j) € & otherwise
ajj = 0.

We note that the assumption on the irreducibility of A can be satisfied when G is connected. In
addition, the aperiodicity of A is guaranteed when at least one of its diagonal a;; is strictly positive.
Finally, the double stochasticity of A is essential to the distributed consensus averaging problem
[17], a special case of problem (1). There has been some work in which this assumption is relaxed
to just stochasticity of A, however; additional assumptions on the problem are then imposed; see
for example, push-sum protocols recently studied in [16].

ALGORITHM 1: Distributed Gradient Algorithm With Delays
1. Initialize: Each node i is initiated with a point x;(¢) = ¢;(t) € X, t € [-7,0].
2. Iteration: For t > 0 each node i € V executes

Xi(t) = Py, |[Pxi(0) + B Z aijxj(t —) — a(t) f{ (xi(t)) (5
=1

J

4 CONVERGENCE RESULTS

The focus of this section is to analyze the performance of distributed gradient methods under
communication delays given in Algorithm 1. In particular, we provide a rigorous analysis which
establishes the convergence rate of Algorithm 1. The main steps of the analysis are as follows.
We first show that the distances between the estimates x;(t) to their average x(¢) asymptotically
converge to zero. We then study the convergence rate of Algorithm 1, where we utilize the standard
techniques used in the centralized version of subgradient methods. The key idea of this step is to
introduce a candidate Razumikhin-Krasovskii Lyapunov functional, which takes into account the
impact of delays on the system. By using this function, we can show that the impact of delays is
asymptotically negligible. In particular, we show that if each node maintains a variable z;(t) to
compute the time-weighted averages of the estimates x;(t) and if the stepsize decays with rate
a(t) = 1//t, the algorithm achieves an asymptotic convergence to the optimal value estimated

3
on the variable z;(t) at a rate O((Ziyl;(\%), where y = 0,¢#7 € (0,1) and 8 € (0, M). Here oy
represents the algebraic connectivity of the graph G.

We start our analysis by first introducing more notation. Given a vector x € R"” we denote its

average as X, i.e.,

For convenience, we use the following notation,

Fa) 2 3 filr), VE&(D) 2 [f{Gxr),... iG], C2) Cr
i=1 i=1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

We denote by o, the second largest singular value of A, i.e., o is the square root of the second
largest eigenvalue of ATA. Since A is doubly stochastic we have ATA is also doubly stochastic.
In addition, A also satisfies Assumption 3. Thus, by the Perron-Frobenius theorem [11] we have
09 € (0, 1)

Finally, without loss of generality we consider X = [a, b] for some real numbers a < b € R. The
multi-dimensional case of X is presented in the Appendix. This simplification will allow us to write
explicitly the projection on the tangent cone in (5). In particular, given a real number v we denote
v" = max(0, v), the positive part of v. Similarly, we denote v~ = max(0, —v), the negative part of v.
The update in (5) can now be rewritten as

vi(t) = =Bxi(t) + B) ayx;(t = 7) = a(t) f (xit)) (6)
j=1

v;i(t) if x;(t) € (a,b)
%) =P i) =1 vf @) if xi(t)=a (7)
v (t) if x;(t)=b

Given v; € X we denote by {; the error due to projection of v; to Tx(x,), i.e., {i(vi) = v; = P (v;) .
Using this notation and A equations (6) and (7) can be rewritten in vector form as

v(t) = —fx(t) + pAX(t — 7) — a(t)VF(x(2)), (8)
x(t) = P(v(1) = v(t) — §(v(1)), ©)
where P(v(t)) denotes the component-wise projection. Moreover, we have
O R W) (10
(1) = 2(t) = {(v(1)). (11)

As remarked, the first step in our analysis is to show the asymptotic convergence of ||x(t) — x(#)1]|2
to zero under some appropriate choice of stepsizes. The following Lemma, which will be essential
for our analysis later, is an important facet of this result.

LEmMMA 4.1. Suppose Assumptions 1— 3 hold. Let the trajectories of x;(t) be updated by Algorithm
1. Let {a(t)} be a given positive scalar sequence with a(0) = 1. Moreover, let § € (0, M) and
Y= oreP? € (0,1). Then

(1) Forallt > 0 we have

t
lIx(t) = x(t)1]l; < p(t) + fo, / e POV — 1)du, (12)
0
where

(13)

(t) = ||x(0)||ﬁz + ZCe_ﬁt/z . 2Ca(t/2).

(2) If {a(t)} is a non-increasing positive scalar sequence such that lim;_,., a(t) = 0 then we have

tlim |x;(t) —x()| =0 foralli=1,2...,n. (14)

(3) Further we have
8 (|Ix(0)l; + 2C) eP7/?
p(1—y)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

'/O‘t a(u)||x(u) — x(u)1|]2du < + ‘32(‘116; ” '/O.t a*(yu/4 - 7)du. (15)

Proor SKETCH. The main idea in the proof of Lemma 4.1 is to show (12). The analysis of (14)
and (15) are consequences of (12) with the given assumptions on stepsizes and proper algebraic
manipulations. We, therefore, provide here the key steps for the proof of (12), where the details are
delayed to Section 6.1.

(a) Denote y(t) £ x(t) — (t)1. By (7) and (11) the update of y(t) can be written as

§(0) = ~Py(0) + PAY(E - 1) — ()T = ~1TIVEGx() -)T - 11 TEV0). (10

Due to the delay term Ay(t — 7) in (16) one would expect an accumulation of this term for
the solution y(t) of (16). Indeed, y(t) is given as

y(t) = e Ply(0) + ﬂ/o e PEYAY(u - 1)du

- / t e P g (u)(1 - %11T) (VE(x(w)) + {(v(u))) du.
0

(b) To show (12), we take the 2—norm of the preceding relation and use the triangle inequality
to obtain

t
ly(®)ll, <e P |ly(0)ll, + B / e P Ay(u - 1)l du
0

t
N / ¢ PlE-w)
0

By the Cauchy-Schwartz inequality one can show that

()1 — %11T) (VE(x(w)) + L(v(w)| du.

2

au)(I - %HT)VF(x(t)) < a(u)C.
2
Furthermore, from (7) one can obtain
cu)(I = %llT)gV(v(u)) < a(w)C.
2

(c) Finally, the key step of our analysis is to provide an upper bound for

t
; / e P Ay(u - 7)ladu,
0

which is done by applying the Gronwall-Bellman Inequality [12].
O

We are now ready to state our main result of this section, which is the convergence rate of
Algorithm 1 to the optimal value using standard techniques in the analysis of centralized subgradient
methods. One can view the update X(t) in (11) as a centralized projected subgradient used to solve
problem (1). Specifically, at any time ¢ > 0 if each node i € V maintains a variable z;(t) to compute
the time-weighted average of its estimate x;(t) and if the stepsize a(t) decays as a(t) = 1/Vt,
the objective function value F estimated at each z;(t) converges to the optimal value with a rate

O(%) where y = 0,¢#7 € (0,1) and f € (0, M) We also note that this condition on the
stepsizes is also used to study the convergence rate of centralized subgradient methods [22]. The
following Theorem is used to show the convergence rate of Algorithm 1, and its proof is given in

Section 6.2

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

THEOREM 4.2. Suppose Assumptions 1-3 hold. Let the trajectories of x;(t) be updated by Algorithm
1. Let § € (0, M) andy = 0,eP™ € (0,1). Let {a(t)} be a given positive scalar sequence such that
a(t)=1/\t fort > 1 and a(t) = 1 fort < 1. Then foralli =1,...,n,

F M1) _ g ¢ H® + nV(0) (17)
fot a(u)du - 2(Vt-1)
where,
Lo 2 UCUKOls +20) P72 a8CP4r) gy BCIGt—dr)

P —-y)? Pry(1-y) Pry(1-y)
SKETCH OF PROOF. As mentioned previously, the main idea of this proof is to introduce a candi-

date Lyapunov functional, which takes into account the impact of delays. In particular, a quadractic
Lyapunov function, i.e., (x(t) — x*)?, is often used in the case of no communication delay. However,
since the estimates x;(t) depends on the interval [t — 7,] we consider an extra term to study
this impact. Specifically, we consider the following candidate Razumikhin-Krasovskii Lyapunov
functional V [9]:

1 t

V(E() = =(&(t) - x> + = (x(s) — x*)%ds.

2 2 Ji-r

We then show that V is suffciently decreasing by considering the following two main steps.

(a) One can show that the derivative of V satisfies

2,2
2220 1) - (o, + S - D

n n n

V(x(1) < (F(x()1) =).

(b) Integrating both sides of the inequality in (a) and using (15) we can achieve the convergence
rate (17).
|

REMARK. Note that the convergence rate in (17) requires each node computing the time-weighted
average of its estimate. This can be done iteratively as follows. Let every node i stores a variable
z;(t) € R initialized at time t = 0 with an arbitrary z;(0) € R and for allt > 0 updated by
a(t)x(t) — a()z;(t)

S(1) ’

where S(0) = 0 and S(t) = a(t) fort > 0. Then we have

zi(t) = (19)

%(S(t)zia)) = $(Hzi(t) + S(O:(1) 2 a(Dxi(t)
fot a(u)x;(u)du

= zi(t)= —F—— VieV.
/0 a(u)du

5 SIMULATIONS

In this section, we apply the distributed gradient algorithm to study the well-known linear regression
problem in statistical machine learning, which is the most popular technique for data fitting
[10, 24]. The goal of this problem is to find a linear relationship between a set of variables and
some real value outcome. Here, we focus on quadratic loss functions, that is, given a training

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

set S = {(x;,y;) € R xR} fori = 1,...,n, we want to learn a parameter w that minimizes the
following least squares problem,

n
: T 2
min ;(xi w—y;)” (20)
We assume that the data sets are distributedly stored in a network of n processors, i.e., each processor
i knows only the pair (x;, y;).

For the purpose of simulations, we consider the discrete-time version of Algorithm 1, i.e., Eq.
(4) with communication delays 7. We simulate for the case when X = [-5, 5]¢ where d = 10,
ie, w, x; € R!% We consider simulated training data sets, i.e., (x;,y;) are generated randomly
with uniform distribution between [0, 1]. We consider the performance of the distributed gradient
algorithm on different sizes of network G, where each network is generated as follows.

(1) In each network, we first randomly generate the nodes’ coordinates in the plane with uniform
distribution.
(2) Then any two nodes are connected if their distance is less than a reference number r, e.g,
r = 0.6 for our simulations.
(3) Finally we check whether the network is connected. If not we return to step 1 and run the
program again.
To implement our algorithm, the communication matrix A is chosen as a lazy Metropolis matrix
corresponding to G, i.e.,

TN i () € &
A:[aij]z 0, if(i,j)¢ Eand i #j
1= Yjen; Gijs ifi=j
It is straightforward to verify that the lazy Metropolis matrix A satisfies Assumption 3. In all
simulations considered herein, we set the stepsize a(k) = 1/Vk for k = 1,2, ... and a(0) = 1.

In the sequel, we will compare the performance of the discretized version of distributed gradient
(DG) with distributed dual averaging (DA) [6, 28] for solving problem (20) in the delay-free case as
well as in the case of constant delays. For DA, we chose the same stepsize a(k) = 1/ Vk as used in
our algorithm. Simulations show that the distributed gradient algorithm outperforms distributed
dual averaging in both cases.

5.1 Delay-free case

In the delay-free case, i.e., 7 = 0, we simulate DG and DA for three different sizes of networks,
namely, n = 30, n = 40, and n = 50. In each simulation, we fix the number of iterations t = 1000 and
output the worst-case distance of the function value to the optimal value, i.e., max; |F(z;(t)) — f*|,
where z;(t) = % Zthl x;(t). The simulations are shown in Fig. 1.

In these simulations, the performance of the DG algorithm is always slightly better than that of
the DA algorithm, but overall they seem to share the same convergence rate O(In(t)/v/t), which
agrees with the analytical result in Theorem 4.2 and in [6, 19].

5.2 Uniform delays

To study the impact of uniform communication delays on the performance of DG and DA, similar
to the delay-free case we simulate the two algorithms for three different sizes of networks, namely,
n =30, n = 40, and n = 50. We implement DG and DA for each network, and terminate them when
max; |F(z;(t)) — f*| < 0.2. We let the delay constant 7 run from 0 to 10 and output the number of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

link network

A 30-node, 210-

<
Q2
k=]
s 2
\G.w B
°
20
1)
5 >
o<
= —
ez s 4
[a)a]
I
T @ @
o o o
- - -

10°

LJ = (1)) 1kew

200 300 400 500 600 700 800 900 1000
iteration

100

o

A 40-node, 305-link network

Distributed Gradient |
Dual Averaging

900 1000

800

iteration

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

A 50-node, 538-link network

T I E|
Distributed Gradient |
Dual Averaging

max|F(2(k)) — [

1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
iteration

Fig. 1. Performance of DG and DA in delay-free networks.

iterations as a function on 7. We plot the number of iterations as a function on the number of delay
steps. The simulations are shown in Fig. 2.

We first note that the delays do influence the convergence rate of the two algorithms, that is, the
greater the delay between nodes the more time the algorithms need to terminate. Second, as shown
by the curve for DG the number of iterations seems to increase as a cubic function of the number of
delay steps, which agrees with our analysis in Theorem 4.2. Finally, in this example, uniform delays
have a bigger impact on the performance of DA, that is, DA requires more iterations to converge
than DG under the same number of delay steps.

6 PROOFS OF MAIN RESULTS

We provide here the complete proof of the main results presented in Section 4. In the following
Lemma, we first study some important properties for the projection error {; , which can be viewed
as the one-dimension version of Lemma A.1 for the general convex set X, stated in the Appendix.

LEMMA 6.1. Suppose Assumptions 1— 3 hold. Let v;(t), x;(t) be updated by (6) and (7) Moreover, let
Gi(vi(t)) = vi(t) — P(vi(t)). Then for alli € V we have
(1) Forallt >0
5@ (D)) < la@)ff (xi(@))] < Cia(t). (21)
(2) Given any feasible direction r;, i.e.,

{riSO if x;(t)="b

>0 if x;(t)=a (22)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Number of iterations as function of delay steps

4000

T T T
—}— Distributed Gradient
—E— Dual Averaging

3500

w

o

o

o
T

N

o

o

o
T

number of iterations
I 3
S S
T T
T

1000 -

500

h i i i i i i i i

4 5 6
delay steps

Number of iterations as function of delay steps

6000

T T T
—}— Distributed Gradient
—3— Dual Averaging

5000~

1018

4000 -

w

o

o

o
T

2000

number of iterat

1000

i i i

4 5 6
delay steps

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Number of iterations as function of delay steps

10000 T T T T T T T T T
—=}— Distributed Gradient
—B— Dual Averaging
9000 - .
8000 .
n
g 7000 - .
o
©
s~ 6000 : .
()
+—
o
<~ 5000 .
o
ES 4000 *|-
E
= 3000} .
i
2000 .
1000 - i
0 1 2 3 4 5 6 7 8 9 10
delay steps
Fig. 2. Performance of DG and DA with delays.
We have
2
(i(t) = i) i(wi(t) 2 [Si(vi(t)]". (23)

Proor. (1) Recall that {;(v;(t)) = v;(t) — PTx(x;ry- Moreover, by (7) we have the following
three cases for alli € V :
(a) If x;(t) € X = (a,b) then {;(v;(t)) = v;(t) — vi(t) = 0.
(b) If x;(t) = a then we have 0 < Py = v} (t) = max(0,v;(t)). If v;(t) > 0 then {;(v;(t)) =
0. Otherwise if v;(t) = —fa+f Z;’:l a;jxj(t—1)—a(t) f/ (xi(t)) < 0thensince x;(t—7) € (a, b)
we have 0 < —fa + B 37, a;jx;(t — 7). This implies that

—a(t)f{ (xi(t)) < —pa+p Z aijxj(t — 1) — a(®) f{ (x:(1)) < 0.
j=1
This implies that

i @i()] = [0i(t) = Py, | = 1B Z aijxj(t = 1) + a(t) f{ (xi(t))]
j=1
< la(@®)ff (xi(t))]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

(c) Finally, if x;(¢) = b then P, = —v; (t) = —max(0, —v) < 0.If v;(¢) < 0 then Py, =
v;(t) implying {;(v;(¢)) = 0. Otherwise, if v;(t) > 0 then PTxeiy = 0, which implies

0 < —Bxi(t) + B) ayxj(t = 1) = a(t) fi(xi(1)
j=1

=—pb+p > ayx;(t - 1) — a(t) filxi(t))
j=1

n

< pb - Z aijb) = a(t) fi(xi(t)) = —a(t) fi(xi(t)).

Jj=1

Thus we have

1Si(@i())] = [vi()] = | = xi(t) + p Z ajjxj(t =) — a(t) fi(xi(1))]
=1
< la(®) filxi (1))l
From these three cases, we have |{;(v;(t))| < |a(t)fi(x;(2))|, which by (2) implies |;(v;(t))] <

C,—a(t).
(2) Let r; be a feasible direction, i.e., r; satisfies (22). Consider

(vi(t) = ri)i(vi(t) = (vi(t) = P(vi(t)) + P(vi(t)) — ri)i(vi(t))
= {H(vi(t) + (P(i(t) — ri(t))i(vi(t))
= {(vi(t) + (P(i(t) — ri(1))(wi(t) — P(vi(t))) (24)

qi

We now investigate the second term of the previous relation for three cases
(@) If x;(t) € X = (a, b) then P(v;(t)) = v;(t) implying g; = 0.
(b) If x;(¢) = a then we have 0 < Py = v (t) = max(0,v;(t)). If v;(t) > 0 then P(v;(t)) =
v;(t) implying q; = 0. Otherwise if v;(¢) < 0 then P(v;(¢)) = 0. Since x;(t) = a we have
r; > 0, which implies g; > 0 since v;(t) < 0
(c) Finally, if x;(t) = b then P(v;(t)) = —max(0,—v) < 0. If v;(¢t) < 0 then P(v;(t)) = v;(t)
implying q; = 0. Otherwise, if v;(¢) > 0 then P(v;(¢)) = 0. Since x;(t) = b we have r; <0,
which implies g; > 0 since v;(t) > 0.
Combining these three cases and by (24) we have (23).

6.1 Proof of Lemma 4.1

Proor. We start by introducing the following notation for convenience

g(t) = (I - ~1T)VF(x(t), h(t) = (I - l117) (V) y() = x() - %1,
n n
(1) We first show the details of steps (a) — (c) stated in the proof sketch of Lemma 4.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

(a) By (9) and (11) we have,
y(t) = x(t) — x(t)1
= —Bx(t) + PAX(t — 7) + fx(t)1 — x(t — 7)1
— a(t)VF(x(t)) + ?11%1«*@:0)) —Z(v(t)) + %11T§(V(t))
= —p(x(t) = x(1)1) + PA(x(t — 7) — %(t — 7)1)
- a(t) (1 - %11T) VF(x(t)) — (1 - %11T) Z(v(t))

= —py(t) + fAY(t - 7) — a()g(t) — h(2), (25)
where the last equality is due to the fact that A is doubly stochastic. The solution of (25) is
then given as,

y(t) = ey (0) + B /t e PUAY(u - 7)du
0

- / t e P (a(u)g(u) + h(w)) du. (26)

0
(b) Taking the 2—norm of (26), using the triangle inequality, and since ||y(0)||> < ||x(0)]]> we
obtain

lly()ll <e P! [|x(0)]l> + /0 e P (a)llg()llz + Ih(w)ll) du

t
+p / B0 Ay(u -) odu @7)
0

We first note that by the triangle inequality and (2) we have

n

< IVFG(e)ll = | D [f7 i)
2

i=1

@ [
<4 D.cts<c (28)
i=1

Moreover, by (21) we have

el = H(I - %nT) VF(x(t)

Ih(t)]l, = < Ca(t).

(1 _ l11T) £(D))
n 2

Substituting the previous relation and (28) into (27) we have

t t
YOIl < e [xO)]l + 2C / P a(updu + / PO Ay - Dlpdu. (29)
0 0

Moreover, consider the second term on the right-hand side of (30)

¢ t/2 t/2
/ P a(u)du = / P g(u)du + / e P au)du

0 0 0

t/2 t/2
< / e Py + a(t/Z)/ e Pl-gy
0 0

1 t/2
e—ﬁt/z + a’(/)’

B

IN

=]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

where the first inequality is due to {a(t)} is non-increasing with «(0) = 1. Substituting the
previous relation into (29) we have

ly®ll < e x)]l; + %e-ﬁf/z ¥ ZCQTEUZ)

(c) We now obtain an upper bound for the last term in (30). We first recall that y(t) =
aIT- %11T)x(t) implying y(t) ¢ span{1} since 17y(t) = 0. Moreover since A is doubly
stochastic ATA is also doubly stochastic, implying A has one singular value equal to 1
and all others strictly less than 1. Thus, by the Courant-Fisher Theorem [11] we have
IAY()|l2 < o2]ly(t)|lz where o3 is the second largest singular value of A. Hence, from (30)

t
+p / e P Ay(u - T)lpdu. (30)
0

we have
B 20 2Ca(t/2 b
IOl < € IxO + 5e 7 + % + foy / e POy = 1) odu
0
2 t
< DXOR L e 200D 4 oy [ey
0
t
= (1) + o, / Py =) lodu, (31)
0
where pu(t) is defined as
0 2C 2C 2
I)”ﬁz +2C g 20altf2))

We now apply a delayed version of the Grénwall-Bellman Inequality for integrals to achieve
an upper bound on the integral in (31). Let w(t) be a function of ¢, defined as

t
wii) = /0 P ly(u - 0)lladu.

By (31) we have ||y(t)|| < p(t) + Boze Ptw(t). In addition, w(t) is an incereasing function
on t with w(0) = 0. Consider

W(t) = e lly(t = D)l < e (ut = 7) + e (- 7))
= eﬁt,u(t -7)+ crgﬁeﬁfw(t -7)< eﬁtp(t -7)+ crgﬁeﬁfw(t),
where the last inequality is due to w(t) is increasing, i.e., w(t — 7) < w(t). The preceding
relation implies
Ww(t) — o2 fePTw(t) < P u(t — 1),

702ﬁeﬁrt

which by multiplying both sides by e we have

d T T
T (ef‘fzﬁeﬁ tw(t)) < emoehe’ tePtut —1).
Taking the integeral from 0 to ¢ on both sides of the previous equation and using w(0) = 0
we obtain
t
w(t) < e”zﬁeﬁrt/ eﬁ(lf‘”eﬁr)uu(u —7)du. (33)
0

Thus since ||y(t)|] < p(t) + foze P w(t) and by (33) we have

t
IO < o)+ o [€070 N) (34)
0

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

which is (12) since y = oef7.

(2). We now show (14). Since lim;_,« () = 0 we first have lim;_, p(t) = 0 by (32). Second, Eq.
(34) can be written as

4 0|z +2C [

/ U0y —)y KOl +2C / o PU-YIE-u) - pu-r)/2 g,
0 ,B 0

2C [

+ = e PO o ((u = 1)/2)du. (35)

u=0

On the one hand, taking the limit as t — oo on the first term on the right hand side of (35)
gives,

t t

lim [e P10 =pu=0)/2 gy — Jim o~PU-V)t+pz/2 / Bal2=yu gy,
t—o0 0 t—o0 u=0

BU/2-P)E _ 4

= eP7/? lim e AUVt =0. (36)

t>00 p1/2—-y)

On the other hand, consider the second term in (35),

t
lim e POV o ((u = 1)/2)du

t/2 t
lim e POV o (- 7)/2)du + lim e PO o ((u - 7)/2)du

—00 —00

u=0 u=t/2
t/2 t
< lim e POy 4 lim a((u - 27)/4) e PU-t-u) gy,
t—oo)0 t—oo u=t/2
-p-y)t/2 —
< lim ¢ + lim (1 = 20)/4) =0, (37)
tme f(1—y) oo B(l-y)

where the last equality is due to y € (0, 1) and lim;_,. @(t) = 0. Using the preceding relation
and (36) into (35) we have

t
lim e POy — 1) = 0, (38)

t—00 0

which together with lim;_,. p(t) = 0 and by (12) give (14).
(3) Recall from (12) that

/0 ta(u)||y(u)||2dus /0 ta(u),u(u)du+ /u :O a(u) / :0 e POV (s —)dsdu. (39)

where

u(t) = ||x(0)||ﬂ2 + ZCe_ﬁt/z . 2Ca(t/2).

We first analyze the first-term on the right-hand side of (39). Si

! [x(0)]l. + 2C [* _pu/2 L 2Ca(t)2)
/Oa(u)y(u)dus—ﬁ '/Oa(u)e du+'/0‘ a(u)—ﬁ du

IXOllz +2C [* _gupny 2C [* o0
< 5 /0 du + 5 / a“(u/2)d

0
2O 23C 22 [s #0)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

where the second inequality is due to «(t) is non-increasing, positive, and «(0) = 1. Second,
we now consider the second term on the right-hand side of (39). We first have

t u
/ a) [e PUN=s) B0 2 g g,
u=0 s=0

t
< bl / / Y B GBS gy
u=0 Js=0

S 2@ﬁr/2 ! _ﬁ(l Y)M/Zd _ 4eﬂT/2 (41)
BA-y) Jo p1-y2
We now consider
/ a(u) / e PUW=9) o (¢ — 1) /2)dsdu < / / e PUVW=5)52((s — 1Y /2)dsdu
u=0 s=0
u/2 u
/ e P (/ PUV302((s — 1) /2)ds + / eﬂ(l_’/)saz((s—r)/z)ds) du
=0 s=u/2
u/2
< / e AUy (/ PV ds 4 o%((s - 27)/4) eﬁ(l_”)sds) du
=0 s=u/2
< e PU-1UI2 4 02((s - 27)/4)du
5= /o (=200
<t L[s-20/0d
< a“((s -2t u
pr1—y) BA-y) Ju=
(42)

Substituting (41) into (42) into the second term on the right-hand side of (39) we obtain

t u
/ a(u) e PAVW=9) (s — 1)dsdu
u=0 s=0

4(|Ix(0)||; + 2C) eP7/? 4C 2C

ST Ba-yr PU-yr PU-yp
4([Ix(0)[l + 3C) eP7/2 20 t

< B3(1—y)? + B2(1-y) [) aZ(yu/4 - 7)du. (43)

By adding (43) to (40) we obtain from (39) that

/t a*(yu/4 — t)du
0

t
/0 a(w)lly@)ldu

< W + % taz(u/Z)du
4(IxO +3C) P72
pP(1—y)? /32(1 ¥) / a (}/u/4 —1)du

8 (J|x(0)||; + 2C) eP7/2
< X ﬂ3(21 - Y)z ¢ + ‘32(1 — Y) '/0‘ az()’u/4 - T)du, (44)

where the last inequality is due to y € (0, 1) and a(t) is non-increasing positive sequence, i.e.,
a*(u/2) < a’(yu/4 —) for ¢ > 0. This shows (15).

]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

6.2 Proof Theorem 4.2

Proor. Let x* be a solution of problem (1). Consider a candidate Razumikhin-Krasovskii Lya-
punov functional V' [9] defined as

V(x(t)) = %(i(t) —x*)? + g ‘/t_tr(ic(s) —x*)ds, t>0, (45)
whose derivative is given as
V(1))
= (20~ 50 + D[57 -) -2

a(t)

= _¥2 ot —-1)— #\2
= (x(0)—x) - ﬁX(t)+/3x(t—T)——Zﬁ-'(xi(t))—f(t))+ﬂ(x(t) i Lt e

2

at) N\ oy e g U7 o) — o
=-— ;oc(t) = x")f} (ei(0) =~ ;u(o ~x)zi(xi(1)

W W,
(1) — x*)? = B(x(t — 1) — x*)?
+ BER(E) — x*)E(t - 1) — %(1)) + B(x(t) — x*) f((t—7)—x%)
B(x(t) — x(t — 7))
2

L PEE-1) - x")? — P(E(t) - x*)? L PEO) - x)P - pE(t — 1) —x*)°
2 2

=W1+M/2—

=W + W, — g(x(t) —x(t-1)) < W + W, (46)

We first have

W - _M i(,—c(t) it + xi(8) = X)L (D)

= a()Z(x(t) xl(t))f,(x,(t))——Z(i(t) = x*) 7 (xi(1))

Zu(t)—xi(m o) - 2L - 1)

2O 1t~ ol - “Depex -)

= “(t)cn (t) - %()1]l2 - @(F((1)) - F(x(t)1)) - ﬂw((1) - f7)

2”‘("‘)Cn 0 - x<t)1||z—ﬁ(F((D) -). 7

Second, let r;(t) be defined as

N0

ri(t) = X" = xi() = Bi(t) + B) ayxi(t = 7),
j=1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

and recall from (22) that r;(¢) is a feasible direction if

ri <0 if x;(t) =
{ R0 if xi(t)=0 (48)

Indeed, if x;(t) = 0 then r;(t) > since x*, x;(t — 7) € (0, B) Vj € V and A is doubly stochastic. On
the other hand, if x;(t) = B then r;(¢) = x* + 2}1:1 a;jxj(t —7) = (1+ B)B < 0. Thus, we have r;(t)
is a feasible direction, i.e., r;(¢) satisfies (48). We now consider the term W,

Wy = == 3 (0 - x)G
=) (x(r) ~(+ Pt +)yt = 1) - vi(t)) ()
i=1 j=1

- % > (vi(t) + (14 Byxi(t) = B it - 1) - x*) 20
i=1 j=1

=) (x(r) ~(+ Pt +) it = 1) - vi(o) ()
i=1 j=1
-) @D - o)) «9)

where by (6) the first sum is equivalent to

- % > (ff(f) —(1+ By(t) + B) ayxy(t 1) - vi(t)) &i(t)
i=1 j=1

n

== () - 30 +) f () G0
i=1

< 20 == OG0! + ; 25l GO o)

@)Ca(t) Cla’(t)
—

—— Ix(8) = x(O1]> +

In addition, since r;(t) is a fea31b1e direction, by (23) the second sum in (49) is upper bounded by
1% 1< , 1)
B i\t) = Ti i(t) < —— h = - .
" Z (0ilD) = r() Gi(1) < —— ; 20 =~ 0

Applying the preceding two relations into (49) we obtain

2 2 2 2
w, < ey~ zon + SO Lz < Oy -zl + S 0
Thus, substituting (47) amd (50) into (46) we obtain
o) = 22 -z + SO - 2O pa) - g, 1)

By (15) in Lemma 4.1 we have

B/
/o ' @)y (@) llodu < SUXKOle +20) 77

pa-pr /32(1

)/ a*(yu/4 — t)du- (52)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Under the assumptions on a(t), i.e., a(t) = 1 for t < 1 and a(t) = 1/t for t > 1, consider the
following

t 4 Ythf 4 1 4 Yth'r
/ a’(yu/4 - t)du = —/ a?(u)du = —/ a?(u)du + —/ a?(u)du
0 Y J-z Y J-z Y1

yt_ t
_41+7) +g/Y4 "1, 4+1) +élln(%—f)
Y Yy 1 t Y Y
< 4(1+1) . 41n(yt - 47)' (53)
Y Y
Substituting (53) into (52) to obtain
t CZ t
¢ [awlyledu+ S [atuda
0 n Jo
Br/2 2 2 —
s 24C(||x(§))||2 + 22C)e .\ 482C (147 In(e) + 48C21n(yt 47)
p(1-y) Bry(1—y) pry(1-y)
£ T(®). (54)

Taking the integral of both sides in (46) and using (51) we obtain

t 2 t t
Vo) - viso) < 5= [ely@ladu+ S [o= [atorean - £

Chm 1 /) - £) o
0

n n
Rearranging (55) and dropping V(%(t)) gives

/ t a(u)(F(EW)1) — f)du < 2Ly(t) + nV(%(0)).
0

Thus, dividing both sides of the preceding relation by /Ot a(u)du =1+ /lt ‘/Ladu <2(vt-1) we
obtain

Jo @ @FEG@Y) = F)du Tyt + nV(x(0))
fot a(u)du To2(Wi-1)

which by Jensen’s inequality implies

- (fot Di(u)fc(u)du) _ f* < r()(t) + nV()E(O)) (56)
/0 a(u)du 2(\/; _ 1)
Moreover, we have
t
i d ¢ a(w)x(u)du b o (u)(x; (w)-%(w)du 5
F fo“t(“)x(“) u —F(/O‘f””d 1)sc fawet-sed | _T©) o
/0 a(u)du fo a(u)du /0 a(u)du 2(\/2_ 1)
Adding (56) and (57) we obtain (17), which conlcudes our proof. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

7 CONCLUDING REMARKS

In this paper we have studied a continuous-time distributed gradient-based consensus algorithm
for network optimization problems, with the focus on uniform communication delays. We provided
an explicit analysis on the rate of convergence of the algorithm as a function of the network size,
topology, and communication delays, specifically the convergence time of the algorithm grows
as a cubic function of the delays. We also simulate the performance of the distributed gradient
algorithm for the delay-free case and with uniform delays for different network sizes, and compare
with the performance of distributed dual averaging. Our simulation results suggest that distributed
gradient outperforms dual averaging in both cases.

One interesting question left open in this paper is the study of asynchronous distributed gradient
algorithms, that is, when communications delays are different at different nodes and perhaps
change with time. In this more general case, it would be interesting to investigate whether an upper
bound on the time-varying heterogeneous delays can be helpful in obtaining convergence results.
In particular, a possible topic of future research would be to determine if one can obtain bounds on
the error in the objective function by using an upper bound on the delays, along with our current
results.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and helpful
suggestions. The work is supported by Boeing, ARO Grant W911NF-16-1-0259, and the National
Science Foundation under Grant NSF CNS 15-44953 and NeTS 1718203.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

REFERENCES

(1]
(2]

(3]

(5]
(6]
(7]

D. Bertsekas, A. Nedi¢, and A. Ozdaglar. 2004. Convex Analysis and Optimization. Cambridge, MA: Athena Scientific.

V.D. Blondel, .M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. 2005. Convergence in multiagent coordination, consensus,
and flocking. In Proceeding of the Joint 44th Conference on Decision and Control And European Control Conference.
2996-3000.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and]J. Eckstein. 2011. Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1-22.

T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and M. Johansson. 2015. Distributed Finite-Time Average
Consensus in Digraphs in the Presence of Time Delays. IEEE Transactions on Control of Network Systems 2, 4 (Dec
2015), 370-381.

Y.C. Eldar D.P. Palomar. Dec. 2009. Convex Optimization in Signal Processing and Communications (1st ed.). Cambridge
University Press.

J.C. Duchi, A. Agarwal, and M.J. Wainwright. 2012. Dual averaging for distributed optimization: Convergence analysis
and network scaling. IEEE Transactions on Automatic Control 57, 3 (2012), 592-606.

M. Li et. al. 2014. Scaling Distributed Machine Learning with the Parameter Server. In Operating Systems Design and
Implementation (OSDI).

B. Gharesifard and J. Cortés. 2014. Distributed Continuous-Time Convex Optimization on Weight-Balanced Digraphs.
IEEE Trans. Automat. Control 59, 3 (2014), 781-786.

JK. Hale and S.M.V. Lunel. 1993. Introduction to Functional Diffential Equations. Vol. 99. Springer-Verlag.

T. Hastie, T. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(2nd ed.). Springe-Verlag, New York.

R.A. Horn and C.R. Johnson. 1985. Matrix Analysis. Cambridge, UK.: Cambridge Univ. Press.

H. K. Khalil. 2002. Nonlinear System (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

A. Makhdoumi and A. Ozdaglar. 2014. Broadcast-based distributed alternating direction method of multipliers. In 52nd
Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL.

G. Meteos, J. Bazerque, and G. Giannakis. 2010. Distributed Sparse Linear Regression. IEEE Transactions on Signal
Processing 58 (2010), 5262-5276.

U. Miinz, A. Papachristodoulou, and F. Allgower. 2011. Consensus in Multi-Agent Systems With Coupling Delays and
Switching Topology. IEEE Trans. Automat. Control 56, 12 (2011), 2976 — 2982.

A. Nedi¢ and A. Olshevsky. 2015. Distributed Optimization Over Time-Varying Directed Graphs. IEEE Trans. Automat.
Control 60, 3 (2015), 601-615.

A. Nedi¢, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. 2009. On Distributed Averaging Algorithms and Quantization
Effect. IEEE Trans. Automat. Control 54, 11 (2009), 2506-2517.

A. Nedic, A. Olshevsky, and W. Shi. 2016. Achieving linear convergence for distributed optimization over time-varying
and directed graphs. arXiv preprint: http://arxiv.org/pdf/1607.03218v1.pdf. (2016).

A. Nedi¢ and A. Ozdaglar. 2009. Distributed Subgradient Methods for Multi-Agent Optimization. IEEE Trans. Automat.
Control 54, 1 (2009), 48-61.

A. Nedi¢ and A. Ozdaglar. 2010. Convergence rate for consensus with delays. Journal of Global Optimization 47, 3
(2010), 437-456.

A. Nedi¢, A. Ozdaglar, and P. A. Parrilo. 2010. Constrained Consensus and Optimization in Multi-Agent Networks.
IEEE Trans. Automat. Control 55, 4 (2010), 922-938.

Y. Nesterov. 2004. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Norwell,
MA.

G. Qu and N. Li. 2016. Harnessing Smoothness to Accelerate Distributed Optimization. arXiv preprint: https:
//arxiv.org/pdf/1605.07112v1.pdf. (2016).

S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning: From Theory to Algorithms (1st ed.).
Cambridge University Press.

W. Shi, Q. Ling, G. Wu, and W. Yin. 2014. On the Linear Convergence of the ADMM in Decentralized Consensus
Optimization. IEEE Transactions on Signal Processing 62, 7 (2014), 1750-1761.

W. Shi, Q. Ling, G. Wu, and W. Yin. 2015. EXTRA: An Exact First-Order Algorithm for Decentralized Consensus
Optimization. SIAM Journal on Optimization 25, 2 (2015), 944-966.

B. Touri and B. Gharesifard. 2015. Continuous-time distributed convex optimization on time-varying directed networks.
In IEEE 54th Annual Conference on Decision and Control (CDC). Japan.

KI. Tsianos, S. Lawlor, and M.G. Rabbat. 2012. Distributed dual averaging for convex optimization under communication
delays. In Proc. of American Control Conference (ACC).

K. Tsianos, S. Lawlor, and M.G. Rabbat. 2012. Push-Sum Distributed Dual Averaging for Convex Optimization. In
Proc. of the 51st IEEE Conference on Decision and Control (CDC). Hawaii, USA.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

[30] K.I. Tsianos and M.G. Rabbat. 2012. Consensus-Based Distributed Optimization: Practical Issues and Applications in
Large-Scale Machine Learning. In Proc. of Allerton Conference on Communication, Control, and Computing.

[31] K.I. Tsianos and M.G. Rabbat. 2012. The Impact of Communication Delays on Distributed Consensus Algorithms.
arXiv preprint: https://arxiv.org/pdf/1207.5839.pdf. (2012).

[32] E. Wei and A. Ozdaglar. 2013. On the O(1/k) convergence of asynchronous distributed alternating direction method of
multipliers. arXiv preprint: https://arxiv.org/abs/1307.8254. (2013).

A APPENDIX
A.1 Extension to R?

We present here a sketch of key steps to extend our analysis for the case d > 1. In this section,
use uppercase letters in boldface for matrices X in R"*?. We now have x; € R¢ for all i € V and
fi : R4 — R. We define the following notation

xT %7
1 1 n d _ 4
X=| ... |er™)‘(:—ineR, X=| ... |eR™4
x! = %7
n
n VflT(Xl)
FX) 2 fix), VFX)=| ... |eR™
i=1 Vi (Xn)

Given a matrix A we denote its i—th row as aiT e R je.,
aj

A= e R

T

al’l

Moreover, we write ||A||r as the Frobenius norm of A. With these notations the updates in (6)-(11)
can be rewritten as

V(1) = =pX(t) + fAX(t — 1) — a(t) VF(X(2)),
X(t) = Py [X(B)] = V(1) = £(V(1)),

90 = ~px(0) + px(t - 1) - 2 Y Ve ()

x(t) = 9(1) - £(1),
where the projection Py, ,, [X(#)] is the row-wise projection. Finally, we use the following result
studied in [21], which is a general version of Lemma 6.1, to analyze the impact of the projection.
LEMMA A.1 (LEmMA 1 [21]). Let X be a nonempty closed convex set in R?. Then, we have for any
x € R4
(@) (Px[x] = %) (x—y) < ~||Px[x] - x} forally € X
(b) [1Px[x] - ylf < llx—yll - IPx[x] - x|} forally e X

We now present the analysis for the general versions of Lemma 4.1 and Theorem 4.2, which are
given in the following two lemmas.

LEMMA A.2. Suppose Assumptions 1— 3 hold. Let the trajectories of x;(t) be updated by Algorithm
1. Let {a(t)} be a given positive scalar sequence with a(0) = 1. Moreover, let § € (0, M) and
Y= areP? € (0,1). Then

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

(1) Forallt > 0 we have

IX(t) = X(D)|lF < u(t) + oy / t e POV y(y — 7)du, (58)
0
where
()= e ||X(o)|[|; +2C gz, 2Ca/(3t/2)‘ (59)

(2) If{a(t)} is a non-increasing positive scalar sequence such that lim;_,c, a(t) = 0 then we have
tlim IIx;(t) = %(t)[; =0 foralli=1,2...,n. (60)

(3) Further we have
8 (IX(0)|¢ +2C) eP7/2
pa—y)y
ProoF SKETCH. As mentioned, the key step in the proof of Lemma A.2 is to show (58). The
analysis of (60) and (61) are consequences of (58). Consider the following notation:

'/Ot a(w)||X(w) — X(w)l|2du < + ﬂz(;m; ” ./Ot a*(yu/a —t)du. (61)

G(t) = (I— %IIT)VF(X(t)), H(t) = (1 - %11T) V@) Y() = X(8) - X().
We first consider
yi(t) = %;(t) — x(t)

= —pxi(t) +) aixj(t —) — a()V filxi(t)) = (1)

Jj=1

+ px(0)— gt - o)+ Y) + 20
=

=-yi(t)+ B Z aijyj(t — v) — agi(t) — hi(t),
j=1
which implies
t n
yi(t) = e'yi(0) + / e) (ﬁ D aiyi(u—1) - agiw) - hi(u>) dt.
0 =

Thus we obtain

Y(t) = e P1Y(0) + /0 t e PUAY(y — 7)du — /0 t e P (a(u)G(u) + Hw)) du. (62)

Recall that Y(¢) = X(t)-X(t) = (I- illT)X(t). In addition, note that 17Y(¢) = lT(I—%llT)X(t) =0,
implying that each column of Y(¢) ¢ span{1}. Indeed, if there exists at least one column of Y(¢),
namely, p¢(t), such that py(t) € span{1} then 17p,(t) # 0 but 17Y(t) = 0, a contradiction. The
previous observation implies that

IAY®)IE = > IAp:0)IE <) a2lps(t)llf = a2 Y113, (63)
i=1 i=1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

where p;(t) are columns of Y(¢). Taking the Frobenius norm on both sides of (62), and using (28)
and (63) we have

t t
IYO)lF < e P IO + fo / PO — 0)|du + C / P)y
0 0

+/0te_ﬁ“_”)lll(u)llpdu. (64)

We now use Lemma A.1 to construct an upper bound on the last term on the right hand side of
(64). First, since A is doubly stochastic and x;(t — 7) € X Vj we have 3¢, aijx;(t — 7) € X. Thus,
by (3) with 8 = 87! we have

ri(t) = =pxi() + B) aixi(t —) € Dx(xi(t)).
JEN;
Hence, by Proposition 2.2 we have r;(t) € Tx(x;(t)). By Lemma A.1(b), we have
1P en [Vi®)] = @3 < [1vi(®) = 1)1 = 1P xaen [Vi(D)] = vi(D)]3,
which since £;(t) = vi(t) — Pz (x,t)[Vi(t)] implies

12Dz < |lvi(t) = 1:(@)ll2 = la(®V fixi(@))ll2 < Ciax(?). (65)
Thus we obtain [|Z(t) = ()|l = || (I- £117) Z(0)llF < IZ(®)]lF < Ca(t). Substituting the previous
relation into (64) and using (32) we obtain (58). O

In the lemma below, with some abuse of notation we denote by X;(t) the matrix whose all the

rows are xl.T(t), ie.,
xj (1)
Xl(t) = e
x; ()

LEmMMA A.3. Suppose Assumptions 1-3 hold. Let the trajectories of x;(t) be updated by Algorithm 1.
Let B € (0, M) andy = 0,eP™ € (0,1). Let {a(t)} be a given positive scalar sequence such that
a(t) = 1/\t fort > 1 and a(t) = 1 fort < 1. Then for eachi = 1,...,n we have

A dWXid) 200 + Y ((0) .
/0 a(u)du 2(Vi—1)
where,
L) 5 24C(IX(0)lF + 2C) ePr/2 48C% (1 + 1) + Cln() + 48C% In(yt — 47) ©7)

+
P -y)? pry(1-y) pry(1-y)
PrRoOF SKETCH. Let x* be a solution of problem (1). Consider the candidate Razumikhin-Krasovskii
Lyapunov function given in (45), where its derivative is given as

V() < =S 3 50 -V fit) — (50 -3V g (0
i=1 i=1
W1 VVZ
< Wi+ Ws. (68)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

The term W, can be upper bounded by using (47). Here we focus on delivering the upper bound of
Wa. Recall that £;(t) = vi(t) = Py, [Vi(t)]. Consider

Wy = —(x(t) ~ x")(t)

n n T
= —% > (xa) —(L+ Pxilt) + B) ayxi(t = 7) - vi(t)) £i(t)
i=1 j=1

n n T
- % Z (Vi(t) +(1+pP)xi(t) - p Z aijxj(t —7) - X*) Z;(1), (69)
i=1 j=1

where by (6) the first sum is equivalent to

n n T
- % ; (i(t) -1+ pxi(t) + ; aijxj(t — 1) - vi(t)) zi(t)
= =2 3 RO = 1) + T A £

<= 25 I(6) = il 0l + = IV ANl

i=1

2 2
<Dy - gl + S,

On the other hand, let r;(#) be defined as
ri(t) =x" = (14 Bxi(t) + p) ayx;(t = 7).
j=1

Consider

x;(t) + %ri(t) -1 ;ﬂxi(t) + %x* + g Z ayxj(t—7) € X.

j=1
which by (3) with 8 = 1/2 implies r;(¢) € Dx(x;(t)). In addition, by Proposition 2.2 we have
ri(t) € Tx(x,(+))- Thus, by applying (1a) in Lemma A.1 to the second term in (62) we obtain

18 1 &
DN RO FCEEED Y
i=1 i=1
Applying the preceding two relations into (62) we obtain

22 22
w, < ey -zl + “E0 Dz < @O xa) - xea+ S0 o)

2 1 2
Vilt) = Pri i Vi, = == 12O,

Thus we obtain the same result as in (51), ie.,

Vo) < 2% - gl + S0 B ipan - g,

The rest of this proof is the same as the one in Sect1on 6.2. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

	Abstract
	1 Introduction
	2 Problem formulation
	3 Distributed Gradient Methods under Communication Delays
	4 Convergence Results
	5 Simulations
	5.1 Delay-free case
	5.2 Uniform delays

	6 Proofs of Main Results
	6.1 Proof of Lemma 4.1
	6.2 Proof Theorem 4.2

	7 Concluding Remarks
	Acknowledgments
	References
	A Appendix
	A.1 Extension to Rd

