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ABSTRACT
The discovery of quasars at increasingly large cosmological redshifts may favour ‘direct
collapse’ as the most promising evolutionary route to the formation of supermassive black
holes. In this scenario, supermassive black holes form when their progenitors – supermassive
stars – become unstable to gravitational collapse. For uniformly rotating stars supported by
pure radiation pressure and spinning at the mass-shedding limit, the critical configuration
at the onset of collapse is characterized by universal values of the dimensionless spin and
radius parameters J/M2 and R/M, independent of massM. We consider perturbative effects of
gas pressure, magnetic fields, dark matter, and dark energy on these parameters, and thereby
determine the domain of validity of this universality. We obtain leading-order corrections for
the critical parameters and establish their scaling with the relevant physical parameters. We
compare two different approaches to approximate the effects of gas pressure, which plays the
most important role, find identical results for the above dimensionless parameters, and also
find good agreement with recent numerical results.

Key words: black hole physics – equation of state – stars: Population III.

1 INTRODUCTION

Quasars and active galactic nuclei, believed to be powered by accret-
ing supermassive black holes (SMBHs), are observed out to large
cosmological distances (see e.g. Fan 2006; Fan et al. 2006). Bañados
et al. (2018) recently announced the discovery of the most distant
quasar ever observed, J1342+0928, at a redshift of z� 7.5, and pow-
ered by an SMBH with mass of approximately 7.8 × 108 M�. The
previous distance-record holder was J1120−0641, at a redshift of z
� 7.1 and with a black hole mass of approximately 2.0 × 109M�
(Mortlock et al. 2011). Another remarkable object is the ultralu-
minous quasar J0100+2802 discovered by Wu et al. (2015), at a
redshift of z = 6.3 and with a mass of about 1.2 × 1010 M�. The
detection of these objects poses an important astrophysical prob-
lem that has attracted significant attention (see e.g. Shapiro 2004;
Haiman 2013; Latif & Ferrara 2016; Smith, Bromm & Loeb 2017,
for reviews): how could such massive black holes form in such a
short time after the big bang?

One evolutionary scenario for the formation of SMBH invokes
first generation – i.e. Population III (Pop III) – stars (Madau & Rees
2001; Heger & Woosley 2002). These stars could collapse to form
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seed black holes (Fryer, Woosley & Heger 2001; Heger et al. 2003)
at large cosmological redshift, which, conceivably, could then grow
through accretion and/or mergers to form SMBHs. For a given
efficiency ε of the conversion of matter to radiation, growth by
accretion is usually limited by the Eddington luminosity (Shapiro
2005; Pacucci, Volonteri & Ferrara 2015). It has been suggested that
episodic super-Eddington accretionmay speed up the growth of seed
black holes (Volonteri & Rees 2005; Volonteri, Silk & Dubus 2015;
Lupi et al. 2016; Sakurai, Inayoshi & Haiman 2016). On the other
hand, the effects of photoionization and heating appear to reduce
accretion to only a fraction of the Eddington limit [see Alvarez,
Wise & Abel 2009; Milosavljević et al. 2009, see also Whalen &
Fryer (2012) for the effect of natal kicks on the accretion rate]. Black
holes can also grow through mergers (see e.g. Volonteri, Haardt &
Madau 2003a; Volonteri, Madau & Haardt 2003b; Shapiro 2005;
Tanaka & Haiman 2009; Tanaka 2014), even though some limits
on growth by mergers may be imposed by recoil speeds (Haiman
2004).

Given these constraints, it is difficult to see how seed black holes
with masses of Pop III stars, about 100 M�, could grow to the
masses of SMBHs by z � 7. In fact, Bañados et al. (2018) argue
that the existence of the objects J1342+0928, J1120−0641, and
J0100+2802 ‘is at odds with early black hole formation models
that do not involve either massive (�104 M�) seeds or episodes
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of hyper-Eddington accretion’ (see also their fig. 2). These consid-
erations suggest the direct collapse of objects with masses of M
� 104 − 5 M� as a plausible alternative scenario for the formation
of SMBHs (e.g. Rees 1984; Loeb & Rasio 1994; Oh & Haiman
2002; Bromm & Loeb 2003; Koushiappas, Bullock & Dekel 2004;
Shapiro 2004; Lodato & Natarajan 2006; Begelman, Volonteri &
Rees 2006; Regan & Haehnelt 2009b; Begelman 2010; Agarwal
et al. 2012; Johnson et al. 2013).

The ‘direct-collapse’ scenario assumes that the progenitor object,
which we will refer to as a supermassive star (SMS), is able to avoid
fragmentation. Physical processes that help suppress fragmentation
are turbulence (e.g. Wise, Turk & Abel 2008; Latif et al. 2013;
Mayer et al. 2015) and a Lyman–Werner radiation background (see
Bromm& Loeb 2003; Regan & Haehnelt 2009a; Visbal, Haiman &
Bryan 2014, and references therein). The Lyman–Werner radiation
dissociates molecular hydrogen, the most efficient coolant in metal-
free haloes, which otherwise would allow the halo to cool to such
low temperatures that its Jeans mass would become small compared
to its mass itself, thereby leading to fragmentation (see also Li,
Klessen & Mac Low 2003). In fact, the recent discovery of the
strong Lyman-α emitter CR7 at z = 6.6 (Sobral et al. 2015) has
been interpreted as observational evidence of the direct collapse
scenario [see Smith, Bromm & Loeb 2016; Hartwig et al. 2016;
Agarwal et al. 2016; also see Bowler et al. (2017); Agarwal et al.
(2017) for a discussion of the role of metals in this object].

The formation, evolution, stability, and collapse of SMSs have
been the subject of numerous studies over several decades (see e.g.
Iben 1963; Hoyle& Fowler 1963; Chandrasekhar 1964; Bisnovatyi-
Kogan, Zel’dovich & Novikov 1967; Wagoner 1969; Appenzeller
& Fricke 1972; Begelman & Rees 1978; Fuller, Woosley &Weaver
1986 for some early references, as well as Zeldovich & Novikov
1971 and Shapiro & Teukolsky 1983, hereafter ST, for textbook
treatments). While the existence of SMSs had been considered
somewhat hypothetical for many years, and while many questions
concerning the formation of SMSs remain open (see e.g. Schleicher
et al. 2013; Hosokawa et al. 2013; Sakurai et al. 2015; Umeda et al.
2016; Woods et al. 2017; Haemmerlé et al. 2018b, 2018a for re-
cent studies; see also Smith et al. 2017), the discovery of objects
like J1342+0928, J1120−0641, and J0100+2802 and CR7 sug-
gests that they not only exist, but that they played a key role in the
formation of SMBHs.

These considerations have motivated us to revisit an idealized
evolutionary scenario for rotating SMSs that two of us proposed
previously (see Baumgarte & Shapiro 1999b, hereafter Paper I).
Specifically, we assumed that SMSs are dominated by radiation
pressure, and that turbulent viscosity produced by magnetic fields
transports angular momentum sufficiently efficiently to maintain
uniform rotation (Bisnovatyi-Kogan et al. 1967; Wagoner 1969).
We further assumed that SMSs, after initially formed, cool and
contract, leading to a spin-up. Given our assumption of uniform ro-
tation, the star will ultimately reach mass shedding, i.e. the Kepler
limit. While it has been suggested that SMSs formed from accretion
only rotate at a fraction of the mass-shedding limit (e.g. Maeder &
Meynet 2000; Haemmerlé et al. 2018b), such stars may still reach
mass shedding during subsequent cooling and contraction. It is
also possible that alternative formation scenarios lead to SMSs that
rotate rapidly, arriving at mass shedding either initially or during
subsequent cooling and contraction. Once having reached the Ke-
pler limit, the SMS evolves along the mass-shedding limit (at a rate
computed in Baumgarte & Shapiro 1999a) until it reaches an onset
of radial instability, triggering collapse to a black hole. The onset of
instability is a consequence of the interplay between the stabilizing

effects of rotation and the destabilizing effects of relativistic gravi-
tation. Remarkably, the critical configuration marking the onset of
instability is characterized by unique values of the dimensionless
parameters J/M2 andRp/M, where J is the total angular momentum,
M the mass, and Rp the polar radius. The equatorial radius is given
by Req = 3Rp/2.

The uniqueness of these parameters has profound implications
for the subsequent collapse to black holes, because it then has to
follow a unique evolutionary track as well. A number of authors
have studied this rotating collapse numerically in the context of
general relativity, starting with Shibata & Shapiro (2002) (see also
Shapiro & Shibata 2002 for a related analytical treatment). The
collapse results in a spinning black hole with mass MBH/M � 0.9
and angular momentum JBH/MBH � 0.7, surrounded by a disc with
mass Mdisc/M � 0.1. The universal evolutionary track also emits
a universal gravitational wave signal (Shibata et al. 2016a; Sun
et al. 2017), which might serve as a ‘standard candle’ for future
space-based gravitational wave detectors. Observations of this ‘sig-
nature’ gravitational wave signal would firmly establish SMSs as
the progenitors of SMBHs.

The original simulations of Shibata & Shapiro (2002), who mod-
elled the star as an ideal radiation fluid, were followed up by several
other studies in general relativity that also allowed for gas pres-
sure (Shibata et al. 2016a), nuclear reactions (Montero, Janka &
Müller 2012; Uchida et al. 2017), as well as magnetic fields (Liu,
Shapiro & Stephens 2007; Sun et al. 2017). The latter demonstrate
that this collapse may result in the launch of a jet and power ul-
tralong gamma-ray bursts, and suggest that collapsing SMSs are
promising multimessenger sources for coincident gravitational and
electromagnetic radiations.

Given the importance of the dimensionless parameters describ-
ing the critical configurations, it is of interest to evaluate to what
degree their universality depends on the assumptions made in their
derivation – in particular the assumption of a pure radiation fluid –
and to establish the domain of validity of this universality. In this
paper, we develop an analytic perturbational approach to study the
effects of gas pressure, magnetic fields, dark matter (DM), and dark
energy on the critical configuration ofmaximally rotating SMSs and
its dimensionless parameters; our results are summarized in equa-
tions (142) and (143) below. For the astrophysical scenarios that we
consider most realistic, gas pressure plays the most important per-
turbative role by far. Accordingly, most of our paper focuses on gas
pressure. We compare two different approximations that have been
adopted to account for gas pressure (see Sections 2.4 and 2.5 be-
low), and calibrate these two different approaches for non-rotating
stars (Section 3) before applying them to maximally rotating SMSs
(Section 5).

Our perturbative approach builds on an analytical calculation em-
ploying a simple energy functional and variational principle that we
adopted in Paper I to identify the critical configuration (see Sec-
tions 4.1 and 4.2 below). In a completely independent approach, we
also constructed numerically fully relativistic equilibrium models
of rotating stars in Paper I. We found good agreement in the pa-
rameters characterizing the critical configuration between the two
approaches (see table 2 in Paper I as well as Table 2 below); typi-
cally these parameters agree to within 10 per cent or better. Shibata,
Uchida & Sekiguchi (2016b, hereafter SUS) recently generalized
these numerical results, adopting what we refer to below as Ap-
proach II to approximate the effects of gas pressure. Our analytic
calculation presented here complements those numerical results: we
find good agreement between our analytical results and the numer-
ical results of SUS (see e.g. Fig. 3 below), and we also extend our
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analytical treatment to account for the effects of magnetic fields,
DM, and dark energy (Section 6).

This paper is organized as follows. In Section 2, we review some
thermodynamic relations. In particular, we discuss in Sections 2.4
and 2.5, the two different approaches to modelling gas pressure as a
small perturbation to radiation pressure. In Section 3, we compare
these two approaches for non-rotating SMSs. We construct numer-
ical models in Section 3.1, and use these to calibrate an analytical
model calculation in Section 3.2. In Section 4, we extend the ana-
lytical model calculations to rotating SMSs. We review the general
set-up from Paper I and compute the unperturbed background solu-
tion in Sections 4.1 and 4.2, and develop a general framework for
perturbations in Section 4.3. In Section 5, we return to the effects of
gas pressure. We adopt Approaches I and II in Sections 5.1 and 5.2,
compare with the numerical results of SUS in Section 5.3, and pro-
vide estimates for physical parameters in Section 5.4. In Section 6,
we apply our perturbative approach to estimate the effects of mag-
netic fields, a DM halo, and dark energy on the critical configuration
of SMSs that are uniformly rotating at the mass-shedding limit. We
provide a brief summary in Section 7.

Unless noted otherwise, we adopt geometrized units with
c = G = 1.

2 THERMODYNAMIC PRELIMINARIES

In this section, we review some thermodynamic relations, following
the treatment in several textbooks (e.g. ST as well as Clayton 1983;
Kippenhahn, Weigert &Weiss 2012). While most of these relations
are well known, we list them here for an easier comparison of
two different approaches to modelling the effect of gas pressure on
SMSs, which we introduce in Sections 2.4 and 2.5.

2.1 Radiation pressure

For a pure thermal radiation fluid the pressure Pr is given by

Pr = 1

3
aT 4, (1)

and the internal energy density εr by

εr = aT 4, (2)

where T is the temperature and a the radiation constant

a = 8π5k4B
15c3h3

(3)

(with c= 1 in geometrized units).Here, kB is theBoltzmann constant
and h is Planck’s constant. From the first law of thermodynamics

T ds = d

(
ε

nB

)
+ P d

(
1

nB

)
, (4)

where nB is the baryon number density, we find that the photon
entropy per baryon is

sr = 4a

3

T 3

nB
. (5)

Combining equations (1) and (5), we can write the pressure as

Pr = Krρ
�
0 (6)

with � = 1 + 1/n = 4/3. Here, ρ0 = nBmB is the rest-mass density,
with mB the baryon rest mass, and we have defined

Kr ≡ a

3

(
3sr

4mBa

)4/3

. (7)

Evidently, stars dominated by radiation pressure behave as n = 3
polytropes for constant entropy.

2.2 Gas pressure

If gas pressure cannot be neglected, the total pressure and internal
energy density are given by

P = Pr + Pg (8)

and

ε = εr + εg, (9)

where

Pg = YTnBkBT (10)

is the gas pressure and

εg = 3

2
YTnBkBT (11)

the internal energy density of the plasma. Here, YT is the number of
particles per baryon. For simplicity, we will assume a fully ionized
hydrogen gas in the following, in which case YT = 2. The total
entropy per baryon is then given by

s = sr + sg, (12)

where sg is the gas entropy

sg

kB
= ln

(
4
m3/2

e m
3/2
B

n2
B

(
kBT

2π�2

)3
)

+ 5 = ln
T 3

ρ2
0

+ s0

kB
(13)

with

s0

kB
= 3 ln

(
kB

2π�2

)
+ 3

2
lnme + 7

2
lnmB + 2 ln 2 + 5 (14)

[see equation (17.3.4) in ST; hereafter equation (ST.17.3.4)]. Here,
me is the electron mass.

2.3 Eddington’s argument

The Eddington standard model (Eddington 1918a; see also Chan-
drasekhar 1939; Clayton 1983; Kippenhahn et al. 2012, as well as
many other references) is based on the observation that, if the ratio1

β ≡ Pg

Pr
= 8kB

sr
(15)

is constant throughout a given star, then the star again behaves like
an n= 3 polytrope, i.e. the total pressure again satisfies a polytropic
relation

P = KEρ
�
0 (16)

with � = 4/3. This can be seen by writing

P = (1 + β)Pr = 1 + β

3
aT 4. (17)

This relation can now be used to eliminate T in terms of P in both
terms on the right-hand side of (8). Solving the result for P yields
equation (16) with

KE = (1 + β)
a

3

(
3sr

4mBa

)4/3

= (1 + β)Kr. (18)

As expected, KE reduces to Kr in the limit β → 0.

1 In many texts, the ratio β is alternatively defined to refer to the ratio Pg/P
rather than Pg/Pr.
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Under certain circumstances, it is reasonable to approximate β

as constant. SMSs are expected to be convective, however (see e.g.
Loeb & Rasio 1994), which makes it more realistic to assume the
total entropy s, rather than the radiation entropy sr in equation (15),
to be constant inside a given star. This assumption forms the basis
of our first approach to modelling the effects of gas pressure on
SMSs.

2.4 Effects of gas pressure: Approach I

In what we call ‘Approach I’, we follow Section 17.3 in ST to treat
the gas pressure as a small perturbation to the radiation pressure
at constant total entropy s. Specifically, we assume that sg � sr in
equation (12), so that, to zeroth order, the temperature is given by
equation (5) with sr replaced by s. The leading-order correction to
the temperature in terms of s can then be computed by inserting
equations (5) and (13) into equation (12); this results in

T �
(

3 sρ0

4mBa

)1/3 (
1 − s0

3s
− kB

3s
ln

3s

4mBaρ0

)
(19)

[see equation (ST.17.3.9)]. Inserting this into equation (9) then
yields

ε � KIρ
4/3
0

(
3 + λ̄ + μ̄ ln ρ0

)
. (20)

Here, we defined

KI ≡ a

3

(
3s

4mBa

)4/3

, (21)

and the coefficients λ̄ and μ̄ are given by

λ̄ = −4s0
s

+ 12kB
s

− 4kB
s

ln
3s

4mBa
(22)

and

μ̄ = 4kB
s

. (23)

ST list the related coefficients λ = KIλ̄ and μ = KIμ̄ in their equa-
tions (ST.17.3.11) and (ST.17.3.12).

Since λ̄ and μ̄ describe leading-order corrections, wemay replace
s in equations (22) and (23) with sr, which, using equation (15), can
then be expressed in terms of β. Also inserting equations (14) and
(3) into equations (22) and (23), we obtain

ε � KIρ
4/3
0

(
3 − β

(
1 − 5

2
lnβ − 1

2
ln

(
K3

I ρ0

) + 1

2
ln η

))
,(24)

where we have used the abbreviation

η = 243452

π7

(
me

mB

)3/2

� 1.367 × 10−4. (25)

We note that, in geometrized units, the combinationK3
I ρ0 is dimen-

sionless (see Section 3.1 below), so that all arguments of logarithms
in equation (24) are dimensionless numbers.

For a given value of the entropy s, the internal energy density ε is
given as a function of the rest-mass density ρ0 by (24). The pressure
P can be computed by observing that

ε = 3Pr + 3

2
Pg = 3

(
1 + β

2

)
Pr (26)

and therefore

P = (1 + β)Pr = 1

3

1 + β

1 + β/2
ε. (27)

Since Pg is again considered a small correction to Pr, we can again
approximate β as given by equation (15) with sr replaced by s
in these leading-order correction terms. For β → 0, we evidently
recover the radiation-fluid expressions of Section 2.1. We note that,
for non-zero β, Approach I does not assume the equation of state
(EOS) to be of polytropic form.

2.5 Effects of gas pressure: Approach II

An alternative approach to approximating the effects of gas pressure
is based on the observation that, in the presence of both radiation
and gas pressure, the adiabatic exponent is given by

�1 ≡
(
d lnP

d ln ρ0

)
s

= 4

3
+ β(4 + β)

3(1 + β)(8 + β)
� 4

3
+ β

6
, (28)

where β is again given by equation (15) (see e.g. Eddington 1918b;
Chandrasekhar 1939; Bond, Arnett & Carr 1984; see also Problem
17.3 in ST and Problem 2.26 in Clayton 1983). This suggests that
we may approximate the EOS as

P = KII ρ
�1
0 . (29)

Using the arguments of Section 2.3, we find

KII = KE ρ
−β/6
0 (30)

with KE given by equation (18) [compare, for example equation (7)
in SUS]. Evidently,KII is only approximately constant for small, but
non-zero β. Approximating KII as constant, however, the internal
energy density is given by

ε = n1P (31)

where

n1 = 1

�1 − 1
= 3

1 + β/2
(32)

is the approximate polytropic index.

3 EFFECTS OF GAS PRESSURE ON
NON-ROTATING SMSS

In this section, we adopt both Approaches I and II to consider the
effects of gas pressure on non-rotating stars. While most of these
results can be found in the literature, nowhere are the two approaches
carefully distinguished or compared. Hence, we include this section
in order to (i) compare predictions from Approaches I and II, and
(ii) calibrate an analytical model that we will apply to rotating stars
in Section 5.

3.1 Numerical results

The structure of a relativistic, spherically symmetric SMS is gov-
erned by the Tolman–Oppenheimer–Volkoff (TOV) equations

dm

dr
= 4π(ρ0 + ε)r2

dP

dr
= −(ρ0 + ε + P )

m + 4πPr3

r2(1 − 2m/r)
,

(33)

where m(r) is the mass enclosed within a radius r, andM = m(R) is
the total mass, with R being the stellar radius (see Oppenheimer &
Volkoff 1939; Tolman 1939).

In geometrized units, ε and ρ0 have the same units of inverse
length squared. From equations (26) and (31), we therefore see that
Kn/2 must have units of length, whereK=KI and n= 3 in Approach
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Figure 1. The density variable xcrit = M
2/3
crit ρ

1/3
crit as a function of β for non-

rotating SMSs according to Approaches I and II. Crosses and circles denote
the numerical results from Section 3.1, using Approaches I and II, while the
lines represent the analytical, perturbative predictions (49) and (56) from
Section 3.2 (which are identical for Approaches I and II).

I, andK=KII and n= n1 in Approach II (note, though, that the EOS
is not assumed to be of polytropic form in Approach I). In either
approach, we may therefore introduce dimensionless quantities, for
example m̄ = K−n/2m and ρ̄0 = Knρ0. When written in terms of
these dimensionless quantities, the TOV equations (33), together
with equations (26) and (27) in Approach I and equations (29) and
(31) in Approach II, become independent of the constants K.

We construct sequences of TOV solutions and find, for given
values of β, the stellar mass M̄ as a function of central rest-mass
density ρ̄c. From these, we also compute the dimensionless variable

x ≡ M̄2/3ρ̄1/3
c = M2/3ρ1/3

c . (34)

The maximum-mass configuration marks a turning point in the
curve of M̄ versus x, at which stars become unstable to radial
collapse. We record the corresponding critical values M̄crit and xcrit.
For β = 0, the maximum mass is found for zero density (i.e. the
curve is monotonically decreasing with x and there is no turning
point) and takes the well-known Newtonian value

M̄
sph
0 = 4.555 (35)

which we rederive below in equation (39). Such a non-rotating SMS
without gas pressure is thus unstable at all finite radii. For small but
non-zero β, we may then write

M̄crit = M̄
sph
0

(
1 + δ

sph
M

)
. (36)

In Figs 1 and 2, we show results for both xcrit and δ
sph
M as found

fromApproaches I and II, which show that gas pressure can stabilize
an SMS below a critical central density. We will postpone a more
detailed discussion until Section 3.3 below.

3.2 Analytical model

The mass and density of non-rotating SMSs can be estimated an-
alytically from an energy variational principle (see Zeldovich &
Novikov 1971, and ST).

Figure 2. The relative change in the mass δ
sph
M [see equation (36)] as a

function of β for non-rotating SMSs according to Approaches I and II.
Crosses and circles denote the numerical results from Section 3.1, while the
solid and dashed lines represent the analytical, leading-order predictions (51)
and (60) from Section 3.2. Note the non-linear behaviour of the analytical
predictions, which are caused by the logarithmic terms in equations (51)
and (60). The squares labelled SUS represent numerical results of SUS,
who adopted Approach II.

Table 1. Values of the structure coefficients ki for n = 3 polytropes.

Coefficient Value Reference

k1 1.7558 Lai et al. (1993)
k2 0.63899 Lai et al. (1993)
k3 1.2041 Lai et al. (1993)
k4 0.918294 ST
k5 0.331211 Lombardi (private communication)
kτ − 0.45928 equation (44)
kCDM 30.0193 equation (A9)
kHDM 16.3262 equation (A16); Bisnovatyi-Kogan (1998)

3.2.1 General set-up

We start by writing the energy as the sum of the internal energy, the
gravitational potential energy, and a first post-Newtonian correction
to the potential energy,

E = k1 KMρ1/n
c − k2M

5/3ρ1/3
c − k4M

7/3ρ2/3
c (37)

(see e.g. Lai, Rasio & Shapiro 1993; Baumgarte & Shapiro 1999b).
Here, the polytropic structure constants ki can be found from the
corresponding integrals of Lane–Emden functions. We list numer-
ical values for n = 3, which describes SMSs to leading order, in
Table 1. It is again convenient to write the above expression in terms
of dimensionless quantities. With M̄ = K−n/2M and Ē = K−n/2E

as well as the dimensionless variable x defined in equation (34), we
obtain

Ē = k1M̄
1−2/nx3/n − k2M̄x − k4M̄x2. (38)

Equilibrium configurations can be found by setting to zero the first
derivative of equation (38) with respect to x, at constant mass M̄ .
For a pure radiation fluid with n = 3, this yields the equilibrium
mass

M̄
sph
0 =

(
k1

k2

)3/2

= 4.555 (39)
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for x = 0 [cf. equation (35)]. This is the unique value of the mass in
Newtonian gravitation, where the last term in equation (38) disap-
pears. Using M = K3/2M̄ and inserting equations (7), (15), as well
as (39) for M̄ , we see that, to leading order, the mass M is related
to β by

β � 8.46

(
M

M�

)−1/2

. (40)

The critical configuration can then be found by also setting to zero
the second derivative with respect to x. For a pure radiation fluid this
is not possible, correctly reproducing the well-known result that all
n = 3 polytropes, in particular all stars governed by pure radiation
pressure, are unstable in general relativity. They can be stabilized
by, e.g. gas pressure (e.g. ST) and/or rotation (Paper I). We now
account for the presence of gas pressure using both Approaches I
and II.

3.2.2 Approach I

From equation (26) we see that, in Approach I, the internal energy
behaves like at that of an n = 3 polytrope plus a correction. The
total internal energy, computed from the integral

Eint = 4π
∫

ε r2dr, (41)

therefore results in the unperturbed term Eint,0 = k1KIMρ1/3
c plus a

correction �Eint. Using equation (26), and following the treatment
in Section 17.3 of ST, this correction can be written as

�Ēint = k1M̄
1/3xβ

(
1

2
ln x + 5

6
lnβ + C

)
. (42)

Here, we used the same dimensional rescaling as above, i.e. �Ē =
K

−n/2
I �E with n = 3, we have abbreviated

C = kτ

2
− 1

3
ln M̄ − 1

6
ln η − 1

3
(43)

where η � 1.367 × 10−4 is again given by equation (25), and we
have defined2

kτ ≡ 3

k1|θ ′
n|ξ 2

n

∫
θn+1 ln θ ξ 2dξ = −0.45928. (44)

Here, θ is the Lane–Emden density function, defined so that
ρ = ρcθ

n, ξ is the Lane–Emden radial function, and the last equality
holds for n = 3 polytropes. Following the treatment in Section 17.3
in ST, we assume that the mass distribution remains that of an n= 3
polytrope; in particular, this means that we will adopt the structure
coefficients ki as listed in Table 1.
Adding equations (42) to (38) and setting n = 3, we obtain

Ē = k1M̄
1/3x

(
1 + β

(
1

2
ln x + 5

6
lnβ + C

))

−k2M̄x − k4M̄x2. (45)

We now set the first two derivatives of equation (45) to zero and
divide by M̄ , which results in the equations

0 = k1M̄
−2/3

(
1 + β

(
1

2
ln x + 5

6
lnβ + C

))

+ β

2
k1M̄

−2/3 − k2 − 2k4x (46)

2 With this definition, the term τ defined in equation (ST.17.3.15) becomes
τ = kτKIβ/2.

and

0 = β

2
k1M̄

−2/3x−1 − 2k4. (47)

From equation (47), we obtain

xcrit = k1

4k4
M̄−2/3β. (48)

Inserting β = 0 and x = 0 into equation (46), we recover the result
(39), M̄sph

0 = (k1/k2)3/2, which we can now insert into equation (48)
to find

xcrit = k2

4k4
β. (49)

Equation (49) shows that for stars of nearly the same mass, a higher
ratio of gas to radiation pressure allows a higher central density,
or larger compaction, before the star becomes radially unstable to
collapse. This is the stabilizing role of gas pressure. As we will see
in Section 3.2.3 below, we will find the same result in Approach II;
it is included as the solid line in Fig. 1.We note already the excellent
agreement with the numerical results of Section 3.1 for small β.

In order to obtain an expression for the correction to the mass at
the critical point, we insert equations (47) and (49) and

M̄ = M̄
sph
0 (1 + δ

sph
M ) (50)

into equation (46) and expand to leading order to obtain

δ
sph,I
M =

(
3

4
ln

k2

4k4
+ 2 lnβ + 3

2
C

)
β, (51)

where the superscript ‘I’ refers to Approach I. Since δ
sph
M already

describes a leading-order correction, we may replace M̄ with M̄
sph
0

in C. The prediction (51) is included in Fig. 2 as a solid line.
Note that, for small β, this expression is dominated by the term
proportional to βlnβ.

3.2.3 Approach II

In Approach II, we simply adopt n = n1, as given in equation (32),
in the energy functional equation (38), which then becomes

Ē = k1M̄
1/3−β/3x1+β/2 − k2M̄x − k4M̄x2. (52)

We now use the dimensional rescaling introduced above with KII

and n1, e.g. Ē = K
−n1/3
II E, where we approximate KII as a constant

[see equation (30)]. Setting the first two derivatives of equation (52)
to zero and dividing by M̄ now yields

0 =
(
1 + β

2

)
k1M̄

−2/3−β/3xβ/2 − k2 − 2k4x (53)

and

0 = β

2

(
1 + β

2

)
k1M̄

−2/3−β/3xβ/2−1 − 2k4. (54)

As in Approach I, we will ignore changes in the structure constants
ki.

Combining equations (53) and (54), we obtain

β

2
k2 − 2

(
1 − β

2

)
k4x = 0, (55)

which, to leading order, yields

xcrit = k2

4k4
β, (56)
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the exact same result (49) that we previously obtained in Approach
I.

We can now insert equation (56) into equation (53) to obtain an
expression for the change in the mass. We again use the expansion
(50). Expanding the exponents in equation (53) to linear order, we
find

M̄−2/3−β/3 � (M̄ sph
0 )−2/3−β/3

(
1 − 2

3
δ
sph
M

)

= (M̄ sph
0 )−2/3 exp

(
−β

3
ln M̄

sph
0

) (
1 − 2

3
δ
sph
M

)

� (M̄ sph
0 )−2/3

(
1 − β

3
ln M̄

sph
0 − 2

3
δ
sph
M

)
(57)

as well as

xβ/2 =
(

k2

4k4
β

)β/2

= exp

(
β

2
ln

(
k2

4k4

))
exp

(
β

2
lnβ

)

� 1 + β

2
ln

(
k2

4k4

)
+ β

2
lnβ. (58)

Inserting these expansions into equation (53) then yields

0 = k1(M̄
sph
0 )−2/3

(
1 + β

2
− β

3
ln M̄

sph
0 − 2

3
δM

+ β

2
ln

k2

4k4
+ β

2
lnβ

)
− k2 − k2

β

2
, (59)

Not surprisingly, this equation yields the Newtonian mass (39) to
zeroth order. The next leading-order terms can be solved for δ

sph
M to

yield

δ
sph,II
M =

(
3

4
ln

k2

4k4
+ 3

4
lnβ − 1

2
ln M̄

sph
0

)
β, (60)

where we have used equation (39) to eliminate k2. This result is
included in Fig. 2 as a dashed line. Note that this result is different
from that obtained in Approach I, equation (51), as we will discuss
in more detail in the following section.

3.3 Comparisons

Figs 1 and 2 show the numerical results of Section 3.1 and the
analytical results of Section 3.2 for both Approaches I and II. We
emphasize again that all calculations employed here, both numerical
and analytical, treat the effects of gas pressure only approximately.
Approach I is based on a Taylor expansion that approximates the
total entropy s to be constant to leading-order only (see Section 2.4),
while Approach II approximates the EOS as polytropic, leading
to a polytropic constant that is only approximately constant (see
Section 2.5). We believe that the nature of the approximation is
more fundamental in Approach I. However, as we will discuss in
more detail below, we find that both approaches make identical
predictions for some key dimensionless quantities at the critical
point.

We have already noted that Approaches I and II give identical
results (49) and (56) for the dimensionless density variable xcrit; the
two lines representing these results therefore lie on top of each other
in Fig. 1. In this figure, we see that this analytical prediction also
agrees very well with the numerical results for both Approaches I
and II, at least to leading order in β. Since all calculations included
in the figure are accurate to leading-order only, the apparently bet-
ter agreement between the analytical prediction and the numerical
results for Approach II for larger β is presumably coincidental.

We already noted that Approaches I and II make different pre-
dictions for the change in the rescaled mass δ

sph
M ; see equations (51)

and (60). In Fig. 2, we include the two predictions with a solid and
dashed lines and find that, for smallβ, they each agree verywellwith
the respective numerical results for Approaches I and II. In fact, it
is not surprising that the two different approaches result in different
values of M̄ , since the two different approaches adopt two different
rescalings between M̄ and the physical massM: In Approach I, we
have M = K

3/2
I M̄ , and in Approach II, M = K

n1/2
II M̄ . Even insert-

ing the different constants KI (21) and KII (30) results in some am-
biguities, since KI assumes that the total entropy s is constant, while
KII depends on the radiation entropy sr and, weakly, on the density
ρ0. In order to avoid these ambiguities, we will therefore focus on
dimensionless quantities that do not depend on K. We have already
seen that both approaches make identical predictions for xcrit, which
relates the central density ρ0 to the stellar massM. We will similarly
see in Section 5 that, for rotating stars, both approaches also make
identical predictions for the change in the dimensionless parameters
that we are primarily interested in, namely the angular momentum
jcrit = (J/M2)crit, and the compaction (R/M)crit, both evaluated at the
maximally rotating critical configuration.

For completeness, though,we also include in Fig. 2, the numerical
results of SUS, who adopted Approach II to model the effects of gas
pressure. Since SUS do not provide values for β = 0, i.e. � = 4/3,
we extrapolate the numerical values M̄ sph listed in their table 1 to
β = 0, which yields their value of the Newtonian, spherical mass
M̄

sph
0 . We then compute δ

sph
M = (M̄ sph − M̄

sph
0 )/M̄ sph

0 . As expected,
their values agree well with our numerical values for Approach II,
and, for small β, both agree well with our analytical prediction for
Approach II.

Finally, we demonstrate that our results reproduce those of ST,
who adopt Approach I to compute the density of non-rotating SMSs
in their Section 17.4, but use a different notation. Inserting the
definition (34) into (49), we obtain

ρcrit =
(
1

4

k2

k4

)3
β3

M2
=

(
8.5

4

k2

k4

c2

G

)3 (
M�
M

)7/2 1

M2�
, (61)

where have used the relation (40) in the last step, and where we have
also inserted appropriate powers of c and G to obtain an expression
in cgs units. Inserting values for the latter, as well as the solar mass
M�, we obtain

ρcrit = 1.92 × 10−3

(
106 M�

M

)7/2
g

cm3
, (62)

very similar to the value provided in equation (ST.17.4.7). Using
M = 4πρaveR

3/3 as well as ρc/ρave � 54.18 for an n= 3 polytrope,
we also have(

R

M

)
crit

= 1.59 × 103
(

M

106 M�

)1/2

(63)

[compare equation (ST.17.4.11)]. Equation (62) gives the critical
density for the onset of radial collapse of a spherical SMS with both
radiation and gas pressure and equation (63) its value of R/M: stars
with ρ < ρcrit and R/M > (R/M)crit are stable, while those with
ρ > ρcrit and R/M < (R/M)crit are unstable to collapse.

4 PERTURBATIVE EFFECTS ON THE
STABILITY OF ROTATING SMSS

In this section, we extend the analytical model of Section 3.2.1 to
develop a general framework for treating perturbative effects on
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uniformly rotating SMSs. We first review the model and results
obtained in Paper I for the critical configuration in the absence
of other perturbations in Sections 4.1 and 4.2, and then introduce
general expressions for perturbations of these critical solution in
Section 4.3. We will leave the nature of the perturbation unspecified
in this section. In Section 5, we will then apply this formalism to
gas pressure and in Section 6 to other effects, all in the presence of
rotation.

4.1 Review of the analytical model

In order to model rotating SMSs, we include in the energy func-
tional (37) both a rotational energy term as well as a second post-
Newtonian correction to the Newtonian potential energy,

E = k1 KMρ1/n
c − k2M

5/3ρ1/3
c + k3j

2M7/3ρ2/3
c

− k4M
7/3ρ2/3

c − k5M
3ρc (64)

[see equation (20) in Paper I, hereafter equation (I.20)]. Here,
j = J/M2 is a dimensionless measure of the angular momentum
J, and the structure constants ki are again listed in Table 1 for an
n = 3 polytrope. As in Section 3.2, we will assume that these
structure constants remain unchanged in all our perturbative cal-
culations. Even though the second post-Newtonian correction, the
last term in the above expression, takes a very small value, its in-
clusion is crucial for determining the critical configuration, i.e. the
onset of instability (see Zeldovich & Novikov 1971, Paper I). Using
the same dimensional rescaling as before, e.g. M̄ ≡ K−n/2M and
Ē ≡ K−n/2E, as well as the definition (34), we can rewrite equation
(64) as

Ē = k1M̄
1−2/nx3/n − k2M̄x + k3j

2M̄x2

− k4M̄x2 − k5M̄x3. (65)

We note that in Paper I, we used the alternative scaling x̃ ≡ ρ̄1/3
c =

M̄−2/3x for n = 3. The advantage of the scaling equation (34),
x = M̄2/3ρ̄1/3

c , is that the dimensionless mass M̄ now appears with
the same power in all terms except in the first.

Equilibrium configurations can be found by setting to zero the
derivative of the energy equation (65) with respect to x (at constant
mass and angular momentum),

0 = ∂Ē

∂x
= (3/n)k1M̄

1−2/nx3/n−1 − k2M̄ + 2k3j
2M̄x

− 2k4M̄x − 3k5M̄x2. (66)

The onset of instability occurs at turning points of the equilibrium
sequences, i.e. at points at which the second derivative with respect
to x vanishes,

0 = ∂2Ē

∂x2
= (3/n)(3/n − 1)k1M̄

1−2/nx3/n−2 + 2k3j
2M̄

− 2k4M̄ − 6k5M̄x. (67)

For n= 3, equations (66) and (67) are equivalent to equations (I.21)
and (I.22).

The ratio between the rotational kinetic and Newtonian poten-
tial energies can be computed from the second and third terms in
equation (64),

T

|W | = k3j
2x

k2
(68)

[compare equation (I.27)]. Adopting the Roche model, we can
compute the rotational kinetic energy at mass shedding from

T = (1/2)I�2
shed. Consistent with our assumption that the struc-

ture constants ki remain unchanged, we will assume that the mo-
ment of inertia I always remains that of the non-rotating n = 3
polytrope, I � (2/3) 0.1130MR2

p [see equation (I.18)], and where
�shed = (2/3)3/2(M/R3

p)
1/2 [see equation (I.17)]. We similarly as-

sume that the potential energy remains that of the non-rotating n= 3
polytrope, |W| = (3/2)M2/Rp. Combining these terms, we find(

T

|W |
)

shed

= 7.44 × 10−3 (69)

[see equation (I.19)], which can be inserted into equation (68) for
a star uniformly rotating at mass shedding, the maximum spin rate.
Note that the small value of T/|W| at mass shedding for an n = 3
polytope (due to its large central mass concentration) justifies ig-
noring changes in the shape of the bulk of the mass in computing
the energy functional, and treating the star as spherical to lowest
order.

Noting that we may also write the kinetic rotational energy as
T = (1/2)J2/I, we find

T

|W | = 4.425
M

Rp
j 2, (70)

which can then be inverted to yield an expression for the compaction
Rp/M,

Rp

M
= 4.425

j 2

T /|W | . (71)

Equations (66)–(68), withT/|W| given by equation (69), nowpro-
vide three equations for the three unknown parameters x, M̄ , and
j describing the critical configuration of marginally stable SMSs
rotating at mass shedding. In the following sections, we will solve
these equations perturbatively, adopting as the unperturbed back-
ground solution the critical configuration of an n = 3 polytrope as
derived in Paper I.

4.2 The unperturbed critical configuration

In Paper I, we solved equations (66)–(68) under the idealized as-
sumption that the SMS is dominated by a radiation fluid, so that
n = 3. In that case, equation (67) yields

x0 = k3j
2
0 − k4

3k5
(72)

[compare equation (I.23)], where we have introduced the subscript
‘0’ to denote parameters describing the critical configuration of the
unperturbed n= 3 polytrope. As an immediate consequence, we see
that rotation alone can stabilize the star only for angular momenta
j0 greater than a minimum angular momentum

jmin =
(

k4

k3

)1/2

= 0.8733. (73)

Using this result, we can rewrite equation (72) as

x0 = k3

3k5
(j 2

0 − j 2
min) (74)

and equation (66) as

k1M̄
−2/3
0 = k2 − 2k3(j

2
0 − j 2

min)x0 + 3k5x
2
0 . (75)

Inserting equation (74) into the latter then yields

M̄
2/3
0 = k1

(
k2 − k23

3k5

(
j 2
0 − j 2

min

)2)−1

(76)
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[see equation (I.25)]. Inserting equation (74) into equation (68)
results in a quadratic equation for j 2

0 ,

j 4
0 − j 2

minj
2
0 − 3k2k5

k23

T

|W | = 0, (77)

which can be solved for j0 as a function of T/|W|. This solution
provides the dimensionless angular momentum of the critical con-
figuration,(

J

M2

)
crit,0

= j0 = 0.876. (78)

Inserting j0 together with equation (69) into equation (71), then
yields(

Rp

M

)
crit,0

� 456 (79)

for the analytical model. In the Roche model, the equatorial radius
Req is related to the polar radius Rp by Req = 3Rp/2, hence(

Req

M

)
crit,0

� 684. (80)

In addition to this analytical model calculation, we also performed
a fully relativistic, numerical calculation in Paper I, which resulted
in j0 � 0.97 and Rp/M � 427. From equation (74) for x0, we also
find the critical central density

ρcrit,0 =
(

c2

G

)3
x3
0

M2�

(
M�
M

)2

= 8.7 × 10−2

(
106 M�

M

)2
g

cm3
. (81)

Equations (79) and (81) should be compared with equations (63)
and (62). The former two describe the physical properties of the
critical configuration of an SMS star stabilized by uniform rotation,
while the latter two describe those of the critical configuration of
an SMS stabilized by gas pressure.

In Table 2, we list some of the characteristic parameters of the
unperturbed critical configuration, as found in Paper I from both
the analytical model calculation and the numerical simulations (cf.
table 2 in Paper I). We also include numerical values for j0 and
M̄0 as computed from the values provided by SUS. As discussed
in Section 3.3, we compute these values by extrapolating the data
listed in their table 1 to n = 3.

Equations (78) and (79) provide the unique parameters of the
critical configuration of a uniformly rotating SMS, supported by
pure radiation pressure and spinning at the mass-shedding limit.
The subsequent gravitational collapse to a black hole is therefore
also unique, up to the overall scaling with mass, and the emitted
gravitational wave signal may hence serve as a ‘standard-siren’ for
future space-based gravitational wave detectors. In the following
sections, we will consider perturbations of these critical configura-
tions in order to explore the regimes in which this universality is
affected by the presence of gas pressure, magnetic fields, DM, and
dark energy.

4.3 Perturbative treatment: general set-up

We will account for perturbations of the idealized assumptions of
Section 4.2 (and Paper I) by including new terms in the energy
functional (64). These terms therefore lead to perturbations in the
variables that characterize the critical configuration, namely the
density variable x, the angular momentum j, and mass M̄ , given by

solutions to equations (66)–(68). In our perturbative approach, we
write these deviations as

x = x0(1 + δx), (82)

j = j0(1 + δj), (83)

M̄ = M̄0(1 + δM), (84)

where x0, j0, and M̄0 are the unperturbed parameters of Section 4.2.
We are assuming that the onset of instability is still dominated by the
interplay between radiation pressure, rotation, and post-Newtonian
corrections to the potential energy, as outlined in Section 4.1, and
that all corrections (e.g. gas pressure in the limit β � 1) affect
this onset of instability only perturbatively. Other approaches are
possible, of course, but are not what we pursue in this paper.

Specific expressions for δx, δj, and δM will depend on the specific
effects considered, and will be derived in the following sections.
Equation (68), however, is independent of the energy function itself,
and, thanks to our rescaling equation (34), also does not depend on
M̄ . Assuming that T/|W| remains given by equation (69), which is
consistent with our assumption that the structure constants ki remain
unchanged, we may therefore insert both equations (82) and (83)
into equation (68) and expand to linear order to obtain

T

|W | = k3

k2
j 2
0 x0(1 + 2δj + δx). (85)

Evidently, to linear order, we must always have

δx = −2 δj. (86)

We then insert equation (83) into equation (71) to obtain(
Rp

M

)
crit

=
(

Rp

M

)
crit,0

(1 + 2δj). (87)

to linear order. From equation (83), we also have(
J

M2

)
crit

=
(

J

M2

)
crit,0

(1 + δj). (88)

The above expressions can now be used to determine the change in
the angular momentum j and the critical compaction Rp/M, once δx
has been found.

5 EFFECTS OF GAS PRESSURE

In this section, we return to the effects of gas pressure, and consider
its effect on the stability of maximally rotating SMSs using both
Approaches I and II (Sections 5.1 and 5.2). We compare with the
numerical results of SUS in Section 5.3, and evaluate our results to
compute changes in the physical parameters of critically spinning
SMSs in Section 5.4.

5.1 Approach I

Following Section 3.2.2, we account for gas pressure by adopting
equation (65) with n = 3, as well as K = KI in the dimensional
rescaling, but adding the correction (42) to the internal energy. The
energy functional then becomes

Ē = k1M̄
1/3x + k1M̄

1/3xβ

(
1

2
ln x + 5

6
lnβ + C

)

−k2M̄x + k3j
2M̄x2 − k4M̄x2 − k5M̄x3, (89)
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Table 2. Characteristic parameters of the unperturbed critical configuration.

Calculation (Rp/M)crit x0 jmin j0 M0

Paper I; analytical 456 5.15 × 10−3 0.8733 0.8757 4.5551
Paper I; numerical 427 5.26 × 10−3 0.882 0.97 4.57
SUS 0.921 4.56

where C is given by equation (43). Setting the first two derivatives
to zero, we obtain

0 = k1M̄
2/3k1M̄

−2/3β

(
1

2
ln x + 5

6
lnβ + C

)

+1

2
k1M̄

−2/3 − k2 + 2k3j
2x − 2k4x − 3k5x

2 (90)

and

0 = 1

2
k1M̄

−2/3βx−1 + 2k3j
2 − 2k4 − 6k5x. (91)

We now insert equations (82) and (83) into equation (91) to find, to
leading order,

0 = 1

2
M̄

−2/3
0 x−1

0 β + 2k3j
2
0 (1 + 2δj) − 2k3j

2
min − 6k5x0(1 + δx),

(92)

where we have used equation (73). Not surprisingly, the zeroth-
order term gives us equation (74) again. Using equation (86), the
linear terms can be solved to yield an expression for the change in
j,

δj = − k1

8k3

1

M̄
2/3
0 (2j 2

0 − j 2
min)x0

β. (93)

This expression can be inserted into equations (87) and (88) to
find a change in the dimensional parameters Rp/M and J/M2 – the
quantities that we are primarily interested in. We will postpone a
discussion of these results, though, until Section 5.3. The change in
the density variable x can also be found from equation (93) with the
help of equation (86).

Keeping in mind the discussion of δM in Section 3.3, we can
compute this quantity as follows. We first insert equation (91) into
equation (90) to obtain

0 = k1M̄
−2/3 + k1M̄

−2/3β

(
1

2
ln x + 5

6
lnβ + C

)

−k2 + 3k5x
2. (94)

We then insert equations (82) and (84) and expand to linear order,
which yields

δI
M =

(
3

4
ln x0 + 5

4
lnβ + 3

2
C

)
β + 9k5M̄

2/3
0 x2

0

k1
δx, (95)

or, with equations (86) and (93),

δI
M =

(
3

4
ln x0 + 5

4
lnβ + 3

2
C + 9k5

4k3

x0

2j 2
0 − j 2

min

)
β. (96)

Here, we have introduced a superscript ‘I’ in order to distinguish this
result from the corresponding result (105) in Approach II. We will
again postpone a discussion until after we have presented results for
Approach II in the next sections.

5.2 Approach II

As in Section 3.2.3, we now account for gas pressure by adopting
the approximate polytropic index n = n1 as given by equation (32),
using K = KII (approximated as a constant) in the dimensional
rescaling. The first two derivatives (66) and (67) of the energy
function (65) can then be written as

0 =
(
1 + β

2

)
k1M̄

−2/3−β/3xβ/2 − k2 + 2k3(j
2 − j 2

min)x

−3k5x
2 (97)

and

0 =
(
1 + β

2

)
β

2
k1M̄

−2/3−β/3xβ/2−1 + 2k3(j
2 − j 2

min) − 6k5x,

(98)

where we have used equation (73). These two equations can then
be combined to eliminate the first terms, leading to

β

2
k2 + 2

(
1 − β

2

)
k3(j

2 − j 2
min)x − 6

(
1 − β

4

)
k5x

2 = 0. (99)

Inserting equations (82) and (83), the leading-order correction terms
become

0 = β

2
k2 + 2k3j

2
0 x0

(
2δj + δx − β

2

)

− 2k3j
2
minx0

(
δx − β

2

)
− 6k5x

2
0

(
2δx − β

4

)
. (100)

We now use equation (86) to eliminate δx and obtain(
4k3j

2
minx0 + 24k5x

2
0

)
δj =(

−1

2
k2 + k3(j

2
0 − j 2

min)x0 − 3

2
k5x

2
0

)
β. (101)

Simplifying the left-hand sidewith equation (74), and the right-hand
side with equation (75) yields the result

δj = − k1

8k3

1

M̄
2/3
0 (2j 2

0 − j 2
min)x0

β, (102)

which is identical to the result (93) that we found for Approach I. In
particular, this means that both approaches predict identical changes
in the parameters Rp/M and J/M2 of the critical configuration, see
equations (87) and (88), as well as for δx, see equation (86).

In order to obtain an expression for the correction δM of the
rescaled mass M̄ , we expand equation (97). For the expansion of
the mass term M̄−2/3−β/3, we can use the expansion (57), but, unlike
in equation (58), we now expand x about x0 rather than zero, so we
now have

xβ/2 = e(β/2) ln x = 1 + β

2
ln x0 (103)
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Table 3. Comparison of estimates for δj, δx, and δIIM.

Calculation δj/β δx/β δIIM/β

Paper I; analytical −16.7 33.4 −4.7
Paper I; numerical −11.4 22.8 −4.6
SUS −13.7 27.4 −4.6

to linear order. Inserting these, together with equations (82) and
(83), into equation (97) then yields

0 = k1M̄
−2/3
0

(
1 + β

2
− β

3
ln M̄0 + β

2
ln x0 − 2

3
δM

)
− k2 + 2k3j

2
0 x0

(
1 + 2δj + δx

)
− 2k3j

2
minx0 (1 + δx) − 3k5x

2
0 (1 + 2δx) . (104)

Not surprisingly, the zeroth-order terms reproduce equation (75).
The leading-order correction terms can be simplified by using equa-
tion (86) to write δx in terms of δj, and equation (102) to write δj in
terms of β. Also using equation (74), we then find

δIIM =
(
3

4
− 1

2
ln M̄0 + 3

4
ln x0 − 3

4

j 2
0

2j 2
0 − j 2

min

)
β. (105)

Given our discussion in Section 3.3, it is not surprising that this
result is not identical with that found for Approach I, equation (96).

5.3 Comparisons

It is useful to compare the above results with the numerical results
of SUS, who adopted Approach II to study the effect of gas pressure
on relativistic, maximally rotating SMSs. Since SUS do not provide
results for β = 0, we extrapolate their numerical values for β > 0,
listed in their table 1, to β = 0. The resulting values for j0 and M̄0

are listed in our Table 2.
It is evident from Table 2 that the parameters describing the

critical configurations show some variation between the different
methods. We did not extract x0 and jmin from SUS, but these val-
ues agree reasonably well between the analytical and numerical
approaches of Paper I. The largest difference appears for j0, and we
note that the value obtained from SUS lies between the two values
from Paper I. All of the above parameters, as well as M̄0, appear in
the expressions (93) for δj and expressions (96) and (105) for δM.
Not surprisingly, these perturbations then depend on which back-
ground values are adopted. In Table 3, we list the ratios δj/β, δx/β,
and δIIM/β, using the different values of the background parameters
(because of the appearance of the βlnβ term in δIM, the ratio δIM/β

is not independent of β; we therefore omitted this quantity in the
table). For the top two rows in the Table 3, we used the analytical
and numerical values from Paper I for all four parameters x0, jmin,
j0, and M̄0 (i.e. the values from the corresponding top two rows
in Table 2), while for the bottom entries, we used the extrapolated
values from SUS for j0 and M̄0, but the numerical values of Paper I
for x0 and jmin.
For δj/β in equation (102) (and similarly for δx/β), we find

variations of several 10 per cent; these variations are mostly due to
differences in the term 2j 2

0 − j 2
min between the different approaches.

Similar differences in equation (105) tend to cancel each other out,
so that the numerical values for δIIM/β as obtained from different
background values agree much better with each other. We believe
that the high-resolution results of SUS provide the most accurate
values currently available, and therefore will adopt their parameters
in Section 5.4 below.

Figure 3. Effects of gas pressure on the dimensionless angular momentum
j and the rescaled mass M̄ of the critical configuration of rotating SMSs.
We show δj and δM, defined in equations (83) and (84), as a function of β.
The solid and dashed lines represent our analytical perturbative expressions
according to models I and II, while the squares represent the numerical
results of SUS.

We next compare our predictions for δj and δM with the numerical
results of SUS. In order to make this comparison, we compute
δj = (j − j0)/j0 (and similar for δM) from the data j listed in table 1
of SUS, where j0 is the extrapolated value for β = 0 as listed in
our Table 2. We also compute values for β from β = 6 (� − 4/3),
where the values of � are listed in table 1 of SUS. In Fig. 3, we
then graph the numerical values of SUS for δj and δM as squares,
and our perturbative results (93) as well as (96) and (105) as solid
and dashed lines.

We first observe again that Approaches I and II make identical
predictions for δj; they therefore appear as a single line in the top
panel of Fig. 3. Moreover, for small values of β, the perturbative
predictions for δj agree well with the numerical results of SUS.
For larger values of β, we see increasing deviations. This is not
surprising, however, since, for the larger values of β adopted by
SUS, our perturbative calculation predicts values of δj of order
unity, which is clearly a violation of the condition |δj| � 1 for
a linear treatment [see equation (83)]. Another reason for these
deviations at larger β may also be related to T/|W|, which we
assume to remain given by the constant Roche-approximation value
(69) independently of β. The numerical simulations of SUS show,
however, that instead T/|W|, which is small, slightly increases with
increasing β. This means that our approximation underestimates
the angular momentum, increasing the deviation in δj.
Keeping in mind the subtleties discussed in Section 3.3, we also

compare our predictions for δM in the lower panel of Fig. 3. The
two different predictions from Approaches I and II are included
as a solid and a dashed line; as in Fig. 2 for non-rotating SMSs
Approach I predicts larger decreases in M̄ than Approach II. Quite
reassuringly, but not surprisingly, Approach II agrees quite well
with the results of SUS, who also adopt Approach II. In fact, for
large β, this agreement is significantly better than for δj. In part, this
is because δM is smaller in magnitude than δj for a given value of β,
so that the linearity condition |δM| � 1 is not violated as severely
as the one for δj. We further expect that δM is less affected than δj
by our approximation of keeping T/|W| constant, as we discussed
above.
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5.4 Results for physical parameters

Encouraged by the comparisons in the previous section, we now
evaluate our perturbative results to compute the changes due to gas
pressure in the physical parameters of the critical configuration of
an SMS spinning at mass shedding. Inserting equation (93) together
with equation (40) into equation (83), we find(

J

M2

)
crit

�
(

J

M2

)
crit,0

(
1 − 0.12

(
M

106 M�

)−1/2
)

(106)

and similarly, from equation (87),(
Rp

M

)
crit

�
(

Rp

M

)
crit,0

(
1 − 0.23

(
M

106 M�

)−1/2
)

, (107)

where the unperturbed critical ratios are given in equations (78)
and (79). Allowing for gas pressure has a stabilizing effect, permit-
ting SMSs to remain stable to smaller values of Rp/M and higher
densities. For stars with masses M � 106 M�, the effect is quite
substantial. In fact, for smaller stars gas pressure dominates the sta-
bilization, as calculated in Section 3, and rotation should be treated
as a perturbation, rather than the other way around as in this section.

To find the central density, we start with equation (34) to find

ρcrit = x3

M2
�

(
c2

G

)3
x0

M2�

(
M�
M

)2

(1 + 3δx) , (108)

where we have inserted appropriate powers of c andG. Using equa-
tion (86) together with equation (40) and evaluating the physical
constants, we now obtain,

ρcrit � ρcrit,0

(
1 + 0.70

(
M

106 M�

)−1/2
)

(109)

where ρcrit, 0 is given by equation (81).
Equation (109) generalizes the earlier result (62), while equation

(62) determines the effect of gas pressure on the critical density
of a non-rotating SMS, equation (109) determines the density of a
maximally rotating SMS at the onset of instability, allowing for gas
pressure as a perturbation. The two expressions (62) and (109) scale
differently with the mass M, which is related to the fact that they
are based on different expansions. Equation (109) is the result of
a perturbation about the non-zero critical density of the maximally
spinning SMS. By contrast, in the absence of rotation, there is
no stable configuration without gas pressure, so that, in deriving
equation (62), there is no non-zero background critical density about
which to expand.

We note again that the results (106), (107), and (109) follow
identically from Approaches I and II.

6 OTHER EFFECTS

In this section, we adopt our perturbative approach to estimate the
influence of several effects other than gas pressure on the radial
stability of uniformly rotating SMSs at the mass-shedding limit.

6.1 Magnetic fields

We now consider the perturbative role of a magnetic field B, which
we assume to be sufficiently weak so that that the shape of the
star remains unchanged and nearly spherical as in Section 4. This
assumption requires that EM/W� 1, where EM is the total magnetic

energy. The energy density of the magnetic field B is

εM = B2

8π
. (110)

Integrating this energy density of all space gives a result that depends
on the topology of the magnetic field. Typically, we find

EM = kM�2
MM−1/3ρ1/3

c . (111)

Here, we have expressed the magnetic field in terms of the magnetic
flux �M through the matter, which remains constant for a frozen-in
magnetic field when we vary the stellar density ρ0. The constant
kM is a dimensionless quantity that depends on the topology of the
magnetic field. For example, for the model considered by Spitzer
(1978, p. 242), which consists of a constant interior field B and a
root-mean-square exterior field that falls off as B(R/r)3, we have

kM =
(

4

81π5C

)1/3

(112)

where C = ρc/〈ρ〉 � 54.18 measures the central condensation of
an n = 3 polytope, and where �M = πBR2 is the flux through the
equatorial plane of the star.

Using equation (34) and rescaling all dimensional quantities as
before, including �̄M = K−3/2�M, we can rewrite equation (111)
in the non-dimensional form

ĒM = kM�̄2
MM̄−1x. (113)

We now add equation (113) to the energy equation (65) to find the
total energy

Ē = k1M̄
1/3x + kM�̄2

MM̄−1x − k2M̄x

+k3j
2M̄x2 − k4M̄x2 − k5M̄x3. (114)

Setting the first two derivatives to zero yields

0 = ∂Ē

∂x
= k1M̄

1/3 + kM�̄2
MM̄−1 − k2M̄

+2k3j 2M̄x − 2k4M̄x − 3k5M̄x2. (115)

and

0 = ∂2Ē

∂x2
= 2k3j

2M̄ − 2k4M̄ − 6k5M̄x. (116)

Since the magnetic contribution is proportional to x, like the inter-
nal energy and the Newtonian gravitational potential energy terms,
the second derivative of the energy equation (114) with respect
to x yields the same equation as equation (67) for n = 3. As a
consequence, equations (72)–(74) and (77) also remain unchanged.
Solving equation (77), again using equation (69), yields the same
values for j0 and x0. Therefore, the onset of instability occurs at
the same values of both J/M2 and Rp/M as in the unperturbed
configuration,(

J

M2

)
crit

=
(

J

M2

)
crit,0

(117)

and(
Rp

M

)
crit

=
(

Rp

M

)
crit,0

, (118)

where the background values are again given in Section 4.2. The
sole role of the magnetic perturbation in this approximation is to
increase the mass slightly at a given central density, as a result of
the magnetic term in equation (115), but this does not influence
the radial instability. The onset of instability is determined by the
competition between rotation and relativistic gravitation, whereas
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the internal energy, Newtonian gravitational potential energy, and
magnetic energy establish equilibrium, but are neutral with respect
to stability.

We note that in the case of non-rotating SMSs, the magnetic field
can lead to a significant increase in the stellar radius of equilibrium
configurations (see Ostriker & Hartwick 1968, as well as section
7.2 in ST).

6.2 Dark matter

We start by considering the effects of a DM halo. We treat cold dark
matter (CDM) and hot dark matter (HDM) separately, adopting the
crude approximations developed in Appendix A. As shown in the
appendix, the key parameter that distinguishes these two regimes
is 2�SMS/υ

2
∞, where �SMS is the central potential of the SMS, and

υ∞ is the speed of the DM particles far from the SMS. We refer to
the limit 2�SMS/υ

2
∞ � 1 as CDM, and the limit 2�SMS/υ

2
∞ � 1 as

HDM. During its evolution the SMS cools and contracts and �SMS

increases. Likewise, during its evolution the Universe expands and
υ∞ decreases. Therefore, SMSs may reside in different regimes
during different parts of their evolution and different epochs of the
Universe. For example, SMSs arriving at the mass-shedding limit
at the current cosmological epoch obey the CDM limit, as we show
below, while SMSs arriving at the mass-shedding limit sufficiently
early in the Universe, when υ∞ ≈ 1, are in the HDM limit.
Approximating �SMS asM/R and evaluating this quantity for the

critical configuration at the mass-shedding limit, M/Rp � 1/427
(see Section 4.2), we find

2�SMS

υ2∞
� 4.68 × 103

(
υ∞

300 km s−1

)−2

(119)

where we have normalized to a typical galactic DM speed, appro-
priate for low redshifts. In the current cosmological epoch, SMSs
therefore reach their critical configuration in the CDM limit, where
the above ratio is much greater than unity.

6.2.1 Cold dark matter

As we argued in Appendix A1, the energy contribution due to a
CDM halo can be approximated by the term (A11),

ĒDM = kCDMx3
DMυ−1

∞ M̄−1/2x−3/2. (120)

where xDM = M2/3(ρ∞
DM)

1/3. Including equation (120) in the energy
equation (65) and taking the first two derivatives then results in

0 = k1M̄
1/3 − k2M̄ + 2k3(j

2 − j 2
min)M̄x

−3k5M̄x2 − 3

2
kCDMx3

DMυ−1
∞ M̄−1/2x−5/2 (121)

and

0 = 2k3(j
2 − j 2

min)M̄ − 6k5M̄x

+ 15

4
kCDMx3

DMυ−1
∞ M̄−1/2x−7/2. (122)

Dividing equation (122) by M̄ , multiplying by x [so that, to leading
order, the perturbation of j 2x = j 2

0 x0(1 + 2δj + δx) vanishes ac-
cording to equation (86)], and inserting the perturbations (82) and
(83), we obtain

2k3j
2
0 x0 − 2k3j

2
minx0(1 + δx) − 6k5x

2
0 (1 + 2δx) =

− 15

4
kCDMx3

DMυ−1
∞ M̄

−3/2
0 x

−5/2
0 . (123)

Since the DM perturbations scale with x3
DM, the term on the right-

hand side is small already, and we can neglect the perturbations of
M̄ and x in this term. The zeroth-order terms yield equation (74),
while the leading-order corrections give

(k3j
2
min + 6k5x0)δx = 15

8
kCDMx3

DMυ−1
∞ M̄

−3/2
0 x

−7/2
0 . (124)

We now use equations (74) and (86) to rewrite the term on the
left-hand side to obtain

δj = −15

16

kCDM

k3M̄
3/2
0 x

7/2
0 (2j 2

0 − j 2
min)

x3
DM

υ∞
. (125)

or

δj = −2.5 × 108
G3

c5
M2ρ∞

DM

υ∞
, (126)

where we have inserted the background values of Section 4.2 as
discussed in Section 5.3. From equation (83), we then have(

J

M2

)
crit

=
(

J

M2

)
crit,0

×
(
1−

4.1 × 10−20

(
M

106 M�

)2(
ρ∞
DM

10−25 g cm−3

)(
υ∞

300 km s−1

)−1
)

,

(127)

and from equation (87)(
Rp

M

)
crit

=
(

Rp

M

)
crit,0

×
(
1−

8.2 × 10−20

(
M

106 M�

)2(
ρ∞
DM

10−25 g cm−3

)(
υ∞

300 km s−1

)−1
)

,

(128)

where the unperturbed values are given by equations (78) and (79).
Here, we have adopted values for the DM density and DM particle
speeds as theymay exist in current DMhaloes. Evidently, the effects
of such a CDM halo on the stability of rotating SMSs are minute.

6.2.2 Hot dark matter

In order to account for the effects of an HDM halo on the stability
of rotating SMSs, we add the expression (A17),

ĒDM = kHDMM̄−2/3x3
DMx−2, (129)

to the energy functional equation (65), where we have again de-
fined xDM = M2/3(ρ∞

DM)
1/3. The first two derivatives of the energy

equation (65) are then

0 = k1M̄
1/3 − k2M̄ + 2k3(j

2 − j 2
min)M̄x

−3k5M̄x2 − 2kHDMx3
DMM̄−2/3x−3 (130)

and

0 = 2k3(j
2 − j 2

min)M̄ − 6k5M̄x + 6kHDMx3
DMM̄−2/3x−4 (131)

As in Section 6.2.1, we multiply equation (131) with x, divide by
M̄ , perturb about the background solution of Section 4.2, and keep
the leading-order correction terms to obtain

0 = −2k3j
2
minx0δx − 12k5x

2
0δx + 6kHDMx3

DMM̄
−5/3
0 x−3

0 (132)

(where again all corrections scale with x3
DM, so that this term is a

small quantity already.) Using equation (86) as well as equation
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(74), we may rewrite this expression as

δj = −3

2

kHDMM̄
−5/3
0

k3(2j 2
0 − j 2

min)

x3
DM

x4
0

. (133)

or

δj = −3

2

kHDMM̄
−5/3
0

k3(2j 2
0 − j 2

min)x
4
0

(
G

c2

)3

M2ρDM. (134)

Evaluating the background quantities as discussed in Section 5.3
and inserting into equation (83), we find(

J

M2

)
crit

�
(

J

M2

)
crit,0

×
(
1 − 0.038

(
M

106 M�

)2 (
ρDM

10−5 g cm−3

))
, (135)

where we followed McLaughlin & Fuller (1996) and Bisnovatyi-
Kogan (1998) in adopting aDMdensity of 10−5 g cm−3, appropriate
for some epoch in the early Universe. Inserting equation (134) into
equation (87), we also find(

Rp

M

)
crit

�
(

Rp

M

)
crit,0

×
(
1 − 0.077

(
M

106 M�

)2 (
ρDM

10−5 g cm−3

))
. (136)

Even for a large value of the DM density, the effect of the DM on
the critical configuration of uniformly rotating SMSs is relatively
small unlessM > 106 M�, which is consistent with the findings of
McLaughlin & Fuller (1996) and Bisnovatyi-Kogan (1998).

6.3 Dark energy

The effects of a cosmological constant can be estimated very simi-
larly to that of constant DMdensity distribution in the HDM regime.
The Newtonian limit of Einstein’s equations, including a cosmolog-
ical constant �, is

∇2� = 4πρ − �. (137)

We can therefore find the effects of the cosmological constant sim-
ply by replacing the constant value of ρHDM in the equations of
Section 6.2.2 with −�/(4π). Making this replacement in equation
(134) and inserting physical constants, we find

δj = 3

8π

kHDM

k3

1

M̄
5/3
0 (2j 2

0 − j 2
min)x

4
0

(
G

c2

)2

M2�. (138)

Evaluating the coefficients using the background quantities of Sec-
tion 4.2 and inserting into equation (83), we find(

J

M2

)
crit

�
(

J

M2

)
crit,0

×
(
1 + 4.5 × 10−26

(
M

106 M�

)2 (
�

�SM

))
, (139)

where we have adopted

�SM = 1.11 × 10−56 cm−2 (140)

for the cosmological constant in the standard model (Planck
Collaboration XIII 2016). Inserting equation (138) into (87), we

similarly obtain(
Rp

M

)
crit

�
(

Rp

M

)
crit,0

×
(
1 + 0.91 × 10−25

(
M

106 M�

)2 (
�

�SM

))
. (141)

Evidently, the effects of the dark energy on the stability of typical
SMSs are entirely negligible.

7 SUMMARY

In this paper, we extend a calculation initiated in Paper I, where we
determined the critical configuration at the onset of collapse of a
uniformly rotating SMS, supported by pure radiation pressure and
spinning at the mass-shedding limit. We found that this critical con-
figuration is characterized by a unique set of the non-dimensional
parameters Rp/M and J/M2.
In this case, the subsequent collapse of the critical configuration

follows a universal evolutionary track and results in a spinning
black hole with MBH/M ≈ 0.9 and JBH/M2

BH ≈ 0.7 (Shibata &
Shapiro 2002; Shapiro & Shibata 2002), surrounded by a disc with
Mdisc/M ≈ 0.1. Moreover, if the initial star is threaded by a weak,
toroidal magnetic field, then the black hole–disc system launches a
jet, and the electromagnetic Poynting luminosity transported by the
jet resides in a narrow range of LEM ≈ 1052±1 erg s−1, independent
of mass, once the system settles into quasi-steady accretion (see Sun
et al. 2017; Shapiro 2017). The universal evolutionary track also
leads to the emission of a universal gravitational signal (Shibata
et al. 2016a; Sun et al. 2017), which may serve as a ‘standard siren’
for future space-based gravitational wave detectors.

In this paper, we explore the domain of validity of this universality
by considering a number of different physical effects that might
perturb this rotating critical configuration. In particular, we study
the effects of gas pressure, magnetic fields, DM, and dark energy,
and find that they perturb the critical parameters J/M2 and R/M
according to

(
J

M2

)
crit

�
(

J

M2

)
crit,0

⎛
⎝1 − 0.12

(
M

106 M�

)−1/2

− 4.1 × 10−20

(
M

106 M�

)2 (
ρDM

10−25 g cm−3

) (
υ∞

300 km s−1

)−1

+ 4.5 × 10−26

(
M

106 M�

)2 (
�

�SM

)⎞
⎠, (142)

and(
Rp

M

)
crit

�
(

Rp

M

)
crit,0

⎛
⎝1 − 0.23

(
M

106 M�

)−1/2

− 8.2 × 10−20

(
M

106 M�

)2 (
ρDM

10−25 g cm−3

) (
υ∞

300 km s−1

)−1

+ 0.91 × 10−25

(
M

106 M�

)2 (
�

�SM

)⎞
⎠, (143)

where the unperturbed values are given by equations (78) and (79).
Gas pressure is the most significant perturbation for the most

realistic astrophysical scenarios, and becomes important for SMSs
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with masses ofM� 106 M�. Its effects are accounted for by the top
lines in equations (142) and (143).Wemodel these effects using two
different approaches (see Sections 2.4 and 2.5), which we carefully
compare and calibrate (see Section 3). Both approaches lead to
identical results for the leading-order effects on J/M2 and R/M,
which also agree well with the numerical results of SUS in the linear
regime. Gas pressure has a stabilizing effect on rotating SMSs, it
scales with M−1/2 and becomes important forM � 106 M�.
It turns out that magnetic fields have an effect on the mass of the

critical configuration of maximally rotating SMSs, but not on the
dimensionless ratios J/M2 and Rp/M – the effect of magnetic fields
is therefore absent in equations (142) and (143).

We approximate the effects of a DM halo adopting two opposite
limiting cases, which we refer to as CDM and HDM. Rotating
SMSs that reach the onset of instability in the current cosmological
epoch are in the CDM regime, which we include in the middle lines
of equations (142) and (143). The effects of DM are stabilizing,
but are minute and can be neglected for most situations. For SMSs
forming in the early universe, the HDM regime may apply; the
result, rescaled for a higher DM density as it might have applied in
the early Universe, can be found in equations (135) and (136).

Finally, the effects of dark energy are included in the last lines of
equations (142) and (143); these effects are destabilizing but even
smaller than those for of a DM halo.

In general relativity, SMSs supported by angular momentum and
pure radiation pressure can be stabilized against collapse only for
angular momenta j that are greater than jmin defined in equation
(73), which is close to the mass-shedding value (78). Thus, for
our perturbative calculations, which take configurations stabilized
by rotation and radiation pressure as background models, slowly
rotating stars as described by, e.g. Maeder & Meynet (2000), Yoon,
Kang & Kozyreva (2015), and Haemmerlé et al. (2018b), are not
suitable. SMSs that are rotating well below the mass-shedding limit
could be modelled as configurations in which gas pressure plays the
dominant stabilizing role and rotation is a small perturbation – but
these are not the configurations that we focus on in this paper.
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APPENDIX A: THE DARK MATTER
CONTRIBUTION TO THE STELLAR ENERGY

In this appendix, we derive approximations for the contribution of
a DM halo on the energy of an SMS, considering the opposite ex-
tremes of CDM and HDM. We imagine that the SMS is surrounded
by a much larger region filled with DM particles that are collision-
less, monoenergetic and moving isotropically. Far from the SMS,
theDMhas a uniform density ρ∞

DM and the particle speed is υ∞ � 1.
A simple phase-space distribution function describing this DM is

f = f (E) = ρ∞
DM

δ(E − E∞)

4π(2E∞)1/2
, (A1)

where the asymptotic energy per unit mass is E∞ = υ2
∞/2 [see

equation (ST.14.2.16)]. Integrating over the distribution function,
we find for the density

ρDM = ρ∞
DM

(
1 − 2�SMS

v2∞

)1/2

(A2)

[compare equation (ST.14.2.22)].
Strictly speaking, the above distribution function holds only for

stationary configurations. It is also a very good approximation for

the quasi-stationary situation encountered when we consider small
oscillations of the equilibrium configuration. Justification of this
approximation is provided by the following argument (McLaughlin
& Fuller 1996) which suggests that the DM density is at most very
weakly affected by the oscillations of the SMS.

Consider a DM particle with zero speed υ∞ at a large sep-
aration from the SMS. Once it has reached the surface of the
SMS, it will travel at the escape speed v � (GM/R)1/2, and
will therefore transverse the star in a time of approximately
τ cross ∼ R/v ∼ (R3/(GM))1/2 ∼ (Gρ)−1/2 ∼ τ ff, where τ ff is the
free-fall time. The crossing time τ cross will be even shorter for parti-
cles with υ∞ > 0 at large separation, so that τ cross � τ ff in general.
For stars with structures similar to n = 3 polytropes, the funda-
mental radial oscillation period τ osc is larger than the free-fall time,
which establishes the inequality τ cross < τ osc. In fact, for stars near
the critical configuration, the oscillation frequency approaches zero,
so that τ osc becomes infinite. Assuming spherical symmetry, DM
particles are unaffected by oscillations of the SMS, while they are
outside of the star, because the exterior potential will not change.
Since �SMS varies on the time-scale τ osc, which is longer than the
crossing time τ cross, the quasi-stationary approximation applies, and
hence we may adopt equation (A2).

We now consider two opposite extreme limits, namely
2�SMS/υ

2
∞ � 1 and 2�SMS/υ

2
∞ � 1, where �SMS is evaluated in-

side the SMS. The former applies in the limit when the speed of
the DM particles is much less than the escape speed from the SMS,
which we refer to as CDM. Conversely, the latter applies when the
DM particles are much faster than the escape speed, which we refer
to as HDM.We treat these two limits separately in the following two
sections. At large distances from the SMS, we always have �SMS

→ 0, so that, from equation (A2), we always have ρDM → ρ∞
DM in

both limits, as expected.

A1 Cold dark matter

In a region where 2�SMS/υ
2
∞ � 1, we may approximate equation

(A2) as

ρCDM � ρ∞
DM

(
−2�SMS

v2∞

)1/2

. (A3)

We now invoke a further approximation and argue that, given the
large central condensation of an n = 3 polytrope, we may crudely
approximate the potential of the SMS as that of a point mass, so
that

ρCDM � ρ∞
DM

(
2M

rv2∞

)1/2

. (A4)

The Newtonian potential caused by the DM distribution can then
be found from the Poisson equation

∇2�CDM = 1

r2
d

dr

(
r2
d�CDM

dr

)
= 4πρCDM. (A5)

Inserting equation (A4) and integrating twice, we obtain

�CDM = 21/2
16π

15

ρ∞
DMM1/2

υ∞
r3/2 + C, (A6)

whereC is a constant of integration, and where we have set a second
constant of integration to zero in order to make �CDM regular at the
origin. We can now find the contribution of this potential to the
energy of the SMS from

MNRAS 477, 3694–3710 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/3/3694/4961148
by Applied Life Studies Library user
on 18 May 2018

http://dx.doi.org/10.1051/0004-6361/201321949
http://dx.doi.org/10.1086/427065
http://dx.doi.org/10.1103/PhysRevD.95.101303
http://dx.doi.org/10.1086/342246
http://dx.doi.org/10.1086/341516
http://dx.doi.org/10.1103/PhysRevD.94.021501
http://dx.doi.org/10.3847/0004-637X/818/2/157
http://dx.doi.org/10.1093/mnras/stw1129
http://dx.doi.org/10.1088/0004-637X/808/2/139
http://dx.doi.org/10.1103/PhysRevD.96.043006
http://dx.doi.org/10.1088/0264-9381/31/24/244005
http://dx.doi.org/10.1088/0004-637X/696/2/1798
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRevD.96.083016
http://dx.doi.org/10.1103/PhysRevD.96.083016
http://dx.doi.org/10.3847/2041-8205/830/2/L34
http://dx.doi.org/10.1093/mnrasl/slu063
http://dx.doi.org/10.1086/466521
http://dx.doi.org/10.1086/344675
http://dx.doi.org/10.1086/376722
http://dx.doi.org/10.1088/0004-637X/804/2/148
http://dx.doi.org/10.1146/annurev.aa.07.090169.003005
http://dx.doi.org/10.1088/2041-8205/756/1/L19
http://dx.doi.org/10.1086/588209
http://dx.doi.org/10.3847/2041-8213/aa7412
http://dx.doi.org/10.1038/nature14241
http://dx.doi.org/10.1088/0004-637X/802/1/16


3710 S. P. Butler et al.

ECDM =
∫ M

0
�CDMdm = 4π

∫ R

0
�CDMρr2dr

= 21/2
64π2

15

ρ∞
DMM1/2

υ∞

∫ R

0
ρr7/2dr. (A7)

Here, the integration is carried out over the SMS, we have assumed
spherical symmetry, and we have omitted the constantC in equation
(A6), since it would lead to a term that is independent the density,
and which would therefore drop out when we take derivatives of the
energy with respect to the density. To leading order, the structure of
the SMS is that of an n= 3 polytrope, so that we can rewrite the last
integral in equation (A7) using Lane–Emden variables ρ = ρcθ

3

and r = aLEξ with aLE = K1/2ρ−1/3
c /π1/2,

ECDM = 21/2
64

15π1/4

ρ∞
DMM1/2

υ∞
ρca

9/2
LE

∫ ξ3

0
θ3ξ 7/2dξ

= 21/2
64

15π1/4

ρ∞
DMM1/2

υ∞
ρ−1/2
c K9/4

∫ ξ3

0
θ3ξ 7/2dξ. (A8)

We now define

kCDM ≡ 21/2
64

15π1/4

∫ ξ3

0
θ3ξ 7/2dξ = 30.0193 (A9)

and use the dimensional rescaling Ē = K−3/2E (and similar forM)
together with equation (34) and

xDM = M2/3(ρ∞
DM)

1/3 (A10)

to obtained the rescaled energy

ĒCDM = kCDMx3
DMυ−1

∞ M̄−1/2x−3/2. (A11)

We may now account for the effects of CDM by including this term
in the energy equation (65).

A2 Hot dark matter

In the opposite limit, 2�SMS/υ
2
∞ � 1, the DM density is unaffected

by the SMS and takes the constant value

ρHDM � ρ∞
DM, (A12)

which is the regime considered byMcLaughlin & Fuller (1996) and
Bisnovatyi-Kogan (1998). Solving the Poisson equation (A5) for
the potential �HDM, we obtain

�HDM = 2π

3
ρ∞
DMr2, (A13)

where we have omitted two constants of integration for the same
reasons as in Appendix A1. The contribution of this potential to the
energy of the SMS is then

EHDM =
∫ M

0
�HDMdm = 4π

∫ R

0
�HDMρr2dr

= 8π2

3
ρ∞
DM

∫ R

0
ρr4dr. (A14)

As in Appendix A1, we use Lane–Emden variables for an n = 3
polytrope to rewrite this integral as

EHDM = 8π2

3
ρ∞
DMρca

5
LE

∫ ξ3

0
θ3ξ 4 dξ

= 8

3π1/2
K5/2ρ∞

DMρ−2/3
c

∫ ξ3

0
θ3ξ 4 dξ. (A15)

We now define

kHDM = 8

3π1/2

∫ ξ3

0
θ3ξ 4 dξ = 16.3262. (A16)

and adopt the same rescaling as in Appendix A1 to find the rescaled
energy

ĒHDM = kHDMM̄−2/3x3
DMx−2. (A17)

In order to account for a hot dark-energy halo, we therefore add this
term to the energy equation (65).
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