
37

On the Convergence Rate of Distributed Gradient Methods

for Finite-Sum Optimization under Communication Delays

THINH T. DOAN, University of Illinois at Urbana-Champaign, USA

CAROLYN L. BECK, University of Illinois at Urbana-Champaign, USA

R. SRIKANT, University of Illinois at Urbana-Champaign, USA

Motivated by applications in machine learning and statistics, we study distributed optimization problems over

a network of processors, where the goal is to optimize a global objective composed of a sum of local functions.

In these problems, due to the large scale of the data sets, the data and computation must be distributed over

processors resulting in the need for distributed algorithms. In this paper, we consider a popular distributed

gradient-based consensus algorithm, which only requires local computation and communication. An important

problem in this area is to analyze the convergence rate of such algorithms in the presence of communication

delays that are inevitable in distributed systems. We prove the convergence of the gradient-based consensus

algorithm in the presence of uniform, but possibly arbitrarily large, communication delays between the

processors. Moreover, we obtain an upper bound on the rate of convergence of the algorithm as a function of

the network size, topology, and the inter-processor communication delays.

CCS Concepts: · Machine learning→ Distributed optimization;

ACM Reference Format:

Thinh T. Doan, Carolyn L. Beck, and R. Srikant. 2018. On the Convergence Rate of Distributed Gradient

Methods for Finite-Sum Optimization under Communication Delays. Proc. ACM Meas. Anal. Comput. Syst. 1, 2,

Article 37 (December 2018), 27 pages. https://doi.org/10.1145/3219617.3219654

1 INTRODUCTION

There has been much recent interest in large-scale optimization problems, especially in machine

learning and statistics. Due to the explosion in the size of data sets, it is important to be able to

solve such problems eiciently. In addition, very often large data sets, on the order of terabytes,

cannot be stored or processed on one single processor. As a result, both the data and computation

must be distributed over a network of processors, necessitating the development of distributed

algorithms. Moreover, the computation and communication in these algorithms should be eicient

enough so that network latencies do not ofset the computational gains.

In this paper, we study distributed algorithms for optimization problems that are deined over a

network of nodes1, while explicitly accounting for network delays, one of the most critical issues

in distributed systems. The objective function is deined by a sum of local functions where each

function is known by only one node. Problems of this nature arise in a variety of application domains

within the information sciences and engineering. A standard example from statistical machine

learning [7] is the problem of minimizing an average loss function over large training data. The data

1The terms nodes and processors will be used interchangeably.

Authors’ addresses: Thinh T. Doan, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA, ttdoan2@illinois.edu;

Carolyn L. Beck, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA, beck3@illinois.edu; R. Srikant,

University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA, rsrikant@illinois.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and

the full citation on the irst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2476-1249/2018/12-ART37

https://doi.org/10.1145/3219617.3219654

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

is distributed across a network of processors, where each processor computes the empirical loss

over a local subset of data. The processors, therefore, must communicate to determine parameters

that minimize the loss over the entire data set. Distributed algorithms for these problems have

received a surge in interest in recent years. In particular, there are three widely-studied algorithms

for distributed optimization:

(1) Alternating direction method of multipliers (ADMM): This method has a provably fast con-

vergence rate, i.e., an exponential convergence rate under assumptions of strong convexity

and smoothness of objective functions; see for example the work in [3, 13, 14, 25, 32]. How-

ever, the computations of ADMM are not truly parallelizable. The algorithm is often said to

have a distributed implementation, which means that diferent processors compute diferent

variables, but the updates of these variables must be performed sequentially.

(2) Distributed dual averaging: In this algorithm, processors maintain estimates of variables

and gradient-like quantities, which are exchanged in a truly parallel fashion. However, dual

averaging has a slower convergence rate than ADMM; see for example, the work in [6, 28ś30].

(3) Distributed gradient algorithms: These algorithms are the most popular and well-studied

since they have the beneits of both ADMM and dual averaging; see for example, the work in

[8, 18, 19, 21, 23, 26, 27]). In particular, distributed gradient algorithms are parallelizable like

dual averaging and have fast convergence rates like ADMM. Moreover, the computation cost

of each iteration is smaller than either dual averaging or ADMM.

In this paper, we study distributed gradient methods because of the advantages stated above. In

particular, we focus on the convergence in the presence of inter-processor communication delays,

which has been identiied as an important problem in [5] (see chapter 10). Communication delay,

which is one of the most fundamental issues in distributed systems, has been studied in other

contexts, such as distributed dual averaging [28]. The analysis in [28] is based on adding ictitious

nodes corresponding to the number of time delay steps, thus requiring a modiication of the

true network topology. As a result, the inluence of the delays on the convergence rate for the

original network topology is not clear. Convergence under delays are also considered in distributed

consensus algorithms [2, 4, 15, 20, 31], which are special cases of distributed gradient algorithms.

However, these results do not apply to the general distributed algorithms considered here. Our

goal in this paper, therefore, is to address this open problem of proving convergence and obtaining

convergence rates for distibuted gradient algorithms with inter-processor communication delays.

Main Contributions. The main contribution of this paper is to derive the convergence rate of

distributed gradient algorithms under uniform communication delays between nodes. In particular,

we irst show that under some appropriate choice of stepsizes the nodes’ estimates asymptotically

converge to the solution of the problem, implying that the impact of communication delays is

asymptotically negligible. This step allows us to study the rate of convergence of the algorithm,

i.e., the convergence occurs at rate O
(
nτ 3 ln(t)
(1−γ)2

√
t

)
, where n is the number of processors, t is the time

variable, and τ is the delay constant. In addition, γ is a constant in (0, 1) that depends on σ2, the

spectral properties of network connectivity of the processors. We note that such an explicit formula

for the convergence rate is not available for dual averaging methods. As remarked, the existing

analysis in distributed optimization literature cannot be extended to show this result. We, therefore,

introduce a new approach by considering a new candidate Lyapunov functional, which takes into

account the impact of delays. Finally, while we do not analyze dual averaging methods in the

presence of delays, we provide simulation results comparing it to distributed gradient methods,

which indicate that distributed gradient methods perform signiicantly better.

The remainder of this paper is organized as follows. We give a formal statement of distributed

optimization problems in Section 2. We then study distributed gradient algorithms for the uniform

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

delay case in Section 3 and present their convergence results in Section 4. In Section 5 we compare

the performances of distributed gradient methods and dual averaging methods by simulations for

both the delay-free and uniform delay cases. The proofs of our main results in Sections 4 are given

in Section 6. Finally, we conclude this paper with some discussion of potential future extensions in

Section 7.

Notation 1. We use boldface to distinguish between vectors x in Rn and scalars x in R. Given any

vector x ∈ Rn , we write x = (x1,x2, . . . ,xn) and let ∥x∥2 denote its Euclidean norm. Given a vector x

and a set X we write the projection of x on X as PX[x]. Finally we denote by 1 and I a vector whose

entries are 1 and the identity matrix, respectively.

2 PROBLEM FORMULATION

In this paper, we consider an optimization problem where the objective function is distributed

over a network of n nodes. In particular, let G = (V, E) be an undirected graph over the vertex

setV = {1,n} with the edge set E = (V ×V). Associated with each node i ∈ V is a convex

function fi : R
d → R. The goal of the network is to solve the following minimization problem:

minimize

n∑
i=1

fi (x) over x ∈ X, (1)

where X ⊆ Rd is compact, convex, and known by the nodes. We assume no central coordination

between the nodes and since each node knows only a local function fi , the nodes are required

to cooperatively solve the problem. We are interested in studying distributed consensus-based

methods for problem (1) implying that each node i maintains its own parameter estimate xi ∈ Rd
which is used to estimate the solution of (1). The nodes are only allowed to exchange their estimates

with their neighbors through communication constraints imposed by a graph G: in particular, node

i can communicate directly only with its neighbors j ∈ Ni whereNi := {j ∈ V|(i, j) ∈ E} is the set
of node i’s neighbors. The goal is to asymptotically drive the nodes’ estimates xi to x∗, a solution
of (1).

A concrete motivating example for this problem is distributed linear regression problems solved

over a network of processors. Regression problems involving massive amounts of data are common

in machine learning applications. Each function fi is the empirical loss over the local data stored

at processor i . The objective is to minimize the total loss over the entire dataset. Due to the

diiculty of storing the enormous amount of data at a central location, the processors perform

local computations over the local data, which are then exchanged to arrive at the globally optimal

solution. Distributed gradient methods are a natural choice to solve such problems since they

have been observed to be both fast and easily parallelizable in the case where the processors can

exchange data instantaneously. The goal of this paper is to show that the algorithm continues to

be convergent in the presence of delays, and to derive expressions for the convergence rate as

a function of the delays. Another possible application of the model is the problem of estimating

the radio frequency in a wireless network of sensors where the goal is to cooperatively estimate

the radio-frequency power spectrum density through solving a regression problem [14]. In this

application, each function fi is the empirical loss over the local data measured by the sensors, which

are scattered across a large geographical area. The objective function is the total loss over the entire

measured data, which is the sum of fi . Due to privacy concerns, the sensors may not be willing

to share their measurements, but only their own estimates. Thus, distributed consensus-based

methods seem to be a proper choice for this problem.

We conclude this section with additional notation and assumptions which facilitate our develop-

ment given later. We make the following assumptions throughout the paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Assumption 1. The functions fi are convex and diferentiable.

Assumption 2. The graph G is undirected and connected.

Under Assumption 1 and since the set X is compact, there exists a point x∗ which solves problem

(1). However, x∗ may not be unique. We will useX∗ to denote the set of optimal solutions to problem

(1). Moreover, given a solution x∗ ∈ X∗ we denote f ∗ =
∑n

i=1 fi (x∗). Under Assumption 1 it is

obvious that the functions fi are Lipschitz continuous, which we present below as a Proposition

for future reference.

Proposition 2.1. Let Assumption 1 hold. Then each function fi is Lipschitz continuous, i.e., there

exists a positive constant Ci such that

| fi (x) − fi (y)| ≤ Ci ∥x − y∥2, ∀x, y ∈ X, ∀i ∈ V . (2)

Given a vector x ∈ X we denote by DX(x) the set of feasible directions of x in X, i.e.,

DX(x) = {y ∈ Rd | ∃ θ > 0 s.t. x + θy ∈ X}. (3)

In the sequel we use the following results from [1].

Proposition 2.2 (Proposition 4.6.2 [1]). Let X be a closed convex set. Then the tangent cone

TX(x) at x ∈ X is closed, convex, and TX(x) = cl(DX(x)), where cl(DX(x)) is the closure of DX(x).

Finally, for ease of exposition, in the rest of this paper we consider problem (1) when the variable

x is a scalar, i.e., d = 1. Extensions for the case d > 1 are presented in the appendix.

3 DISTRIBUTED GRADIENT METHODS UNDER COMMUNICATION DELAYS

Discrete-time distributed gradient methods were studied and irst analyzed rigorously in [19, 21]

for the case of no communication delay; in this framework each node i ∈ V maintains a variable

xi ∈ R updated as,

xi (k + 1) = PX
[∑

j ∈Ni
ai jx j (k) − α(t)f ′i (xi (k))

]
, (4)

where α(t) is some sequence of positive stepsizes and ai j is some positive constant. In this paper

we focus on the continuous-time version of (4) under the impact of uniform communication delays

between nodes. In particular, we assume that at any time t ≥ 0 node i only receives a delayed value

x j (t − τ) of x j (t) from node j, where τ is a constant representing the time delay of communication

between nodes. Each node i (for all i ∈ V) then uses these values to update its estimate as formally

stated in (5), where TX(xi (t)) is the tangent cone of X at xi (t), β is some postive constant, and α(t)
is a sequence of positive stepsizes. The conditions of β and α(t) to guarantee convergence of the

algorithm will be explicitly given later. In addition, the initial conditions, ϕi (t), are assumed to be

continuous functions of time. Thus, the estimates xi (t) are now functionals since they are functions

of ϕi (t). We assume that the delays are uniform across agents, represented by the positive constant

τ .

This update has a simple interpretation: at any time t ≥ 0, each node i irst combines its estimate

xi (t) with the weighted, delayed values received from its neighbors j ∈ Ni , with the goal of

seeking consensus on their estimates. Each node then moves along the gradient of its respective

objective function to update its estimate, pushing the consensus point toward the optimal set

X∗. The projection on the tangent cone TX(xi (t)) guarantees that xi (t) ∈ X for all t ≥ 0. Here the

positive constant ai j represents the weight which node i assigns to the value x j received from

node j. Moreover, the nodes use the positive constant β , which is inversely proportional to the

delay constant τ , to control the speed of their updates. The distributed gradient algorithm with

communication delays is formulated in Algorithm 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

In the sequel, we denote by A the n × n weighted adjacency matrix corresponding to the graph

G, whose (i, j)-th entries are ai j . We make an assumption on A which is standard in the consensus

literature to guarantee the convergence of the nodes’ estimates to a consensus point. The assumption

given below also imposes a constraint on the communication between the nodes in Algorithm 1 in

which the nodes are only allowed to exchange messages with neighboring nodes, i.e., those are

connected to them, as deined by G.

Assumption 3. A is a doubly stochastic matrix, i.e.,
∑n

i=1 ai j =
∑n

j=1 ai j = 1. Moreover, A is

assumed to be irreducible and aperiodic. Finally, the weights ai j > 0 if and only if (i, j) ∈ E otherwise

ai j = 0.

We note that the assumption on the irreducibility of A can be satisied when G is connected. In

addition, the aperiodicity of A is guaranteed when at least one of its diagonal aii is strictly positive.

Finally, the double stochasticity of A is essential to the distributed consensus averaging problem

[17], a special case of problem (1). There has been some work in which this assumption is relaxed

to just stochasticity of A, however; additional assumptions on the problem are then imposed; see

for example, push-sum protocols recently studied in [16].

ALGORITHM 1: Distributed Gradient Algorithm With Delays

1. Initialize: Each node i is initiated with a point xi (t) = ϕi (t) ∈ X, t ∈ [−τ , 0].
2. Iteration: For t ≥ 0 each node i ∈ V executes

Ûxi (t) = PTX(xi (t))


−βxi (t) + β

n∑
j=1

ai jx j (t − τ) − α(t)f ′i (xi (t))


(5)

4 CONVERGENCE RESULTS

The focus of this section is to analyze the performance of distributed gradient methods under

communication delays given in Algorithm 1. In particular, we provide a rigorous analysis which

establishes the convergence rate of Algorithm 1. The main steps of the analysis are as follows.

We irst show that the distances between the estimates xi (t) to their average x̄(t) asymptotically

converge to zero. We then study the convergence rate of Algorithm 1, where we utilize the standard

techniques used in the centralized version of subgradient methods. The key idea of this step is to

introduce a candidate Razumikhin-Krasovskii Lyapunov functional, which takes into account the

impact of delays on the system. By using this function, we can show that the impact of delays is

asymptotically negligible. In particular, we show that if each node maintains a variable zi (t) to
compute the time-weighted averages of the estimates xi (t) and if the stepsize decays with rate

α(t) = 1/
√
t , the algorithm achieves an asymptotic convergence to the optimal value estimated

on the variable zi (t) at a rate O
(
nτ 3 ln(t)
(1−γ)2

√
t

)
, where γ = σ2e

βτ ∈ (0, 1) and β ∈ (0, ln(1/σ2)
τ

). Here σ2
represents the algebraic connectivity of the graph G.
We start our analysis by irst introducing more notation. Given a vector x ∈ Rn we denote its

average as x̄ , i.e.,

x̄ =
1

n
1T x =

1

n

n∑
i=1

xi .

For convenience, we use the following notation,

F (x) ≜
n∑
i=1

fi (xi), ∇F (x(t)) ≜ [f ′1 (x1), . . . , f ′n(xn)]T , C ≜

n∑
i=1

Ci .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

We denote by σ2 the second largest singular value of A, i.e., σ2 is the square root of the second

largest eigenvalue of ATA. Since A is doubly stochastic we have ATA is also doubly stochastic.

In addition, A also satisies Assumption 3. Thus, by the Perron-Frobenius theorem [11] we have

σ2 ∈ (0, 1).
Finally, without loss of generality we consider X = [a,b] for some real numbers a ≤ b ∈ R. The

multi-dimensional case of X is presented in the Appendix. This simpliication will allow us to write

explicitly the projection on the tangent cone in (5). In particular, given a real number v we denote

v+ = max(0,v), the positive part of v . Similarly, we denote v−
= max(0,−v), the negative part of v .

The update in (5) can now be rewritten as

vi (t) = −βxi (t) + β
n∑
j=1

ai jx j (t − τ) − α(t)f ′i (xi (t)) (6)

Ûxi (t) = P (vi (t)) =



vi (t) if xi (t) ∈ (a,b)
v+i (t) if xi (t) = a

−v−
i (t) if xi (t) = b

(7)

Given vi ∈ X we denote by ζi the error due to projection of vi to TX(xi), i.e., ζi (vi) = vi − P (vi) .
Using this notation and A equations (6) and (7) can be rewritten in vector form as

v(t) = −βx(t) + βAx(t − τ) − α(t)∇F (x(t)), (8)

Ûx(t) = P(v(t)) = v(t) − ζ (v(t)), (9)

where P(v(t)) denotes the component-wise projection. Moreover, we have

v̄(t) = −βx̄(t) + βx̄(t − τ) − α(t)
n

n∑
i=1

f ′i (xi (t)) (10)

Û̄x(t) = z̄(t) − ζ̄ (v(t)). (11)

As remarked, the irst step in our analysis is to show the asymptotic convergence of ∥x(t) − x̄(t)1∥2
to zero under some appropriate choice of stepsizes. The following Lemma, which will be essential

for our analysis later, is an important facet of this result.

Lemma 4.1. Suppose Assumptions 1ś 3 hold. Let the trajectories of xi (t) be updated by Algorithm

1. Let {α(t)} be a given positive scalar sequence with α(0) = 1. Moreover, let β ∈ (0, ln(1/σ2)
τ

) and
γ = σ2e

βτ ∈ (0, 1). Then
(1) For all t ≥ 0 we have

∥x(t) − x̄(t)1∥2 ≤ µ(t) + βσ2
∫ t

0

e−β (1−γ)(t−u)µ(u − τ)du, (12)

where

µ(t) = ∥x(0)∥2 + 2C
β

e−βt/2 +
2Cα(t/2)

β
. (13)

(2) If {α(t)} is a non-increasing positive scalar sequence such that limt→∞ α(t) = 0 then we have

lim
t→∞

|xi (t) − x̄(t)| = 0 for all i = 1, 2 . . . ,n. (14)

(3) Further we have∫ t

0

α(u)∥x(u) − x̄(u)1∥2du ≤ 8 (∥x(0)∥2 + 2C) eβτ /2
β3(1 − γ)2 +

4C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du . (15)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Proof sketch. The main idea in the proof of Lemma 4.1 is to show (12). The analysis of (14)

and (15) are consequences of (12) with the given assumptions on stepsizes and proper algebraic

manipulations. We, therefore, provide here the key steps for the proof of (12), where the details are

delayed to Section 6.1.

(a) Denote y(t) ≜ x(t) − x̄(t)1. By (7) and (11) the update of Ûy(t) can be written as

Ûy(t) = −βy(t) + βAy(t − τ) − α(t)(I − 1

n
11T)∇F (x(t)) − α(t)(I − 1

n
11T)ζ (v(t)). (16)

Due to the delay term Ay(t − τ) in (16) one would expect an accumulation of this term for

the solution y(t) of (16). Indeed, y(t) is given as

y(t) = e−βty(0) + β
∫ t

0

e−β (t−u)Ay(u − τ)du

−
∫ t

0

e−β (t−u)α(u)(I − 1

n
11T) (∇F (x(u)) + ζ (v(u)))du .

(b) To show (12), we take the 2−norm of the preceding relation and use the triangle inequality

to obtain

∥y(t)∥2 ≤e−βt ∥y(0)∥2 + β
∫ t

0

e−β (t−u)∥Ay(u − τ)∥2du

+

∫ t

0

e−β (t−u)

α(u)(I − 1

n
11T) (∇F (x(u)) + ζ (v(u)))

2

du .

By the Cauchy-Schwartz inequality one can show that

α(u)(I − 1

n
11T)∇F (x(t))

2

≤ α(u)C .

Furthermore, from (7) one can obtain

α(u)(I − 1

n
11T)ζ (v(u))

2

≤ α(u)C .

(c) Finally, the key step of our analysis is to provide an upper bound for

β

∫ t

0

e−β (t−u)∥Ay(u − τ)∥2du,

which is done by applying the Gr Üonwall-Bellman Inequality [12].

□

We are now ready to state our main result of this section, which is the convergence rate of

Algorithm 1 to the optimal value using standard techniques in the analysis of centralized subgradient

methods. One can view the update x̄(t) in (11) as a centralized projected subgradient used to solve

problem (1). Speciically, at any time t ≥ 0 if each node i ∈ V maintains a variable zi (t) to compute

the time-weighted average of its estimate xi (t) and if the stepsize α(t) decays as α(t) = 1/
√
t ,

the objective function value F estimated at each zi (t) converges to the optimal value with a rate

O
(
nτ 3 ln(t)
(1−γ)2

√
t

)
, where γ = σ2e

βτ ∈ (0, 1) and β ∈ (0, ln(1/σ2)
τ

). We also note that this condition on the

stepsizes is also used to study the convergence rate of centralized subgradient methods [22]. The

following Theorem is used to show the convergence rate of Algorithm 1, and its proof is given in

Section 6.2

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Theorem 4.2. Suppose Assumptions 1ś3 hold. Let the trajectories of xi (t) be updated by Algorithm

1. Let β ∈ (0, ln(1/σ2)
τ

) and γ = σ2e
βτ ∈ (0, 1). Let {α(t)} be a given positive scalar sequence such that

α(t) = 1/
√
t for t ≥ 1 and α(t) = 1 for t ≤ 1. Then for all i = 1, . . . ,n,

F

(∫ t

0
α(u)xi (u)du∫ t

0
α(u)du

1

)
− f ∗ ≤ 2Γ0(t) + nV (x̄(0))

2(
√
t − 1)

, (17)

where,

Γ0(t) ≜
24C (∥x(0)∥2 + 2C) eβτ /2

β3(1 − γ)2 +

48C2(1 + τ)
β2γ (1 − γ) +C

2 ln(t) + 48C2 ln(γt − 4τ)
β2γ (1 − γ) · (18)

Sketch of Proof. As mentioned previously, the main idea of this proof is to introduce a candi-

date Lyapunov functional, which takes into account the impact of delays. In particular, a quadractic

Lyapunov function, i.e., (x̄(t) − x∗)2, is often used in the case of no communication delay. However,

since the estimates xi (t) depends on the interval [t − τ , t] we consider an extra term to study

this impact. Speciically, we consider the following candidate Razumikhin-Krasovskii Lyapunov

functional V [9]:

V (x̄(t)) = 1

2
(x̄(t) − x∗)2 + β

2

∫ t

t−τ
(x̄(s) − x∗)2ds .

We then show that V is sufciently decreasing by considering the following two main steps.

(a) One can show that the derivative of V satisies

ÛV (x̄(t)) ≤ 2Cα(t)
n

∥x(t) − x̄(t)∥2 +
C2α2(t)

n
− α(t)

n
(F (x̄(t)1) − f ∗).

(b) Integrating both sides of the inequality in (a) and using (15) we can achieve the convergence

rate (17).

□

Remark. Note that the convergence rate in (17) requires each node computing the time-weighted

average of its estimate. This can be done iteratively as follows. Let every node i stores a variable

zi (t) ∈ R initialized at time t = 0 with an arbitrary zi (0) ∈ R and for all t > 0 updated by

Ûzi (t) =
α(t)xi (t) − α(t)zi (t)

S(t) , (19)

where S(0) = 0 and ÛS(t) = α(t) for t > 0. Then we have

d

dt
(S(t)zi (t)) = ÛS(t)zi (t) + S(t) Ûzi (t)

(19)
= α(t)xi (t)

⇒ zi (t) =
∫ t

0
α(u)xi (u)du∫ t

0
α(u)du

∀i ∈ V .

5 SIMULATIONS

In this section, we apply the distributed gradient algorithm to study thewell-known linear regression

problem in statistical machine learning, which is the most popular technique for data itting

[10, 24]. The goal of this problem is to ind a linear relationship between a set of variables and

some real value outcome. Here, we focus on quadratic loss functions, that is, given a training

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

set S = {(xi ,yi) ∈ Rd × R} for i = 1, . . . ,n, we want to learn a parameter w that minimizes the

following least squares problem,

min
w ∈X

n∑
i=1

(xTi w − yi)2. (20)

We assume that the data sets are distributedly stored in a network ofn processors, i.e., each processor

i knows only the pair (xi ,yi).
For the purpose of simulations, we consider the discrete-time version of Algorithm 1, i.e., Eq.

(4) with communication delays τ . We simulate for the case when X = [−5, 5]d where d = 10,

i.e., w, xi ∈ R10. We consider simulated training data sets, i.e., (xi ,yi) are generated randomly

with uniform distribution between [0, 1]. We consider the performance of the distributed gradient

algorithm on diferent sizes of network G, where each network is generated as follows.

(1) In each network, we irst randomly generate the nodes’ coordinates in the plane with uniform

distribution.

(2) Then any two nodes are connected if their distance is less than a reference number r , e.g,

r = 0.6 for our simulations.

(3) Finally we check whether the network is connected. If not we return to step 1 and run the

program again.

To implement our algorithm, the communication matrix A is chosen as a lazy Metropolis matrix

corresponding to G, i.e.,

A = [ai j] =



1
2(max{ |Ni |, |Nj | }) , if (i, j) ∈ E
0, if (i, j) < E and i , j

1 − ∑
j ∈Ni

ai j , if i = j

It is straightforward to verify that the lazy Metropolis matrix A satisies Assumption 3. In all

simulations considered herein, we set the stepsize α(k) = 1/
√
k for k = 1, 2, . . . and α(0) = 1.

In the sequel, we will compare the performance of the discretized version of distributed gradient

(DG) with distributed dual averaging (DA) [6, 28] for solving problem (20) in the delay-free case as

well as in the case of constant delays. For DA, we chose the same stepsize α(k) = 1/
√
k as used in

our algorithm. Simulations show that the distributed gradient algorithm outperforms distributed

dual averaging in both cases.

5.1 Delay-free case

In the delay-free case, i.e., τ = 0, we simulate DG and DA for three diferent sizes of networks,

namely, n = 30, n = 40, and n = 50. In each simulation, we ix the number of iterations t = 1000 and

output the worst-case distance of the function value to the optimal value, i.e., maxi |F (zi (t)) − f ∗ |,
where zi (t) = 1

T

∑T
t=1 xi (t). The simulations are shown in Fig. 1.

In these simulations, the performance of the DG algorithm is always slightly better than that of

the DA algorithm, but overall they seem to share the same convergence rate O(ln(t)/
√
t), which

agrees with the analytical result in Theorem 4.2 and in [6, 19].

5.2 Uniform delays

To study the impact of uniform communication delays on the performance of DG and DA, similar

to the delay-free case we simulate the two algorithms for three diferent sizes of networks, namely,

n = 30, n = 40, and n = 50. We implement DG and DA for each network, and terminate them when

maxi |F (zi (t)) − f ∗ | ≤ 0.2. We let the delay constant τ run from 0 to 10 and output the number of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

A 30-node, 210-link network

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

iteration

m
a
x

i
|F

(ẑ
i(
k
))

−
f
∗

|

Distributed Gradient

Dual Averaging

A 40-node, 305-link network

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

iteration

m
a
x

i
|F

(ẑ
i(
k
))

−
f
∗

|

Distributed Gradient

Dual Averaging

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

A 50-node, 538-link network

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

iteration

m
a
x

i
|F

(ẑ
i(
k
))

−
f
∗

|

Distributed Gradient

Dual Averaging

Fig. 1. Performance of DG and DA in delay-free networks.

iterations as a function on τ . We plot the number of iterations as a function on the number of delay

steps. The simulations are shown in Fig. 2.

We irst note that the delays do inluence the convergence rate of the two algorithms, that is, the

greater the delay between nodes the more time the algorithms need to terminate. Second, as shown

by the curve for DG the number of iterations seems to increase as a cubic function of the number of

delay steps, which agrees with our analysis in Theorem 4.2. Finally, in this example, uniform delays

have a bigger impact on the performance of DA, that is, DA requires more iterations to converge

than DG under the same number of delay steps.

6 PROOFS OF MAIN RESULTS

We provide here the complete proof of the main results presented in Section 4. In the following

Lemma, we irst study some important properties for the projection error ζi , which can be viewed

as the one-dimension version of Lemma A.1 for the general convex set X, stated in the Appendix.

Lemma 6.1. Suppose Assumptions 1ś 3 hold. Let vi (t),xi (t) be updated by (6) and (7) Moreover, let

ζi (vi (t)) = vi (t) − P(vi (t)). Then for all i ∈ V we have

(1) For all t ≥ 0

|ζi (vi (t))| ≤ |α(t)f ′i (xi (t))| ≤ Ciα(t). (21)

(2) Given any feasible direction ri , i.e.,{
ri ≤ 0 if xi (t) = b
ri ≥ 0 if xi (t) = a

(22)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Number of iterations as function of delay steps

delay steps

n
u
m
b
er

o
f
it
er
a
ti
o
n
s

Distributed Gradient

Dual Averaging

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

Number of iterations as function of delay steps

delay steps

n
u
m
b
er

o
f
it
er
a
ti
o
n
s

Distributed Gradient

Dual Averaging

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of iterations as function of delay steps

delay steps

n
u
m
b
er

o
f
it
er
a
ti
o
n
s

Distributed Gradient

Dual Averaging

Fig. 2. Performance of DG and DA with delays.

We have

(vi (t) − ri) ζi (vi (t)) ≥ [ζi (vi (t))]2. (23)

Proof. (1) Recall that ζi (vi (t)) = vi (t) − PTX(xi (t))
. Moreover, by (7) we have the following

three cases for all i ∈ V :

(a) If xi (t) ∈ X = (a,b) then ζi (vi (t)) = vi (t) −vi (t) = 0.

(b) If xi (t) = a then we have 0 ≤ PTX(xi (t))
= v+i (t) = max(0,vi (t)). If vi (t) ≥ 0 then ζi (vi (t)) =

0. Otherwise ifvi (t) = −βa+β ∑n
j=1 ai jx j (t−τ)−α(t)f ′i (xi (t)) < 0 then sincex j (t−τ) ∈ (a,b)

we have 0 ≤ −βa + β ∑n
j=1 ai jx j (t − τ). This implies that

−α(t)f ′i (xi (t)) ≤ −βa + β
n∑
j=1

ai jx j (t − τ) − α(t)f ′i (xi (t)) ≤ 0.

This implies that

|ζi (vi (t))| = |vi (t) − PTX(xi (t))
| = |β

n∑
j=1

ai jx j (t − τ) + α(t)f ′i (xi (t))|

≤ |α(t)f ′i (xi (t))|

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

(c) Finally, if xi (t) = b then PTX(xi (t))
= −v−

i (t) = −max(0,−v) ≤ 0. Ifvi (t) < 0 then PTX(xi (t))
=

vi (t) implying ζi (vi (t)) = 0. Otherwise, if vi (t) ≥ 0 then PTX(xi (t))
= 0, which implies

0 ≤ −βxi (t) + β
n∑
j=1

ai jx j (t − τ) − α(t)fi (xi (t))

= −βb + β
n∑
j=1

ai jx j (t − τ) − α(t)fi (xi (t))

≤ β(b −
n∑
j=1

ai jb) − α(t)fi (xi (t)) = −α(t)fi (xi (t)).

Thus we have

|ζi (vi (t))| = |vi (t)| = | − βxi (t) + β
n∑
j=1

ai jx j (t − τ) − α(t)fi (xi (t))|

≤ |α(t)fi (xi (t))|

From these three cases, we have |ζi (vi (t))| ≤ |α(t)fi (xi (t))|, which by (2) implies |ζi (vi (t))| ≤
Ciα(t).

(2) Let ri be a feasible direction, i.e., ri satisies (22). Consider

(vi (t) − ri)ζi (vi (t)) = (vi (t) − P(vi (t)) + P(vi (t)) − ri)ζi (vi (t))
= ζ 2i (vi (t)) + (P(vi (t)) − ri (t))ζi (vi (t))
= ζ 2i (vi (t)) + (P(vi (t)) − ri (t))(vi (t) − P(vi (t)))︸ ︷︷ ︸

qi

(24)

We now investigate the second term of the previous relation for three cases

(a) If xi (t) ∈ X = (a,b) then P(vi (t)) = vi (t) implying q1 = 0.

(b) If xi (t) = a then we have 0 ≤ PTX(xi (t))
= v+i (t) = max(0,vi (t)). If vi (t) ≥ 0 then P(vi (t)) =

vi (t) implying qi = 0. Otherwise if vi (t) < 0 then P(vi (t)) = 0. Since xi (t) = a we have

ri ≥ 0, which implies qi ≥ 0 since vi (t) ≤ 0

(c) Finally, if xi (t) = b then P(vi (t)) = −max(0,−v) ≤ 0. If vi (t) < 0 then P(vi (t)) = vi (t)
implying qi = 0. Otherwise, if vi (t) ≥ 0 then P(vi (t)) = 0. Since xi (t) = b we have ri ≤ 0,

which implies q1 ≥ 0 since vi (t) ≥ 0.

Combining these three cases and by (24) we have (23).

□

6.1 Proof of Lemma 4.1

Proof. We start by introducing the following notation for convenience

g(t) = (I − 1

n
11T)∇F (x(t)), h(t) =

(
I − 1

n
11T

)
ζ (v(t)) y(t) = x(t) − x̄(t)1.

(1) We irst show the details of steps (a) − (c) stated in the proof sketch of Lemma 4.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

(a) By (9) and (11) we have,

Ûy(t) = Ûx(t) − Û̄x(t)1
= −βx(t) + βAx(t − τ) + βx̄(t)1 − βx̄(t − τ)1

− α(t)∇F (x(t)) + α(t)
n

11T∇F (x(t)) − ζ (v(t)) + 1

n
11Tζ (v(t))

= −β(x(t) − x̄(t)1) + βA(x(t − τ) − x̄(t − τ)1)

− α(t)
(
I − 1

n
11T

)
∇F (x(t)) −

(
I − 1

n
11T

)
ζ (v(t))

= −βy(t) + βAy(t − τ) − α(t)g(t) − h(t), (25)

where the last equality is due to the fact that A is doubly stochastic. The solution of (25) is

then given as,

y(t) = e−βty(0) + β
∫ t

0

e−β (t−u)Ay(u − τ)du

−
∫ t

0

e−β (t−u) (α(u)g(u) + h(u))du . (26)

(b) Taking the 2−norm of (26), using the triangle inequality, and since ∥y(0)∥2 ≤ ∥x(0)∥2 we
obtain

∥y(t)∥ ≤e−βt ∥x(0)∥2 +
∫ t

0

e−β (t−u) (α(u)∥g(u)∥2 + ∥h(u)∥2)du

+ β

∫ t

0

e−β (t−u)∥Ay(u − τ)∥2du (27)

We irst note that by the triangle inequality and (2) we have

∥g(t)∥2 =

(
I − 1

n
11T

)
∇F (x(t))

2

≤ ∥∇F (x(t))∥2 =

√√
n∑
i=1

[
f ′i (xi (t))

]2
(2)
≤

√√
n∑
i=1

C2
i ≤ C . (28)

Moreover, by (21) we have

∥h(t)∥2 =

(
I − 1

n
11T

)
ζ (v(t))

2

≤ Cα(t).

Substituting the previous relation and (28) into (27) we have

∥y(t)∥ ≤ e−βt ∥x(0)∥2 + 2C
∫ t

0

e−β (t−u)α(u)du + β
∫ t

0

e−β (t−u)∥Ay(u − τ)∥2du . (29)

Moreover, consider the second term on the right-hand side of (30)∫ t

0

e−β (t−u)α(u)du =
∫ t/2

0

e−β (t−u)α(u)du +
∫ t/2

0

e−β (t−u)α(u)du

≤
∫ t/2

0

e−β (t−u)du + α(t/2)
∫ t/2

0

e−β (t−u)du

≤ 1

β
e−βt/2 +

α(t/2)
β
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

where the irst inequality is due to {α(t)} is non-increasing with α(0) = 1. Substituting the

previous relation into (29) we have

∥y(t)∥ ≤ e−βt ∥x(0)∥2 +
2C

β
e−βt/2 +

2Cα(t/2)
β

+ β

∫ t

0

e−β (t−u)∥Ay(u − τ)∥2du . (30)

(c) We now obtain an upper bound for the last term in (30). We irst recall that y(t) =
(I − 1

n
11T)x(t) implying y(t) < span{1} since 1T y(t) = 0. Moreover since A is doubly

stochastic ATA is also doubly stochastic, implying A has one singular value equal to 1

and all others strictly less than 1. Thus, by the Courant-Fisher Theorem [11] we have

∥Ay(t)∥2 ≤ σ2∥y(t)∥2 where σ2 is the second largest singular value of A. Hence, from (30)

we have

∥y(t)∥ ≤ e−βt ∥x(0)∥2 +
2C

β
e−βt/2 +

2Cα(t/2)
β

+ βσ2

∫ t

0

e−β (t−u)∥y(u − τ)∥2du

≤ ∥x(0)∥2 + 2C
β

e−βt/2 +
2Cα(t/2)

β
+ βσ2

∫ t

0

e−β (t−u)∥y(u − τ)∥2du

= µ(t) + βσ2
∫ t

0

e−β (t−u)∥y(u − τ)∥2du, (31)

where µ(t) is deined as

µ(t) = ∥x(0)∥2 + 2C
β

e−βt/2 +
2Cα(t/2)

β
. (32)

We now apply a delayed version of theGr Üonwall-Bellman Inequality for integrals to achieve

an upper bound on the integral in (31). Letw(t) be a function of t , deined as

w(t) =
∫ t

0

eβu ∥y(u − τ)∥2du .

By (31) we have ∥y(t)∥ ≤ µ(t) + βσ2e−βtw(t). In addition,w(t) is an incereasing function

on t withw(0) = 0. Consider

Ûw(t) = eβt ∥y(t − τ)∥2 ≤ eβt
(
µ(t − τ) + βσ2e−β (t−τ)w(t − τ)

)
= eβt µ(t − τ) + σ2βeβτw(t − τ) ≤ eβt µ(t − τ) + σ2βeβτw(t),

where the last inequality is due tow(t) is increasing, i.e.,w(t − τ) ≤ w(t). The preceding
relation implies

Ûw(t) − σ2βe
βτw(t) ≤ eβt µ(t − τ),

which by multiplying both sides by e−σ2βe
βτ t we have

d

dt

(
e−σ2βe

βτ tw(t)
)
≤ e−σ2βe

βτ teβt µ(t − τ).

Taking the integeral from 0 to t on both sides of the previous equation and usingw(0) = 0

we obtain

w(t) ≤ eσ2βe
βτ t

∫ t

0

eβ (1−σ2e
βτ)uµ(u − τ)du . (33)

Thus since ∥y(t)∥ ≤ µ(t) + βσ2e−βtw(t) and by (33) we have

∥y(t)∥ ≤ µ(t) + βσ2
∫ t

0

e−β (1−σ2e
βτ)(t−u)µ(u − τ)du, (34)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

which is (12) since γ = σ2e
βτ .

(2). We now show (14). Since limt→∞ α(t) = 0 we irst have limt→∞ µ(t) = 0 by (32). Second, Eq.

(34) can be written as∫ t

0

e−β (1−γ)(t−u)µ(u − τ)du = ∥x(0)∥2 + 2C
β

∫ t

0

e−β (1−γ)(t−u)e−β (u−τ)/2du

+

2C

β

∫ t

u=0

e−β (1−γ)(t−u)α((u − τ)/2)du . (35)

On the one hand, taking the limit as t → ∞ on the irst term on the right hand side of (35)

gives,

lim
t→∞

∫ t

0

e−β (1−γ)(t−u)e−β (u−τ)/2du = lim
t→∞

e−β (1−γ)t+βτ /2
∫ t

u=0

eβ (1/2−γ)udu

= eβτ /2 lim
t→∞

e−β (1−γ)t
eβ (1/2−γ)t − 1

β(1/2 − γ) = 0. (36)

On the other hand, consider the second term in (35),

lim
t→∞

∫ t

u=0

e−β (1−γ)(t−u)α((u − τ)/2)du

= lim
t→∞

∫ t/2

u=0

e−β (1−γ)(t−u)α((u − τ)/2)du + lim
t→∞

∫ t

u=t/2
e−β (1−γ)(t−u)α((u − τ)/2)du

≤ lim
t→∞

∫ t/2

u=0

e−β (1−γ)(t−u)du + lim
t→∞

α((u − 2τ)/4)
∫ t

u=t/2
e−β (1−γ)(t−u)du

≤ lim
t→∞

e−β (1−γ)t/2

β(1 − γ) + lim
t→∞

α((u − 2τ)/4)
β(1 − γ) = 0, (37)

where the last equality is due to γ ∈ (0, 1) and limt→∞ α(t) = 0. Using the preceding relation

and (36) into (35) we have

lim
t→∞

∫ t

0

e−β (1−γ)(t−u)µ(u − τ) = 0, (38)

which together with limt→∞ µ(t) = 0 and by (12) give (14).

(3) Recall from (12) that∫ t

0

α(u)∥y(u)∥2du ≤
∫ t

0

α(u)µ(u)du +
∫ t

u=0

α(u)
∫ u

s=0

e−β (1−γ)(u−s)µ(s − τ)dsdu . (39)

where

µ(t) = ∥x(0)∥2 + 2C
β

e−βt/2 +
2Cα(t/2)

β
.

We irst analyze the irst-term on the right-hand side of (39). Si∫ t

0

α(u)µ(u)du ≤ ∥x(0)∥2 + 2C
β

∫ t

0

α(u)e−βu/2du +
∫ t

0

α(u)2Cα(t/2)
β

du

≤ ∥x(0)∥2 + 2C
β

∫ t

0

e−βu/2du +
2C

β

∫ t

0

α2(u/2)du

≤ 2∥x(0)∥2 + 4C
β2

+

2C

β

∫ t

0

α2(u/2)du, (40)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

where the second inequality is due to α(t) is non-increasing, positive, and α(0) = 1. Second,

we now consider the second term on the right-hand side of (39). We irst have∫ t

u=0

α(u)
∫ u

s=0

e−β (1−γ)(u−s)e−β (s−τ)/2dsdu

≤ eβτ /2
∫ t

u=0

∫ u

s=0

e−β (1−γ)ueβ (1−γ)s/2dsdu

≤ 2eβτ /2

β(1 − γ)

∫ t

0

e−β (1−γ)u/2du ≤ 4eβτ /2

β2(1 − γ)2 . (41)

We now consider∫ t

u=0

α(u)
∫ u

s=0

e−β (1−γ)(u−s)α((t − τ)/2)dsdu ≤
∫ t

u=0

∫ u

s=0

e−β (1−γ)(u−s)α2((s − τ)/2)dsdu

=

∫ t

u=0

e−β (1−γ)u
(∫ u/2

s=0

eβ (1−γ)sα2((s − τ)/2)ds +
∫ u

s=u/2
eβ (1−γ)sα2((s − τ)/2)ds

)
du

≤
∫ t

u=0

e−β (1−γ)u
(∫ u/2

s=0

eβ (1−γ)sds + α2((s − 2τ)/4)
∫ u

s=u/2
eβ (1−γ)sds

)
du

≤ 1

β(1 − γ)

∫ t

u=0

e−β (1−γ)u/2 + α2((s − 2τ)/4)du

≤ 2

β2(1 − γ)2 +
1

β(1 − γ)

∫ t

u=0

α2((s − 2τ)/4)du

(42)

Substituting (41) into (42) into the second term on the right-hand side of (39) we obtain∫ t

u=0

α(u)
∫ u

s=0

e−β (1−γ)(u−s)µ(s − τ)dsdu

≤ 4 (∥x(0)∥2 + 2C) eβτ /2
β3(1 − γ)2 +

4C

β3(1 − γ)2 +
2C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du

≤ 4 (∥x(0)∥2 + 3C) eβτ /2
β3(1 − γ)2 +

2C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du . (43)

By adding (43) to (40) we obtain from (39) that∫ t

0

α(u)∥y(u)∥2du

≤ 2∥x(0)∥2 + 4C
β2

+

2C

β

∫ t

0

α2(u/2)du

+

4 (∥x(0)∥2 + 3C) eβτ /2
β3(1 − γ)2 +

2C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du

≤ 8 (∥x(0)∥2 + 2C) eβτ /2
β3(1 − γ)2 +

4C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du, (44)

where the last inequality is due to γ ∈ (0, 1) and α(t) is non-increasing positive sequence, i.e.,
α2(u/2) ≤ α2(γu/4 − τ) for τ > 0. This shows (15).

□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

6.2 Proof Theorem 4.2

Proof. Let x∗ be a solution of problem (1). Consider a candidate Razumikhin-Krasovskii Lya-

punov functional V [9] deined as

V (x̄(t)) = 1

2
(x̄(t) − x∗)2 + β

2

∫ t

t−τ
(x̄(s) − x∗)2ds, t ≥ 0, (45)

whose derivative is given as

ÛV (x̄(t))

= (x̄(t) − x∗) Û̄x + β

2

[
(x̄(t) − x∗)2 − (x̄(t − τ) − x∗)2

]

= (x̄(t) − x∗)
(
− βx̄(t) + βx̄(t − τ) − α(t)

n

n∑
i=1

f ′i (xi (t)) − ζ̄ (t)
)
+

β(x̄(t) − x∗)2 − β(x̄(t − τ) − x∗)2
2

= −α(t)
n

n∑
i=1

(x̄(t) − x∗)f ′i (xi (t))

︸ ︷︷ ︸
W1

− 1

n

n∑
i=1

(x̄(t) − x∗)zi (xi (t))

︸ ︷︷ ︸
W2

+ β(x̄(t) − x∗)(x̄(t − τ) − x̄(t)) + β(x̄(t) − x∗)2 − β(x̄(t − τ) − x∗)2
2

=W1 +W2 −
β(x̄(t) − x̄(t − τ))2

2

+

β(x̄(t − τ) − x∗)2 − β(x̄(t) − x∗)2
2

+

β(x̄(t) − x∗)2 − β(x̄(t − τ) − x∗)2
2

=W1 +W2 −
β

2
(x̄(t) − x̄(t − τ))2 ≤W1 +W2. (46)

We irst have

W1 = −α(t)
n

n∑
i=1

(x̄(t) − xi (t) + xi (t) − x∗)f ′i (xi (t))

= −α(t)
n

n∑
i=1

(x̄(t) − xi (t))f ′i (xi (t)) −
α(t)
n

n∑
i=1

(xi (t) − x∗)f ′i (xi (t))

≤ α(t)
n

n∑
i=1

|x̄(t) − xi (t)| | f ′i (xi (t))| −
α(t)
n

(F (x(t)) − f ∗)

≤ α(t)C
n

∥x(t) − x̄(t)1∥2 −
α(t)
n

(F (x(t)) − f ∗)

=

α(t)C
n

∥x(t) − x̄(t)1∥2 −
α(t)
n

(F (x(t)) − F (x̄(t)1)) − α(t)
n

(F (x̄(t)1) − f ∗)

≤ 2α(t)C
n

∥x(t) − x̄(t)1∥2 −
α(t)
n

(F (x̄(t)1) − f ∗). (47)

Second, let ri (t) be deined as

ri (t) = x∗ − xi (t) − βxi (t) + β
n∑
j=1

ai jx j (t − τ),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

and recall from (22) that ri (t) is a feasible direction if{
ri ≤ 0 if xi (t) = B

ri ≥ 0 if xi (t) = 0
(48)

Indeed, if xi (t) = 0 then ri (t) ≥ since x∗,x j (t − τ) ∈ (0,B) ∀j ∈ V and A is doubly stochastic. On

the other hand, if xi (t) = B then ri (t) = x∗ + β
∑n

j=1 ai jx j (t − τ) − (1 + β)B ≤ 0. Thus, we have ri (t)
is a feasible direction, i.e., ri (t) satisies (48). We now consider the termW2

W2 = − 1

n

n∑
i=1

(x̄(t) − x∗)ζi (t))

= − 1

n

n∑
i=1

(
x̄(t) − (1 + β)xi (t) + β

n∑
j=1

ai jx j (t − τ) −vi (t)
)
ζi (t)

− 1

n

n∑
i=1

(
vi (t) + (1 + β)xi (t) − β

n∑
j=1

ai jx j (t − τ) − x∗
)
ζi (t)

= − 1

n

n∑
i=1

(
x̄(t) − (1 + β)xi (t) + β

n∑
j=1

ai jx j (t − τ) −vi (t)
)
ζi (t)

− 1

n

n∑
i=1

(vi (t) − ri (t)) ζi (t), (49)

where by (6) the irst sum is equivalent to

− 1

n

n∑
i=1

(
x̄(t) − (1 + β)xi (t) + β

n∑
j=1

ai jx j (t − τ) −vi (t)
)
ζi (t)

= − 1

n

n∑
i=1

(
x̄(t) − xi (t) + α(t)f ′i (xi (t))

)
ζi (t)

≤ 1

n

n∑
i=1

|x̄(t) − xi (t)| |ζi (t)| +
1

n

n∑
i=1

|α(t)f ′i (xi (t))| |ζi (t)|

(21)
≤ Cα(t)

n
∥x(t) − x̄(t)1∥2 +

C2α2(t)
n
.

In addition, since ri (t) is a feasible direction, by (23) the second sum in (49) is upper bounded by

− 1

n

n∑
i=1

(vi (t) − ri (t)) ζi (t) ≤ − 1

n

n∑
i=1

ζ 2i (t) = − 1

n
∥ζ (t)∥22 .

Applying the preceding two relations into (49) we obtain

W2 ≤
Cα(t)
n

∥x(t) − x̄(t)1∥2 +
C2α2(t)

n
− 1

n
∥ζ (t)∥22 ≤ Cα(t)

n
∥x(t) − x̄(t)1∥2 +

C2α2(t)
n
. (50)

Thus, substituting (47) amd (50) into (46) we obtain

ÛV (x̄(t)) ≤ 3α(t)C
n

∥x(t) − x̄(t)1∥2 +
C2α2(t)

n
− α(t)

n
(F (x̄(t)1) − f ∗). (51)

By (15) in Lemma 4.1 we have∫ t

0

α(u)∥y(u)∥2du ≤ 8 (∥x(0)∥2 + 2C) eβτ /2
β3(1 − γ)2 +

4C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du· (52)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

Under the assumptions on α(t), i.e., α(t) = 1 for t ≤ 1 and α(t) = 1/
√
t for t ≥ 1, consider the

following

∫ t

0

α2(γu/4 − τ)du = 4

γ

∫ γ t
4 −τ

−τ
α2(u)du = 4

γ

∫ 1

−τ
α2(u)du + 4

γ

∫ γ t
4 −τ

1

α2(u)du

=

4(1 + τ)
γ

+

4

γ

∫ γ t
4 −τ

1

1

t
du =

4(1 + τ)
γ

+

4 ln(γ t4 − τ)
γ

≤ 4(1 + τ)
γ

+

4 ln(γt − 4τ)
γ

· (53)

Substituting (53) into (52) to obtain

3C

∫ t

0

α(u)∥y(u)∥2du +
C2

n

∫ t

0

α2(u)du

≤ 24C (∥x(0)∥2 + 2C) eβτ /2
β3(1 − γ)2 +

48C2(1 + τ)
β2γ (1 − γ) +C

2 ln(t) + 48C2 ln(γt − 4τ)
β2γ (1 − γ)

≜ Γ0(t). (54)

Taking the integral of both sides in (46) and using (51) we obtain

V (x̄(t)) −V (x̄(0)) ≤ 3C

n

∫ t

0

α(u)∥y(u)∥2du +
C2

n

∫ t

0

α2(u)du − 1

n

∫ t

0

α(u)(F (x̄(u)1) − f ∗)du

≤ Γ0(t)
n

− 1

n

∫ t

0

α(u)(F (x̄(u)1) − f ∗). (55)

Rearranging (55) and dropping V (x̄(t)) gives∫ t

0

α(u)(F (x̄(u)1) − f ∗)du ≤ 2Γ0(t) + nV (x̄(0)).

Thus, dividing both sides of the preceding relation by
∫ t

0
α(u)du = 1 +

∫ t

1
1√
u
du ≤ 2(

√
t − 1) we

obtain ∫ t

0
α(u)(F (x̄(u)1) − f ∗)du∫ t

0
α(u)du

≤ Γ0(t) + nV (x̄(0))
2(
√
t − 1)

,

which by Jensen’s inequality implies

F

(∫ t

0
α (u)x̄ (u)du∫ t

0
α (u)du

1

)
− f ∗ ≤ Γ0(t) + nV (x̄(0))

2(
√
t − 1)

· (56)

Moreover, we have

F

(∫ t

0
α(u)xi (u)du∫ t

0
α(u)du

1

)
− F

(∫ t

0
α (u)x̄ (u)du∫ t

0
α (u)du

1

)
≤ C

����
∫ t

0
α (u)(xi (u)−x̄ (u))du∫ t

0
α (u)du

���� (51)≤ Γ0(t)
2(
√
t − 1)

· (57)

Adding (56) and (57) we obtain (17), which conlcudes our proof. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

7 CONCLUDING REMARKS

In this paper we have studied a continuous-time distributed gradient-based consensus algorithm

for network optimization problems, with the focus on uniform communication delays. We provided

an explicit analysis on the rate of convergence of the algorithm as a function of the network size,

topology, and communication delays, speciically the convergence time of the algorithm grows

as a cubic function of the delays. We also simulate the performance of the distributed gradient

algorithm for the delay-free case and with uniform delays for diferent network sizes, and compare

with the performance of distributed dual averaging. Our simulation results suggest that distributed

gradient outperforms dual averaging in both cases.

One interesting question left open in this paper is the study of asynchronous distributed gradient

algorithms, that is, when communications delays are diferent at diferent nodes and perhaps

change with time. In this more general case, it would be interesting to investigate whether an upper

bound on the time-varying heterogeneous delays can be helpful in obtaining convergence results.

In particular, a possible topic of future research would be to determine if one can obtain bounds on

the error in the objective function by using an upper bound on the delays, along with our current

results.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and helpful

suggestions. The work is supported by Boeing, ARO Grant W911NF-16-1-0259, and the National

Science Foundation under Grant NSF CNS 15-44953 and NeTS 1718203.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

REFERENCES

[1] D. Bertsekas, A. Nedić, and A. Ozdaglar. 2004. Convex Analysis and Optimization. Cambridge, MA: Athena Scientiic.

[2] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis. 2005. Convergence inmultiagent coordination, consensus,

and locking. In Proceeding of the Joint 44th Conference on Decision and Control And European Control Conference.

2996ś3000.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed Optimization and Statistical Learning via the

Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1ś22.

[4] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and M. Johansson. 2015. Distributed Finite-Time Average

Consensus in Digraphs in the Presence of Time Delays. IEEE Transactions on Control of Network Systems 2, 4 (Dec

2015), 370ś381.

[5] Y.C. Eldar D.P. Palomar. Dec. 2009. Convex Optimization in Signal Processing and Communications (1st ed.). Cambridge

University Press.

[6] J.C. Duchi, A. Agarwal, and M.J. Wainwright. 2012. Dual averaging for distributed optimization: Convergence analysis

and network scaling. IEEE Transactions on Automatic Control 57, 3 (2012), 592ś606.

[7] M. Li et. al. 2014. Scaling Distributed Machine Learning with the Parameter Server. In Operating Systems Design and

Implementation (OSDI).

[8] B. Gharesifard and J. Cortés. 2014. Distributed Continuous-Time Convex Optimization on Weight-Balanced Digraphs.

IEEE Trans. Automat. Control 59, 3 (2014), 781ś786.

[9] J.K. Hale and S.M.V. Lunel. 1993. Introduction to Functional Difential Equations. Vol. 99. Springer-Verlag.

[10] T. Hastie, T. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction

(2nd ed.). Springe-Verlag, New York.

[11] R.A. Horn and C.R. Johnson. 1985. Matrix Analysis. Cambridge, U.K.: Cambridge Univ. Press.

[12] H. K. Khalil. 2002. Nonlinear System (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

[13] A. Makhdoumi and A. Ozdaglar. 2014. Broadcast-based distributed alternating direction method of multipliers. In 52nd

Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL.

[14] G. Meteos, J. Bazerque, and G. Giannakis. 2010. Distributed Sparse Linear Regression. IEEE Transactions on Signal

Processing 58 (2010), 5262ś5276.

[15] U. Münz, A. Papachristodoulou, and F. Allgöwer. 2011. Consensus in Multi-Agent Systems With Coupling Delays and

Switching Topology. IEEE Trans. Automat. Control 56, 12 (2011), 2976 ś 2982.

[16] A. Nedić and A. Olshevsky. 2015. Distributed Optimization Over Time-Varying Directed Graphs. IEEE Trans. Automat.

Control 60, 3 (2015), 601ś615.

[17] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. 2009. On Distributed Averaging Algorithms and Quantization

Efect. IEEE Trans. Automat. Control 54, 11 (2009), 2506ś2517.

[18] A. Nedíc, A. Olshevsky, and W. Shi. 2016. Achieving linear convergence for distributed optimization over time-varying

and directed graphs. arXiv preprint: http://arxiv.org/pdf/1607.03218v1.pdf. (2016).

[19] A. Nedić and A. Ozdaglar. 2009. Distributed Subgradient Methods for Multi-Agent Optimization. IEEE Trans. Automat.

Control 54, 1 (2009), 48ś61.

[20] A. Nedić and A. Ozdaglar. 2010. Convergence rate for consensus with delays. Journal of Global Optimization 47, 3

(2010), 437ś456.

[21] A. Nedić, A. Ozdaglar, and P. A. Parrilo. 2010. Constrained Consensus and Optimization in Multi-Agent Networks.

IEEE Trans. Automat. Control 55, 4 (2010), 922ś938.

[22] Y. Nesterov. 2004. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Norwell,

MA.

[23] G. Qu and N. Li. 2016. Harnessing Smoothness to Accelerate Distributed Optimization. arXiv preprint: https:

//arxiv.org/pdf/1605.07112v1.pdf. (2016).

[24] S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning: From Theory to Algorithms (1st ed.).

Cambridge University Press.

[25] W. Shi, Q. Ling, G. Wu, and W. Yin. 2014. On the Linear Convergence of the ADMM in Decentralized Consensus

Optimization. IEEE Transactions on Signal Processing 62, 7 (2014), 1750ś1761.

[26] W. Shi, Q. Ling, G. Wu, and W. Yin. 2015. EXTRA: An Exact First-Order Algorithm for Decentralized Consensus

Optimization. SIAM Journal on Optimization 25, 2 (2015), 944ś966.

[27] B. Touri and B. Gharesifard. 2015. Continuous-time distributed convex optimization on time-varying directed networks.

In IEEE 54th Annual Conference on Decision and Control (CDC). Japan.

[28] K.I. Tsianos, S. Lawlor, andM.G. Rabbat. 2012. Distributed dual averaging for convex optimization under communication

delays. In Proc. of American Control Conference (ACC).

[29] K.I. Tsianos, S. Lawlor, and M.G. Rabbat. 2012. Push-Sum Distributed Dual Averaging for Convex Optimization. In

Proc. of the 51st IEEE Conference on Decision and Control (CDC). Hawaii, USA.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

[30] K.I. Tsianos and M.G. Rabbat. 2012. Consensus-Based Distributed Optimization: Practical Issues and Applications in

Large-Scale Machine Learning. In Proc. of Allerton Conference on Communication, Control, and Computing.

[31] K.I. Tsianos and M.G. Rabbat. 2012. The Impact of Communication Delays on Distributed Consensus Algorithms.

arXiv preprint: https://arxiv.org/pdf/1207.5839.pdf. (2012).

[32] E. Wei and A. Ozdaglar. 2013. On the O(1/k) convergence of asynchronous distributed alternating direction method of

multipliers. arXiv preprint: https://arxiv.org/abs/1307.8254. (2013).

A APPENDIX

A.1 Extension to Rd

We present here a sketch of key steps to extend our analysis for the case d ≥ 1. In this section,

use uppercase letters in boldface for matrices X in Rn×d . We now have xi ∈ Rd for all i ∈ V and

fi : R
d → R. We deine the following notation

X =
©­«

xT1
. . .

xTn

ª®¬
∈ Rn×d , x̄ =

1

n

n∑
i=1

xi ∈ Rd , X̄ =
©­«

x̄T

. . .

x̄T

ª®¬
∈ Rn×d ,

F (X) ≜
n∑
i=1

fi (xi), ∇F (X) = ©­«
∇f T1 (x1)
. . .

∇f Tn (xn)
ª®¬
∈ Rn×d .

Given a matrix A we denote its i−th row as aTi ∈ R1×n , i.e.,

A =
©­«

aT1
. . .

aTn

ª®¬
∈ Rn×d .

Moreover, we write ∥A∥F as the Frobenius norm of A. With these notations the updates in (6)ś(11)

can be rewritten as

V(t) = −βX(t) + βAX(t − τ) − α(t)∇F (X(t)),
ÛX(t) = PTX(X(t)) [X(t)] = V(t) − ζ (V(t)),

v̄(t) = −β x̄(t) + β x̄(t − τ) − α(t)
n

n∑
i=1

∇fi (xi (t))

Û̄x(t) = v̄(t) − ζ̄ (t),

where the projection PTX(X(t)) [X(t)] is the row-wise projection. Finally, we use the following result

studied in [21], which is a general version of Lemma 6.1, to analyze the impact of the projection.

Lemma A.1 (Lemma 1 [21]). Let X be a nonempty closed convex set in Rd . Then, we have for any

x ∈ Rd

(a) (PX[x] − x)T (x − y) ≤ −∥PX[x] − x∥22 for all y ∈ X
(b) ∥PX[x] − y∥22 ≤ ∥x − y∥22 − ∥PX[x] − x∥22 for all y ∈ X

We now present the analysis for the general versions of Lemma 4.1 and Theorem 4.2, which are

given in the following two lemmas.

Lemma A.2. Suppose Assumptions 1ś 3 hold. Let the trajectories of xi (t) be updated by Algorithm

1. Let {α(t)} be a given positive scalar sequence with α(0) = 1. Moreover, let β ∈ (0, ln(1/σ2)
τ

) and
γ = σ2e

βτ ∈ (0, 1). Then

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

(1) For all t ≥ 0 we have

∥X(t) − X̄(t)∥F ≤ µ(t) + βσ2
∫ t

0

e−β (1−γ)(t−u)µ(u − τ)du, (58)

where

µ(t) = e
∥X(0)∥F + 2C

β
e−βt/2 +

2Cα(t/2)
β

. (59)

(2) If {α(t)} is a non-increasing positive scalar sequence such that limt→∞ α(t) = 0 then we have

lim
t→∞

∥xi (t) − x̄(t)∥2 = 0 for all i = 1, 2 . . . ,n. (60)

(3) Further we have∫ t

0

α(u)∥X(u) − X̄(u)∥2du ≤ 8 (∥X(0)∥F + 2C) eβτ /2
β3(1 − γ)2 +

4C

β2(1 − γ)

∫ t

0

α2(γu/4 − τ)du . (61)

Proof sketch. As mentioned, the key step in the proof of Lemma A.2 is to show (58). The

analysis of (60) and (61) are consequences of (58). Consider the following notation:

G(t) = (I − 1

n
11T)∇F (X(t)), H(t) =

(
I − 1

n
11T

)
ζ (V(t)) Y(t) = X(t) − X̄(t).

We irst consider

Ûyi (t) = Ûxi (t) − Û̄x(t)

= −βxi (t) + β
n∑
j=1

ai jxj (t − τ) − α(t)∇fi (xi (t)) − ζ i (t)

+ β x̄(t) − β x̄(t − τ) + α(t)
n

n∑
j=1

∇fj (xj (t)) + ζ̄ (t)

= −yi (t) + β
n∑
j=1

ai jyj (t − τ) − αgi (t) − hi (t),

which implies

yi (t) = e−tyi (0) +
∫ t

0

e−(t−u)
(
β

n∑
j=1

ai jyj (u − τ) − αgi (u) − hi (u)
)
dt .

Thus we obtain

Y(t) = e−βtY(0) + β
∫ t

0

e−β (t−u)AY(u − τ)du −
∫ t

0

e−β (t−u) (α(u)G(u) + H(u))du . (62)

Recall that Y(t) = X(t)−X̄(t) = (I− 1
n
11T)X(t). In addition, note that 1TY(t) = 1T (I− 1

n
11T)X(t) = 0,

implying that each column of Y(t) < span{1}. Indeed, if there exists at least one column of Y(t),
namely, pℓ(t), such that pℓ(t) ∈ span{1} then 1T pℓ(t) , 0 but 1TY(t) = 0, a contradiction. The

previous observation implies that

∥AY(t)∥2F =
n∑
i=1

∥Api (t)∥22 ≤
n∑
i=1

σ2∥pi (t)∥22 = σ2∥Y∥2F , (63)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

where pi (t) are columns of Y(t). Taking the Frobenius norm on both sides of (62), and using (28)

and (63) we have

∥Y(t)∥F ≤ e−βt ∥Y(0)∥F + βσ2
∫ t

0

e−β (t−u)∥Y(u − τ)∥Fdu +C
∫ t

0

e−β (t−u)α(u)du

+

∫ t

0

e−β (t−u)∥ζ (u)∥Fdu . (64)

We now use Lemma A.1 to construct an upper bound on the last term on the right hand side of

(64). First, since A is doubly stochastic and xj (t − τ) ∈ X ∀j we have
∑

j ∈Ni
ai jxj (t − τ) ∈ X. Thus,

by (3) with θ = β−1 we have

ri (t) = −βxi (t) + β
∑
j ∈Ni

ai jxj (t − τ) ∈ DX(xi (t)).

Hence, by Proposition 2.2 we have ri (t) ∈ TX(xi (t)). By Lemma A.1(b), we have

∥PTX (xi (t))[vi (t)] − ri (t)∥22 ≤ ∥vi (t) − ri (t)∥22 − ∥PTX (xi (t))[vi (t)] − vi (t)|22 ,

which since ζ i (t) = vi (t) − PTX (xi (t))[vi (t)] implies

∥ζ i (t)∥2 ≤ ∥vi (t) − ri (t)∥2 = ∥α(t)∇fi (xi (t))∥2 ≤ Ciα(t). (65)

Thus we obtain ∥ζ (t) − ζ̄ (t)∥F = ∥
(
I − 1

n
11T

)
ζ (t)∥F ≤ ∥ζ (t)∥F ≤ Cα(t). Substituting the previous

relation into (64) and using (32) we obtain (58). □

In the lemma below, with some abuse of notation we denote by Xi (t) the matrix whose all the

rows are xTi (t), i.e.,

Xi (t) =
©­«
xTi (t)
. . .

xTi (t)
ª®¬

Lemma A.3. Suppose Assumptions 1ś3 hold. Let the trajectories of xi (t) be updated by Algorithm 1.

Let β ∈ (0, ln(1/σ2)
τ

) and γ = σ2e
βτ ∈ (0, 1). Let {α(t)} be a given positive scalar sequence such that

α(t) = 1/
√
t for t ≥ 1 and α(t) = 1 for t ≤ 1. Then for each i = 1, . . . ,n we have

F

(∫ t

0
α(u)Xi (u)du∫ t

0
α(u)du

)
− f ∗ ≤ 2Γ0(t) + nV (x̄(0))

2(
√
t − 1)

, (66)

where,

Γ0(t) ≜
24C (∥X(0)∥F + 2C) eβτ /2

β3(1 − γ)2 +

48C2(1 + τ)
β2γ (1 − γ) +C

2 ln(t) + 48C2 ln(γt − 4τ)
β2γ (1 − γ) · (67)

Proof Sketch. Let x∗ be a solution of problem (1). Consider the candidate Razumikhin-Krasovskii

Lyapunov function given in (45), where its derivative is given as

ÛV (x̄(t)) ≤ −α(t)
n

n∑
i=1

(x̄(t) − x∗)T∇fi (xi (t))

︸ ︷︷ ︸
W1

− 1

n

n∑
i=1

(x̄(t) − x∗)Tζ i (xi (t))

︸ ︷︷ ︸
W2

≤W1 +W2. (68)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

The termW1 can be upper bounded by using (47). Here we focus on delivering the upper bound of

W2. Recall that ζ i (t) = vi (t) − PTX(xi (t))
[vi (t)]. Consider

W2 = −(x̄(t) − x∗)ζ̄ (t)

= − 1

n

n∑
i=1

(
x̄(t) − (1 + β)xi (t) + β

n∑
j=1

ai jxj (t − τ) − vi (t)
)T

ζ i (t)

− 1

n

n∑
i=1

(
vi (t) + (1 + β)xi (t) − β

n∑
j=1

ai jxj (t − τ) − x∗
)T

ζ i (t), (69)

where by (6) the irst sum is equivalent to

− 1

n

n∑
i=1

(
x̄(t) − (1 + β)xi (t) + β

n∑
j=1

ai jxj (t − τ) − vi (t)
)T

ζ i (t)

= − 1

n

n∑
i=1

(x̄(t) − xi (t) + α(t)∇fi (xi (t)))T ζ i (t)

≤ 1

n

n∑
i=1

∥x̄(t) − xi (t)∥2∥ζ i (t)∥2 +
1

n

n∑
i=1

α(t)∥∇fi (xi (t))∥2∥ζ i (t)∥2

(65)
≤ Cα(t)

n
∥X(t) − X̄(t)1∥F +

C2α2(t)
n
.

On the other hand, let ri (t) be deined as

ri (t) = x∗ − (1 + β)xi (t) + β
n∑
j=1

ai jxj (t − τ).

Consider

xi (t) +
1

2
ri (t) =

1 − β

2
xi (t) +

1

2
x∗ +

β

2

n∑
j=1

ai jxj (t − τ) ∈ X.

which by (3) with θ = 1/2 implies ri (t) ∈ DX(xi (t)). In addition, by Proposition 2.2 we have
ri (t) ∈ TX(xi (t)). Thus, by applying (1a) in Lemma A.1 to the second term in (62) we obtain

− 1

n

n∑
i=1

(vi (t) − ri (t))T ζ i (t) ≤ − 1

n

n∑
i=1

vi (t) − PTX(xi (t))
[vi (t)]

2
2
= − 1

n
∥ζ (t)∥2F .

Applying the preceding two relations into (62) we obtain

W2 ≤
Cα(t)
n

∥X(t) − X̄(t)1∥F +
C2α2(t)

n
− 1

n
∥ζ (t)∥2F ≤ Cα(t)

n
∥X(t) − X̄(t)1∥2 +

C2α2(t)
n
. (70)

Thus we obtain the same result as in (51), i.e.,

ÛV (x̄(t)) ≤ 3α(t)C
n

∥X(t) − X̄(t)∥F +
C2α2(t)

n
− α(t)

n
(F (X̄(t)1) − f ∗).

The rest of this proof is the same as the one in Section 6.2. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 2, Article 37. Publication date: December 2018.

	Abstract
	1 Introduction
	2 Problem formulation
	3 Distributed Gradient Methods under Communication Delays
	4 Convergence Results
	5 Simulations
	5.1 Delay-free case
	5.2 Uniform delays

	6 Proofs of Main Results
	6.1 Proof of Lemma 4.1
	6.2 Proof Theorem 4.2

	7 Concluding Remarks
	Acknowledgments
	References
	A Appendix
	A.1 Extension to Rd

