

1 **Patterns of Z chromosome divergence among *Heliconius* species highlight the importance of**
2 **historical demography**

3
4
5 Steven M. Van Belleghem^{1,2,3,4}, Margarita Baquero², Riccardo Papa³, Camilo Salazar⁵, W. Owen McMillan⁴, Brian A
6 Counterman², Chris D. Jiggins¹ and Simon H. Martin¹

7
8
9
10 ¹. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.

11
12 ². Department of Biological Sciences, Mississippi State University, 295 Lee Boulevard, Mississippi State, MS 39762,
13 USA.

14
15 ³. Department of Biology, Center for Applied Tropical Ecology and Conservation, University of Puerto Rico, Rio
16 Piedras, Puerto Rico.

17
18 ⁴. Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Panama.

19
20 ⁵. Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69,
21 Bogota, D.C. 111221, Colombia.

22
23
24
25
26 **Corresponding author:** vanbelleghemsteven@hotmail.com

27 **Abstract**

28 Sex chromosomes are disproportionately involved in reproductive isolation and adaptation. In support of such a ‘large-
29 X’ effect, genome scans between recently diverged populations or species pairs often identify distinct patterns of
30 divergence on the sex chromosome compared to autosomes. When measures of divergence between populations are
31 higher on the sex chromosome compared to autosomes, such patterns could be interpreted as evidence for faster
32 divergence on the sex chromosome, i.e. ‘faster-X’, or barriers to gene flow on the sex chromosome. However,
33 demographic changes can strongly skew divergence estimates and are not always taken into consideration. We used
34 224 whole genome sequences representing 36 populations from two *Heliconius* butterfly clades (*H. erato* and *H.*
35 *melpomene*) to explore patterns of Z chromosome divergence. We show that increased divergence compared to
36 equilibrium expectations can in many cases be explained by demographic change. Among *Heliconius erato*
37 populations, for instance, population size increase in the ancestral population can explain increased absolute divergence
38 measures on the Z chromosome compared to the autosomes, as a result of increased ancestral Z chromosome genetic
39 diversity. Nonetheless, we do identify increased divergence on the Z chromosome relative to the autosomes in
40 parapatric or sympatric species comparisons that imply post-zygotic reproductive barriers. Using simulations, we show
41 that this is consistent with reduced gene flow on the Z chromosome, perhaps due to greater accumulation of species
42 incompatibilities. Our work demonstrates the importance of constructing an appropriate demographic null model in
43 order to interpret patterns of divergence on the Z chromosome, but nonetheless provides evidence to support the Z
44 chromosome as a strong barrier to gene flow in incipient *Heliconius* butterfly species.

45

46 **Keywords**

47 *Heliconius*, large-X effect, speciation, relative divergence measures, absolute divergence measures, demography

48 **Introduction**

49 Comparisons between genomes of diverging populations or species have revealed elevated differentiation on the sex
50 chromosomes in several animals, such as fly-catchers (Ellegren *et al.* 2012), crows (Poelstra *et al.* 2014), Darwin's
51 finches (Lamichhaney *et al.* 2015), ducks (Lavretsky *et al.* 2015) and *Heliconius* butterflies (Kronforst *et al.* 2013;
52 Martin *et al.* 2013; Van Belleghem *et al.* 2017). These patterns of elevated sex chromosome divergence are sometimes
53 readily interpreted as the result of increased reproductive isolation and reduced admixture on the sex chromosomes
54 and, thus, ascribed to a large-X effect (BOX 1). However, it remains unresolved whether such elevated sex-linked
55 divergence actually results from more rapid accumulation of isolating barriers on the sex chromosome, or could be
56 explained by differences in effective population size between the sex chromosomes and the autosomes (Pool & Nielsen
57 2007; Meisel & Connallon 2013; Wolf & Ellegren 2017).

58 When comparing divergence between genomic regions, such as sex chromosomes versus autosomes, measures of
59 population divergence are influenced by within population diversity (Charlesworth 1998; Cruickshank & Hahn 2014)
60 (BOX 2). This is explicitly the case for relative measures such as F_{ST} , but also influences absolute measures of
61 divergence such as d_{XY} . For absolute divergence measures, this is because the genetic divergence between two alleles
62 sampled from two species includes both divergence accumulated post-speciation, but also diversity already present in
63 the ancestral population before the split. The latter is strongly dependent on effective population size. In a population
64 under equilibrium conditions where the two sexes have an identical distribution of offspring number, the X
65 chromosome effective population size and genetic diversity is expected to be three-quarters that of the autosomes.
66 Deviations from this ratio can result from multiple unique features of the sex chromosomes (BOX 1), and population
67 size changes in particular can have strong differential influence on sex chromosome compared to autosomal diversity
68 (Pool & Nielsen 2007). Previous studies attempted to control for differences in effective population size on the sex
69 chromosome, for instance among recently diverged duck species from Mexico, but such studies generally do not
70 account for population size changes (Lavretsky *et al.* 2015). In order to interpret both relative and absolute measures
71 of divergence on the sex chromosomes as evidence of a disproportionate contribution to species divergence and/or
72 reduced admixture, we need to also account for demographic changes that can influence diversity of the sex
73 chromosomes.

74 Here, we explore diversity and divergence on the Z chromosome relative to the autosomes among populations of the
75 *Heliconius erato* and *Heliconius melpomene* butterfly clades, using these different measures. The *H. erato* and *H.*
76 *melpomene* clades represent unpalatable and warningly colored butterflies that have independently radiated into many
77 divergent geographic races and reproductively isolated species. Within both clades, speciation has been accompanied
78 by shifts in Müllerian mimicry (Mallet, McMillan, *et al.* 1998) and where populations come into contact, hybrid
79 phenotypes usually have reduced survival rates due to strong frequency dependent selection against intermediate color
80 pattern phenotypes (Mallet & Barton 1989; Jiggins *et al.* 1996; Naisbit *et al.* 2001; Merrill *et al.* 2012). Two species,
81 *H. himera* and *H. e. chestertonii*, are geographic replacements of *H. erato* in dry Andean valleys. They are partially
82 reproductively isolated, but individuals of hybrid ancestry make up about 10% of the population in narrow transition
83 zones between forms (McMillan *et al.* 1997; Muñoz *et al.* 2010; Merrill *et al.* 2014). Similarly, *H. cydno* and *H.*

84 *timareta* are geographic replacements of each other and both are broadly sympatric with *H. melpomene*. Here, both
85 species are reproductively isolated from *H. melpomene* by a combination of pre- and post-mating isolation (Mérot *et*
86 *al.* 2017). Species integrity does not seem to involve structural variation such as chromosomal inversions (Davey *et*
87 *al.* 2017). Instead, reproductive barriers include strong selection against hybrids, mate choice and post-zygotic
88 incompatibilities (Figure 1A). Assortative mating has evolved in both the *H. erato* and *H. melpomene* clades (McMillan
89 *et al.* 1997; Jiggins, Naisbit, *et al.* 2001; Muñoz *et al.* 2010; Merrill *et al.* 2014). In the *H. erato* clade, sterility and
90 reciprocal-cross asymmetry of hybrid sterility has been reported in crosses between *H. erato* and *H. e. chestertonii*
91 (Muñoz *et al.* 2010), but hybrid sterility is absent between *H. erato* and *H. himera* (McMillan *et al.* 1997). In the *H.*
92 *melpomene* clade, female sterility (Haldane's rule) and reciprocal-cross asymmetry of hybrid sterility occurs in crosses
93 between *H. melpomene* and *H. cydno* (Naisbit *et al.* 2002), *H. melpomene* and *H. heurippa* (Salazar *et al.* 2005) and
94 *H. melpomene* and *H. timareta* (Sánchez *et al.* 2015), as well as between allopatric *H. melpomene* populations from
95 French Guiana and those from Panama and Colombia (Jiggins, Linares, *et al.* 2001). In support of a large-X effect,
96 sterility in these crosses (*H. melpomene* x *H. cydno*, *H. melpomene* x *H. heurippa* and *H. melpomene* x *H. timareta*)
97 was found to be Z-linked.

98 The presence of incipient species pairs with different levels of reproductive isolation allows us to examine the relative
99 rate of autosomal and Z chromosomal evolution and the factors that are likely influencing patterns of divergence. We
100 take advantage of a large genomic dataset composed of 224 whole genomes representing 20 populations of the *H. erato*
101 clade and 16 populations of the *H. melpomene* clade. We also use simulations to evaluate the effect that demographic
102 changes have on the estimate of relative rates of divergence on the Z versus the autosomes and demonstrate that in
103 many comparisons demography can explain much of the observed elevated divergence on the Z relative to the
104 autosomes. However, by taking into account geographic distance or autosomal divergence as a proxy for gene flow,
105 we show that there is evidence for increased divergence on the Z chromosome for species pairs with known post-
106 zygotic reproductive barriers. These rates of increased divergence likely reflect reduced admixture on the Z
107 chromosome and provide support for the Z chromosome being a greater barrier to gene flow in some incipient
108 *Heliconius* butterfly species.

109

110 **BOX 1. Consequences of hemizygous sex chromosomes**

111 *Large-X (or Z) effect and what can cause it*

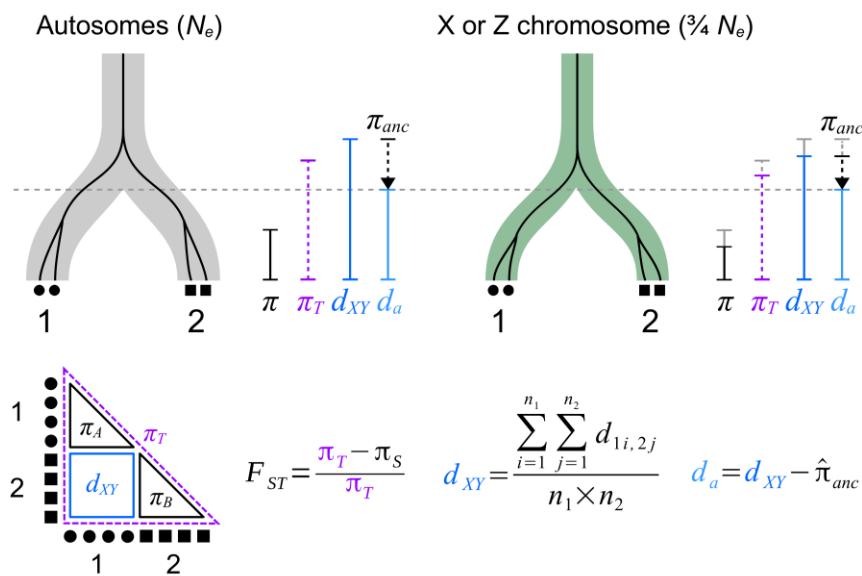
112 Sex chromosomes have been repeatedly shown to have a disproportionate role during speciation (Coyne & Orr 2004),
113 demonstrated by three widespread intrinsic postmating effects (Turelli & Moyle 2007; Johnson & Lachance 2012); (i)
114 Haldane's rule, (ii) reciprocal-cross asymmetry of hybrid viability and sterility, and (iii) the large-X effect. *Haldane's*
115 *rule* states that where only one sex of the hybrids has reduced viability or fertility, that sex is most commonly the
116 heterogametic sex (Haldane 1922). *Asymmetry of hybrid viability and sterility* refers to the situation where reciprocal
117 crosses often differ in their incompatibility phenotype (Turelli & Moyle 2007). Finally, the *large X-effect* highlights
118 the disproportionate contribution of the sex chromosomes to the heterogametic and asymmetric hybrid
119 inviability/sterility in backcross families (Coyne & Orr 1989).

120 Haldane's rule can generally be explained by between-locus 'Bateson-Dobzhansky–Muller incompatibilities' (BDMs)
121 (Dobzhansky 1935; Muller 1942; Orr 1996), in which divergent alleles at different loci become fixed between
122 populations and cause inappropriate epistatic interactions only when brought together in novel hybrid allele
123 combinations (Coyne & Orr 2004). If interacting loci include recessive alleles on the sex chromosome, only the
124 heterogametic sex will suffer incompatibilities (Turelli & Orr 1995). Additionally, BDMs between autosomal loci and
125 the sex chromosomes can be specific to a particular direction of hybridization due to their uniparental inheritance and,
126 thus, also explain asymmetric reproductive isolation (Turelli & Moyle 2007). Hence, hemizygous expression of
127 recessive alleles on the sex chromosome has been put forward as a trivial cause for the disproportionate role of the sex
128 chromosomes during speciation (dominance theory) (Turelli & Orr 1995).

129 In contrast to the dominance theory, there is however a large body of observations and theory that propose alternative
130 or additional explanations that can cause a large-X effect (Wu & Davis 1993; Presgraves 2008). These factors include
131 faster male evolution resulting from intense sexual selection among males (Wu & Davis 1993), meiotic drive (Frank
132 1991), dosage compensation (Jablonka & Lamb 1991) and faster-X evolution (Charlesworth *et al.* 1987; Vicoso &
133 Charlesworth 2006). Faster-X evolution is predicted if adaptive new mutations are on average partially recessive
134 (Charlesworth *et al.* 1987). In *Drosophila*, faster-X evolution has been studied extensively. Although it is not
135 ubiquitous, there is clear evidence for faster-X divergence and adaptation (Counterman *et al.* 2004), particularly for
136 X-linked genes expressed in male reproductive tissues (reviewed in Meisel & Connallon 2013). In Lepidoptera
137 (butterflies and moths), Haldane's rule and the large X (or Z) effect have been reported for numerous species, yet the
138 females are the heterogametic sex (Sperling 1994; Prowell 1998; Presgraves 2002). Since lepidopteran females are
139 heterogametic, faster male evolution is insufficient to explain Haldane's rule and the large X effect, but faster-X
140 evolution remains a viable explanation (Sackton *et al.* 2014). Moreover, in Lepidoptera, the large Z effect extends
141 beyond intrinsic isolating barriers and there are differences in many traits and behaviors that map disproportionately
142 to the Z chromosome (Sperling 1994; Prowell 1998). These observations are consistent with the faster accumulation
143 of differences on the Z chromosome (faster-X evolution).

144 *Factors affecting sex/autosome diversity ratios*

145 Apart from population size changes, factors that can result in deviations from the expected three-quarter X/autosome
146 (X/A) diversity ratio, and could thus potentially affect divergence measures, include (i) sex-biased demographic events
147 leading to different effective population sizes of males and females (Charlesworth 2001), (ii) selective sweeps and
148 background selection differently affecting the sex chromosomes (Charlesworth 2012) and (iii) differences in mutation
149 rates between sexes or between the sex chromosomes and the autosomes (Sayres & Makova 2011; Johnson & Lachance
150 2012).

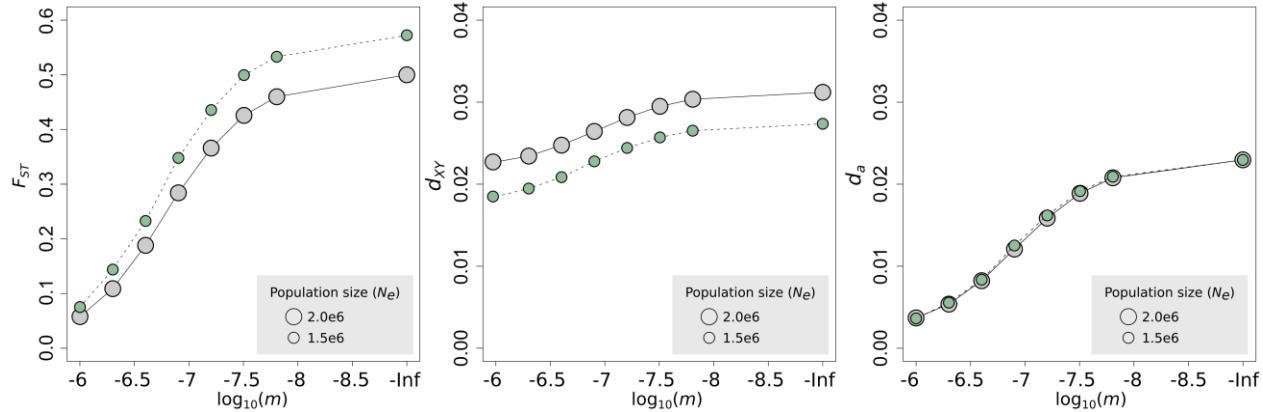

151 First, different population sizes of males and females can influence the X/A diversity ratio because two-third of the X
152 chromosome population is transmitted through females. A male biased population would thus decrease the X/A
153 diversity ratio below three-quarters, whereas a female biased population would increase the ratio. This effect would be
154 opposite in female heterogametic sex systems (ZW).

155 Second, the hemizygous expression of the sex chromosome could result in both higher purifying selection and more
156 efficient selection of beneficial recessive mutations (~selective sweeps) and result in a decrease of the expected X/A
157 diversity ratio (Charlesworth *et al.* 1987). Additionally, differences in recombination rates can lead to different extent
158 of loss of variation through linked selection and thus background selection (Charlesworth 2012). In Lepidoptera,
159 meiosis is commonly achiasmatic (no recombination) in the heterogametic sex (females) (Suomalainen *et al.* 1973;
160 Turner & Sheppard 1975). A reduction in recombination rate on the sex chromosomes compared to autosomes, that
161 are commonly found in *Drosophila* (Vicoso & Charlesworth 2009), should thus not be expected to decrease Z/A
162 diversity ratios through increased background selection in *Heliconius*. On the other hand, it has been suggested that
163 effective recombination should be higher, and thus background selection lower, for the Z chromosome when
164 recombination is absent in females (Charlesworth 2012). This is because the Z chromosomes spend two-third of their
165 time in recombining males, whereas autosomes only spend half of their time in recombining males.

166 Third, because the male germ line generally involves more cell divisions and thus opportunities for replication errors,
167 sex-linked genes may have different mutation rates. Because X-linked genes spend only one-third of their time in
168 males and two-thirds of their time in females, the X chromosome may be subjected to a lower mutation rate.
169 Conversely, the Z chromosome spends two-third of its time in males and may therefore become enriched in genetic
170 variation compared to the autosomes (Vicoso & Charlesworth 2006; Sayres & Makova 2011; Johnson & Lachance
171 2012). Such increased mutation rates on the Z chromosome could also increase the rate of divergence between Z
172 chromosomes (Kirkpatrick & Hall 2004).

173 **BOX 2. Measures of divergence depend on population size**

174 The mutational diversity in present-day samples is directly related to population size, structure and age. This diversity
 175 within populations directly impacts the rate of coalesce between populations (Figure B 1). This relationship can be
 176 seen with F_{ST} , which was developed to measure the normalized difference in allele frequencies between populations
 177 (Wright 1931). The dependence of F_{ST} on population size can be understood by interpreting F_{ST} as the rate of
 178 coalescence within populations compared to the overall coalescence rate (Slatkin & Voelml 1991). Comparing pairs of
 179 populations with different effective population sizes will therefore show distinct F_{ST} estimates even when the split time
 180 is the same (Charlesworth 1998). Absolute divergence d_{XY} is the average number of pairwise differences between
 181 sequences sampled from two populations (Nei & Li 1979). d_{XY} is not influenced by changes to within population
 182 diversity that occur after the split, but does depend on diversity that was present at the time the populations split
 183 (Gillespie & Langley 1979). Therefore, population pairs that had a smaller population size at the time they split will,
 184 consequently, have smaller d_{XY} estimates. To compare pairs of populations that had different ancestral population sizes,
 185 d_a has been proposed, which subtracts an estimate of the diversity in the ancestral population from the absolute
 186 divergence measure d_{XY} (Nei & Li 1979). An approximation of ancestral diversity can be obtained by taking the average
 187 of the nucleotide diversity observed in the two present day populations. Such a correction should result in the ‘net’
 188 nucleotide differences that have accumulated since the time of split.



189

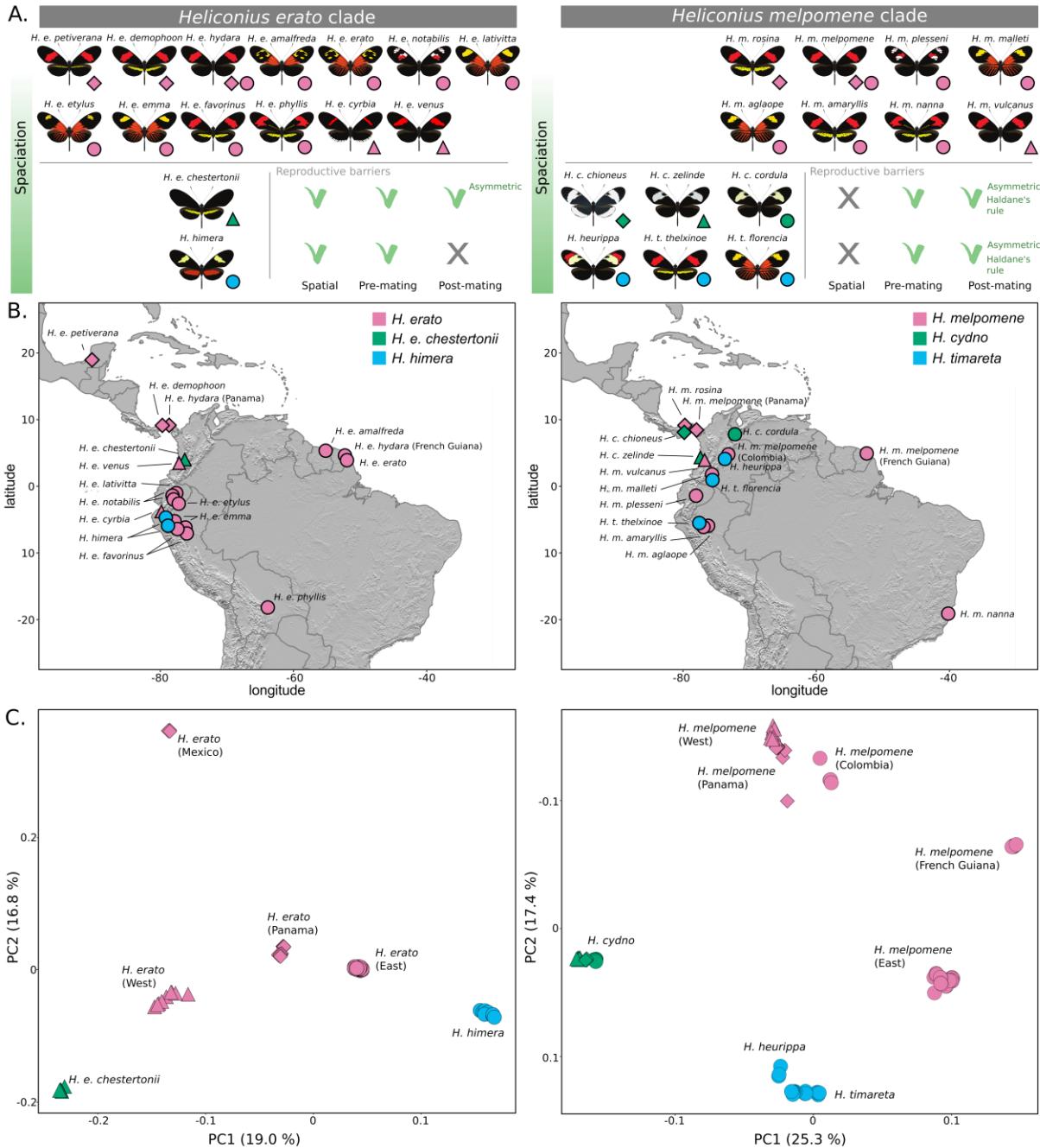
190 **Figure B 1. The effect of population size on the coalescent and measures of diversity and divergence.** The
 191 branches represent two populations 1 and 2 that have split at a certain time (gray dashed line) and which can have a
 192 different size, such as the autosomes (gray) and X chromosome (green). The black lines show the coalescent of two
 193 alleles in each population. This coalescence process is influenced by the split time as well as the population size.
 194 Population size affects the nucleotide diversity within each population (π), the total nucleotide diversity (π_T) and
 195 absolute divergence d_{XY} , but not d_a as indicated by the vertical colored lines. For d_a , π_S is used as the estimate of π_{anc} .
 196 The influence of population size on F_{ST} can be seen as resulting from a decrease in the denominator (π_T), but not in the
 197 numerator (π_T and π_S change proportionately).

198

199 To show how these different divergence measures perform, we simulated a simplified population split with varying
 200 degrees of migration (m) (Figure B 2). As expected, the values F_{ST} , d_{XY} and d_a all increase when migration between
 201 populations decreases. F_{ST} and d_{XY} are clearly influenced by population size. While for d_{XY} this simply results from the
 202 variation present at the time of the split, F_{ST} does not show a simple linear relationship with population size. Only d_a
 203 represents the net accumulation of differences that can be compared between populations of different sizes, such as the
 204 sex chromosomes versus autosomes.

205

206 **Figure B 2. Simulated effect of population size differences on divergence measures F_{ST} , d_{XY} and d_a .** Simulations
207 were performed for two populations that split 4 million generations ago and vary in their degree of migration (m). A
208 lower effective population size, such as for the X chromosome (green) compared to autosomes (gray), results in higher
209 F_{ST} and lower d_{XY} estimates, but has no effect on d_a under these assumptions.


210 **Results and discussion**

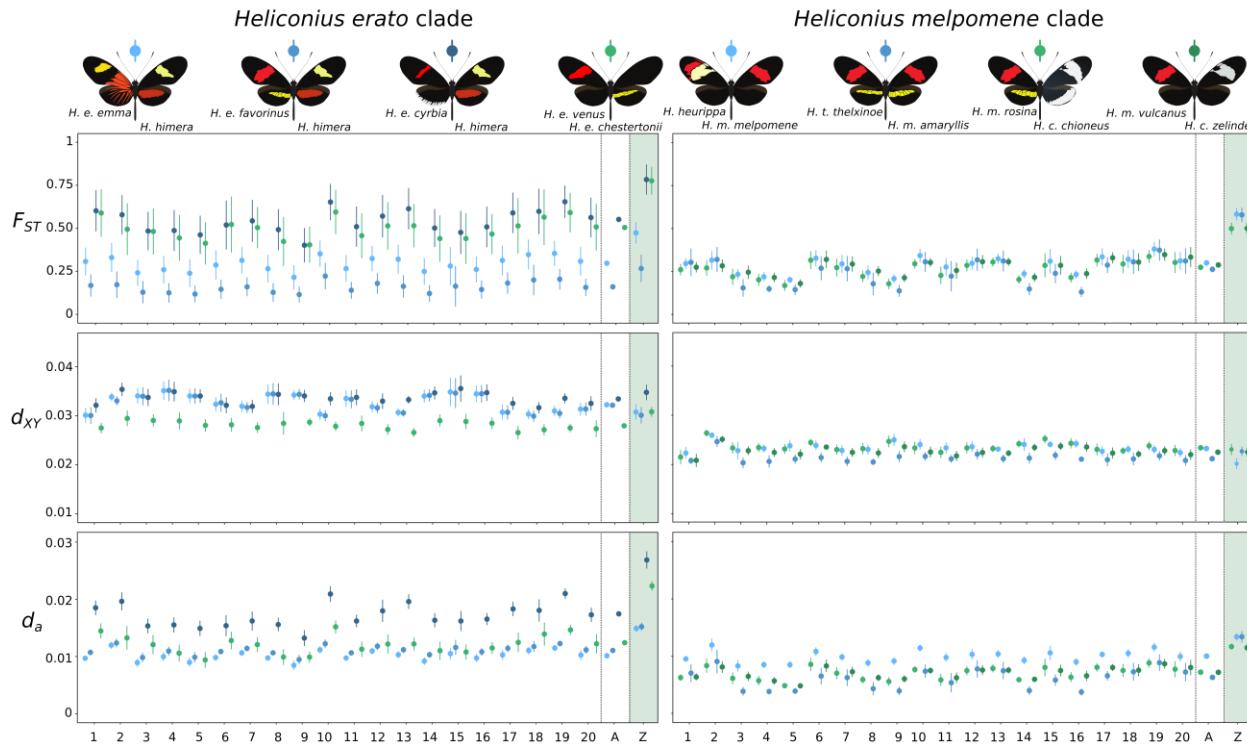
211 *Population structure in Heliconius erato and Heliconius melpomene*

212 We mapped a total of 109 *Heliconius erato* clade resequenced genomes to the *Heliconius erato* v1 reference genome
213 (Van Belleghem *et al.* 2017) and 115 *Heliconius melpomene* clade genomes to the *Heliconius melpomene* v2 reference
214 genome (Davey *et al.* 2016). These samples represent 20 *H. erato* clade and 16 *H. melpomene* clade populations
215 covering nearly the entire geographic distribution of these species groups (Figure 1A and B).

216 Principal components analysis (PCA) of the autosomal SNP variation, performed using Eigenstrat SmartPCA (Price
217 *et al.* 2006), grouped the *H. erato* clade samples mainly according to geography, apart from *H. himera* individuals
218 from Ecuador and northern Peru and *H. e. chestertonii* from Colombia (Figure 1C). Four main geographic groups were
219 apparent: Mexico, Panama, populations west of the Andes and populations east of the Andes. *Heliconius erato*
220 populations east of the Andes as far as 3000 km apart were tightly clustered in the PCA analysis. The separate grouping
221 of *H. himera* and *H. e. chestertonii* individuals supports these populations as representing incipient species that
222 maintain their integrity despite ample opportunity for hybridization and gene flow (Jiggins *et al.* 1996; McMillan *et*
223 *al.* 1997; Arias *et al.* 2008). In the PCA, *H. himera* was more closely related to the *H. erato* populations east of the
224 Andes, whereas *H. e. chestertonii* was more closely related to the West Andean populations.

225 PCA analysis of the *H. melpomene* clade grouped individuals from west of the Andes and Panama closely together,
226 with *H. melpomene* from Colombia being most similar to this population pair (Figure 1C). *Heliconius melpomene*
227 populations from east of the Andes further clustered in three distinct groups, largely in agreement with geographic
228 distance; populations from the eastern slopes of the Andes, the French Guiana population and *H. m. nanna* from Brazil
229 (Figure 1C and Figure S1). While phylogenetic reconstructions have suggested that *H. melpomene* and the *H.*
230 *cydno/timareta* clades are reciprocally monophyletic (Dasmahapatra *et al.* 2012; Nadeau *et al.* 2013; Martin *et al.*
231 2013), such patterns are hard to interpret from the PCA and patterns of relatedness may be influenced by more recent
232 admixture. Nevertheless, *H. cydno* and *H. timareta* clustered distinctly. *Heliconius cydno* formed a distinct cluster with
233 little difference between samples from Panama, west or east of the Andes. *Heliconius timareta* grouped most closely
234 with *H. heurippa*, consistent with previous analysis (Nadeau *et al.* 2013; Arias *et al.* 2014).

235


236 **Figure 1. Speciation in the *Heliconius erato* and *Heliconius melpomene* clade and sampling.** (A.) *Heliconius erato*
237 *chestertonii* (green) is reproductively isolated from *H. erato* (pink) by spatial separation (parapatry), mate choice and
238 (asymmetric) reduced hybrid fertility of both sexes (i.e. no Haldane's rule). *Heliconius himera* (blue) is reproductively
239 isolated from *H. erato* by spatial separation and mate choice, but hybrids show no reduced fertility. *Heliconius cydno*
240 (green) and *H. timareta* (blue) occur sympatrically with *H. melpomene* (pink) populations, but are both reproductively
241 isolated by strong mate choice and (asymmetric) reduced fertility of heterozygous hybrids (i.e. Haldane's rule). (B.)
242 Localities of sampled populations included in this study. Within *H. erato*, *H. melpomene*, *H. timareta* and *H. cydno*
243 names represent different races that display distinct color patterns. Shapes represent geographic regions; Mexico and
244 Panama (diamond), west of the Andes (triangles) and east of the Andes (circles). (C.) PCA plots of autosomal SNP
245 variation. Note that *H. m. nanna* has not been included in the PCA analysis as the signal of geographic isolation
246 between *H. m. nanna* and the other populations dominates the signal (see Figure S1).

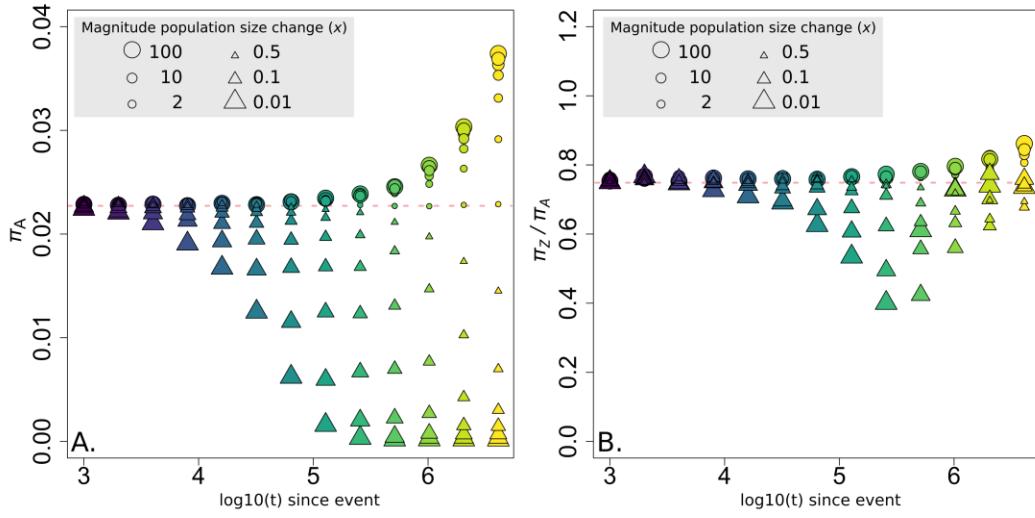
247 *Z chromosome divergence in Heliconius erato and Heliconius melpomene*

248 To compare rates of divergence between the *Z* chromosome and autosomes, we calculated three measures that are
249 commonly used to compare divergence between populations, F_{ST} , d_{XY} and d_a , between incipient species and population
250 pairs of *H. erato* and *H. melpomene* (Figure 2 and Figure S2-4). All three measures of sequence divergence are
251 calculated from mutational diversity in the data, but they are each dependent on population size in different ways (BOX
252 2). In *Heliconius*, F_{ST} has been frequently used to identify regions in the genome under strong divergent selection
253 (Nadeau *et al.* 2012; Martin *et al.* 2013; Van Belleghem *et al.* 2017). In comparisons between parapatric color pattern
254 races of both *H. erato* and *H. melpomene*, sharp F_{ST} peaks are present near the major color pattern loci, suggesting both
255 strong divergent selection and reduced gene flow (Figure S2). Additionally, increased F_{ST} values can be observed on
256 the *Z* chromosome in comparisons between populations with assortative mating and hybrid inviability and sterility
257 (Figure 2 and Figure S2). However, F_{ST} is influenced by effective population sizes (BOX 2). It is therefore problematic
258 to obtain insights about selection or migration when comparing genomic regions with different effective population
259 sizes, such as the *Z* chromosome and autosomes. Given equal numbers of breeding males and females, the *Z*
260 chromosome is expected to have an effective population size three-quarters that of the autosomes. Smaller population
261 size and the resulting lower nucleotide diversity on the *Z* chromosome may, therefore, partly explain inflated F_{ST}
262 estimates on the *Z* chromosome.

263 In contrast, the d_{XY} values on the *Z* chromosome tend to be similar to or slightly lower than the average values on the
264 autosomes in most species comparisons of the *H. erato* and *H. melpomene* clade (Figure 2 and Figure S3). Under
265 equilibrium conditions, d_{XY} on the *Z* chromosome is expected to be three-quarters that of the autosomes at the time of
266 the split. As time progresses and differences between populations accumulate, the proportion of the coalescent that is
267 effected by the ancestral population size will become smaller and the ratio of d_{XY} on the *Z* to d_{XY} on the autosomes is
268 expected to move towards one. However, estimating the exact split time is difficult and finding the expected absolute
269 divergence for the *Z* chromosome compared to the autosomes is complicated (Patterson *et al.* 2006). Moreover, in
270 contrast to the expectation that the ratio of d_{XY} will move towards one, d_{XY} on the *Z* chromosome is higher than on the
271 autosomes for *H. e. cyrbia* - *H. himera* and *H. e. venus* - *H. e. chestertonii* comparisons (Figure 2).

272 Finally, by subtracting an estimate of diversity in the ancestral population from the absolute divergence measure d_{XY} ,
273 known as d_a (Nei & Li 1979), we obtain an estimate of nucleotide differences that have accumulated since the time of
274 split (BOX 2). The d_a estimates show significantly higher divergence on the *Z* chromosome in the comparisons *H.*
275 *himera* - *H. e. cyrbia*, *H. e. venus* - *H. e. chestertonii*, and in *H. melpomene* - *H. cydno* and *H. melpomene* - *H. timareta*
276 (Figure 2 and Figure S4). Overall, the increased d_{XY} in the *H. e. cyrbia* and *H. himera* and the *H. e. venus* - *H. e.*
277 *chestertonii* comparisons and the higher d_a values on the *Z* chromosome relative to the autosomes appear to support a
278 faster rate of divergence between *Heliconius* species pairs on *Z* chromosome.

279

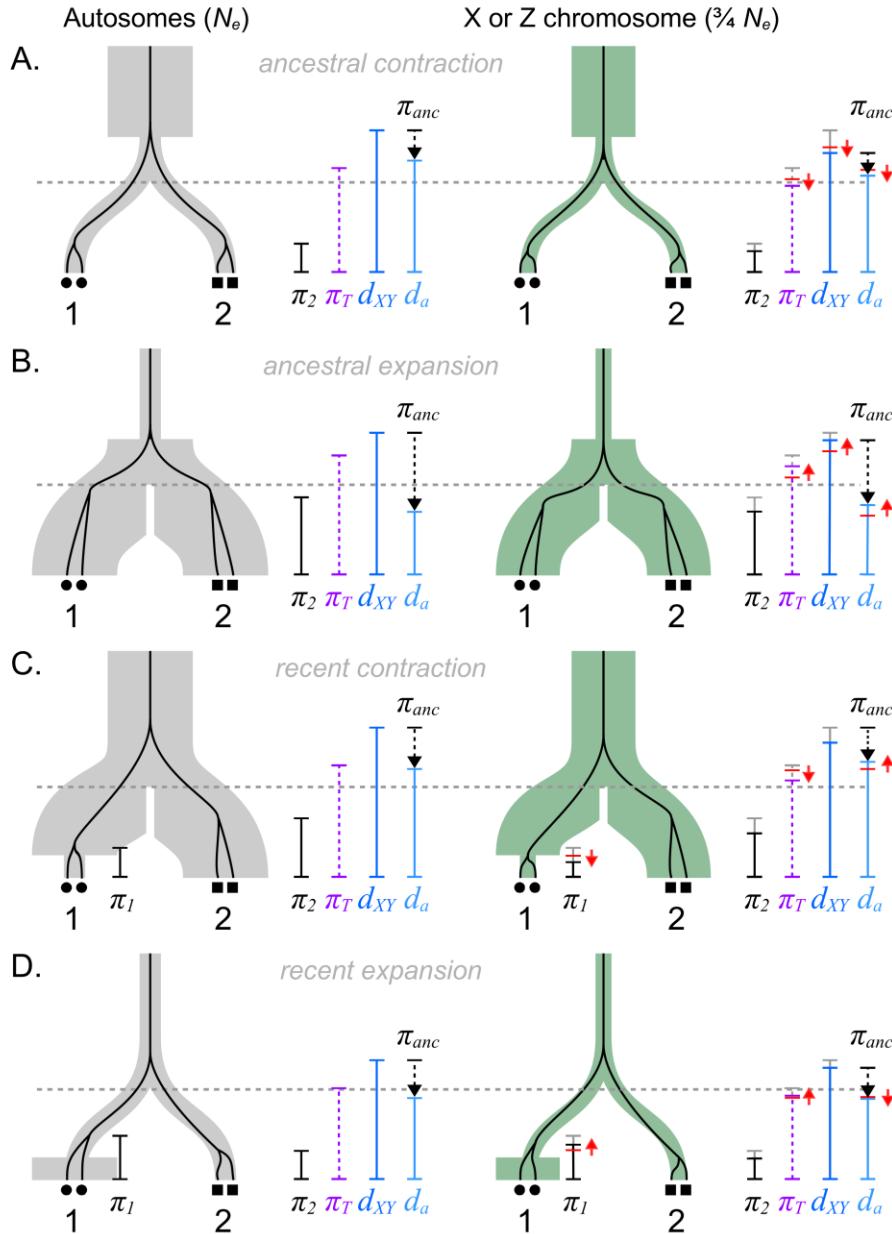

280 **Figure 2. Averages of divergence measures at the autosomes (1-20) and Z chromosome in four**
 281 **parapatric/sympatric species comparisons of the *H. erato* and *H. melpomene* clade.** Averages for each
 282 chromosome and 95 % confidence intervals (vertical bars) were estimated using block jackknifing using 1 Mb
 283 intervals. The vertical dashed lines highlight the averages over all autosomes (A) and the estimates for the Z
 284 chromosome. Values were calculated in 50 kb non-overlapping windows. See Figure S2, S3 and S4 for stepping
 285 window plots of F_{ST} , d_{XY} and d_a values, respectively.

286

287 *Population size changes affect the Z chromosome differently*

288 Apart from the overall difference in effective population size between the Z chromosome and autosomes, there are
 289 additional demographic factors that can contribute to differences in F_{ST} , d_{XY} and d_a values between the Z chromosome
 290 and autosomes. Population size changes can alter the equilibrium expectation that Z-linked diversity should be three-
 291 quarters of autosomal diversity (Pool & Nielsen 2007). To explore this, we performed coalescent simulations of
 292 sequences from populations that underwent a single size change in the past, varying the time and magnitude of this
 293 event (Figure 3). In these simulated populations, the decrease in nucleotide diversity that follows population
 294 contraction occurs much faster than the increase in diversity that follows an expansion of the same magnitude (Figure
 295 3A). This is because an increase in diversity requires mutation accumulation, whereas drift can rapidly remove
 296 variation to reach a new equilibrium. Additionally, population size changes have proportionately stronger effects on
 297 diversity on the Z chromosome compared to the autosomes (Figure 3B). This results from populations with a smaller
 298 effective population size, such as the Z chromosome, converging faster to their new equilibrium after a population size
 299 change (Pool & Nielsen 2007).

300

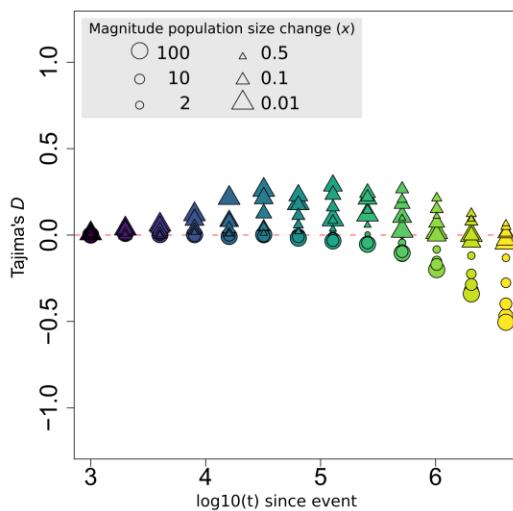


301

Figure 3. Simulated effect of population size change on nucleotide diversity on the autosomes (π_A) (A.) and the ratio of nucleotide diversity between the Z chromosome and autosomes (π_Z/π_A) (B.). Triangles indicate population size contractions, circles indicate population size increase. Colors and x-axis represent the time at which the population size change occurred in generations ($\log_{10}(t)$) with N_e equal to 3e6 and 2.25e6 for the autosomes and Z chromosome, respectively. The colors and time at which population size change occurred correspond to colors in the simulations in Figure 6. The pink dashed lines indicate expectations under neutrality.

307

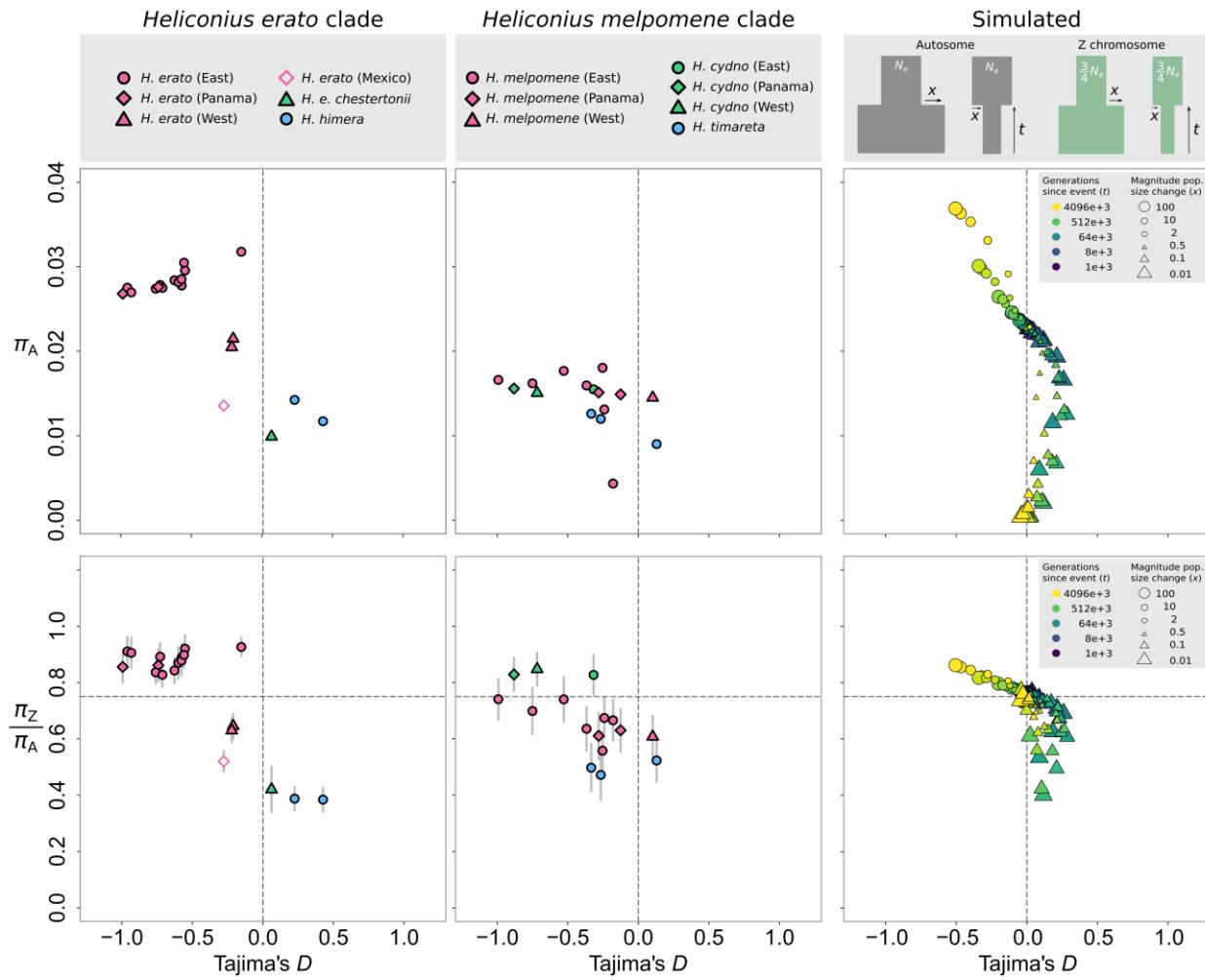
308 The result is that divergence measures are differentially affected by population size change on the Z chromosome
 309 compared to the autosomes. The Z chromosome to autosome (Z/A) diversity ratio will be larger than expected in
 310 populations that experienced a recent expansion, and smaller than expected in those that experienced a recent
 311 contraction (Figure 3B). Therefore, in pairwise comparisons, if population size change occurred in the ancestral
 312 population before the two populations split, it would alter the ancestral Z/A diversity ratio and therefore confound
 313 comparisons of divergence between Z and autosomes using either relative or absolute measures of divergence, as all
 314 are influenced by ancestral diversity (Figure 4). By contrast if population size change occurred in one or both daughter
 315 populations after the split, it would affect the relative measures of divergence F_{ST} and d_a , but not absolute divergence
 316 (d_{XY}), which is only dependent on ancestral diversity and not on diversity within each population. All the simulations
 317 were run for time scales relevant to *Heliconius* divergence and, therefore, demonstrate that a return to equilibrium
 318 values is unlikely after a population increase during the history of these species. Especially the effect of population
 319 size increases on Z/A diversity ratios can be long lasting during the evolutionary history of a population.



320

321 **Figure 4. The effect of population size change on the coalescent and measures of diversity and divergence.** The
 322 branches represent two populations 1 and 2 that have split at a certain time (gray dashed line) and which can have a
 323 different size, such as the autosomes (gray) and X chromosome (green). The black lines show the coalescent of two
 324 alleles in each population. This coalescence process is influenced by the split time as well as the population size (see
 325 BOX2). Moreover, red arrows show the disproportionate effect of population size change on diversity and divergence
 326 measures on the sex chromosome (or populations with a smaller size). Note that the effect size of a population size
 327 change will depend on the magnitude as well as the timing (see Figure 3). Exact expectations, including more complex
 328 size changes, can be calculated as demonstrated in Pool & Nielsen (2007).

329 *Demography and its influence on Z/A diversity ratios in Heliconius*


330 To explore how population size changes might have affected Z/A diversity ratios and thus Z/A divergence comparisons
331 within *Heliconius* clades, we used the behavior of Tajima's *D* as a way to access likely population size changes within
332 species. Tajima's *D* is a population genetic measure commonly used to detect whether a DNA sequence is evolving
333 neutrally (Tajima 1989). At a genome-wide scale, negative values reflect population size expansion, whereas positive
334 values reflect population size decrease. Due to the different response of Tajima's *D* to population size increase and
335 decrease, Tajima's *D* can give an indication of population size changes and their effect on nucleotide diversity. As the
336 simulations show, negative Tajima's *D* values (population size increase) are expected to correlate with increased
337 nucleotide diversity, whereas positive Tajima's *D* values (population size decrease) are expected to correlate with reduced
338 nucleotide diversity (Figure 5). As with the Z/A diversity ratio, the timescale of the influence of population
339 size change on Tajima's *D* values is different for population expansion versus population contraction, as a population
340 contraction returns to equilibrium much faster than an expansion. However, because smaller populations respond faster
341 to such population size changes, the Tajima's *D* values are also expected to be correlated with Z/A diversity ratios.

342
343 **Figure 5. Simulated effect of population size change on Tajima's *D* values.** Triangles indicate population size
344 contractions, circles indicate population size increase. Colors and x-axis represent the time at which the population
345 size change occurred in generations ($\log_{10}(t)$) with N_e equal to 3e6 and 2.25e6 for the autosomes and Z chromosome,
346 respectively. The colors and time at which population size change occurred correspond to colors in the simulations in
347 Figure 6. The pink dashed line indicates expectations under neutrality.

348
349 Although this results in a complex relationship (Figure 6), *H. erato* clade populations that showed more negative
350 Tajima's *D* values (~population size increase) all had higher nucleotide diversity (π) values, as well as higher Z/A
351 diversity ratios (Figure 6). There was a similar trend in the *H. melpomene* clade. It should be noted that multiple
352 population size change events (e.g. population size expansion followed by a bottleneck) would further complicate the
353 relation between Tajima's *D* estimates and the expected nucleotide diversity as well as the Z/A diversity ratio.
354 Nevertheless, the patterns among these *Heliconius* populations suggest that differences in diversity as well as

355 differences in the Z/A diversity ratios are likely driven at least in part by population size changes. Given that samples
 356 assigned to a population were collected in close proximity, it is unlikely that estimated Tajima's D values are influenced
 357 by hidden population structure in the data (which could result in negative Tajima's D values).

358
 359 **Figure 6. Relation between Tajima's D , average nucleotide diversity on the autosomes (π_A) (upper panels) and**
 360 **the ratio of nucleotide diversity between the Z chromosome and autosomes (π_Z / π_A) (lower panels)** for
 361 **populations of the *H. erato* and *H. melpomene* clade and simulated data.** Gray vertical bars represent 95%
 362 confidence intervals estimated from block-jackknifing, note that these are too small to see in the Tajima's D versus π_A
 363 plots. Gray squares in the upper right panel represent the simulated population size changes. For the simulated data
 364 (right panels), the same data was used as in Figure 4 and Figure 5. Triangles indicate population size contractions,
 365 circles indicate population size increase, colors represent the time at which the population size change occurred in
 366 generations (t) with N_e equal to 3e6 and 2.25e6 for the autosomes and Z chromosome, respectively. The dashed lines
 367 indicate expectations under neutrality.

368
 369 Broad patterns of nucleotide diversity can give some insight into the likely population size changes that have influenced
 370 our study species. Higher nucleotide diversity in *H. erato* clade as compared to the *H. melpomene* clade is consistent
 371 with the generally greater abundance of *H. erato* observed in nature (Mallet, Jiggins, *et al.* 1998) (Figure 6). These
 372 population size differences likely also explain the large differences in absolute divergence levels among the *H. erato*

373 clade populations compared to the *H. melpomene* clade populations (Figure 7). Absolute divergence between *H.*
374 *melpomene* and *H. timareta* or *H. cydno* is smaller than within population diversity of most *H. erato* populations
375 (Figure 6), despite the former pairs being clearly distinct species.

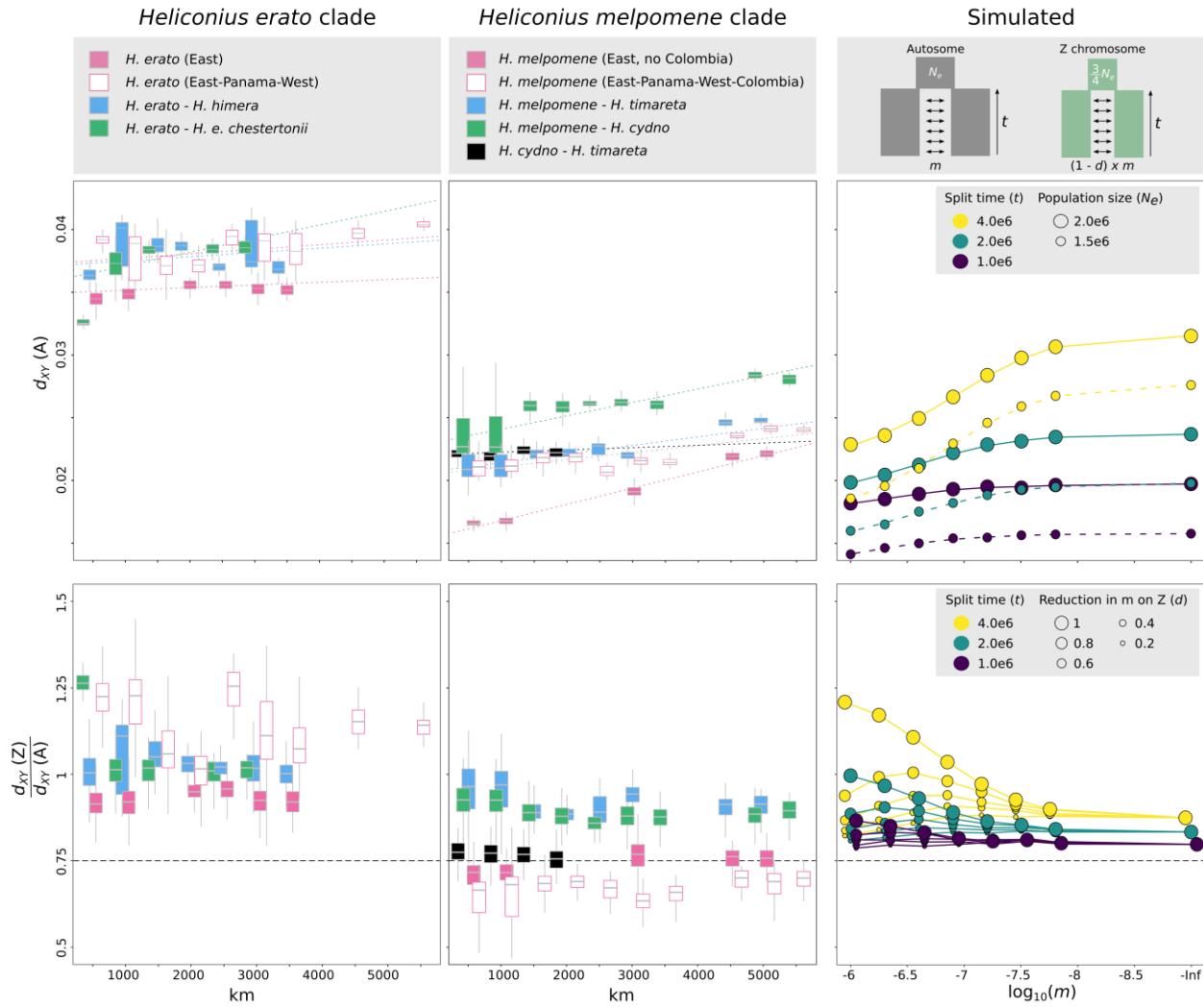
376 While changes in population size can have strong effects on measures of sequence divergence, jointly considering
377 patterns of variation on the Z chromosome and autosome can give further insights into the evolutionary history. Among
378 *H. erato* populations from east of the Andes that show little differentiation, $d_{XY}(Z)/d_{XY}(A)$ ratios are above 0.75
379 (0.91 ± 0.11) (Figure 7) and there is also increased Z/A nucleotide diversity (Figure 6). This likely resulted from
380 population size increase in the ancestral population. If this population size increase occurred before the divergence of
381 *H. himera* and *H. e. chestertonii* from *H. erato* this could have contributed to elevated $d_{XY}(Z)/d_{XY}(A)$ in these
382 comparisons (Figure 6). The $d_{XY}(Z)/d_{XY}(A)$ ratios among *H. melpomene* from east of the Andes are closer to the 0.75
383 ratio that would be expected immediately after the populations split (Figure 7). In contrast, while broader comparisons
384 among *H. melpomene* populations east and west of the Andes, Panama and Colombia show clearly greater divergence,
385 their $d_{XY}(Z)/d_{XY}(A)$ ratios are much lower, consistent with a population size decrease deeper in the ancestry of *H.*
386 *melpomene*. Finally, the lower $d_{XY}(Z)/d_{XY}(A)$ ratios in *H. cydno* - *H. timareta* comparisons relative to the *H. melpomene*
387 - *H. cydno* and *H. melpomene* - *H. timareta* comparisons suggests a population contraction of the ancestral population
388 of *H. cydno* and *H. timareta*, but after they split from *H. melpomene*.

389 Within the *H. erato* clade, nucleotide diversity as well as Z/A diversity ratios were distinctly higher in populations
390 from east of the Andes and Panama and lower in the *H. e. chestertonii* and *H. himera* populations (Figure 6). These
391 populations shared a common ancestor, so differences in nucleotide diversity likely result from population size changes
392 that occurred after divergence and thus confound the relative F_{ST} and d_a divergence measures. Although absolute
393 divergence d_{XY} is clearly higher between *H. erato* and *H. himera* or *H. e. chestertonii* than among *H. erato* populations
394 east of the Andes (Figure 7), a population size decrease in *H. himera* and *H. e. chestertonii* may inflate the F_{ST} and d_a
395 estimates when comparing these populations to geographically abutting *H. erato* populations (Figure 2). Additionally,
396 any population size changes that occurred before the split of *H. himera* from *H. erato* and *H. e. chestertonii* from *H.*
397 *erato* may have affected current d_{XY} estimates. Importantly, if such demographic changes differently affected the
398 ancestor of *H. himera* as compared to the ancestor of *H. e. chestertonii*, the d_{XY} values may not necessarily reflect
399 different degrees or stages of the speciation process. This difficulty may also apply when comparing divergence
400 between *H. melpomene* and *H. timareta* and between *H. melpomene* and *H. cydno*.

401

402 *Sex-linked incompatibilities increase absolute Z/A divergence ratio*

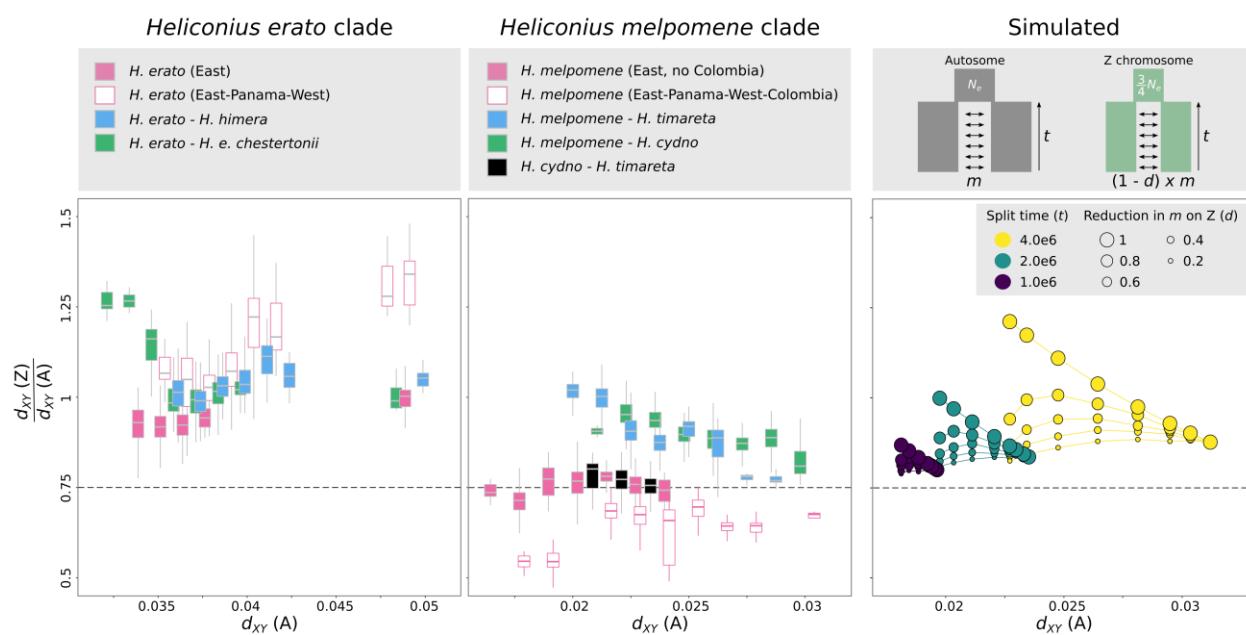
403 Despite the difficulties in directly comparing divergence on sex chromosomes and autosomes, it may be possible to
404 detect enhanced barriers to migration on sex chromosomes (i.e. reduced *effective* migration) by comparing population
405 pairs with different levels of *absolute* migration due to physical isolation, but that otherwise share the same common
406 history. This can be achieved by comparing pairs of populations from the same two species that differ in their extent
407 of geographic isolation. Indeed, previous analyses of sympatric and allopatric populations of *H. melpomene*, *H. cydno*


408 and *H. timareta*, based on shared derived alleles (i.e. the ABBA-BABA test), found evidence of extensive gene flow
409 between the species in sympatry, but with a strong reduction on the Z chromosome (Martin *et al.* 2013). Here we
410 instead use our broad sampling scheme to investigate how patterns of sequence divergence differ with differing levels
411 of geographic separation, and ask whether this signal can detect reduced effective migration on the Z chromosome.

412 Simulations show that if distance is considered a proxy for migration, reduced rates of admixture on the Z chromosome
413 may become apparent as increased absolute Z/A divergence ($d_{XY}(Z)/d_{XY}(A)$) ratios over short distances, with the ratio
414 decreasing between pairs that are geographically more isolated (Figure 7). As the effective rate of migration is reduced
415 on the Z chromosome relative to autosomes, the $d_{XY}(Z)/d_{XY}(A)$ ratio increases, and this increase is most pronounced
416 when overall migration rates are high. This relation can be explained by the absolute difference in effective migration
417 on the Z chromosome compared to the autosomes becoming smaller as overall migration decreases. While overall
418 $d_{XY}(Z)/d_{XY}(A)$ ratios may be influenced by ancestral population size changes, the trend should be independent from
419 population size changes. Our widespread sampling of both clades therefore allowed us to test for reduced effective
420 migration on the Z chromosome.

421 Among *H. erato* and *H. melpomene* clade populations, absolute divergence generally increases with increased distance
422 between population pairs (Figure 7). This trend is strongest for population comparisons that are less obstructed by
423 geographic barriers, such as among *H. erato* (mantel test: $R^2 = 0.18$; $p = 0.012$) and *H. melpomene* (excluding
424 Colombia; mantel test: $R^2 = 0.95$; $p = 0.001$) populations from east of the Andes. As expected, the correlation between
425 distance and absolute divergence is reduced by geographical barriers, such as when comparing *H. erato* (mantel test:
426 $R^2 = 0.15$; $p = 0.019$) and *H. melpomene* (mantel test: $R^2 = 0.55$; $p = 0.001$) populations from Panama, east of the Andes
427 and west of the Andes. We also observed a significant trend of increased absolute divergence with distance between
428 populations of *H. erato* and *H. e. chestertonii* (mantel test: $R^2 = 0.44$; $p = 0.001$), *H. melpomene* and *H. cydno* (mantel
429 test: $R^2 = 0.69$; $p = 0.001$) and *H. melpomene* and *H. timareta* (mantel test: $R^2 = 0.56$; $p = 0.001$). This is consistent
430 with gene flow among these species pairs where they are in contact. In contrast, no significant trend between absolute
431 divergence and distance was observed between *H. erato* and *H. himera* and *H. cydno* and *H. timareta*, suggesting that
432 these species pairs may be more strongly isolated.

433 We next examined the $d_{XY}(Z)/d_{XY}(A)$ ratios and its relationship to geographic distance. If rates of admixture between
434 populations are similar on the Z chromosome compared to the autosomes, we would not expect any relation between
435 distance and $d_{XY}(Z)/d_{XY}(A)$ ratios. In contrast, we observed increased $d_{XY}(Z)/d_{XY}(A)$ ratios among geographically more
436 closely located population pairs for *H. melpomene* - *H. timareta* (mantel test: $R^2 = 0.25$; $p = 0.004$) and *H. melpomene*
437 - *H. cydno* (mantel test: $R^2 = 0.35$; $p = 0.001$) comparisons (Figure 7). Similarly, a tendency for increased $d_{XY}(Z)/d_{XY}(A)$
438 ratios between *H. erato* and *H. e. chestertonii* was observed among the geographically closest comparisons, although,
439 this was not significant (mantel test: $R^2 = 0.26$; $p = 0.06$). Finding this trend, however, can be obscured by geographic
440 barriers that would reduce the relation between distance and admixture. For instance, *H. e. chestertonii* comes into
441 close contact with *H. e. venus* west of the Andes, but is geographically isolated from relatively closely located *H. erato*
442 populations east of the Andes. Similarly, PCA analysis of the *H. melpomene* populations indicate splits between


443 populations east of the Andes, which may reflect additional geographic barriers that do not correlate linearly with
 444 distance (Figure 1).

445
 446 **Figure 7. Relation between pairwise distance (km), autosomal $d_{XY}(A)$ (upper panels) and the ratio of d_{XY} between**
 447 **the Z chromosome and autosomes ($d_{XY}(Z) / d_{XY}(A)$) for populations of the *H. erato* and *H. melpomene* clade and**
 448 **simulated data.** Boxplots represent pairwise measures over 500 km bins. Gray squares in the upper right panel
 449 represent the simulated populations with different rates of migration (m) expressed as a proportion of the effective
 450 population size. For the simulated data (right panels), colors indicate split times of the two populations in generations
 451 (t) with N_e equal to 2e6 and 1.5e6 for the autosomes and Z chromosome, respectively. Size of circles indicates
 452 proportional reduction in migration on the Z chromosome.

453
 454 We also carried out a similar comparison using absolute divergence on the autosomes, which might reflect a more
 455 direct relationship with migration. Using the absolute divergence on the autosomes as a proxy for gene flow, we also
 456 find a pattern of increased Z/A divergence ratios for species pairs with known post-zygotic reproductive barriers
 457 (Figure 8). Z/A divergence ratios are significantly higher between population pairs with lower divergence values on
 458 the autosomes in *H. melpomene* - *H. timareta* (mantel test: $R^2 = 0.70$; $p = 0.001$), *H. melpomene* - *H. cydno* (mantel

459 test: $R^2 = 0.64$; $p = 0.001$) and $H. erato - H. e. chestertonii$ (mantel test: $R^2 = 0.51$; $p = 0.007$) comparisons, but not in
 460 $H. timareta - H. cydno$ and $H. erato - H. himera$ comparisons. This is consistent with crosses showing that the former
 461 and not the latter pairs experience hybrid-sterility and Haldane's Rule (McMillan *et al.* 1997; Naisbit *et al.* 2002;
 462 Salazar *et al.* 2005; Muñoz *et al.* 2010; Merrill *et al.* 2012; Sánchez *et al.* 2015) and also agrees with the previous
 463 observation of reduced shared variation between $H. melpomene$ and both $H. timareta$ and $H. cydno$ on the Z
 464 chromosome (Martin *et al.* 2013). Note that our simulations suggest that to explain the trend observed in our data, there
 465 must be a very strong reduction of migration on the Z chromosome relative to the autosomes (~60% or greater).

466
 467 **Figure 8. Relation between pairwise autosomal $d_{XY}(A)$ and the ratio of d_{XY} between the Z chromosome and**
 468 **autosomes ($d_{XY}(Z) / d_{XY}(A)$) for populations of the $H. erato$ and $H. melpomene$ clade and simulated data.** Boxplots
 469 represent pairwise measures over $1.25e-3$ d_{XY} bins. Gray squares in the upper right panel represent the simulated
 470 populations with different rates of migration (m) expressed as a proportion of the effective population size. For the
 471 simulated data (right panels), colors indicate split times of the two populations in generations (t) with N_e equal to $2e6$
 472 and $1.5e6$ for the autosomes and Z chromosome, respectively. Size of circles indicates proportional reduction in
 473 migration on the Z chromosome compared to the autosomes.

474
 475 *Alternative factors affecting Z/A diversity ratios in Heliconius*
 476 Factors other than population size change could result in deviations from the expected Z/A diversity ratio (BOX1). In
 477 *Heliconius*, there is no empirical data on sex-biased mutation rates. While higher mutation rates on the Z could explain
 478 increased Z/A diversity ratios and increased rates of divergence (Kirkpatrick & Hall 2004; Vicoso & Charlesworth
 479 2006; Sayres & Makova 2011), it is unlikely that closely related populations would differ in their mutation rate and
 480 that this could explain the observed variation in Z/A diversity ratios among the *Heliconius* populations. Alternatively,
 481 in *Heliconius* male-biased sex ratios have been reported in the field, which could result in increased Z/A diversity
 482 ratios. However, it has been argued that these male-biased sex ratios are most likely explained by differences in
 483 behavior resulting in male-biased captures rather than effective sex ratio differences (Jiggins 2017). Nonetheless, a

484 *Heliconius* characteristic that could potentially amplify sex-ratio biases is that *H. erato* and *H. melpomene* clade
485 populations are characterized by contrasting pupal-mating and adult-mating strategies, respectively (Gilbert 1976;
486 Beltrán *et al.* 2007). Pupal-maters are largely monandrous (females mate only once), whereas adult-maters are
487 polyandrous (Walters *et al.* 2012). Such differences in mating system could potentially result in increased variance of
488 male reproductive success and decreased Z/A diversity ratios for monandrous mating systems (Charlesworth 2001).
489 However, the frequency of remating in polyandrous *Heliconius* species is estimated to be only 25-30 % higher than in
490 monandrous species (Walters *et al.* 2012) and we did not find any clear difference in Z/A diversity ratios between the
491 pupal-mating *H. erato* and adult-mating *H. melpomene* clade populations (Figure 6). Moreover, the pattern of increased
492 Z/A divergence that results from reduced admixture on the Z in population comparisons of geographically closely
493 located *Heliconius* species should not be affected by sex ratio or mutation biases. Overall, in *Heliconius*, the observed
494 variation in Z/A diversity ratios are thus likely mostly shaped by demographic changes.

495

496 *Consequences for other study systems*

497 Similar to *Heliconius*, extensive genomic sampling is available for a number of other natural systems that have recently
498 diverged, particularly for birds that also have ZW sex chromosomes, such as flycatchers (Ellegren *et al.* 2012), crows
499 (Poelstra *et al.* 2014) and Darwin's finches (Lamichhaney *et al.* 2015). In these systems, increased coalescence rates
500 (~lineage sorting) on the Z and/or W chromosome have been accredited to the smaller effective population sizes of the
501 sex chromosome. However, it remains unclear whether elevated measures of divergence could indicate elevated rates
502 of between species divergence on the sex chromosomes, resulting from increased mutation or reduced admixture.

503 In the adaptive radiation of Darwin's finches, there is no evidence for Haldane's rule, nor for reduced viability of
504 hybrids due to post-mating incompatibilities (Grant & Grant 1992) and the maintenance of isolating barriers might
505 best be explained as resulting from ecological selection and assortative mating (Grant & Grant 2008). In crows, the
506 divergence between hooded and carrion crows seems to be solely associated with color-mediated assortative mating
507 even in the apparent absence of ecological selection (Randler 2007; Poelstra *et al.* 2014). Moreover, populations of
508 both Darwin's finches and crows can be characterized by distinct demographic histories (Lamichhaney *et al.* 2015;
509 Vijay *et al.* 2016). Therefore, in these species, deviations in divergence measures from neutral expectation on the Z
510 chromosome are potentially also explained by demography. In the divergence of pied and collared flycatchers, species
511 recognition and species-specific male plumage traits are Z-linked (Saether *et al.* 2007) and female hybrids are
512 completely sterile compared to only low levels of reduced fertility in males (Veen *et al.* 2001). In agreement with the
513 large X-effect and disjunct rates of admixture between the sex chromosomes and autosomes, genome scans have found
514 signals of increased relative divergence on the Z and W chromosomes (Ellegren *et al.* 2012; Smeds *et al.* 2015). The
515 demographic history of these populations is characterized by a severe decrease in population size since their divergence
516 (Nadachowska-Brzyska *et al.* 2013), which would influence the relative measures of divergence that have been used.
517 Especially for the W chromosome, the reported excessive decrease of diversity and the high values of relative
518 divergence can thus likely be partly explained by demography (Smeds *et al.* 2015). However, the excess of rare alleles

519 (~negative Tajima's D) on the W chromosome does contrast with these inferred demographic histories and provides
520 support that the reduced diversity and increased F_{ST} measures result from selection (Smeds *et al.* 2015).

521

522 Conclusion

523 The disproportionate role of sex chromosomes during speciation has been well documented based on genetic analysis,
524 however, it is less clear how this influences patterns of divergence in natural populations. In *Heliconius*, we find much
525 of the observed increased absolute divergence on the Z chromosome relative to neutral expectation can be explained
526 by population size changes. This cautions against highlighting increased sex chromosome divergence as evidence for
527 a disproportionate role in species incompatibilities or as evidence for faster X evolution. It is clear that although relative
528 measures of divergence are most prone to demographic changes, absolute divergence measures can also be strongly
529 influenced by population size changes. Contrary to what has been claimed, absolute measures do not therefore provide
530 a solution to the problems inherent in using relative measures to compare patterns of divergence across genomes
531 (Cruickshank & Hahn 2014). Despite these difficulties, we do find patterns consistent with decreased effective
532 migration on the Z for species pairs with known post-zygotic reproductive barriers, in agreement with hybrid sterility
533 and inviability being linked to the Z chromosome in these cases (Jiggins, Linares, *et al.* 2001; Naisbit *et al.* 2002;
534 Salazar *et al.* 2005; Sánchez *et al.* 2015). Successfully disentangling the influence of a large-X effect and faster-X
535 evolution on relative rates of divergence will require modeling of the demographic history of each population,
536 including changes that may have occurred before the split of the populations. Such modelling would allow us to better
537 contrast (i) expected within population Z/A diversity ratios with hypotheses of increased mutation rates, selective
538 sweeps, background selection and mating system and (ii) expected between population Z/A divergence ratios with
539 hypotheses of increased mutation rates or adaptive divergence on the Z chromosome. Additionally, our strategy of
540 contrasting $d_{XY}(Z)/d_{XY}(A)$ ratios with geographic distance provides opportunities for testing reduced admixture between
541 sex chromosomes in systems for which tree-based approaches and/or crossing experiments are unfeasible.

542 **Materials & Methods**

543 *Sampling*

544 We used whole genome resequenced data of a total of 109 butterflies belonging to the *Heliconius erato* clade and 115
545 from the *Heliconius melpomene* clade (Figure 1; Tables S1 and S2). The *H. erato* clade samples comprised fifteen
546 color pattern forms from twenty localities: *H. e. petiverana* (Mexico, n = 5), *H. e. demophoon* (Panama, n = 10), *H. e.*
547 *hydara* (Panama, n = 6 and French Guiana, n = 5), *H. e. erato* (French Guiana, n = 6), *H. e. amalfreda* (Suriname, n =
548 5), *H. e. notabilis* (Ecuador *H. e. lativitta* contact zone, n = 5 and Ecuador *H. e. etylus* contact zone, n = 5), *H. e. etylus*
549 (Ecuador, n = 5), *H. e. lativitta* (Ecuador, n = 5), *H. e. emma* (Peru *H. himera* contact zone, n = 4 and Peru *H. e.*
550 *favorinus* contact zone, n = 7), *H. e. favorinus* (Peru *H. himera* contact zone, n = 4 and Peru *H. e. emma* contact zone,
551 n = 8), *H. e. phyllis* (Bolivia, n = 4), *H. e. venus* (Colombia, n = 5), *H. e. cyrbia* (Ecuador, n = 4), *H. e. chestertonii*
552 (Colombia, n = 7) and *H. himera* (Ecuador *H. e. emma* contact zone, n = 5 and Peru *H. e. cyrbia* contact zone, n = 4).

553 The *H. melpomene* clade samples comprised fourteen color pattern forms from sixteen localities (Figure 1; Tables S2).
554 Ten populations were sampled from the *H. melpomene* clade: *H. m. melpomene* (Panama, n = 3), *H. m. melpomene*
555 (French Guiana, n = 10), *H. m. melpomene* (Colombia, n = 5), *H. m. rosina* (Panama, n = 10), *H. m. malleti* (Colombia,
556 n = 10), *H. m. vulcanus* (Colombia, n = 10), *H. m. plesseni* (Ecuador, n = 3), *H. m. aglaope* (Peru, n = 4), *H. m.*
557 *amaryllis* (Peru, n = 10), and *H. m. nanna* (Brazil, n = 4). Three populations were sampled from the *H. timareta* clade:
558 *H. heurippa* (Colombia, n = 3), *H. t. thelxinoe* (Peru, n = 10) and *H. t. florencia* (Colombia, n = 10). Three populations
559 were sampled from the *H. cydno* clade: *H. c. chioneus* (Panama, n = 10), *H. c. cordula* (Venezuela, n = 3) and *H. c.*
560 *zelinde* (Colombia, n = 10).

561

562 *Sequencing and genotyping*

563 Whole-genome paired-end Illumina resequencing data from *H. erato* and *H. melpomene* clade samples were aligned
564 to the *H. erato* v1 (Van Belleghem *et al.* 2017) and *H. melpomene* v2 (Davey *et al.* 2016) reference genomes,
565 respectively, using BWA v0.7 (Li 2013). PCR duplicated reads were removed using Picard v1.138
566 (<http://picard.sourceforge.net>) and sorted using SAMtools (Li *et al.* 2009). Genotypes were called using the Genome
567 Analysis Tool Kit (GATK) Haplotypecaller (Van der Auwera *et al.* 2013). Individual genomic VCF records (gVCF)
568 were jointly genotyped using GATK's genotypeGVCFs. Genotype calls were only considered in downstream analysis
569 if they had a minimum depth (DP) ≥ 10 , maximum depth (DP) ≤ 100 (to avoid false SNPs due to mapping in repetitive
570 regions), and for variant calls, a minimum genotype quality (GQ) ≥ 30 .

571 *Population structure*

572 To discern population structure among the sampled *H. erato* and *H. melpomene* clade individuals, we performed
573 principal components analysis (PCA) using Eigenstrat SmartPCA (Price *et al.* 2006). For this analysis, we only
574 considered autosomal biallelic sites that had coverage in all individuals.

575

576 *Population genomic diversity and divergence statistics*

577 We first estimated diversity within populations as well as divergence between parapatric and sympatric populations in
578 non-overlapping 50 kb windows along the autosomes and Z chromosome using python scripts and egglib (De Mita &
579 Siol 2012). We only considered windows for which at least 10% of the positions were genotyped for at least 75% of
580 the individuals within each population. For females, haploidi was enforced when calculating divergence and diversity
581 statistics. Sex of individuals was inferred from heterozygosity on the Z.

582 F_{ST} was estimated as in Hudson *et al.* (1992), as

$$583 F_{ST} = \frac{\pi_T - \pi_S}{\pi_T},$$

584 with nucleotide diversity in a population (π_i) calculated as

$$585 \pi_i = \frac{\sum_{j=1}^{n_i-1} \sum_{k=j+1}^{n_i} d_{ij,lk}}{\binom{n_i}{2}}$$

586 and average within population nucleotide diversity (π_S) calculated as the weighted (w) average of the nucleotide
587 diversity (π_i) within each population l and k , as

$$588 \pi_S = w\pi_1 + (1 - w)\pi_2.$$

589 Total nucleotide diversity (π_T) was calculated as the average number of nucleotide differences per site between two
590 DNA sequences in all possible pairs in the sampled population (Hudson *et al.* 1992), as

$$591 \pi_T = \frac{\sum_{i=1}^{n_1} \sum_{j=1}^{n_1-1} \sum_{k=j+1}^{n_1} d_{ij,lk} + \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} d_{1i,2j}}{\binom{n_1+n_2}{2}}.$$

592 Between-population sequence divergence d_{XY} was estimated as the average pairwise difference between sequences
593 sampled from two different populations (Nei & Li 1979), as

$$594 d_{XY} = \frac{\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} d_{1i,2j}}{n_1+n_2}.$$

595 d_a was calculated as a relative measure of divergence by subtracting d_{XY} with an estimate of the nucleotide diversity
596 (π_S) in the ancestral populations (Nei & Li 1979),

$$597 d_a = d_{XY} - \pi_S.$$

598 Tajima's D was calculated as a measure of deviation from a population evolving neutrally with a constant size (Tajima
599 1989).

600 To overcome the problem of nonindependence between loci, estimates of the variance in nucleotide diversity (π) and
601 Tajima's D within populations along the genomes were obtained using block-jackknife deletion over 1Mb intervals
602 along the genome (chosen to be much longer than linkage disequilibrium in *Heliconius* (Martin et al. 2013)) (Künsch
603 1989).

604 To calculate pairwise d_{XY} values between each individual, we subsampled the genomes by only considering genomic
605 sites that were at least 500 bp apart and had coverage for at least one individual in each population. For the *H. erato*
606 clade dataset, this resulted in a high coverage dataset with 322,082 and 15,382 sites on the autosomes and Z
607 chromosome, respectively. For the *H. melpomene* clade dataset, this resulted in 335,636 and 18,623 sites on the
608 autosomes and Z chromosome, respectively. Pairwise d_{XY} values between each individual were used to evaluate the
609 relationship between absolute genetic divergence (d_{XY}) and geographic distance using Mantel tests (Mantel 1967).
610 Mantel tests are commonly used to test for correlations between pairwise distance matrices and were performed using
611 the R package *vegan* (Oksanen et al. 2016). Pairwise distances between populations were calculated from the average
612 of the sample coordinates obtained for each population (Table S3, S4).

613

614 *Simulations*

615 To compare patterns in our data to expectations, we simulated genealogies in 50 kb sequence windows under certain
616 evolutionary scenarios. The simulations were performed with a population recombination rate ($4N_{er}$) of 0.01 using the
617 coalescent simulator *msms* (Ewing & Hermisson 2010). Subsequently, from the simulated genealogies, we simulated
618 50 kb sequences with a mutation rate of 2e-9 a Hasegawa-Kishino-Yano substitution model using *seq-gen* (Rambaut
619 & Grass 1997).

620 In a first set of simulations, we considered one population that underwent a single population size change of a
621 magnitude (x) ranging from 0.01 to 100 and at a certain moment backward in time (t). In a second set of simulations,
622 we considered pairs of populations that were connected through migration (m) ranging from 0 to 1e-6 and for which
623 migration was reduced with a factor d on the Z chromosome. To compare changes in the variation on autosomes and
624 the Z chromosome, we simulated the Z chromosome as a separate population for which the effective population size
625 was set to three-quarters that of the autosomal population.

626 To compare populations with a different effective population size (N_e), such as the autosomes and the Z chromosome,
627 we expressed time in generations and migration rates as a proportion of the effective population size. Comparable to
628 the *Heliconius* sampling, we sampled 5 individuals from each population and ran 300 replicates for each parameter
629 combination. Pseudocode to run the *msms* command lines are provided in Tables S5. Tajima's D , nucleotide diversity
630 (π) and d_{XY} were calculated from the simulated sequences using python scripts and egglib (De Mita & Siol 2012).

631 **Data accessibility**

632 Genome assemblies are available on lepbase.org. Sequencing reads are deposited in the Sequence Read Archive (SRA).
633 See Table S1 and Table S2 for accession numbers.

634

635 **Acknowledgements**

636 We thank the Ecuadorian Ministerio del Ambiente (No. 005-13 IC-FAU-DNB/MA), Peruvian Ministerio de
637 Agricultura and Instituto Nacional de Recursos Naturales (201-2013-MINAGRI-DGFFS/DGEFFSS) and
638 Autoridad Nacional De Licencias Ambientales-ANLA in Colombia (Permiso Marco 0530) for permission to
639 collect butterflies. This work was funded by ERC grant SpeciationGenetics (339873) to CJ and NSF grant (DEB
640 1257689) to BC and WOM. SHM was funded by a research fellowship from St John's College, Cambridge. CS
641 was funded by COLCIENCIAS (Grant FP44842-5-2017). For computational resources, we thank the University of
642 Puerto Rico, the Puerto Rico INBRE grant P20 GM103475 from the National Institute for General Medical Sciences
643 (NIGMS), a component of the National Institutes of Health (NIH); and awards 1010094 and 1002410 from the
644 Experimental Program to Stimulate Competitive Research (EPSCoR) program of the National Science Foundation
645 (NSF). This work was also performed using the Darwin Supercomputer of the University of Cambridge High
646 Performance Computing Service (<http://www.hpc.cam.ac.uk/>), provided by Dell Inc. using Strategic Research
647 Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and
648 Technology Facilities Council.

649

650 **References**

651 Arias CF, Muñoz AG, Jiggins CD, *et al.* (2008) A hybrid zone provides evidence for incipient ecological speciation
652 in *Heliconius* butterflies. *Molecular ecology*, **17**, 4699–712.
653 Arias CF, Salazar C, Rosales C, *et al.* (2014) Phylogeography of *Heliconius cydno* and its closest relatives:
654 Disentangling their origin and diversification. *Molecular Ecology*, **23**, 4137–4152.
655 Beltrán M, Jiggins C, Brower A, Bermingham E, Mallet J (2007) Do pollen feeding and pupal-mating have a single
656 origin in *Heliconius* butterflies? Inferences from multilocus sequence data. *Biological Journal of the Linnean
657 Society*, **92**, 221–239.
658 Charlesworth B (1998) Measures of divergence between populations and the effect of forces that reduce variability.
659 *Molecular Biology and Evolution*, **15**, 538–543.
660 Charlesworth B (2001) The effect of life-history and mode of inheritance on neutral genetic variability. *Genetic
661 Research*, **77**, 153–166.
662 Charlesworth B (2012) The role of background selection in shaping patterns of molecular evolution and variation:
663 evidence from variability on the *Drosophila* X chromosome. *Genetics*, **191**, 233–246.
664 Charlesworth B, Coyne JA, Barton NH (1987) The relative rates of evolution of sex chromosomes and autosomes.
665 *The American naturalist*, **130**, 113–146.
666 Counterman B a, Ortiz-Barrientos D, Noor M a F (2004) Using comparative genomic data to test for fast-X
667 evolution. *Evolution; international journal of organic evolution*, **58**, 656–660.
668 Coyne J, Orr H (1989) Two rules of speciation. In: *Speciation and its consequences*. (eds Otte D, Endler J), pp. 180–
669 207. Sinauer Associates, Inc., Sunderland, MA, USA.
670 Coyne JA, Orr HA (2004) *Speciation*. Sinauer Associates, Sunderland, MA, USA.
671 Cruickshank TE, Hahn MW (2014) Reanalysis suggests that genomic islands of speciation are due to reduced
672 diversity, not reduced gene flow. *Molecular Ecology*, **23**, 3133–3157.
673 Dasmahapatra KK, Walters JR, Briscoe AD, *et al.* (2012) Butterfly genome reveals promiscuous exchange of

674 mimicry adaptations among species. *Nature*, **487**, 94–98.

675 Davey JW, Barker SL, Rastas PM, *et al.* (2017) No evidence for maintenance of a sympatric *Heliconius* species
676 barrier by chromosomal inversions. *Evolution Letters*, **1**, 138–154.

677 Davey JW, Chouteau M, Barker SL, *et al.* (2016) Major improvements to the *Heliconius melpomene* genome
678 assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. *G3*, **6**, 695–
679 708.

680 De Mita S, Siol M (2012) EggLib: processing, analysis and simulation tools for population genetics and genomics.
681 *BMC Genetics*, **13**, 27.

682 Dobzhansky T (1935) Studies on hybrid sterility. II. Localization of factors in *Drosophila pseudoobscura* hybrids.
683 *Genetics*, **21**, 113–135.

684 Ellegren H, Smeds L, Burri R, *et al.* (2012) The genomic landscape of species divergence in *Ficedula* flycatchers.
685 *Nature*, **491**, 756–760.

686 Ewing G, Hermisson J (2010) MSMS: a coalescent simulation program including recombination, demographic
687 structure and selection at a single locus. *Bioinformatics (Oxford, England)*, **26**, 2064–2065.

688 Frank SA (1991) Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility
689 and inviability. *Evolution*, **45**, 262–267.

690 Gilbert LE (1976) Postmating female odor in *Heliconius* butterflies: A male-contributed antiaphrodisiac? *Science*,
691 **193**, 420–422.

692 Gillespie JH, Langley CH (1979) Are evolutionary rates really variable? *Journal of Molecular Evolution*, **13**, 27–34.

693 Grant PR, Grant BR (1992) Hybridization of bird species. *Science*, **256**, 193–197.

694 Grant PR, Grant BR (2008) Pedigrees, assortative mating and speciation in Darwin's finches. *Proceedings of the
695 Royal Society B: Biological Sciences*, **275**, 661–668.

696 Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. *Journal of Genetics*, **12**, 101–109.

697 Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. *Genetics*,
698 **132**, 583–589.

699 Jablonka E, Lamb MJ (1991) Sex chromosomes and speciation. *Proceedings of the Royal Society B*, **243**, 203–208.

700 Jiggins CD (2017) *The ecology and evolution of Heliconius butterflies*. Oxford University Press.

701 Jiggins CD, Linares M, Naisbit RE, *et al.* (2001) Sex-linked hybrid sterility in a butterfly. *Evolution*, **55**, 1631–1638.

702 Jiggins CD, Mcmillan O, Neukirchen W, Mallet J, Nw L (1996) What can hybrid zones tell us about speciation? The
703 case of *Heliconius erato* and *H. himera* (Lepidoptera: Nymphalidae). *Biological Journal of the Linnean
704 Society*, **59**, 221–242.

705 Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. *Nature*,
706 **411**, 302–305.

707 Johnson NA, Lachance J (2012) The genetics of sex chromosomes: evolution and implications for hybrid
708 incompatibility. *Annals of the New York Academy of Sciences*, **1256**, E1–22.

709 Kirkpatrick M, Hall DW (2004) Male-biased mutation, sex Linkage, and the rate of adaptive evolution. *Evolution*,
710 **58**, 437.

711 Kronforst MR, Hansen MEB, Crawford NG, *et al.* (2013) Hybridization reveals the evolving genomic architecture of
712 speciation. *Cell reports*, **5**, 666–677.

713 Künsch HR (1989) The jackknife and the bootstrap for general stationary observations. *The Annals of Statistics*, **17**,
714 1217–1241.

715 Lamichhaney S, Berglund J, Almén MS, *et al.* (2015) Evolution of Darwin's finches and their beaks revealed by
716 genome sequencing. *Nature*, **518**, 371–375.

717 Lavretsky P, Dacosta JM, Hernández-Baños BE, *et al.* (2015) Speciation genomics and a role for the Z chromosome
718 in the early stages of divergence between Mexican ducks and mallards. *Molecular Ecology*, **24**, 5364–5378.

719 Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*, 1303.3997v1.

720 Li H, Handsaker B, Wysoker A, *et al.* (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics*,
721 **25**, 2078–2079.

722 Mallet J, Barton NH (1989) Strong natural selection in a warning-color hybrid zone. *Evolution*, **43**, 421–431.

723 Mallet J, Jiggins CD, McMillan OW (1998) Mimicry and warning colour at the boundary between races and species.
724 In: *Endless forms. Species and speciation* (eds Howard DJ, Berlocher SH), pp. 390–403. Oxford University
725 Press, New York.

726 Mallet J, McMillan WO, Jiggins CD (1998) Mimicry and warning color at the boundary between microevolution and
727 macroevolution. In: *Endless Forms: Species and Speciation* (eds Howard D, Berlocher S), pp. 390–403.
728 Oxford University Press.

729 Mantel N (1967) The detection of disease clustering and a generalized regression approach. *Cancer Research*, **27**,

730 209–220.

731 Martin SH, Dasmahapatra KK, Nadeau NJ, *et al.* (2013) Genome-wide evidence for speciation with gene flow in
732 *Heliconius* butterflies. *Genome research*, **23**, 1817–1828.

733 McMillan WO, Jiggins CD, Mallet J (1997) What initiates speciation in passion-vine butterflies? *Proceedings of the*
734 *National Academy of Sciences of the United States of America*, **94**, 8628–8633.

735 Meisel RP, Connallon T (2013) The faster-X effect: Integrating theory and data. *Trends in Genetics*, **29**, 537–544.

736 Merot C, Salazar C, Merrill RM, Jiggins C, Joron M (2017) What shapes the continuum of reproductive isolation?
737 Lessons from *Heliconius* butterflies. *Proceedings of the Royal Society B: Biological Sciences*, **284**, 20170335.

738 Merrill RM, Chia A, Nadeau NJ (2014) Divergent warning patterns contribute to assortative mating between
739 incipient *Heliconius* species. *Ecology and Evolution*, **4**, 911–917.

740 Merrill RM, Wallbank RWR, Bull V, *et al.* (2012) Disruptive ecological selection on a mating cue. *Proceedings.*
741 *Biological sciences / The Royal Society*, **279**, 4907–4913.

742 Muller HJ (1942) Isolating mechanisms, evolution and temperature. *Biological Symposia*, **6**, 71–125.

743 Muñoz AG, Salazar C, Castaño J, Jiggins CD, Linares M (2010) Multiple sources of reproductive isolation in a
744 bimodal butterfly hybrid zone. *Journal of Evolutionary Biology*, **23**, 1312–1320.

745 Nadachowska-Brzyska K, Burri R, Olason PI, *et al.* (2013) Demographic divergence history of pied flycatcher and
746 collared flycatcher inferred from whole-genome re-sequencing data. *PLoS Genetics*, **9**, e1003942.

747 Nadeau NJ, Martin SH, Kozak KM, *et al.* (2013) Genome-wide patterns of divergence and gene flow across a
748 butterfly radiation. *Molecular ecology*, **22**, 814–826.

749 Nadeau NJ, Whibley A, Jones RT, *et al.* (2012) Genomic islands of divergence in hybridizing *Heliconius* butterflies
750 identified by large-scale targeted sequencing. *Philosophical transactions of the Royal Society of London. Series*
751 *B, Biological sciences*, **367**, 343–353.

752 Naisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J (2002) Hybrid sterility, Haldane's Rule and speciation in
753 *Heliconius cydno* and *H. melpomene*. *Genetics*, **161**, 1517–1526.

754 Naisbit RE, Jiggins CD, Mallet J (2001) Disruptive sexual selection against hybrids contributes to speciation
755 between *Heliconius cydno* and *Heliconius melpomene*. *Proceedings of the Royal Society B*, **268**, 1849–1854.

756 Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases.
757 *Proceedings of the National Academy of Sciences of the United States of America*, **76**, 5269–5273.

758 Oksanen J, Blanchet FG, Kindt R, *et al.* (2016) vegan: community ecology package. R package.

759 Orr HA (1996) Dobzhansky, Bateson, and the genetics of speciation. *Genetics*, **144**, 1331–1335.

760 Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic evidence for complex speciation of humans
761 and chimpanzees. *Nature*, **441**, 1103–1108.

762 Poelstra JW, Vijay N, Bossu CM, *et al.* (2014) The genomic landscape underlying phenotypic integrity in the face of
763 gene flow in crows. *Science*, **344**, 1410–1414.

764 Pool JE, Nielsen R (2007) Population size changes reshape genomic patterns of diversity. *Evolution*, **29**, 997–1003.

765 Presgraves DC (2002) Patterns of postzygotic isolation in Lepidoptera. *Evolution*, **56**, 1168–1183.

766 Presgraves DC (2008) Sex chromosomes and speciation in *Drosophila*. *Trends in Genetics*, **24**, 336–343.

767 Price AL, Patterson NJ, Plenge RM, *et al.* (2006) Principal components analysis corrects for stratification in genome-
768 wide association studies. *Nature genetics*, **38**, 904–909.

769 Prowell D (1998) Sex linkage and speciation in Lepidoptera. In: *Endless forms. Species and speciation* (eds Howard
770 D, Berlocher S), pp. 309–319. Oxford University Press, New York.

771 Rambaut A, Grass NC (1997) Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution
772 along phylogenetic trees. *Bioinformatics*, **13**, 235–238.

773 Randler C (2007) Assortative mating of Carrion *Corvus corone* and Hooded Crows *C. cornix* in the hybrid zone in
774 eastern Germany. *Ardea*, **95**, 143–149.

775 Sackton TB, Corbett-Detig RB, Nagaraju J, *et al.* (2014) Positive selection drives faster-Z evolution in silkmoths.
776 *Evolution*, **68**, 2331–2342.

777 Saether SA, Saetre G-P, Borge T, *et al.* (2007) Sex chromosome-linked species recognition and evolution of
778 reproductive isolation in flycatchers. *Science*, **318**, 95–97.

779 Salazar CA, Jiggins CD, Arias CF, *et al.* (2005) Hybrid incompatibility is consistent with a hybrid origin of
780 *Heliconius heurippa* Hewitson from its close relatives, *Heliconius cydno* Doubleday and *Heliconius*
781 *melpomene* Linnaeus. *Journal of Evolutionary Biology*, **18**, 247–256.

782 Sánchez AP, Pardo-Díaz C, Enciso-Romero J, *et al.* (2015) An introgressed wing pattern acts as a mating cue.
783 *Evolution*, **69**, 1619–1629.

784 Sayres MAW, Makova KD (2011) Genome analyses substantiate male mutation bias in many species. *Bioessays*, **33**,
785 938–945.

786 Slatkin M, Voelml L (1991) FST in a hierarchical island model. *Genetics*, **127**, 627–629.

787 Smeds L, Warmuth V, Bolivar P, *et al.* (2015) Evolutionary analysis of the female-specific avian W chromosome.
Nature Communications, **6**, 7330.

788 Sperling FAH (1994) Sex-linked genes and species differences in Lepidoptera. *The Canadian Entomologist*, **126**,
807–818.

789 Suomalainen E, Cook LM, Turner JRG (1973) Achiasmatic oogenesis in the *Heliconiine* butterflies. *Hereditas*, 302–
792 304.

793 Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*,
794 **123**, 585–595.

795 Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. *Genetics*, **176**,
796 1059–1088.

797 Turelli M, Orr HA (1995) The dominance theory of Haldane's rule. *Genetics*, **140**, 389–402.

798 Turner JRG, Sheppard PM (1975) Absence of crossover in female butterflies (*Heliconius*). *Heredity*, **34**, 265–269.

799 Van Belleghem SM, Rastas P, Papanicolaou A, *et al.* (2017) Complex modular architecture around a simple toolkit
800 of wing pattern genes. *Nature Ecology & Evolution*, **1**, 52.

801 Van der Auwera G a., Carneiro MO, Hartl C, *et al.* (2013) From fastQ data to high-confidence variant calls: The
802 genome analysis toolkit best practices pipeline. *Current Protocols in Bioinformatics*, **UNIT 11.10**, 1–33.

803 Veen T, Borge T, Griffith SC, *et al.* (2001) Hybridization and adaptive mate choice in flycatchers. *Nature*, **411**, 45–
804 50.

805 Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. *Nature reviews.*
806 *Genetics*, **7**, 645–653.

807 Vicoso B, Charlesworth B (2009) Recombination rates may affect the ratio of X to autosomal noncoding
808 polymorphism in African populations of *Drosophila melanogaster*. *Genetics*, **181**, 1699–1701.

809 Vijay N, Bossu CM, Poelstra JW, *et al.* (2016) Evolution of heterogeneous genome differentiation across multiple
810 contact zones in a crow species complex. *Nature Communications*, **7**, 13195.

811 Walters JR, Stafford C, Hardcastle TJ, Jiggins CD (2012) Evaluating female remating rates in light of spermatophore
812 degradation in *Heliconius* butterflies: pupal-mating monandry versus adult-mating polyandry. *Ecological*
813 *Entomology*, **37**, 257–268.

814 Wolf JBW, Ellegren H (2017) Making sense of genomic islands of differentiation in light of speciation. *Nature*
815 *Reviews Genetics*, **18**, 87–100.

816 Wright S (1931) Evolution in mendelian populations. *Genetics*, **16**, 97–159.

817 Wu C-I, Davis AW (1993) Evolution of postmating reproductive isolation: the composite nature of Haldane's rule
818 and its genetic bases. *The American naturalist*, **142**, 187–212.

819