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Abstract

In materials science and engineering, auxetic behavior refers to deforma-
tions of flexible structures where stretching in some direction involves lateral
widening, rather than lateral shrinking. We address the problem of detecting
auxetic behavior for flexible periodic bar-and-joint frameworks. Currently,
the only known algorithmic solution is based on the rather heavy machinery
of fixed-dimension semi-definite programming. In this paper we present a
new, simpler algorithmic approach which is applicable to a natural family
of three-dimensional periodic bar-and-joint frameworks with three degrees of
freedom. This class includes most zeolite structures, which are important
for applications in computational materials science. We show that the exis-
tence of auxetic deformations is related to properties of an associated elliptic
curve. A fast algorithm for recognizing auxetic capabilities is obtained via
the classical Aronhold invariants of the cubic form defining the curve. A
related alternative is also considered.

Keywords: periodic framework; auxetic deformation; elliptic curve;
Aronhold invariants; zeolites.

1. Introduction

In this paper we study a geometric problem originating in materials sci-
ence. The main result is an efficient algorithm for detecting auzetic behavior
in generic three-dimensional periodic bar-and-joint frameworks with inde-
pendent edge constraints and three degrees of freedom. The method has
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immediate applications to frameworks of vertex-sharing tetrahedra, which
include the important family of crystalline materials known as zeolites.

Motivation: auxetic behavior in materials science. When a phys-
ical material is stretched along an axis, its “typical” response is a lateral
shrinking. Yet this behavior is not universal: certain natural or man-made
materials have the rather counter-intuitive property of widening rather than
shrinking. This type of “growth” has been called auzetic behavior [17]. In
elasticity theory, Poisson’s ratio for two orthogonal directions a and b is de-
fined as the signed ratio of the lateral effect along b to the extension along
a due to uniaxial tension applied in that direction. For “typical” materials
the Poisson’s ratio is taken with a positive sign, while materials with aux-
etic behavior are said to have negative Poisson’s ratios [18, 19, 22, 23, 24].
The difference is often illustrated in the literature with the two-dimensional
periodic bar-and-joint honeycomb examples shown in Fig. 1.

/

Figure 1: (Left) The regular honeycomb has positive Poisson’s ratios, while the re-entrant
honeycomb (right) exhibits auxetic behavior.

In mineralogy, the “rigid unit mode” approach to displacive phase tran-
sitions in crystalline materials relies on the periodic framework structure at
the atomic level [15]. In this context, auxetic behavior was observed for
cristobalite [37] and conjectured among zeolites [20, 34]. For cellular and
periodic materials, the importance of the underlying geometry has been fre-
quently emphasized [25, 28, 29]. However, the approach via determinations
of Poisson’s ratios has produced only a limited catalog of structures capable
of auxetic behavior [16, 24]. Currently, with new and augmented possibilities
for digital fabrication (3D printing) and an increased interest in mechanical
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metamaterials, geometric structural design has reached a pivotal role and
position [2, 33].

In our recent work [9], we laid the foundations of a strictly geometric the-
ory of auxetic deformations for periodic bar-and-joint frameworks. Auxetic
behavior is recognized based on the evolution of the periodicity lattice along
one-parameter trajectories. As reviewed after this introduction, the hallmark
of an auxetic trajectory is that the Gram matrix of a basis of periods traces
a curve of symmetric matrices with all tangent directions contained in the
positive semidefinite cone. This purely geometric approach has uncovered
new principles for auxetic design [11, 12] and has opened the door to rig-
orous mathematical techniques. Design and recognition of auxetic features
may be considered the obverse and reverse of the auxetic coinage.

Main theoretical result: overview. In this paper, we investigate the aux-
etic capabilities of a natural class of three-dimensional periodic frameworks,
which includes many structures of interest in mineralogy and materials sci-
ence, such as silica and zeolites [27]. Specifically, we address the following
problem.

( 7

Problem 1 (Identify auxetic capability). Let F be a 3D periodic bar-
and-joint frameworks with independent edge constraints, n vertex orbits,
m = 3n edge orbits and hence three degrees of freedom. Decide if F
allows strictly auzetic local trajectories.

. )

As it is often the case with similar questions in rigidity theory and kine-
matics, we assume certain genericity conditions on the framework (they will
be stated explicitly in Section 4). In practice, most tetrahedral crystal frame-
works would satisfy our conditions, which guarantee that local deformations
are represented by variations of the periodicity lattice and the three dimen-
sional tangent space at the initial configuration is in general position.

The connection with elliptic curves indicated in the title comes from re-
stricting the determinant function on symmetric 3 x 3 matrices to such a
three-dimensional vector subspace. The genericity condition will imply that
the resulting ternary cubic form defines a non-singular projective curve. The
most remarkable theoretical fact is that our question about auxetic capabil-
ities of the periodic framework turns into a question about the real points of
an elliptic curve.



Main algorithmic result: overview. Our formulation of auxetic behavior
leads to significant connections with convex algebraic geometry, spectrahedra
and semidefinite programming, as already noted in [9], Corollary 7.1. In par-
ticular, deciding infinitesimal auxeticity for a d-periodic bar-and-joint frame-
work can be formulated as a semi-definite program (SDP) in fixed-dimension
d, for which polynomial time solutions exist [31]'; see also [26] for a recent
survey on the related topic of low-rank SDP. Using the new connections with
elliptic curves presented in this paper, we can avoid the SDP machinery
for the family of n-vertex, 3n-edge orbit periodic frameworks. Specifically,
classical results on the Hesse form of a cubic, Aronhold invariants and the
modular J-invariant [3, 14, 35] lead to a simpler and cleaner decision algo-
rithm. The main steps of the algorithm involve solving an under-constrained
linear system with 3n linear equations in 3n+3 unknowns, along with several
algebraic calculations on cubic polynomials.

In the last section we discuss two algorithmic alternatives: one based on
cylindrical decomposition and sample points on all connected components
of an affine semi-algebraic set [1], the other based on smallest rank points
on spectrahedra [21]. Nevertheless, our emphasis remains attached to the
fuller geometrical understanding which can be obtained in the regular case
via the Hesse form of the cubic. This may serve wider inquiries on variations
of auxetic cones in large deformations.

Related Work. In [10], we defined and studied the stronger concept of
expansive deformation path for a periodic framework, and proved that it is
necessarily an auxetic path. For two-dimensional frameworks, we gave a com-
plete combinatorial characterization (based on periodic pseudo-triangulations)
of those frameworks that admit expansive deformations [10, 8]. This leads,
in particular, to an infinite family of planar periodic auxetic mechanisms.
For arbitrary dimensions, our design principles [11, 12] and connections with
convex algebraic geometry bring new significance to classification problems
for spectrahedra, as pursued in [30]. Also related are classical results on
ternary quartic forms [32].

Frameworks with m = 3n and the vertex-sharing tetrahedral struc-
tures. The three-dimensional frameworks studied in this paper have n vertex

'However, as pointed out to us by Anthony Man-Cho So, this remains a purely the-
oretical result: no implementation of the algorithm [31] is available and in practice one
would have to rely on some general SDP code, such as the CVX package in MATLAB.



Figure 2: The quartz framework is an example of a tetrahedral 3D periodic structure. It
has n = 6 vertex orbits and m = 3n = 18 edge orbits. The bar-and-joint framework is
shown on the left. The edges of the three highlighted tetrahedra provide the 18 represen-
tatives for the edge orbits. In [9], we show that the path of the phase transition from low

to high quartz is auxetic.

orbits and m = 3n edge orbits. We assume independent edge constraints and
this implies a smooth three-dimensional local deformation space, i.e. three
degrees of freedom. This choice is not accidental. In general, for arbitrary di-
mension d, the class of periodic frameworks with n vertex orbits and m = dn
edge orbits has distinctive mathematical properties; for instance, the invari-
ance of the ratio m/n = d under relaxations of periodicity. A special family
in dimension two is the family of pointed pseudo-triangulations. Another
important family, in arbitrary dimension d, consists of periodic frameworks
made of (1-skeleta of) “vertex-sharing simplices”; every vertex is common
to exactly two simplices. The 3D case of vertex-sharing tetrahedral struc-
tures includes a wealth of crystal structures studied in mineralogy, such as
silicates and zeolites. Quartz, for instance, is a silicon dioxide with oxygen
atoms forming a tetrahedral framework as illustrated in Fig. 2. Its aux-
etic properties, established in [9], motivated us to seek the general decision
procedure presented in this paper.

2. Periodic frameworks and deformations

In this section we review the necessary concepts related to periodic frame-
works and deformation spaces. The main references are [4, 5, 7].



Periodic graphs, vertex and edge orbits. A d-periodic graph is a pair
(G,T'), where G = (V, F) is a simple infinite graph with vertices V', edges £
and finite degree at every vertex, and I' C Aut(G) is a free Abelian group
of automorphisms which has rank d, acts without fixed points and has a
finite number of vertex (and hence, also edge) orbits. The group I is thus
isomorphic to Z4 and is called the periodicity group of the periodic graph G.
Its elements v € I' ~ Z< are referred to as periods of G. We assume V to
be connected and denote by n = |V/I'| the number of vertex orbits and by
m = |E/T'| the number of edge orbits.

Placements and frameworks. A periodic placement (or simply place-
ment) of a d-periodic graph (G,T) in R? is defined by two functions: p :
V — R%and 7 : I' — T(R?), where p assigns points in R? to the vertices
V of G and 7 is a faithful representation of the periodicity group I', that is,
an injective homomorphism of I' into the group 7 (R?) of translations in the
Euclidean space RY, with 7(T") being a lattice of rank d. These two functions
must satisfy the natural compatibility condition p(yv) = 7(7)(p(v)).

A placement (p, 7) which does not allow the end-points of any edge to have
the same image defines a d-periodic bar-and-joint framework F = (G,T', p, )
in RY, with edges (u,v) € E corresponding to bars (segments of fixed length)
[p(u), p(v)] and vertices corresponding to (spherical) joints. An example in
dimension d = 3 is given in Fig. 3. Two frameworks are considered equivalent
when one is obtained from the other by a Euclidean isometry.

Deformation space. Given a d-periodic framework F = (G,T',p, ), the
collection of all periodic placements of (G,T') in R? which maintain the
lengths of all edges is called the realization space of the framework. After
factoring out equivalence under Euclidean isometries, we obtain the configu-
ration space of the framework (with the quotient topology). The deformation
space is the connected component of the configuration space which contains
the initial framework. Examples can be found in [4, 6].

Factoring out the Euclidean isometries. A convenient way to factor
out equivalence under Euclidean isometries is to use coordinates relative to
a basis given by generators of the periodicity lattice and to retain the metric
information via the Gram matrix of the chosen basis. The procedure is
described in [7], Section 4, and will be recalled here concisely.



After choosing an independent set of d generators for the periodicity group
', the image 7(I") is completely described via the d x d matrix A with column
vectors (A;)i=1,... 4 given by the images of the generators under 7. The Gram
matrix for this basis will be w = A? - A.

Let us fix now a complete set of vertex representatives vg, vy, ..., v,_1 for the n
vertex orbits of (G,I"). The framework F has them positioned at p; = p(v;).
When we pass from these Cartesian coordinates to lattice coordinates ¢;, we
consider vy to be the origin, that is ¢o = 0, and then Ag; = p; — po.

In this manner, the Cartesian description of the framework F given by
(Poy -y pn_1) € (RY)™ and A € GL(d), which requires dn + d? parameters,

is reduced to (q1, ..., ¢u_1,w), which involves only d(n — 1) + (dH) parame-
d+1)
2

2
ters, since w is a symmetric d x d matrix. The dimensional drop of (

reflects the factoring out of the action of the Euclidean group of isometries
E(d), which has this dimension.

We recall here the form of the equations expressing the constant (squared)
length of edges, when using parameters (qi, ..., ¢o—1,w) (cf. [7], formula (4.1)).
Let us consider an edge (denoted here simply by e;;) which goes from v; to a
vertex in the orbit of v;. Then, in Cartesian coordinates, the edge vector is
given by p; + \;; — pi, with some period \;; = An;; € (T') and n;; € Z4. In
lattice coordinates, the edge vector is given by ¢; +n;; — ¢; and the squared-
length equation is:

Uei)* = lpj + Nij — il P =
= (W(g; +nij — @) (g5 +nig — @)y = (¢ +ns5 — @) 'w(g; +ni — @) (1)

This is the source of the linear system for computing infinitesimal deforma-
tions, as used in subsequent sections. Besides the elimination of equivalence
under isometries, an obvious advantage of this formulation is that the Gram
matrix w = A’ - A of the chosen basis of periodicity generators appears ex-
plicitly.

3. Auxetics and spectrahedra

We review now, following [9], the fundamental notions of geometric aux-
etics.



One-parameter periodic deformations. A one-parameter deformation
of the periodic framework F = (G,T',p, ) is a smooth family of placements
pr V. — RY parametrized by time 7 € (—¢,€) in a small neighborhood of
the initial placement py = p, which satisfies two conditions: (a) it maintains
the lengths of all the edges e € F, and (b) it maintains periodicity under T,
via faithful representations 7, : I' — T(R?) which may change with T and
give an associated variation of the periodicity lattice of translations m, ().

With our chosen generators for the periodicity group I', we have, at any
moment of time 7 € (—¢,€), a lattice basis A, and the corresponding Gram
matrix w, = w(7) = ALA,.

Auxetic path. A one-parameter deformation (G,T',p,, 7 ), 7 € (—€,¢€) is
called an auxetic path, or simply auzetic, when the curve of Gram matrices
w(7) has all its tangents in the cone of positive semidefinite symmetric d x d
matrices. When all tangents are in the positive definite cone, the deformation
is called strictly auxetic.

When we operate in lattice coordinates (qy, ..., gn—1,w), we use the abbrevi-
ations ¢; = %(0) and & = %(0). From (1) we obtain the linear system for
infinitesimal deformations (¢, ..., ¢,—1, w):

<d)€z'j, 6ij> + 2<we¢j, ezg) =0 (2)

where e;; = q; +n;; —q;, with n;; € 74, is meant to run over a complete set of
representatives of edge orbits and é;; = ¢; — ¢;. For notational simplicity, the
edge symbol e;; omits the specific period shift, but it will be understood that
several such edge representatives (with various shifts n;;) may be implicated
in the system. There are d(n—1)+(*}") = dn+(}) unknowns and m = |E/T|
equations.

Infinitesimally, our auxetic criterion requires w to be a positive semi-definite
matrix, while strict infinitesimal auxeticity needs a positive definite w. It
follows immediately that infinitesimal auxetic deformations define a cone in
the tangent space at F of the framework’s deformation space. We speak
of infinitesimal auzetic capabilities when there are infinitesimal deformations
with w # 0 and w positive semidefinite.

In convex optimization theory and semidefinite programming, an affine sec-
tion of the positive semidefinite cone in the linear space of symmetric d x d
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matrices is called a spectrahedron [36, 30]. When the section goes through
the origin we have a spectrahedral cone. Thus, when we look for infinitesimal
auxetic capabilities, we have to look at the image of the space of infinitesi-
mal deformations in the space of symmetric d x d matrices and examine its
intersection with the positive semidefinite cone.

This important connection between infinitesimal auxetic capabilities of a pe-
riodic framework and semidefinite programming was established in [9], Corol-
lary 7.1 and will be a pivotal element of the current investigation, which is
targeted on a specific class of three-dimensional periodic frameworks with
three degrees of freedom. From this perspective, our inquiry will be con-
cerned with the six-dimensional vector space of 3 X 3 symmetric matrices and
spectrahedral cones resulting from the intersection of the positive semidefi-
nite cone with (generic) three-dimensional vector subspaces.

4. Regular three-dimensional periodic frameworks

There are several motivations for looking at three-dimensional periodic
frameworks with three degrees of freedom. Applications to crystalline ma-
terials evidently require dimension three and important families studied for
properties related to framework flexibility have, geometrically, three degrees
of freedom. Zeolites, for instance, have framework structures made of vertex
sharing tetrahedra and generic periodic frameworks of this type have, locally,
a three-dimensional deformation space [4].

If we assume independent edge constraints in the linear system (2) obtained
above for infinitesimal deformations, we see that a three dimensional solution
space amounts to m = 3n. Mathematically, this type of periodic framework
is quite relevant for periodicity relaxation problems, since this proportion of
edge orbits to vertex orbits remains the same when adopting a sublattice of
periods (of finite index).

As with similar definitions in rigidity theory, we have to assume certain
genericity conditions on the framework, in particular independence of the
edges [5]. For reasons that will become clear along the way, in this paper we
consider only reqular periodic frameworks in R?, defined by the following:



Conditions 1 (Regularity conditions).

i. The number of edge representatives is m = 3n.

ii. The edge constraints are independent, that is, the system (2) has
mazimal rank m.
11. The projection from infinitesimal deformations to 3 X 3 symmetric
matrices:
(ql, aaar qn_l,d}) =W

18 one-to-one.
w. The projective cubic curve obtained by restricting the determinant
function to the image of the above projection is non-singular.

We can now formulate precisely the problem solved in this paper:

Problem 2 (Identify auxetic capability). Let F be a 3D regular
periodic bar-and-joint framework. Decide if F allows strictly auxetic
deformations.

Remarks. Under the regularity conditions stated above, it follows from the
implicit function theorem that the local deformation space of F is a smooth
threefold. This means, in particular, that it is enough to solve the infinitesi-
mal problem of deciding if F has strictly auxetic infinitesimal deformations,
since any curve of symmetric matrices with a positive definite tangent direc-
tion at one point will maintain this property in a neighborhood of that point.
In other words, F allows strictly auxetic deformations if and only if it allows
strictly auzetic infinitesimal deformations.

Moreover, under the genericity condition (iv), intersecting the positive defi-
nite cone is equivalent with intersecting non-trivially its closure, the positive
semidefinite cone, and we have a transversal intersection with the boundary in
the generic case. Thus, our decision problem turns into the general question
about infinitesimal auxetic capabilities which can be solved by semidefinite
programming as stated in [9], Corollary 7.1. The solution presented in this
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paper for our distinctive class of frameworks shows that geometric charac-
teristics can be used for alternative algorithms, and thus avoid the general
machinery of semidefinite programming [31].

5. Ternary cubic forms and their invariants

In this section we explain our geometrical approach, present the theo-
retical basis of the decision algorithm and review the classical results about
elliptic curves.

We have shown above that the question about strictly auxetic deformations
of a regular periodic framework F leads to an intersection problem in the
space of 3 X 3 symmetric matrices between the positive semidefinite cone and
a three-dimensional vector subspace image of the infinitesimal deformations
of F. Strictly auxetic deformations exist if and only if the three-dimensional
vector subspace cuts through the positive definite cone.

Our approach is to investigate the resulting intersection with the boundary
of the positive definite cone, which is contained in the vanishing locus of
the determinant function. Since this function is a homogeneous cubic form,
its restriction to our three-dimensional subspace gives a ternary cubic form
and projectively, a real cubic curve in P»(R). The genericity condition (iv)
allows the assumption that this cubic curve is non-singular (over the complex
numbers C).

Non-singular projective cubics are also known as elliptic curves and there
is a wealth of classical results about them. We limit the main references
to [3, 14, 35], which cover all the facts needed for our arguments. Different
sources may have different choices of coefficients in front of certain invariants.
Since we are concerned with real ternary cubics, we follow mostly [3].

We consider a three-dimensional real vector space with coordinates (z, vy, 2).
We are interested in real cubic forms f(z,y, z) and the projective cubic curves
f(z,y,z) = 0 they define in P»(R), with projective coordinates (z : y : z).
There are ten distinct monomials of degree three in x, y, z and a ternary cubic
form is determined by the ten coefficients of these monomials.

Hesse normal form. A non-singular real projective cubic f(x,y,z) = 0 is
projectively equivalent over R with a unique cubic of the form:

2+ y* 4+ 2% — 3kayz =0 (3)
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with £ € R, k # 1. This form is called the Hesse normal form of the cubic.
The three real inflection points are on the line z +y+2 =0, at (0:1: —1),
(=1:0:1)and (1:—1:0).

Aronhold invariants S and 7. The action of the special linear group
SL(3) on the coordinates (x,y, z) induces a linear representation on the ten-
dimensional vector space of ternary cubics. Homogeneous polynomials in the
coefficients of ternary cubics are called invariant when they remain unchanged
under this induced action. The Aronhold invariants S and 7' are given by
two explicit invariant polynomials (with rational coefficients) of degree four,
respectively six [35].

Discriminant. The discriminant A is the invariant polynomial of degree
twelve given by:

A = (49)* + T? (4)

A cubic form defines a non-singular curve in P»(C) if and only if A # 0. For
negative A, the real cubic in P»(R) is connected, while for positive A, it has
two connected components.

Modular invariant J. For non-singular cubic forms, the modular invariant
J is defined as a rational expression in the Aronhold invariants S and 7" by
the formula:

(45)°

T spe T o

Since both numerator and denominator are homogeneous polynomials of de-
gree twelve, the modular invariant J is invariant under the general linear
group GL(3). Moreover, two non-singular cubic curves in P,(C) are projec-
tively equivalent over C if and only if J gives the same value when evaluated
for the two cubic forms in the defining equations. This value is called the
modulus of the curve.

For a cubic in Hesse normal form (3), we refer to the corresponding ternary
form directly through the Hesse parameter k. Then, the values S(k) and
T'(k) are related to k by the following equations [14].

S(k) = —%k - 2—14k4 (6)
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_ 5 3 1 6
T(k) = 1+ Sk — 5k (7)

The discriminant takes the form:
A(k) = (45(k))* + T(k)* = (1 — k) (8)

and the case k =1 in (3) is detected as singular.

For the modular invariant we find:

L US(R) BGRE +8)
TR) = 8t + T2 ~ e — 1) ©)

and the right hand side is invariant under the involution n(k) = % This
means that J(n(k)) = J(k), and the two curves are projectively equivalent
over the complex numbers C. The two fixed points of the involution n are
ki =1++/3and J(k;) = J(k_) = 1. For real Hesse cubicsi.c. k € R,k # 1,
for any given real modulus there are exactly two real Hesse parameters with
that modulus. The two curves are not projectively equivalent over R, but
as complex curves, they are projectively equivalent over C. For more details

and illustrations, we refer to [3].

For any non-singular cubic form f, we first compute the (values of) the
Aronhold invariants S(f) and 7'(f) and then use formula (5) to compute the
modulus J(f). In the real case, we know that there is a unique real parameter
k which gives a Hesse curve projectively equivalent over R with the curve
f =0, although, as reviewed above, there’s another real parameter yielding
the same modulus J(f). The proper Hesse parameter k£ can be recognized
as follows.

Lemma 1. Let f be a non-singular ternary cubic form with Aronhold in-
variants (S(f),T(f)) and modulus J(f). Then, the quartic equation in k*
resulting from relation (9), namely:

64J(f) (k3 — 1)3 = k3(k3 + 8)*

has exactly two distinct real solutions, hence two distinct real solutions kq
and ko. IfT(f) #0, i.e. J(f)# 1, then T(ky) and T'(ky) have opposite signs
and the proper solution which gives a Hesse cubic projectively equivalent over
R with the curve f = 0 must share the sign of T(f). If T(f) =0, then S(ki)

and S(ks) have opposite signs and the proper solution must give the sign of

S(f)-
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Using (6), (7) and the action of the involution 7, the Lemma follows from
statements proven in [3]. After this brief review of relevant classical no-
tions and results, we proceed with our inquiry. Let us observe first that, if
our (generic) three-dimensional subspace of 3 x 3 symmetric matrices cuts
through the positive definite cone, the corresponding (non-singular) real cu-
bic curve must have two connected components. This follows from the fact
that the intersection with the boundary of the positive definite cone gives
one component which appears as a convex curve in adequately chosen affine
planes. Since this component cannot contain inflection points, there must be
a second component. We obtain:

Lemma 2. If the discriminant of the ternary cubic f associated to the pe-
riodic framework F is negative, i.e. A(f) < 0, then the framework does not
allow non-trivial auzetic deformations.

However, a positive discriminant is not a sufficient condition for strictly
auxetic capabilities. We must check if the connected component without
inflection points actually corresponds with positive semidefinite matrices.
This can be determined by finding the explicit real linear transformation
which takes the original cubic form to its Hesse normal form. Note that, by
Proposition 1, the Hesse parameter can be determined from the invariants
(S(f),T(f),J(f)). Then, the decision is yes if the preimage of (1 : 1 : 1)

corresponds to a positive or negative definite matrix and no otherwise.

We explain this procedure in more detail. For a cubic in Hesse normal
form (3), the tangent lines at the three inflection points (0:1: —1), (—=1:0:
1) and (1: —1:0) have equations kx +y+2z = 0, v+ ky+ 2z = 0, respectively
x +y+ kz = 0. For non-singular real cubics (i.e. k # 1) these lines are
concurrent only for £ = —2, when the real curve is connected. Thus, for real
cubics with two real components (i.e. k& > 1), the three tangents and the line
x4+ vy + z = 0 of the inflection points give four points in general position in
the dual projective plane P5(R)*.

It follows that, if we know the three real inflection points of a non-singular
real cubic with two connected components, we can compute the three tangent
lines and, after choosing a matching order for the inflection points, there is
a unique real projective transformation which takes the line of real inflection
points to the line z +y+ z = 0 of the cubic’s Hesse normal form and matches
the inflection points and tangents. Obviously, this projective transformation
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takes the cubic to its Hesse normal form. A different choice of matching
order for the inflection points amount to composition with a permutation of
the variables x, y, 2.

An algorithm for computing the three real inflection points of a non-singular
real cubic is described in [13].

For the Hesse form, the point (1 : 1 : 1) € Py(R), as the only invariant
point under permutations, must be in the interior of the triangle formed by
the three tangents in the affine plane which has the line of inflection points
at infinity. Since each connected component goes to itself under permuta-
tions, the component without inflection points must appear as a convex curve
around the invariant point (and be contained in the triangle of tangents as
well). Again, illustrations may be found in [3].

6. Decision algorithm for auxetic capabilities

A high level description of the algorithm is given below in Algorithm 1.

Input and Output. The input is a framework F, with periodic graph G =
(V,E), |V| =n and |E| = 3n, periodicity lattice given by the Gram matrix
w, and vertex representatives ¢; presented in “lattice” or “crystallographic
coordinates”, as described in Section 2. In particular, g, is fixed at the origin,
and each of the remaining n—1 points has 3 coordinates in the interval [0, 1).
In a pre-processing step we can check that the edges are independent, for
example by writing the 3n x 3n + 3 rigidity matrix of the framework and
computing its rank. The algorithm proceeds only if the rank is maximum. If
the framework is not regular (cf. definition in Section 4), the algorithm will
stop and report that it cannot give a precise answer. Otherwise, it reports
the presence or not of auxetic capabilities. We remark that the algorithm
runs on all generic inputs. In particular, the set of inputs on which it will
stop without giving a definitive answer has measure zero.

Analysis. In Step 1, we set up the 3n linear equations (2) with 3n + 3
unknowns (¢i, ..., Gn—1,w) corresponding to the infinitesimal flexes ¢; of the
lattice coordinates ¢;,7 = 1,---,n — 1 of the framework and infinitesimal
changes w in the 6 parameters describing the symmetric Gram matrix w. We
solve the linear system, and attempt to express 3n of the dependent variables
in terms of 3 free variables chosen from among the w. If this is not possible,
then we stop and report that the framework is not regular. In Step 2, we
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Algorithm 1 Decide existence of strictly auxetic deformations.
Precondition: F is a regular periodic framework.

function AUXETIC(F)
Step 1.
- Set up the linear system for periodic infinitesimal deformations.
- Solve it in terms of 3 independent variables chosen from the 6
giving the infinitesimal deformations of the Gram matrix.
- If this is not possible, STOP: the framework is not regular.
EndStep 1.

Step 2.
- M < Substitute the resulting linear forms in the 3 x 3 matrix of
infinitesimal deformations of the Gram matrix.
- Compute the determinant Det(M). The result is a cubic form
C(X,Y, Z) in 3 variables, called X,Y and Z.

EndStep 2.

Step 3.
- Compute the Aronhold invariants S and T for C(X,Y,Z).
- Using S and T, compute the discriminant D of C(X,Y,Z).
- If D =0, cubic is singular. return “not regular”.
-If D <0, return NO: the framework does not have infinitesimal

auxetic deformations.
EndStep 3.

Step 4.
If D> 0:
- compute the 3 x 3 linear matrix L for the transformation
of the cubic C(X,Y, Z) to the Hesse normal form H(z,y, 2).
- Compute the pre-image of the point (1,1,1). This is a vector of
specific values for (XY, 7).
- The corresponding constant symmetric matrix M is then tested
for being definite (either positive or negative definite) and the
corresponding output is produced:
- return YES, if definite or return NO, if indefinite.

EndStep 4.

end function
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compute the determinant of the 3 x 3 infinitesimal Gram matrix w, whose
entries are linear forms in the three free variables and obtain the ternary
cubic described in Section 5. In Step 3, we compute the S and T Aronhold
invariants of the cubic and the discriminant A described in Section 5. We
stop if A = 0: the framework violates the regularity conditions. If A < 0,
the framework does not have auxetic capabilities, c¢f. Lemma 2. Otherwise,
if A > 0, we apply the procedure described in Section 5 after Lemma 2 to
distinguish, correctly, the auxetic and non-auxetic cases.

Complexity. The running time of the algorithm is dominated by Step 1
(Gaussian elimination) and takes O(n®) arithmetic operations. The other
steps are constant time calculations involving equations of degree at most 3.

Extensions. The decision algorithm can be easily modified to return an
actual auxetic infinitesimal deformation. Indeed, the pre-image of the point
(1 :1:1)in step 4 gives specific values for the free variables X,Y, 7 of
the cubic from Step 2, and all the infinitesimal deformation variables (for
the points ¢ and for the Gram matrix w) can be expressed in terms of these
three values, cf. Step 1. Finally, the step-by-step calculation of infinitesimal
auxetic deformations can be used in a standard numerical simulation, with
a sufficiently small time step, of an auxetic trajectory, if one exists.

7. Examples

We now illustrate our method with a type of structure as shown in Fig. 3.
We define a family of periodic frameworks F(\) in R*® with n = 2 vertex
orbits and m = 3n = 6 edge orbits. The periodicity lattice is the standard
integer lattice Z3 and the chosen generators are the vectors e;,i = 1,2, 3 of
the standard basis. The first orbit of vertices is represented by the origin
(the red point in Fig. 3), and coincides with Z3. For F(\), the second orbit
of vertices is represented by the point p = p(\) = A(e; + ez + e3) (the green
point in Fig. 3). The edge orbits are represented by six edges connecting p
with the vertices of the other orbit placed at eq, es, €3, €1 + €2, €5 + €3, 3 + €1
(the thick blue edges in Fig. 3).

In lattice coordinates (¢,w), the framework F(A) will have ¢ = A(ey +
ey + e3) and w = I3, the identity matrix. Although ¢ = p in our initial
setting, we maintain the notational distinction between lattice coordinates
and Cartesian coordinates. Thus, the six edge vectors in lattice coordinates
are written as B, = e; —q, i = 1,2,3 and Ej, = e;+ e, —q, ij € {12,23,13},
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Figure 3: A 3D periodic framework with n = 2 vertex and m = 3n = 6 edge orbits. (Left)
The unit cell with the 2 vertex representatives (colored) and the 6 edge representatives.
(Right) A small 2 x 2 x 1 fragment of the infinite framework.

and the linear system (2) for infinitesimal deformations takes the form:

(WE;, E;) — 2(F;,4) =0 for i=1,2,3
(WEji, Bj) — 2(Ej,¢) =0 for j,k=1,23j#k

Exploiting permutation symmetry and choosing the diagonal elements of w as
parameters, the three-dimensional space of solutions w is given by symmetric
3 x 3 matrices with equal off-diagonal entries of the form:

3

Wy = % : (; Wi;) (10)

We notice the invariance of the fractional coefficient in (10) under the involu-
tion A — 1 — A, which comes from the isomorphism of the frameworks F(\)
and F(1 — ) when reflecting in the plane z; + x9 + 23 = 1/2 (in Cartesian
coordinates).

For simpler expressions, we introduce the following notations:

A=
S 2-6A1-)N)  2-60

C=X1=X), pu p=p*(2u—1) (11)

We notice that, for A € (—o0, 00), we have £ € (—oo,1/4] and p € (—1/6,1/2],
with the resulting range p € [—1/27,0].
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We also rename our parameters as X = wyy, ¥ = woy and Z = ws3. Then
the cubic equation given by det(w) = 0 becomes:

XYZ+p(X+Y+2)P°=0 (12)

It is easily verified that the points (0:1: —1), (=1:0:1) and (1: —1:0)
are inflection points of this cubic curve. The corresponding tangent lines are
X=0,Y=0and Z=0.

The last part of the algorithm requires the computation of the real projective
transformation which takes a given cubic form to the Hesse normal form:

3y + 23— 3kayz = 0. (13)

In this case, it is easy to see that (up to permutation), the relation between
(12) and (13) takes the form:

X=kr+y+z
Y=s+ky+=z
Z=x+y+kz

with the parameters p and k related by:

4+ k+1

3(k+2)3 (14)

pP==
This formula follows from the necessary vanishing of monomial coefficients
for 2%y etc. The singular case k = 1 for (13) corresponds with the singular
case p = —1/27 for (12). The case k = —2 cannot arise, since p = 00 is
excluded.

We remark that the point (z :y : z) = (1 :1: 1) always corresponds with
(X:Y:Z)=(1:1:1). For X =Y = Z = 1 we have the symmetric
matrix:
1 3u 3u
M= 3 1 3w |, we(-1/61/2) (15)
S 31

which is positive definite for 4 € (—1/6,1/3) and indefinite for p € (1/3,1/2].
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We should remain aware of the fact that p = 0 and p = —1/27 in (12)
give singular cubics, hence the framework F(\) will be non-reqular for A =
0,1/3,1/2,2/3,1.

Particular cases. We consider the three cases A = 1/6,1/3,5/12 and follow
the algorithm.

For A = 1/6, by STEP 3, we obtain the invariants:

2287 2021723 1000000

T 4000752° T 185254821367 22067482534159923

In STEP 4 we find k = 25.6407 and, via (15), the output is YES: the reqular
framework admits an auxetic deformation.

For A = 1/3, by STEP 3, we obtain the invariants:

1 1
11664 = 157464’ A=

0

Since A = 0 the algorithm stops with the message that the framework is
NOT REGULAR.

For A =5/12, by STEP 3, we obtain the invariants:

9973 45441143 7353062500

T 25625808" ©  760048652376° —  37144672966729275363

In STEP 4 we find £ = 10.6042 and, via (15), the final output is NO: the
reqular framework does not admit an auzetic deformation.

8. Algorithmic alternatives

It will be observed that the decision algorithm described in Section 6
gives more than just the recognition of strictly auxetic capabilities in the
regular case. It provides, via the Hesse form, access to a normalized descrip-
tion of the spectrahedral cone of all auxetic infinitesimal deformations of the
given framework. Information about variations of this cone as the framework
deforms can be used for investigations of global aspects of auxetic behavior.
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For the restricted purpose of a decision algorithm, we mention here two
alternatives. The question about strictly auxetic capabilities can be ap-
proached with algorithms which produce sample points on all connected
components of an affine real semi-algebraic set [1], sections 5 and 12. In
our case, once we have our ternary cubic f, we ask for sample points on
all connected components of {x € R* : f(z) > 0} and then for sample
points on all connected components of {z € R? : f(z) < 0}. Altogether,
we have sample points on all connected components of the complement of
{x € R®: f(x) = 0}. We then sweep the list of the corresponding 3 x 3
symmetric matrices, checking for definiteness, as in the final segment of Step
4 in our Algorithm 1. This approach does not need the assumption that f is
non-singular.

The second alternative may answer the question about auxetic infinitesi-
mal capabilities in a more general setting, but needs more refined genericity
assumptions [21]. When applicable, it provides a smallest rank sample point
on a given spectrahedron and, in our setting, would detect an auxetic in-
finitesimal deformation of the given framework.
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