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ABSTRACT: We investigate the dynamics of structured photoactive
microswimmers and show that morphology sensitively determines the
swimming behavior. Particular to this study, a major portion of the
light-activated particles’ underlying structure is built from a photo-
catalytic material, made possible by dynamic physical vapor deposition
(DPVD). We find that swimmers of this type exhibit unique shape-
dependent autonomous swimming that is distinct from what is seen in
systems with similar structural morphology but not fabricated directly
from the catalyst. Notably, the direction of motion is a function of these
parameters. Because the swimming behavior is strongly correlated with
particle shape and material composition, DPVD allows for engineering
small-scale propulsion by adjusting the fabrication parameters to match

the desired performance.
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B INTRODUCTION

Inorganic colloidal particles can be driven in fluids by several
means—for example, externally,' > including via the applica-
tion of a magnetic,“_10 electric,'' ™ or acoustic field,"* or
active swimmers may self-propel,'>~** as is the case for the
now-famous systems of catalytic nanomotors.””** A method
under development involves the use of light activation,®'~*
which offers several advantages including the ability to switch
the directed propulsion on and off as well as on-command
control over the strength of the activity and therefore particle
speed. To date, most photoactive systems introduced consist of
simple geometries such as spheres and cylinders, although more
complex shapes have been investigated, such as Janus
nanotrees.”’ Because morphology strongly influences the
motion of self-propelled artificial nano- and microswim-
mers,** ™" being able to construct active photocatalytic
swimmers with a wider range of geometries is expected to
facilitate the targeted engineering of desired autonomous
swimming.

In this study, we investigate the effect of shape on the
behavior of structured photoactive microswimmers of which a
major portion of the underlying structure is made directly from
a photocatalytic material. We systematically adjusted the
morphology by employing dynamic physical vapor deposition
(DPVD)*' ™" and found unique and unexpected modes of
motion not seen in comparable systems. For instance, in some
cases, we observed that larger structures, with a significantly
higher viscous drag, actually moved at the same speed or even
faster than their scaled-down smaller counterparts when
experimental conditions were identical. We also found that
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the direction of motion is a function of a swimmer’s shape.
Because the motive behavior is quite sensitive to morphological
changes, the employed fabrication method allows us to tune the
types of motion exhibited by the particles by altering
morphology, made possible by modulating the deposition
conditions.

We chose to fabricate structured photoactive swimmers from
titanium dioxide, TiO, or titania, because we have found that
this material is amenable to forming high-quality nano- and
microstructures using oblique-angle DPVD [see Figure 1 for
fabrication steps and the resulting scanning electron micros-
copy (SEM) and energy-dispersive X-ray spectroscopy (EDX)
images]. Furthermore, with a band gap of ~3.2 eV, particles
made from this material are only catalytically active and are
therefore propelled exclusively when light of sufficiently short
wavelength (4 < ~390 nm) is present. We first investigated the
dynamics of a simple geometry, SiO,/TiO, Janus spheres, to
characterize our system and to confirm that the dynamics agree
at least qualitatively with previously published results, for
example ref 34. More specifically, we considered the depend-
ence of speed upon hydrogen peroxide concentration as well as
the effect of annealing the particles at different temperatures. As
these details are beyond the scope of the present study, which is
dedicated to the motion of structured photoactive micro-
swimmers, we refer the reader to the Supporting Information
documentation, where in addition to these data the reader may
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Figure 1. Fabrication of photoactive structured microswimmers (see
Materials and Methods for more details). (a) A monolayer of silica
particles is first deposited onto a silicon wafer. (b) A thick layer of
titania is deposited onto the spheres at an oblique angle y. (c) After
deposition, the structures are annealed at ~S00 °C for 3 h. (d) A top-
down SEM image of a monolayer of silica spheres of ~2 um in
diameter. The inset shows a cross-section image of titania grown atop
a similar monolayer, but with an SiO, particle of diameter ~1.5 pm.
(e) A cross-section image showing the resulting oblique angle growth
of titania on particles of diameter ~3.2 ym. (f) EDX chemical mapping
overlaid atop the same image that is given in (e), which shows the
location of elemental titanium and silicon as blue/green and red,
respectively.

find several videos demonstrating the swimming behaviors of
the microswimmers with varying morphology.

B RESULTS AND DISCUSSION

The swimmers, which consist of spherical silica heads and
titania tails, settled to a solid surface due to gravity , g, (Figure
2a) and were observed to be moving over that surface (Figure
2b) when exposed to hydrogen peroxide and UV light; the
addition of hydrogen peroxide was necessary to observe the
propelled motion in this system. Our main goal in this study,
investigating how geometry affects motion, was accomplished
by altering (1) the length I of the titania tails and (2) the
diameter of the spherical head a (see Figure 2b for the
definition of these parameters). The particles primarily moved
along their axes either toward the tail, —v, or toward the head,
+v, shown schematically in Figure 2b and in the video frames of
Figure 2c, respectively. Particle speed as a function of tail length
for two different constant diameters a = 2 ym and a = 3.2 ym is
presented in Figure 3ab, respectively, for several 10’s of
particles. Three lengths for the two diameters were investigated,
which we refer to as Janus, short-tailed, and long-tailed
structures. The insets schematically show the approximate
morphology of the microswimmers with different tail lengths,
whereas the arrows indicate the direction of motion observed
(see Figure 2b for the adopted convention for positive and
negative speeds). The average of the absolute value of the
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Figure 2. (a) Schematic showing an oblique-angle view of several
particles in water and hydrogen peroxide settling to the solid silica
surface (gray), which occurs after a droplet of the colloid is placed into
an observation cell (see Materials and Methods for details). The
particles settle to the bottom of the cell due to gravity, g, and move just
above the solid surface. (b) Schematic showing an oblique-angle view
of a single swimmer that is activated by UV light. Also shown are the
critical dimensions (g, I) and the convention adopted for the positive
(+v) direction, which is toward the SiO,, or headfirst. The critical
dimensions determine which direction the particles move. (c) Example
video frames showing the directed motion of a swimmer moving
toward the silica head, v > 0. Time increases from left to right in the
frames.

speeds, 7 = Y "lv], where i is the particle index and N is the
number of data points for a single morphology, is written next
to the data points in the plots. Below the main plots are
histograms for the distribution of speeds for each morphology.
According to the main plots in Figure 3, the addition of a
short photocatalyst tail deposited onto the spherical seed
particles, at an oblique angle, significantly increases the average
magnitude of the speed in comparison to the Janus spheres.
However, we find that for the smaller seed particle (Figure 3a),
the direction of motion of the short-tailed structures is exactly
opposite the Janus sphere case. That is, all of these swimmers
move headfirst, for all speeds v > 0. For the short-tailed
structures with the larger seed particle (Figure 3b), this change
in the direction of motion has not occurred. We did, however,
find that the direction of motion is switched for the long-tailed
swimmers that were grown upon the larger seed particle, as
shown on the right side of Figure 3b. Thus, switching of the
direction of motion was accomplished simply by adding a
longer tail to the swimmers, but how long the tail must be
depends upon the diameter of the head. We also found that by
further increasing the tail length for the smaller seed particle,
the speed is reduced and approximately the same number of
swimmers move in the positive and negative directions, as
shown in Figure 3a. It is possible that if we continued to
increase the tail length for the smaller seed particle, we may see
a change in the direction of motion once more. However,
because increasing the tail length increases drag, we expect that
particles with tails longer than [ = 3.8 ym would be unlikely to
increase in absolute speed. Further, due to the limitations of
our deposition system, we were unable to examine the
behaviors of swimmers with tail lengths longer than ~4 pm.
The data indicate that the short-tailed swimmers with a = 2
pum and the long-tailed swimmers with a = 3.2 ym have notable
similarities: (1) the particles in both of these particular cases
show comparable average speeds, 7=4+ 1 ym/sand7=5=+1
um/s for the former and latter, respectively, (2) the particles in
both cases move with v > 0, and (3) the proportions of the
critical dimensions are similar. If, for simplicity, we make the
admittedly very rough approximation that the swimmers are
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Figure 3. Speed vs length for two different seed particle (head) diameters: (a) a= 2 ym and (b) a = 3.2 ym. Histograms showing the distribution of
speeds are given below the main plots and are color-coded corresponding to tail length. The inset schematics show the morphologies corresponding
to different head/tail lengths, with arrows indicating the direction of motion along the particle axis. Note that the schematics are on the same scale.
The average speeds and tail lengths, in color-coded text, are indicated next to the data points.

cylindrical, then while moving along the axis, the drag at low
Reynolds numbers is

27nly
ln(%l) —072 W

where 7, |, R and v are the fluid viscosity, length and radius of
the cylinder, and speed, respectively. If we furthermore assume
;—22 = Il{—‘l, which is a reasonable approximation because a/l =
0.91 and 0.84 for the smaller and larger seed particle diameters,
respectively, the ratio of the drag force F4, of the larger
structure to the drag force F4; of the smaller structure, when

the particles are propelled at the same speed v, is
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and thus we find == & 2. However, we measure the speeds to
d,1

be roughly the same under identical experimental conditions,
despite the larger structure experiencing twice the drag. We
therefore expect the larger particle to be experiencing ~2X the
propulsion. Presently, it is unclear why the particles with
parameters a = 3.2 ym, | = 3.8 ym would experience greater
propulsion in comparison to the smaller a = 2 ym, [ = 2.2 ym
particles, and the observation that the direction of motion is a
function of these two parameters a and ! is even less clear. We
next turn to how these effects potentially arise.

Hong et al. reported active motion of titania particles, but the
authors of this paper did not investigate the shape-dependent
behavior of these titania-based microswimmers. Further, their
particles were not moving in the presence of hydrogen
peroxide.” The primary findings of that study suggested that
multiple mechanisms may be present, and we suspect this to be
true in the present study as well. The full description of the
mechanism of motion for our system is likely highly complex

because of the added complication of possible shape-dependent
flow profiles for asymmetric shapes. However, we will give a
qualitative description of a possible mechanism of motion here.

The decomposition of H,O, occurs at the TiO, surface via
two possible reactions

H,0, + 2¢” + 2H' —» 2H,0 (3)
H,0, + 2h" — O, + 2H* (4)

which are facilitated by UV-light-induced electron—hole
generation on the surface of the anatase TiO, segments of
the active particles. A proposed mechanism for the TiO,/SiO,
active Janus sphere in H,O, was presented by Singh et al.”* A
local chemical gradient of products, for example O,, and/or
reactants develops. Based upon the observed direction of
motion, we speculate that these concentration gradients lead to
a fluid flow from the TiO, toward the SiO, surface, shown by
the curved arrows in Figure 4, which in turn leads to the
particle being propelled in the opposite direction (Figure Sa).
However, in the cited study, the particles investigated were
Janus spheres only. Particles with more complex shapes, such as
those presented herein, are expected to have significantly

fluid flow fluid flow

H202 + @ g}Oz+ 2h*

2H20 O2 + 2H*

Figure 4. Schematic showing the possible mechanism of motion for a
TiO,/SiO, Janus sphere in H,0,. A chemical gradient develops from
the photocatalyzed reaction and leads to a flow from the reaction site
to the SiO, hemisphere.
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Figure S. (a) Potential mechanism for the dependence of the direction
of motion with increasing tail length. Osmotic flow over the silica
sphere is present in all three cases and is indicated by the curved black
arrows. The direction of motion is indicated by straight yellow arrows
with red outline. Osmotic flow between the surface of the bottom of
the observation cell and the particles is indicated by white arrows.
Note that in this top-down view, this flow is underneath the titania tail.
(b) Top-down SEM image showing titania tail growth on a defect-free
segment of the colloidal crystal. (c) The red boxes show the
exaggerated broadening of the tails near the edges of the crystal.

different flow profiles. It should be noted that the flow may be a
result of a concentration gradient of charged species as well.>

To further delve into the possible effects of shape on the
observations herein, we present a schematic in Figure Sa that
shows three cases from left to right: the Janus sphere, short tail,
and long tail swimmers. The orientation of the schematic is top-
down, and the active particles are being propelled in the
direction of the straight yellow arrows with a red outline,
consistent with the observed directions of motion. As indicated
in Figure 5, the flow over the surface of the particle toward the
SiO, face, represented by the curved black arrows for all three
cases, leads to propulsion opposite to this flow, that is motion
toward the titania.”* For the structured swimmers with short
tails, there may develop a stronger gradient in comparison to
the Janus sphere case, and consequently, a larger flow, simply
because of the larger surface area of the catalyst. With a larger
gradient, we expect an enhanced speed as v « V¢, where ¢ is the
concentration field surrounding the particle.’® Therefore,
particles with the morphology a = 3.2 ym, [ = 3.8 um would
experience greater propulsion in comparison to the smaller a =
2 pym, | = 22 pum particles, which is consistent with our
observations.

So why would the direction of motion be a function of the
two parameters | and a? Intuitively, a first guess would be that
competing mechanisms are present, but which dominates
depends upon the geometry of the swimmer. Because a
swimmer moves close to a wall (bottom surface), the
concentration gradients that develop around the swimmers
may generate chemi-osmotic flow on the stationary surface,
which has been suggested to couple back to the particle
affecting its motion.”” For example, it has been suggested that
the motion of photoactive swimmers is in part a result of
“surfing” on such osmotic flow between the particle and the
surface over which it moves, as discussed by Palacci et al.*> If
the portion of this flow between the stationary bottom surface

and the tail of the mobile particle, represented by the white
arrows in Figure Sa, is asymmetric, then a net movement is
expected. For the fabrication process used, the length and width
of the tail mutually increase or the tail broadens as it increases
in length,58 as shown on the right side of Figure Sa. Thus, a
stronger concentration gradient is expected to develop near the
end of the particle, where the surface area of the catalyst is
larger, potentially leading to an asymmetric osmotic flow
toward the silica head upon which the particle could move
(white arrows). In essence, two competing mechanisms work to
drive the particles in opposite directions: self-phoresis leading
to motion toward the tail and osmotic “surfing” leading to
motion toward the head. Which mechanism dominates in this
case would then be a function of the morphology. We note that
the full description of the mechanism for photocatalytic active
systems is lacking in the literature, and the mechanism is likely
to be multifaceted especially for particles with complex or
asymmetric shapes as asymmetry will inevitably alter flow and
thus the propulsion. An example study investigated “peanut’-
shaped particles made from hematite that showed ~75%
moving from the larger side to the smaller.*” These swimmers
being isotropic with respect to the material, the asymmetry of
the shape alone gives rise to self-propulsion, whereas in our
system we have both shape and material anisotropy.

To briefly investigate the effects of asymmetry in our system,
we look at a special case in which the previously mentioned tail
broadening is greatly exaggerated. With greater broadening, it is
possible, considering the toy model in Figure S, that a larger
asymmetry in the osmotic flow between the particle and the
substrate would be present, and thus we should observe higher
speeds. We found several such structures in our experiments,
which result from the DPVD process combined with the
location of the seed particle during deposition. If a sphere is
situated in a way so that the titania is not shadowed by adjacent
spheres, the broadening of the titania tail is much greater as
demonstrated in the SEM images of Figure Sb,c. The image in
Figure Sb shows “narrow” titania tails grown upon close-packed
spheres. However, if spheres were to reside at the edge of a
domain, tail growth on such spheres will show significantly
greater broadening. The structures outlined with red rectangles
atop the SEM image of Figure Sc shows this effect. We find that
these particles, in general, move at speeds significantly higher
than their more symmetric counterparts, which is expected
because more asymmetry should lead to higher asymmetric
osmotic flow. As a quick comparison, we revisit the a = 2 ym, [
= 2.2 ym case. Because the broadening is so severe, by visual
discrimination of the particles in the videos alone, we can easily
distinguish the broad tails from the narrow tails, and we found
speeds of 7= 6 + 2 ym/s for the former and v =3 + 1 um/s for
the latter, or the broad-tailed swimmers move ~2X faster than
their narrow counterparts. Video S4 in the Supporting
Information demonstrates this effect.

B CONCLUSIONS

We have fabricated and investigated the morphology-depend-
ent behavior of structured photoactive microswimmers that
were constructed directly from the catalyst itself. For
microswimmers with photocatalytic tails, we found that both
the tail length and the diameter of the head have significant
effects upon the types of swimming behaviors observed. We
found that by altering the length of the photocatalytic tail,
swimming speed and even the direction of motion change. The
ratio of the diameter of a swimmer’s head to the length of the
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tail appears to be the governing parameter. For instance, when
these two main critical dimensions, tail length and head
diameter, are approximately the same, we find that the direction
of motion is opposite that observed in the Janus sphere case.
Thus, by tuning the geometry and constructing photocatalytic
microswimmers directly from the catalyst material itself, we are
able to modulate the swimming behavior significantly. The
system herein may open up new possible research directions.
For example, the control over the direction of motion could
allow for investigating interesting effects regarding the
collective behavior of a large number of interacting active
swimmers. For instance, it was shown numerically that particles
of similar geometry moving in opposite directions show phase
separation.”” The system herein could make experimental
investigations of such phenomena realizable.

B MATERIALS AND METHODS

The steps leading to the fabrication and actuation of the swimmers are
illustrated in Figure 1. Shown in Figure la, monolayers of SiO,
microspheres were deposited onto Si(100) wafers, which were
precleaned with oxygen plasma, either with a Langmuir—Blodgett
method or by simple drop-casting. Two diameters of SiO, beads were
used (2.0 and 3.2 um) to investigate size-dependent effects. The SiO,
spheres served as a nucleation temglate for the DPVD technique
known as glancing angle deposition.”***> The deposition of TiO, was
performed at an oblique angle of y = 85° with respect to the
evaporation source, as shown in Figure 1b. Approximately columnar
tails of TiO, were grown to various lengths by employing electron-
beam evaporation at a vacuum pressure of P < 2.0 X 107° Torr. After
deposition, the substrates were removed from the deposition chamber
and annealed in a Thermolyne 21100 Furnace at ~500 °C for 3 h (see
Figure 1lc) to obtain primarily the anatase phase of titania. The
structures were detached from the surface, separated from the array,
and dispersed into pure water using gentle bath sonication.

The microswimmers were observed to be moving within an
observation cell made the following way: we first cut a square hole
from a piece of double-sided tape. The tape was adhered to an oxygen-
plasma-cleaned silica microscope slide, and, to keep the fluid at the
center of the cell, a hydrophobic PAP pen was employed to draw a
hydrophobic square-shaped ring on the slide along the inner edge of
the tape. A droplet of water that contained the particles, followed by an
additional droplet of hydrogen peroxide, was pipetted into the cell,
which was then sealed using a clean glass cover slide. The
concentration of hydrogen peroxide in all experiments was held
constant at 1% (v/v), even though our experiments indicate that
concentration has little effect on speed in this system (see Supporting
Information). The swimmers settled to the surface of the glass slide at
the bottom of the cell (see Figure 2a). A fluorescence microscope
(Zeiss AxioScope.Al) was used to observe their motion under
brightfield illumination, whereas a light emitting diode UV light source
(4 = 365 nm) was used for activation. The intensity of the UV light
was uniform in all experiments at a value of ~2 W/ cm?. Once
activated, the particles moved just above the bottom surface of the cell,
typically along their major axis. The length is defined as the distance
from the center of the sphere to the end of the tail, as shown in Figure
2b, which we measured with a Zeiss Supra 40VP scanning electron
microscope. Characterization was performed using SEM and a
Thermo Scientific EDX at the Imaging and Histology Core Facility
at Northern Arizona University. Videos of the microswimmers were
recorded with a Mikrotron EoSens GE MC1364 camera at a frame rate
of 10 fps, and the motion was analyzed using the plugin MTrack2 for
the software ImageJ. Several videos are provided in the Supporting
Information.

Example arrays of the structures resulting from the fabrication
process, described schematically in Figure la—c, can be found in
Figure 1d—f. Shown in Figure 1d is a top-down image of a monolayer
of silica spheres ~2 pm in diameter. On average, we found the
structures to be qualitatively of high uniformity. An example can be

seen in Figure le, which shows a cross-section SEM image of silica
microspheres of ~3.2 pm diameter with attached approximately
columnar tails of TiO,, which was deposited at an oblique angle of y =
85° (see Figure 1b for the definition of y). Figure 1f shows a chemical
map, obtained with EDX, overlaying the same image in Figure le. The
map shows the location of elemental silicon (red) at the bottom and
elemental titanium (blue/green) at the top, consistent with expect-
ations. Note that the inset SEM image in Figure 1d and the image in
Figure le are on the same scale.

B ASSOCIATED CONTENT
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See supporting information for videos of the photoactive
particles and a document describing additional experi-
ments, procedures, and methods (PDF)

3.2 ym-diameter Janus spheres moving in 1% H,0, (V/
V) under UV illumination (AVI)

Short-tailed (@ = 3.2 ym and | = 1.5 pum) structured
swimmers in 1% H,0, (V/V) (AVI)

Long-tailed (a = 32 pm and ! = 3.8 um) structured
swimmers in 1% H,0, (V/V) under UV illumination
(AVI)

Demonstration of broad-tailed swimmers moving faster
than their narrow counterparts for the a =2 pm and [ =
2.2 ym morphology (AVI)
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