

Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and *Symbiodinium* communities

Emilia M. Sogin,^{1*†} Hollie M. Putnam,^{1‡}
Craig E. Nelson ,² Paul Anderson³ and
Ruth D. Gates¹

¹Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.

²Department of Oceanography and Sea Grant College Program, Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, USA.

³Department of Computer Science, College of Charleston, Charleston, NC, USA.

Summary

Microbial symbiotic partners, such as those associated with Scleractinian corals, mediate biochemical transformations that influence host performance and survival. While evidence suggests microbial community composition partly accounts for differences in coral physiology, how these symbionts affect metabolic pathways remains underexplored. We aimed to assess functional implications of variation among coral-associated microbial partners *in hospite*. To this end, we characterized and compared metabolomic profiles and microbial community composition from nine reef-building coral species. These data demonstrate metabolite profiles and microbial communities are species-specific and are correlated to one another. Using *Porites* spp. as a case study, we present evidence that the relative abundance of different sub-clades of *Symbiodinium* and bacterial/archaeal families are linked to positive and negative metabolomic signatures. Our data suggest that while some microbial partners benefit the union, others are more opportunistic with potential detriment to the host. Consequently, coral partner choice likely influences cellular metabolic activities and, therefore, holobiont nutrition.

Received 9 December, 2016; revised 25 January, 2017; accepted 12 March, 2017. *For correspondence. E-mail esogin@mpi-bremen.de; Tel. (+49) 421 2028 823; Fax (+49) 421 2028 580. Present addresses: [†]Symbiosis Department, Max Planck Institute for Marine Microbiology, Bremen, DE. [‡]Biological Sciences, University of Rhode Island, Kingston, RI, USA.

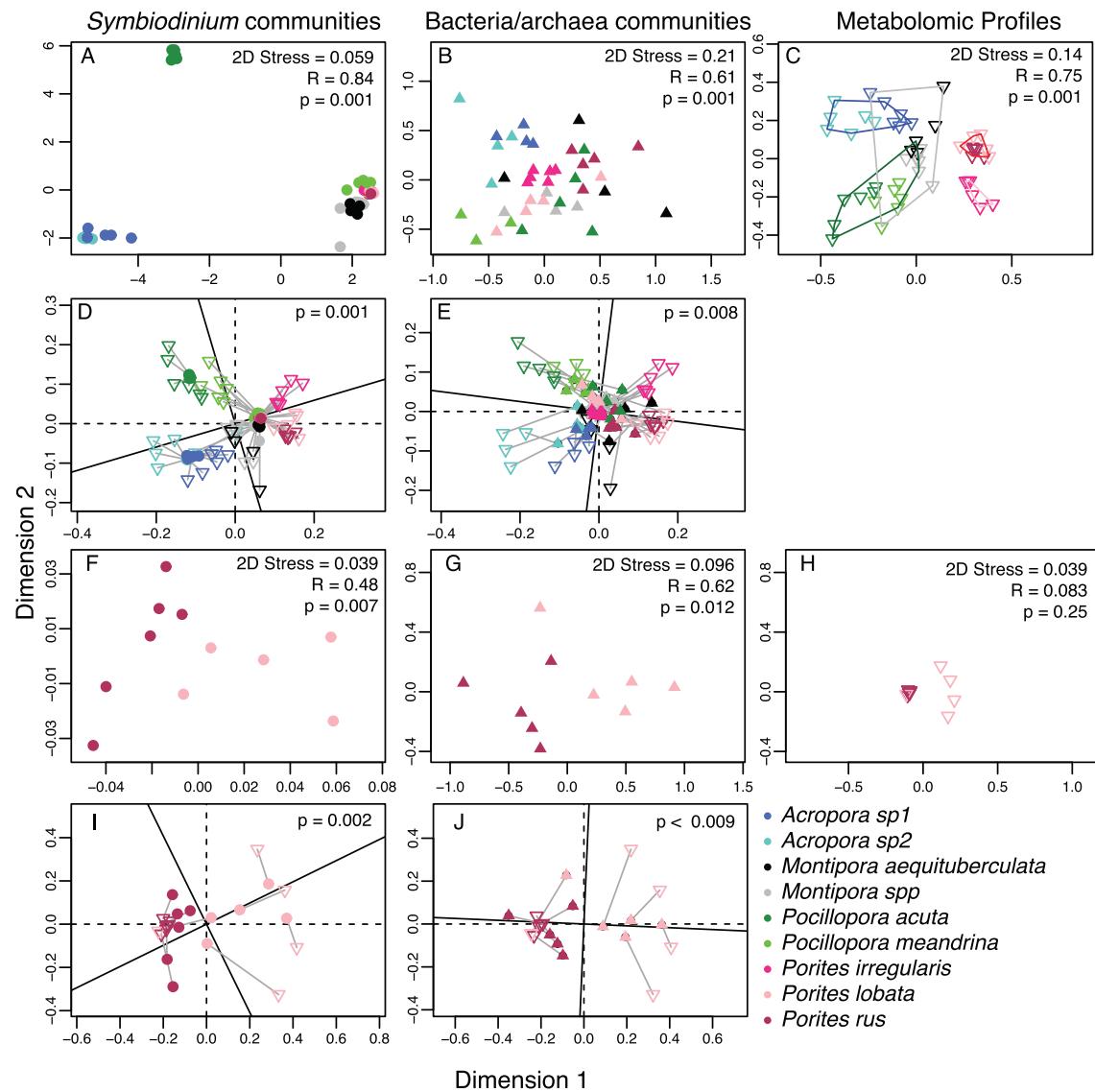
Introduction

Microbial symbiotic partners mediate biochemical transformations that contribute to host performance, altering individual survival and ecosystem function (McFall-Ngai *et al.*, 2013). Reef-building corals partner with a diverse assemblage of bacterial, archaeal and eukaryotic organisms (i.e. microbiome) that comprise the coral holobiont and cycle organic molecules necessary for life in oligotrophic waters (Rohwer *et al.*, 2002; Gates and Ainsworth, 2011). Coral-associated micro-algae from the dinoflagellate genus *Symbiodinium* help to sustain large organic biomasses on reefs through carbon production (Muscatine and Porter, 1977), while coral-associated bacterial and archaeal assemblages participate in sulfur (Raina *et al.*, 2009) and nitrogen cycling (Rädecker *et al.*, 2015). The breakdown of these symbiotic relationships (e.g. bleaching and disease), leads to mortality and drastic changes in reef structure (Hughes *et al.*, 2003). Because not all symbiotic partners contribute equally to holobiont performance (Stat *et al.*, 2008), investigating how different microbes influence coral physiology is essential to understanding the resilience and resistance of reef ecosystems in a changing ocean environment. To this end, we sought to link microbial community composition to holobiont biochemical profiles using deep sequencing of marker genes and a holistic metabolomic approach.

Results and discussion

We sampled the microbial community and metabolite composition from nine coral species within four genera from a single fringing reef in Mo'orea, French Polynesia (Fig. S1; Supporting information provides full experimental methodology). We characterized both *Symbiodinium* and bacterial/archaeal communities from each sample by sequencing the internal transcribed spacer 2 (ITS2) and the V3-V4 region of the 16s ribosomal RNA gene, respectively. Using custom bioinformatics pipelines (FileS1 and FileS4), our analysis identified 80 *Symbiodinium* operational taxonomic units grouped to 97% similarity (OTUs; assigned to clades A, C, D and G) and 618 bacterial/archaeal families through database classification (Supporting information Fig. S2; Table S1); the majority of these families belong within the

gamma-, alpha- and delta-proteobacteria but with representatives spread across 130 classes (Supporting information Fig. S2B). In parallel, we assessed coral metabolite profiles from crude extracts using proton-nuclear magnetic resonance spectroscopy ($^1\text{H-NMR}$) based metabolomic techniques (Sogin *et al.*, 2014). Our spectral binning approach identified 197 peaks from aligned NMR profiles, which were used in subsequent downstream analyses. We unambiguously identified 8 compounds through database and literature matching, and assigned the remaining signals to either carbohydrate, lipid or aromatic metabolite classes based on spectral identity (Supporting information Fig. S3; Bross-Walch *et al.*, 2005).


Our sequencing and metabolomic profiling data allowed us to test for linkages between microbial community assemblages and metabolite composition. This novel *in hospite* approach provides direction for future efforts seeking to identify specific roles of uncultured complex mixtures of microbial communities in reef corals. Multivariate analysis of *Symbiodinium* and coral metabolite profiles grouped samples into coral species- and genera-specific clusters (Fig. 1A and C) while bacteria/archaea communities only sometimes separated by genera (Fig. 1B). These results confirm previous studies showing that closely related host taxa share similar symbiotic communities and biochemical profiles (Rohwer *et al.*, 2002; Putnam *et al.*, 2012; Sogin *et al.*, 2014). Using a Procrustes rotation to statistically compare the multidimensional structure of each dataset, our study demonstrates congruency among coral *Symbiodinium* and bacterial communities with metabolomic profiles (Fig. 1D and E). Furthermore, these results are robust to our choice of microbial phylogenetic binning. ANOSIM tests of bacterial/archaeal community structure differences among coral species ($R=0.75$, $P=0.001$) and Procrustes correspondence tests of multivariate congruency with metabolite composition ($P=0.001$) were consistent when bacterial/archaeal OTUs were constructed using a 97% sequence similarity criterion; we use family-level classifications herein as a conservative approach.

Corals host a diverse assemblage of symbiotic partners; therefore, finding correlative relationships between metabolites and microbial members across multiple host species is not surprising. Considering different corals exhibit broadly different physiologies (Loya *et al.*, 2001), it is essential to isolate the influence of the host to identify the effect of microbial communities on holobiont metabolomic signatures. To this end, we applied a hierarchical clustering approach to the metabolite dataset and identified samples originating from *Porites lobata* and *P. rus* colonies as having similar metabolite profiles (Fig. 1C and H) but different symbiont communities (Fig. 1F and G). Repeated Procrustes rotation analyses

using only the *P. lobata* and *P. rus* samples still detected congruency between microbial communities and metabolite composition (Fig. 1 and I). This suggests different microbial partners may play similar roles in holobiont nutrition and provide functional redundancy in the system, such that metabolic processes are retained (Yin *et al.*, 2000). While our approach advances the field by providing a framework to investigate the roles of the symbiotic partners in a complex milieu, further metagenomic approaches will provide a detailed comparison between the functions of different microbes (Dinsdale *et al.*, 2008). Our findings lend weight to growing information on the metabolic role of mixed microbial communities, with various *Symbiodinium* types characterized by different chemical profiles (Klunder *et al.*, 2015) and shifts in associated bacterial/archaeal communities altering the metabolic potential of the holobiont (Wegley *et al.*, 2007).

Using this reduced dataset containing only *Porites* sp. with similar metabolite profiles, we also calculated spearman rank correlation coefficients between the abundance of individual NMR peaks and independently the relative abundances of both *Symbiodinium* and bacterial/archaeal symbionts. We observed significant correlations between coral-associated symbionts and metabolites (multiple comparisons corrected $P<0.05$), further supporting the hypothesis that microbial communities alter holobiont metabolomic profiles (Fig. 2). Hierarchical clustering on correlation patterns group microbial partners based on their association patterns with metabolite peaks, highlighting taxa that are positively and negatively associated with small compounds. While additional efforts are required to determine if these associations are benefiting or harming the holobiont, we can interpret these relationships in context of the current physiological understanding of coral microbial communities. Therefore, using these data, we explore the hypothesis that some symbionts positively contribute to, while others may act in an opportunistic or parasitic manner, with respect to holobiont nutrition (Lesser *et al.*, 2013).

Clade C *Symbiodinium* fixes and translocates more organic carbon than other clades (Stat *et al.*, 2008); our observation that OTU75 assigned to sub-clade C15 correlates positively with carbohydrates but negatively with lipids suggests this sub-type produces metabolically active carbohydrates not used in lipid metabolism (Fig. 2A). Our analysis delineates variation in metabolite correlational patterns between closely related 97% *Symbiodinium* clusters (i.e. C15-OTU75 and C15-OTU89), indicating even strain level variants are metabolically distinct. Closely related *Symbiodinium* types differentially influence host-bleaching susceptibility (Sampayo and Ridgway, 2008), variation in gene expression profiles

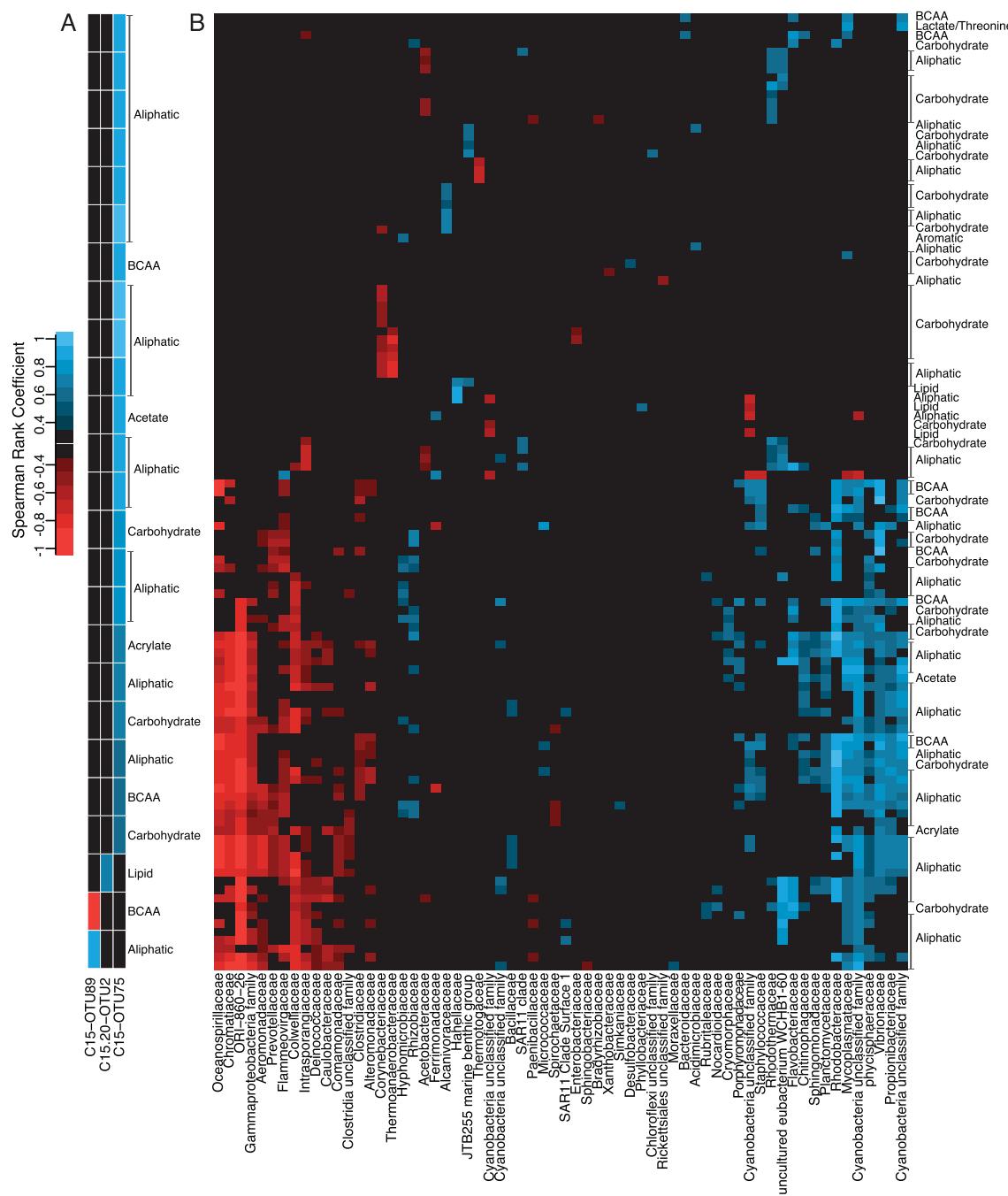


Fig. 1. Multivariate analysis indicates corals have distinct, but related microbial communities and metabolite composition. Non-metric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) separate coral species based on (A) *Symbiodinium* (filled circles), (B) bacterial/archaeal communities (filled triangles) and (C) metabolite profiles (open triangles, ANOSIM P-value and R annotated on each figure panel). (C) Hierarchical clustering results grouping samples with similar metabolite profiles are plotted as the overlay on the NMDS ordination. NMDS ordinations and ANOSIM results for only *Porites rus* and *P. lobata* samples show statistical separation between species for both (F) *Symbiodinium* and (G) bacterial/archaeal communities, but not (H) metabolite composition. Procrustes rotations comparing metabolite profiles to both *Symbiodinium* (D, I) and bacterial/archaeal communities (E, J) for all species and only the subset of *P. lobata* and *P. rus*, indicate the datasets are congruent ($P < 0.05$).

(Parkinson *et al.*, 2016) and holobiont metabolite composition. These findings may help to reconcile performance contrasts in corals, for example, variation in bleaching among individuals (Loya *et al.*, 2001).

From our correlation analyses, we also identify clusters of bacterial/archaeal families that are either positively or negatively associated with NMR-metabolite peaks (Fig. 2B). We observe positive correlations between several unclassified cyanobacteria families and metabolite signals originating from nitrogen containing

branched-chain amino acids and acetate, supporting the hypothesis that cyanobacteria produce nitrogen compounds to support coral nutrition (Lesser *et al.*, 2004; 2007). We also observe positive associations with *Vibrionaceae*, a bacteria family commonly associated with elevated temperatures and coral stress, and a broad array of metabolites classes providing additional evidence that *vibrio* sp. strongly influences holobiont metabolism (Thurber *et al.*, 2009). Additionally, we observe 6 gamma-proteobacteria families are negatively

Fig. 2. Significant Spearman rank correlation coefficients (FDR adjusted $P < 0.05$) between metabolite abundances and (A) *Symbiodinium* OTU subtypes or (B) bacterial/archaeal families. Metabolite annotations are based on specific peak matches to known compounds, or are categorized into metabolite classes (i.e. aliphatics, branch chain amino acids, carbohydrates and lipids) based on peak location and patterning, the latter of which can result in multiple bins of the same general metabolite id. Only OTU/family-metabolite correlations with a Spearman rank value above 0.4 and below -0.4 are presented to facilitate data interpretation. BCAA, branch chain amino acids.

associated with branched-chain amino acids and acetate, including *Oceanospirillaceae* and *Colwelliaceae*, families associated with coral disease (Thompson *et al.*, 2006) and opportunistic colonisation following disturbance (Glasl *et al.*, 2016). These data may suggest bacteria families are producing or consuming metabolites,

thereby altering *Porites* holobiont metabolism. Considering shifts in coral reef bacteria/archaea communities can alter ecosystem metabolic potential (Haas *et al.*, 2016), our approach can support assessment efforts of reef health by determining metabolic activities of key coral-associated bacterial groups. However, more

targeted studies localising the origin of the compounds to either the host or symbionts are needed to determine causal effects.

Given the global decline in reef ecosystems, it is paramount to identify symbiotic partners that enhance coral resistance and resilience (van Oppen *et al.*, 2015). Our work provides a framework to describe the metabolic impact of mixed symbiotic communities in eukaryotic hosts and is complementary to metagenomic efforts. The integrative analysis of metabolite and microbial community data identifies symbiotic partners that alter metabolic pathways of corals. These findings emphasize the need to directly investigate the role of the diversity of microbial partners through targeted studies.

Acknowledgements

MCR LTER (1026851), NSF to HMP (NSF OCE-PRF 1323822), NSF Hawaii EPSCoR (EPS-0903833). OCE-1538393 (to C.E.N.). EMS was supported in part by Cooperative Agreement Number G12AC00003 from the United States Geological Survey (USGS). C.E.N. was funded in part by a grant/cooperative agreement from the National Oceanic and Atmospheric Administration (NOAA), Project A/AS-1, which is sponsored by the University of Hawai'i Sea Grant College Program, SOEST, under Institutional Grant No. NA14OAR4170071 from NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies. This manuscript is UH SOEST publication no. 9984, HIMB contribution no. 1680 and UH Sea Grant publication number UNIHI-SEAGRANT-JC-16-05. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the USGS, NOAA or any of their respective subagencies. The authors also thank two anonymous reviewers, and Manuel Liebeke who provided feedback on the manuscript text. The authors declare no conflict of interest.

References

Bross-Walch, N., Kühn, T., Moskau, D., and Zerbe, O. (2005) Strategies and tools for structure determination of natural products using modern methods of NMR spectroscopy. *Chem Biodivers* **2**: 147–177.

Dinsdale, E.A., Edwards, R.A., Hall, D., Angly, F., Breitbart, M., Brulc, J.M. *et al.* (2008) Functional metagenomic profiling of nine biomes. *Nature* **452**: 629–632.

Gates, R.D., and Ainsworth, T.D. (2011) The nature and taxonomic composition of coral symbiontes as drivers of performance limits in Scleractinian corals. *J Exp Mar Biol Ecol* **408**: 94–101.

Glasl, B., Herndl, G.J., and Fraude, P.R. (2016) The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. *ISME J* **10**: 2280–2292.

Haas, A.F., Fairoz, M.F.M., Kelly, L.W., Nelson, C.E., Dinsdale, E.A., Edwards, R.A., *et al.* (2016) Global microbialization of coral reefs. *Nat Microbiol* **1**: 16042.

Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., *et al.* (2003) Climate change, human impacts, and the resilience of coral reefs. *Science* **301**: 929–933.

Klueter, A., Crandall, J., Archer, F., Teece, M., and Coffroth, M. (2015) Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus *Symbiodinium*. *Metabolites* **5**: 74–99.

Lesser, M.P., Falcón, L.I., Rodríguez-Román, A., Enríquez, S., Hoegh-Guldberg, O., and Iglesias-Prieto, R. (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the Scleractinian coral *Montastraea cavernosa*. *MEPS* **346**: 143–152.

Lesser, M.P., Mazel, C.H., Gorbunov, M.Y., and Falkowski, P.G. (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. *Science* **305**: 997–1000.

Lesser, M.P., Stat, M., and Gates, R.D. (2013) The endosymbiotic dinoflagellates (*Symbiodinium* sp. of corals) are parasites and mutualists. *Coral Reefs* **32**: 603–611.

Loya, Y., Saka, K., Yamazato, K., Nakano, Y., Sambali, H., and van Woesik, R. (2001) Coral bleaching: the winners and the losers. *Ecol Lett* **4**: 122–131.

McFall-Ngai, M., Hadfield, M.G., Bosch, T.C., Carey, H.V., Domazet-Loao, T., Douglas, A.E., *et al.* (2013) Animals in a bacterial world, a new imperative for the life sciences. *Proc Natl Acad Sci USA* **110**: 3229–3236.

Muscatine, L., and Porter, J.W. (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. *BioScience* **27**: 454–460.

Parkinson, J.E., Baumgarten, S., Michell, C.T., Baums, I.B., LaJeunesse, T.C., and Voolstra, C.R. (2016) Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus *Symbiodinium*. *Genome Biol Evol* **8**: 665–680.

Putnam, H.M., Stat, M., Pochon, X., and Gates, R.D. (2012) Endosymbiotic flexibility associates with environmental sensitivity in Scleractinian corals. *Proc R Soc Lond B* **279**: 4352–4361.

Rädecker, N., Pogoreutz, C., Voolstra, C., Wiedenmann, J., and Wild, C. (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? *Trends Microbiol* **23**: 490–497.

Raina, J.-B., Dinsdale, E., Willis, B.L., and Bourne, D.G. (2009) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? *Trends Microbiol* **18**: 101–108.

Rohwer, F., Seguritan, V., Azam, F., and Knowlton, N. (2002) Diversity and distribution of coral-associated bacteria. *Mar Ecol Prog Ser* **243**: 1–10.

Sampayo, E., and Ridgway, T. (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. *Proc Natl Acad Sci USA* **105**: 10444–10449.

Sogin, E.M., Anderson, P., Williams, P., Chen, C.-S., and Gates, R.D. (2014) Application of ¹H-NMR metabolomic profiling for reef-building corals. *PLoS One* **9**: e111274.

Stat, M., Morris, E., and Gates, R.D. (2008) Functional diversity in coral dinoflagellate symbiosis. *Proc Natl Acad Sci USA* **105**: 9256–9261.

Thompson, F.L., Barash, Y., Sawabe, T., Sharon, G., Swings, J., and Rosenberg, E. (2006) *Thalassomonas loyana* sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. *Int J Syst Evol Microbiol* **56**: 365–368.

Thurber, R.V., Willner-Hall, D., Rodriguez-Mueller, B., Desnues, C., Edwards, R.A., Angly, F., et al. (2009) Metagenomic analysis of stressed coral holobionts. *Environ Microbiol* **8**: 2148–2163.

Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H., and Rohwer, F. (2007) Metagenomic analysis of the microbial community associated with the coral *Porites astreoides*. *Environ Microbiol* **9**: 2707–2719.

Van Oppen, M.J., Oliver, J.K., Putnam, H.M., and Gates, R.D. (2015) Building coral reef resilience through assisted evolution. *Proc Natl Acad Sci USA* **112**: 2307–2313.

Yin, B., Crowley, D., Sparovek, G., De Melo, W.J., and Borneman, J. (2000) Bacterial functional redundancy along a soil reclamation gradient. *Appl Environ Microbiol* **66**: 4361–4365.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Fig. S1. Coral species collected along a fringing reef in Mo'orea, French Polynesia, including (A, B) Two unidentified species of *Acropora*, (C) *Montipora aequituberculata*, (D) *Montipora* sp., (E) *Pocillopora meandrina/verrucosa*, (F) *Pocillopora acuta*, (G) *Porites lobata*, (H) *Porites rus* and (I) *Porites irregularis*. (J) Moorea, French Polynesia, the X marks the sampling location.

Fig. S2. Relative abundance of coral-associated (A) *Symbiodinium* and (B) bacterial/archaeal communities. Only taxa representing at least 3% of the microbial community structure are presented to facilitate data interpretation.

Fig. S3. Aligned and binned representative ^1H -NMR metabolomic profiles from 9 coral species. BCAA, branch chain amino acids

Sequencing data is available under the NCBI accession number PRJNA355371 and PRJNA325688. The metabolomics data is available under the MetaboLights accession number MTBLS342.

Table S1. Sequencing statistics.

File S1. ITS2 bioinformatic pipeline.

File S2. ITS2 *Symbiodinium* database.

File S3. ITS2 id-to-taxonomy file for *Symbiodinium* database.

File S4. 16S bioinformatics pipeline.

File S5. Quality analysis R script.

File S6. Statistical analysis R script.