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High frequency temperature variability reduces the
risk of coral bleaching
Aryan Safaie 1, Nyssa J. Silbiger 2,3, Timothy R. McClanahan4, Geno Pawlak5, Daniel J. Barshis6,

James L. Hench 7, Justin S. Rogers 8, Gareth J. Williams 9 & Kristen A. Davis 1

Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and

predominantly occurs when corals are exposed to thermal stress. The incidence and severity

of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not

predictable using conventional remote sensing products. Here, we systematically assess the

relationship between in situ measurements of 20 environmental variables, along with seven

remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef

locations spanning five major reef regions globally. We find that high-frequency temperature

variability (i.e., daily temperature range) was the most influential factor in predicting

bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily

temperature range would reduce the odds of more severe bleaching by a factor of 33. Our

findings suggest that reefs with greater high-frequency temperature variability may represent

particularly important opportunities to conserve coral ecosystems against the major threat

posed by warming ocean temperatures.
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Coral reef ecosystems provide subsistence nutrition, coastal
protection, and revenue from tourism to hundreds of
millions of people globally1,2, and are valued at trillions of

dollars annually3. Especially during recent years, coral reefs are
increasingly threatened by accelerated rises in ocean temperatures
owing to global warming4–6. Elevated seawater temperatures are
the primary cause of mass coral bleaching5,7, or the loss of pig-
mentation due to the collapse of the symbiotic relationship
between the coral host and its endodermal dinoflagellate algae
(zooxanthellae)7,8. Bleached corals are susceptible to disease9 and
reduced carbonate accretion9,10, and prolonged bleaching will
lead to mortality5,11,12.

Thermal stress on corals and regional bleaching events are
most often predicted by the magnitude and duration of remotely
sensed sea surface temperatures (SSTs) above a fixed, locally
defined average summer threshold temperature5,8,13. A con-
ventionally used metric for quantifying these temperature
anomalies is provided by the National Oceanic and Atmospheric
Administration’s (NOAA) Coral Reef Watch program, which has
reported cumulative thermal stress on reefs twice a week since
199714. Furthermore, bleaching predictions from remotely sensed
temperatures can be improved by including SST-based calcula-
tions of interannual temperature variability15,16 and coral sensi-
tivity to thermal stress exposure17. However, the relatively coarse
spatiotemporal resolution of the remotely sensed data prevents
ensuing thermal stress quantifications from identifying the often
observed significant spatial heterogeneity in bleaching that occurs
within reef regions and individual reefs18–20. The response of
reefs to temperature at these smaller spatial scales is complex and
putatively depends on a combination of organism-level and reef-
scale factors such as coral life-history strategies and stressor
cotolerances21, the history and duration of thermal stress expo-
sure22,23, the rate of change in seawater temperature24,25, flow
conditions26, heterotrophic feeding6, turbidity27, and the intensity
and history of exposure to solar radiation28,29. In turn, many of
these environmental conditions are mediated by reef-scale factors
such as waves30, winds, tides31, and daily heating and cooling32.

Site-specific studies suggest that historical temperature varia-
bility within diurnal time scales affects corals’ physiological tol-
erance19,26,33,34 and performance35 under thermal stress. For
example, it has been theorized that corals located in areas char-
acterized by large temperature fluctuations, such as reef flats or
shallow lagoons, may be better acclimatized or adapted to thermal
stress, and therefore more resistant to anomalous temperatures
and bleaching, than corals in areas where temperatures are more
stable, such as on reef crests or reef slopes36–38. Other studies
have suggested that water temperatures in the weeks or months
leading up to peak temperatures are critical in determining the
coral physiological response. A recent analysis of experimentally
heated corals from the Great Barrier Reef showed that bleaching
and cell death responses were indeed lower when the thermal
exposure included a moderate pre-stress followed by a short
recovery period (i.e., a “protective temperature trajectory”)39.
Depending on intrinsic properties of coral physiology40 such as
energy reserves and algal phenotypic plasticity41, pre-peak tem-
peratures may either protect against or exacerbate bleaching at
peak temperatures41. Taken together, a growing body of evidence
thus suggests that historical temperature variability, and parti-
cularly, “high-frequency” temperature variability, which we define
as occurring within diurnal or shorter periods, may play an
important role in determining corals’ physiological responses to
thermal stress and thereby reef-scale vulnerability to bleaching. In
turn, a better understanding of reef-scale bleaching risk factors
could help coastal management efforts to identify natural refugia
and may be important for the recovery of coral communities
following a bleaching event42.

Here, using a global suite of in situ data, we compare and assess
the ability of 20 commonly used environmental variables and 7
remotely sensed variables to explain observed bleaching pre-
valence, testing the hypothesis that including high-frequency
temperature variability as one of these model variables will lead to
more accurate predictions. Analyzed data include records of
in situ temperature time series at 118 reef locations from five
major reef regions with sampling intervals of ≤3 h and continuous
measurements of ≥1 year, as well as precise information on
habitats and depths (Supplementary Data 1), along with 81 spa-
tially and temporally coincident, quantitative coral bleaching
observations (Supplementary Data 2). Each of the 81 bleaching
observations was matched to its own spatiotemporally coincident
temperature time series data, such that 46 of the 118 temperature
time series were used in the subsequent bleaching analysis.
Bleaching observations, which are most often reported as the
average percent of colony or transect area bleached, were stan-
dardized to ordinal-valued “bleaching prevalence scores” (1:
≤10%; 2: 10−25%; 3: 25−50%; 4: >50% of reef area bleached),
representing mild to pervasive bleaching, respectively (Methods).
The influence of different factors on bleaching prevalence scores
are evaluated by selecting covariates from a pool of 20 explana-
tory variables (depth, latitude, and 18 thermal metrics) grouped
into 8 categories of metrics often used to predict bleaching
(Table 1). In addition to these in situ variables, we also include 7
analogous and conventional remotely sensed SST thermal stress
metrics (Table 1). After standardizing all covariates and fitting
them to ordinal-valued bleaching prevalence scores using ordinal
logistic regression (OLR) models (Methods), we conclude that
high-frequency temperature variability, specifically the average
daily temperature range (DTR) of the 30 days preceding a
bleaching observation, is the most influential covariate in pre-
dicting the bleaching response, and serves to attenuate the pre-
valence of bleaching.

Results
Variation among in situ explanatory variables. A principal
components analysis (PCA) displays the projection for each site
onto the 2D plane that accounts for the most variance in the 20
in situ explanatory variables (Fig. 1), and the locations of the
loading vectors reveal how these explanatory variables relate to
their respective groupings. The first principal component
accounts for 44.2% of the variation in the explanatory variables,
and is largely driven by high-frequency temperature variability
and cumulative thermal stress.

Spatiotemporal dependence of diurnal temperature variability.
The thermal metrics computed from temperature time series were
highly variable across sites, but regardless of location and depth,
all 118 time series show significant temperature variations in the
high-frequency band (Supplementary Note 1; Supplementary
Fig. 1), which we define as 0.727−4 cycles per day (cpd). Power
spectra of temperature variations were calculated for each loca-
tion, and the ratios of high-frequency band to seasonal band
(0.012−0.143 cpd, or 1/7 to 1/84 days) variance in these spectra
were used to characterize the relative importance of variance
within the high-frequency band. This ratio correlates with the
inverse of depth (r= 0.381, Student's t-test p < 0.05), indicating
that the relative contribution of high-frequency variability to the
variance within a temperature time series is stronger at shallower
sites (Supplementary Fig. 2a). At back reef, reef flat, and reef slope
habitats, these ratios were on average 1.83, 0.68, and 0.44,
respectively, while across all locations, this ratio was 1.02 (Sup-
plementary Fig. 2b). Furthermore, these ratios differed sig-
nificantly among the three habitats (Kruskal-Wallis, χ2= 24.66,
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Table 1 List of explanatory variables used in the ordinal logistic regression analysis

Category Variable [Units] Identifier Description Ref.

1. Depth Instrument depth [m] depth In situ water depth of instrument
2. Background
Conditions

Latitude [DD] lats Latitude of instrument

Maximum Monthly Mean (MMM) [°C] MMMTotal Maximum of monthly mean climatology from entire time
series

85

MMM Maximum of monthly mean climatology using data only
before and during bleaching event

MMM4km Maximum of monthly mean climatology using 4 km weekly
CoRTAD SST data

MMMMax Mean of maximum monthly SST from each year in
climatological time period

15

3. Cumulative
Thermal Stress

Degree Heating Weeks (DHW) [°C-weeks] DHW90 Trapezoidal integration of temperatures in excess of MMM+
1 °C during 90 days preceding a bleaching event

85

DHW30 Trapezoidal integration of temperatures in excess of MMM+
1 °C during 30 days preceding a bleaching event

DHW4km Degree heating week product from 4 km weekly CoRTAD SST
data

Cumulative Summer Anomaly (CSA) [°C-days] CSATotal Trapezoidal integration of temperatures in excess of MMM+
1 °C during all summer periods through entire time series

CSABefore Trapezoidal integration of temperatures in excess of MMM+
1 °C during summer periods before and during a bleaching
event

CSADuring Trapezoidal integration of temperatures in excess of MMM+
1 °C during summer of bleaching event

4. Acute
Thermal Stress

Presence/absence of acute temperature
anomaly [binary]

Acute1 Binary value indicating whether any of the daily mean
temperatures within 90 days preceeding a bleaching event
exceeded MMM+ 1 °C

Acute14 km Acute1 computed using 4 km weekly CoRTAD SST data
Acute2 Binary value indicating whether any of the daily mean

temperatures within 90 days preceeding a bleaching event
exceeded MMM+ 2 °C

Acute24 km Acute2 computed using 4 km weekly CoRTAD SST data
5. Thermal
Trajectory

Type of induced thermal tolerance prior to acute
thermal stress, using twice-weekly averaged
temperatures [ordinal]

TT 0: No thermal stress (temperatures do not exceed MMM+ 2 °
C within 90 days prior to survey date)
1: Protective Trajectory (temperatures exceed MMM, then
have a recovery period below MMM for at least 10 days prior
to exceeding MMM+ 2 °C)
2: Single Bleaching Trajectory (temperatures exceed both
MMM and MMM+ 2 °C without a 10-day recovery period in
between)
3: Repetitive Bleaching Trajectory (temperatures exceed
MMM+ 2 °C in two peaks separated by 9 days)

39

6. Heating Rate Rate of spring-summer temperature change [°
C/day]

ROTCSS Mean rate of temperature change during spring and summer
of all years

25

ROTC90-

4 km

Mean rate of temperature change during 90 days preceding a
bleaching event using CoRTAD SST data

ROTCSS-4

km

Mean rate of temperature change during spring and summer
of all years using CoRTAD SST data

7. High-
Frequency
Temperature
Variability

Daily Temperature Range (DTR) [°C] DTRTotal Mean DTR over entire time series

DTRSS Mean DTR of all spring and summer periods
DTRFW Mean DTR of all fall and winter periods
DTR90 Mean DTR over 90 days preceding a bleaching event
DTR30 Mean DTR over 30 days preceding a bleaching event

8. DTR
Distribution
Shape

Measure of shape of distribution of all DTR
values w/in a time series [−]

kurtosis Kurtosis of full time series of DTR values

skewness Skewness of full time series of DTR values

Variables are grouped according to eight categories representing different aspects of ecologically relevant environmental and temperature factors. Seasons were defined such that each season spanned
three complete months, and austral and boreal summers were December through February and June through August, respectively
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df= 117, p < 0.05; Supplementary Fig. 2b). Although the mag-
nitude of diurnal temperature fluctuations varies by location, the
ubiquity and prominence of temperature variance in this fre-
quency band indicated by these average ratios reflects the
importance of some common physical forcing processes gov-
erning the flow and heating of reef waters, such as diurnal solar
heating, tides, winds, and waves31,32,43,44.

Power spectra of six representative time series from different
reef regions (Fig. 2a) show a broad range of temperature
variability from annual to hourly periods (see Supplementary
Fig. 1 for other spectra). Yearly composites of mean water
temperature and DTR (Fig. 2b) both show prominent seasonal
cycles (Supplementary Note 2): the magnitude of daily tempera-
ture fluctuations was seasonally dependent (Kruskal-Wallis, p <
0.01) for 96% of reefs in our study (113 of 118 time series), with
maximum DTRs occurring most often in spring and summer
months (74% of time series, Supplementary Fig. 3), and
minimum DTRs occurring most often in fall and winter months
(also 74% of time series, Supplementary Fig. 3). On global scales
(~103 km), latitudinal gradients in solar forcing drive variations
in seasonal temperature patterns on reefs (Supplementary Fig. 4),
but there is also considerable heterogeneity in thermal environ-
ments at reef-scales (~102 m) due to variation in depth and
circulation32,42,45. The differences in thermal environments at
reef-scales are often greatest in the high-frequency band (daily
and tidal timescales; Fig. 2c). Dramatically different thermal
environments can be found at locations separated by 10s or 100s
of meters on a reef, as illustrated by 7-day temperature time series
from various locations on the same island, or different habitats
within a given reef (Fig. 2c). For example, during a week in
November 2009, two sites in American Samoa that are separated
by <2 km and at similar water depths experienced average DTRs
of 1.78 and 0.51 °C (Fig. 2c, sites OF3 and OF5 respectively).

Differences in the distributions of DTRs that distinguish
microclimates within a reef system (e.g., thermally variable

shoreward locations or thermally stable seaward ones) are
reflected in the mean, skewness, and kurtosis of DTR values
(Fig. 2d). Shallower and more shoreward sites have a peak in their
DTR distributions corresponding to a larger DTR value, and
furthermore, their distributions take on more extreme values than
those from sites in deeper and more seaward locations. For
example, at Heron Island in the Great Barrier Reef, the mean
DTR of 4.23 °C on the reef flat was over three times as large as
that of the reef slope (Fig. 2d). The implications of these different
thermal microclimates for resistance to thermal stress and
resilience to bleaching are discussed below.

The effect of diurnal temperature variability on bleaching.
Ordinal logistic regression (“logit”) models were computed for all
permutations of selecting at most one variable from each of the
eight categories in Table 1 (a total of 10,367 models), with
bleaching prevalence scores as the response variable. Corrected
Akaike’s Information Criterion (AICC) values were used to rank
the logit models, where the model with the lowest AICC value was
ranked the highest (Fig. 3b). The model coefficients indicate the
association of tested variables with bleaching prevalence score,
such that positive coefficients indicate a “mitigating” effect on
bleaching prevalence, and negative coefficients an “exacerbating”
effect on bleaching prevalence.

“High-Frequency Temperature Variability” (Table 1) was used
to capture temperature variability on diurnal and shorter time
periods, a metric that is important for characterizing differential
reef- and habitat-scale microclimates19,32,46. In the best model
(Fig. 3a), high-frequency temperature variability, specifically the
average DTR over the 30 days preceding a bleaching event
(DTR30, Table 1) was the most influential metric for predicting
bleaching prevalence score, with greater daily temperature
variability serving as a mitigating factor (Fig. 3b). Furthermore,
among all models within 2 AICC units of the highest ranked
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model (i.e. ΔAICC=AICC –min(AICC) ≤ 2, Fig. 3a), high-
frequency temperature variability was both the greatest mitigating
factor of bleaching prevalence score and the most influential
covariate—more influential than widely used metrics of acute and
cumulative thermal stress by a factor of 2 and 3 times,
respectively (Fig. 3c). Using globally averaged values of
explanatory variables, our highest-ranked logit model (Fig. 3b)
implies that, in native units, a 1 °C increase from the mean DTR30

value would decrease the odds of more prevalent bleaching by a
factor of 33. To standardize this, each unit increase in high-
frequency temperature variability (i.e., DTR30) would reduce the
odds of more prevalent bleaching by a factor of e2.66= 14.3.
Contrasting this against a unit increase in cumulative thermal
stress (i.e., DHW30), which would only increase the odds of more
prevalent bleaching by a factor of 2.6, highlights the dominant
influence of diurnal temperature variability on reef-scale bleach-
ing prevalence.

“Depth” (Table 1) was taken as the mean depth of the water
temperature measurement, in meters below the surface, for each
site, and is also representative of local water column depth as
sensors were placed near the bed. Depth was the second-most
effective predictor of bleaching prevalence (Fig. 3c), with deeper
reefs less likely to experience pervasive bleaching. However,
“depth” is also a proxy for other characteristics of the reef sites
such as habitat (e.g., deeper forereefs and lagoons, shallow reef
flats) and light intensity, which decays exponentially with depth.
Although the logit models preclude significant collinearity of
tested variables (Methods), corals at shallow depths may
experience greater high-frequency temperature variability45,
although accounting for water flow can complicate this
interpretation as it pertains to bleaching26,47. High-frequency
temperature variability and depth may mitigate bleaching in
complementary ways: habitats with greater high-frequency
temperature variability, which are likely to be found at shallower

depths45, may develop greater thermal tolerance19,48, while
deeper coral habitats, despite their propensity for milder diurnal
temperature variability (outside of internal wave-influenced
regions49–51), may serve as refuge areas resistant to the intrusion
of hot water25, perhaps facilitating recovery of coral cover
following bleaching events52.

“Background Conditions”, “Cumulative Thermal Stress”, and
“Acute Thermal Stress” were the three explanatory variable
categories largely suspected of exacerbating bleaching. “Back-
ground Conditions” (Table 1) consisted of the average summer-
time, or maximum monthly mean (MMM), temperature, but
computed from our in situ time series data, as opposed to
conventional remotely sensed SST data14. “Background Condi-
tions” also included the latitude of the temperature logger, a
variable that served as a proxy for unresolved oceanographic
factors53 related to the large-scale processes that influence
climatologies. The “Cumulative Thermal Stress” category
(Table 1) encompassed various methods for the computation of
the magnitude and duration of acute in situ thermal stress
exposure on reefs. Similar to the MMM, cumulative thermal
stress is traditionally derived from remotely sensed SSTs and is
among the most common metrics used to predict coral
bleaching25,33. The “Acute Thermal Stress” category (Table 1)
was included as a safeguard to differentiate sites with tempera-
tures that may not have exceeded MMM+ 1 °C (i.e. no thermal
stress) yet still experienced bleaching. Consistent with the well-
established perspective that anomalously high temperatures are
the primary cause of coral bleaching7, among our highest ranked
models, bleaching was most exacerbated by greater cumulative
and acute thermal stress, and also, to a lesser degree, by increases
in MMM temperature and heating rate25. “Heating Rate”
(Table 1) was the average rate of change in spring to summer
temperatures, which is believed to have a positive relationship
with bleaching-induced tissue damage, and this time period has
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been shown to be crucial for determining the fate of corals to
summertime bleaching susceptibility25. The “Thermal Trajectory”
(Table 1) category followed the methodology of a previous study
that highlighted the role of protective warm, pre-stress tempera-
tures as being important for resilience to bleaching from intense
acute stress temperature events39. Our results reinforce recent
findings that a reef’s thermal trajectory is a significant predictor of
bleaching prevalence39 (Fig. 3c), with thermal tolerance conferred
by exposure to a protective, sub-lethal bleaching stress prior to

acute stress exposure. Although not as influential as the above
variables, a no-stress or protective thermal trajectory (i.e., a pre-
stress, sub-bleaching warming period, followed by a cooler
recovery period) is more likely to result in lower bleaching
prevalence than a single bleaching trajectory (temperatures that
cross the bleaching threshold without a prior protective event) or
a repetitive bleaching trajectory (Fig. 3b, c and Table 1). Finally,
the “Shape of DTR Distribution” category (Table 1) was used to
capture the skewness and kurtosis of DTR values derived from
each time series to represent the symmetry and tail-density of
DTR distributions. While these variables were not present in any
of the highest ranked models, kurtosis and skewness of
temperature time series have been associated with site-specific
increased thermal tolerance54.

To summarize the results of our highest-ranked logit model, we
can examine how manipulating each covariate, while holding all
others at their mean values, will change the probability of
bleaching (Fig. 4). For example, a 0.88 °C decrease in high-
frequency temperature variability (DTR30) from its mean value
would increase the probability of Category 4 bleaching from 12%
to 75%, for a change of 63% (Fig. 4a), and a depth decrease of 5 m
would increase this probability by 41% (Fig. 4b). Similarly, a
0.03 °C/day increase in ROTCSS from its mean value would
increase the probability of Category 4 bleaching by 34% (Fig. 4c),
and a 1 °C-weeks increase in DHW30 would increase this
probability by 44% (Fig. 4f).

To broaden the applicability of our conclusions, we repeated
the OLR analysis, with the addition of remotely sensed SST-
derived covariates, to determine how the results would differ from
the in situ driven models. We obtained weekly 4 km resolution
CoRTAD SST data55, using the data pixels closest to the
coordinates of our in situ loggers, and used this SST dataset to
compute covariates within the Background Conditions, Acute
and Cumulative Thermal Stress, and Heating Rate categories
(Table 1). This resulted in an improved highest ranked model
(Methods), that included six covariates, three of which (MMM,
DHW, Rate of Temperature Change) were computed using the
SST, as opposed to in situ, data (Fig. 5a). However, similar to the
highest-ranked model fit to exclusively in situ data, covariates
representing High-Frequency Temperature Variability, specifi-
cally DTR30, and depth were again the dominant drivers of
bleaching, and served as mitigating factors (Fig. 5a, b). Similarly,
among covariates that exacerbated bleaching, Acute and Cumu-
lative Thermal Stress provided the strongest influence (Fig. 5a, b),
while Background Conditions (MMM4 km, Table 1) represented a
mild exacerbating effect. A notable difference occurring in these
new models was the opposite effect Heating Rate had from before;
whereas in the exclusively in situ models, Heating Rate
exacerbated bleaching, these SST-based models imply stronger
heating rates serve to mitigate bleaching. Ultimately, these
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Fig. 3 In situ explanatory variables of bleaching and their standardized logit
coefficients with greatest predictive power. a ΔAICC, computed as AICC –

min(AICC), values of all 10,367 runs of an ordinal logistic regression model,
where models within ΔAICC≤ 2 (dashed line and gray shaded region) are
statistically indistinguishable, of which there were 20. b The best model
(i.e. ΔAICC= 0) included six variables, of which high-frequency
temperature variability was the absolute most influential and also greatest
mitigating factor to bleaching prevalence. c Summing across 20
indistinguishably good models (i.e. within ΔAICC≤ 2), high-frequency
temperature variability was consistently most influential. Variable
categories are shown in Table 1. Delete-1 jackknife standard error bars are
shown in (b), while the standard error bars shown in (c) were obtained by
summing in quadrature the individual standard errors from each of the 20
models computed after delete-1 jackknife resampling
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SST-based OLR models indicate that upon consideration of the
consistent importance of DTR to bleaching, a globally available
remotely sensed metric for diurnal temperature variability would
be valuable for improved bleaching predictions.

Specific reef cases. Our results reveal the importance of high-
frequency temperature variability at locations worldwide, but
include reef-scale observations where such variability influences
bleaching prevalence of corals in different locations of the same
reef during the same bleaching event32,46. Here, we present two
such case studies: one from Tahala Reef, a platform reef in the
central Red Sea, and another from Nelly Bay, a fringing reef in the
Great Barrier Reef in Australia (Fig. 6). These sites were chosen
due to the availability of additional meteorological data32,56 at
these reefs. At each location, temperature time series (Fig. 6a, b)
for both a seaward and a shoreward location show that, whereas
low-frequency variations in water temperature are often very
similar over reef-scales (Fig. 6c, d), high-frequency variations may
be quite distinct (Fig. 6e, f). In these cases, bleaching events were
more widespread and severe at the seaward locations where DTRs
were smaller (Fig. 6a, b), consistent with our best logit models.

Discussion
For corals, a shift in thermal tolerance can occur due to adap-
tation of the coral animal or algal symbionts through natural
selection of heat-tolerant lineages57,58, or physiological acclima-
tion through the expression of heat shock proteins and regulation
of apoptosis (i.e., programmed cell death)23,36. As discussed,
recent work highlights the importance of short-term temperature
history (daily-weekly periods) for coral acclimatization to higher
temperatures19, such that corals subject to warmer than average
temperatures prior to thermal stress may exhibit a greater toler-
ance to acute temperature stress23. In the context of these studies
and in keeping with other site-specific and experimental stu-
dies19,26,45,47,59, our results suggest that temperature fluctuations
on daily or tidal timescales are often sufficient to expose corals to
temperatures high enough to encourage greater tolerance (via
acclimation or adaptation) to thermal stress, but for time periods
short enough to avoid mortality19,48. Further, our results establish
that the resistance of corals located in areas of high-frequency
temperature variability to bleaching occurs in reef regions
throughout the world. While we lack sufficient species-level data,
we fully acknowledge that intrinsic coral properties40, differences
in reef-scale community compositions56, and taxonomic sus-
ceptibility26 are likely to influence heterogeneous reef-scale
bleaching responses, and an improvement to our model frame-
work would include species-level covariates.

Our results also demonstrate the potential to both improve
predictions of bleaching and anticipate heterogeneous patterns in
bleaching prevalence at reef-scales, considering that beyond mean
values, accounting for variability in temperature regimes yields
better predictions of organismal responses to anomalous envir-
onmental events60. Although SSTs from satellite remote sensing
are not yet available at the spatiotemporal resolution required to
calculate reef-scale high-frequency temperature variability,
observational work on a range of reef structures suggests that it
may be possible to predict reef-scale thermal environments using
relatively simple hydrodynamic models given readily available
bathymetry and basic hydrographic data such as tidal range, wave
height, and offshore mean SST30,32,43. While we did not assess
other biogeochemical parameters, it is worth noting that the same
physical circulation that drives spatially variable thermal envir-
onments, in locations with an active benthic community, can also
create dynamic oxygen, pH, and nutrient environments61,62.

Urgent global efforts at reducing anthropogenic greenhouse gas
emissions must remain a priority for reef preservation, due to the
acute thermal stress that is now arising from global warming
projections on reefs5,63. However, combating the effects of local
stressors on reefs through conservation tools such as marine
protected areas is likely to increase the chances of reef persistence
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Fig. 4 Influence of each in situ covariate on bleaching. Using the covariates
from the highest-ranked logit model, the probability of observing bleaching
prevalence greater than the jth category is plotted against changes in each
covariate from their respective mean values (where 0 corresponds to the
mean value), while keeping all other covariates at their mean values.
Bleaching prevalence categories are defined as 1: ≤10%; 2: 10−25%; 3: 25
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include: (a) High-frequency temperature variability (DTR30), (b) Depth,
(c) Heating Rate (ROTCSS), (d) Acute Thermal Stress (Acute1), (e)
Thermal Trajectory (TT), and (f) Cumulative Thermal Stress (DHW30).
Standard deviations for each covariate within our data set are also indicated
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through future warming, as well as to facilitate recovery following
a bleaching event2,52,64,65. Warming ocean temperatures are
projected to result in annual severe bleaching regimes by the
middle of this century, with spatial variability in the onset of these
events on the order of ±10 years4. Considering our results in the
context of this inevitable and persistent acute thermal stress,
focusing management efforts on the more resistant reef locations
that also experience delayed onsets in annual severe bleaching
would maximize the likelihood that at least some healthy reefs
will exist in the future.

Methods
Data synthesis. Water temperature time series from 118 locations, representing
five major ocean basins where tropical coral reefs are found (Western Indian
Ocean, Pacific Ocean, Caribbean Sea, Great Barrier Reef, and Red Sea), were
obtained from existing records of in situ temperature data. Many of these time
series were obtained directly from the researchers (Supplementary Data 1), or from
publicly available databases including the Australian Institute of Marine Science
(AIMS), the National Data Buoy Center (NDBC), and the Florida Institute of
Oceanography (FIO). However, time series within our dataset were also selected to
match precise reef locations that had sufficiently documented bleaching events,
while also containing as long and consistently sampled records as possible. Site
names and three-letter codes, locations, depths, instrument descriptions, and

additional information for each time series are listed in Supplementary Data 1,
which also lists the source for each time series. Water temperature records included
in this analysis spanned at least 12 months in duration, with a sampling interval
less than or equal to 3 h. In cases where instrument substitution resulted in varying
sampling intervals, time series were sub-sampled to the largest of these intervals, or,
in rare cases, interpolated to remain below a 3 h sampling interval. The tempera-
ture time series data used in this study originate from instruments that were
calibrated using varying methodologies, such as by placing loggers together at one
location and comparing recorded temperatures with a reference temperature
dataset, ice bath calibration, or multiplying raw field recorded temperatures by
normalized logger calibration coefficients. Our analysis is largely based on relative
temperature variations, however, so that absolute temperature accuracy will not
affect the results presented here. In an effort to examine how representative our
sample temperature time series data was, we used one-sample t tests to compare
the overall means and extremes of our data to a global temperature data set taken
from nearly 1000 reef locations66. From these tests, we cannot conclude any sig-
nificant differences (α= 0.05) between our time series data and this larger global
data set. All data analyses were done using MATLAB 7.14 (The Mathworks, Natick,
MA, USA).

Spectral analysis. Power spectral density (PSD) estimates were computed for each
temperature time series. First, if necessary, temperature time series were resampled
or linearly interpolated to maintain a constant sampling interval, chosen to be 3 h
so as to resolve spectral frequencies of up to 4 cpd. In order to examine tem-
perature variability for a broad range of frequencies spanning annual to diurnal
and shorter periods, a PSD was calculated as follows: time series greater than or
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Fig. 5 Remotely sensed SST OLR results. a Parameter estimates for standardized model coefficients of the covariates used in the highest-ranked OLR model
when weekly 4 km CoRTAD SST-based variables are added to the pool of possible covariates; standard error bars were computed from delete-1 jackknife
resampling. b The summation of the standardized covariate coefficients grouped by category from the highest-ranked models when including CoRTAD
SST-based covariates; the standard error bars shown are obtained by summing in quadrature the individual standard errors computed after delete-1
jackknife resampling. The remotely sensed SST-based covariate contribution to each Cumulative Effect is colored gray
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equal to 10 years in duration were divided into 3-year sections, while all others
were divided into 4-month sections. Sections were overlapped by 50% and wind-
owed with a Hamming function before spectra for each section were calculated,
which were then ensemble averaged to obtain the PSD estimate. The statistical
significance (α= 0.05) of observed spectral peaks was ascertained by comparison
with the upper confidence level of a background red noise fit to the spectrum67. We
empirically defined annual, seasonal, and diurnal frequency bands as 0.00185 to
0.0111, 0.0119 to 0.143, and 0.727 to 1.333 cycles per day (cpd), respectively. Band
variance was computed using trapezoidal integration of PSD values within each
respective frequency range, and ratios of high-frequency to seasonal band variances
among habitat types (“Back Reef”, “Reef Flat”, “Reef Slope”) were compared using a
Kruskal−Wallis test (Supplementary Fig. 2b).

Spatiotemporal variability in water temperature. To quantify the magnitude of
diurnal patterns of heating and cooling, a DTR was calculated as the difference
between maximum and minimum temperatures for each day of each time series.
Temporal variations in DTR values were examined in multiple ways. First, DTRs
were composite-averaged for yeardays 1−366, and based on evident seasonal DTR
variability from panel b of Fig. 2, a non-parametric Kruskal−Wallis test was used
to assess the seasonal dependence of DTR distributions68. Seasons were defined
such that each season spanned 3 complete months, and austral and boreal summers
were December through February and June through August, respectively. Tem-
perature metrics are summarized in Table 1. Large-scale spatial patterns in water
temperature variability relative to latitude were also characterized; annual tem-
perature ranges, calculated as the range of monthly mean temperatures, were
compared against latitude for all sites. Variance in high-frequency (33 to 6 h
periods) and seasonal (7 to 84-day periods) spectral bands were computed via
integration of their respective power spectral densities, and the ratios of high-
frequency to seasonal variance for all time series were compared by the habitat
from which each time series was recorded. Habitats were divided into three groups:
(i) back reefs and back reef lagoons (labeled as “BR”), (ii) reef flats and non-back
reef lagoons (“RF”), and (iii) reef crests, reef slopes, forereefs, and anything further
offshore (“RS”).

Bleaching data synthesis. Coral bleaching observations (81 events) that corre-
sponded in time and location with temperature data (Supplementary Data 2)
were obtained from a variety of sources, but primarily from peer-reviewed pub-
lications. Bleaching reports were based upon various quantification schemes,
but some common methods included recording bleaching as: (i) a proportion of
transect area69, (ii) severity among different colonies of different coral
species70, and (iii) prevalence categories based on aerial (and ground-verified)
surveys22. In publications that reported percentages of colony bleaching within
different coloration and paling categories, we used the weighted average of the
different percentages within each category, though the majority of bleaching
records naturally translated into our four bleaching prevalence scores. To aggregate
or standardize the bleaching reports for use in this study, we defined a bleaching
response variable in terms of percentage of spatial area bleached, and we
therefore assigned the following categories as ordinal values of bleaching pre-
valence score: 1: “bleaching prevalence” ≤ 10% (n= 48); 2: 10% < “bleaching pre-
valence” ≤ 25% (n= 5); 3: 25% < “bleaching prevalence” ≤ 50% (n= 6); 4:
“bleaching prevalence” > 50% (n= 22). Note that bleaching events of 0 (reports of
no bleaching observed or negligibly mild paling) are binned into bleaching pre-
valence score 1, to provide a conservative grouping for mild bleaching events,
seasonal patterns of discoloration and variation in zooxanthellae densities71,
unresolved “background bleaching” levels72, and observation errors. As opposed to
continuous interval variables, ordinal variables represent categorical values that can
be ranked and have a natural ordering to them, offering the advantage of creating
bins for ranges of values.

Explanatory variables. To assess the influence of explanatory environmental
variables, including high-frequency temperature variability, on bleaching response,
we performed a multivariate statistical analysis of the observed bleaching events. As
there are multiple aspects of thermal stress and environmental conditions that may
explain the bleaching response, we selected 20 experimental variables for the
ordinal regression (defined in Table 1), organized into eight broad categories: (1)
Depth, (2) Background Oceanographic Conditions, (3) Cumulative Thermal Stress,
(4) Acute Thermal Stress, (5) Thermal Trajectory, (6) Heating Rate, (7) High-
Frequency Temperature Variability, and (8) Shape of the Distribution of HF
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Fig. 6 Same-reef case studies. a Temperature time series taken from the wave-exposed (blue) and wave-protected (red) edges of the Tahala reef platform
in the Red Sea, which are separated by ~200m. The percentage of observed mortality, which was associated with the bleaching event in September
201046,84, is indicated for each corresponding platform edge. c 2-week low-pass filtered time series of the raw Tahala temperature data, with the
MaximumMonthly Mean (MMM) temperature calculated using the in situ data for each time series. e 33-h high-pass filtered time series of the raw Tahala
temperature data, with a histogram of the Daily Temperature Range (DTR) values for each time series. b, d, f Analogous versions of a, c, and e,
respectively, but for the Nelly Bay reef flat (red) and reef slope (blue) habitats in the Great Barrier Reef, separated by ~122m. Bleaching prevalence as
proportions of belt transects56 are also indicated in b. The gray bars highlight the approximate periods of reported bleaching events
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Temperature Variability. We lacked sufficient habitat (i.e., reef flat, reef crest, reef
slope, etc.) information at which many loggers were placed, and therefore did not
include habitat as an explanatory variable. Environmental variables in the
Cumulative Thermal Stress category were calculated from in situ temperature
measurements rather than the remotely sensed National Oceanic and Atmospheric
Administration’s Coral Reef Watch (NOAA CRW) products because many of our
logger locations were outside of the coverage areas of the CRW Virtual Stations,
and furthermore, as the first suite of CRW products was released in 2000, they do
not include temperature data corresponding to the 1998 global bleaching event.
The explanatory variables we use here are commonly appended with a subscript to
indicate the period of time, relative to the bleaching observation date, used to
calculate the metric. For example, the subscript “SS” denotes the spring to summer
period, and the subscript “30” denotes the 30 days preceding (and including) a
bleaching observation.

Principal components analysis. Principal components analysis was performed to
examine the spatial structure of the environmental forcings and determine the
association between independent variables within each of the eight categories
(Fig. 1). The first two PC axes accounted for 44.2 and 18.8% of the variance within
the matrix of independent variables. The magnitude and orientation of the loading
vectors indicate the importance of each parameter in describing the variance of the
PCA components.

Computation of thermal trajectory and acute stress variables. An ordinal-
valued Thermal Trajectory39 variable was included as an independent variable to
assess the degree to which environmental conditions confer thermal tolerance. The
calculation of this was as follows: first the MMM and MMM+ 2 °C (the latter
quantity is referred to as the “local bleaching threshold”) were computed for a
given time series. Then the 33-h low pass filtered time series for the 90 days
preceding a bleaching event was inspected to determine the type of Thermal
Trajectory. If temperatures exceeded the MMM, then fell below the MMM for a
required 10-day “recovery period” before proceeding to exceed the local bleaching
threshold, a Protective Trajectory with an ordinal value of 1 was recorded. If
temperatures increased from below the MMM to above the local bleaching
threshold, without a 10-day recovery period, a Single Bleaching Trajectory with a
value of 2 was recorded. If temperatures exceeded the local bleaching threshold at
least twice, with a required 9-day recovery period between threshold exceedances, a
Repetitive Bleaching Trajectory with an ordinal value of 3 was assigned. Finally, if
temperatures did not exceed the local bleaching threshold, an ordinal value of 0
corresponding to no thermal stress was assigned. Justification of our ordinal-value
scheme comes from an analysis of experimentally heated corals from the Great
Barrier Reef, whereby in the face of thermal stress, corals with a Protective Tra-
jectory experienced localized cell death of approximately 30%, while that of corals
under Single and Repetitive Bleaching Trajectories was approximately 60% and
70%, respectively39. Furthermore, experimental results showed that corals under a
Protective Trajectory maintained significantly greater symbiont density than those
under Single and Repetitive Bleaching Trajectories, and hence the ordinal scores
from 0 to 3 aptly account for the monotonic nature of coral tissue detriment
associated with no heat stress, a Protective Trajectory, a Single Bleaching Trajec-
tory, or a Repetitive Bleaching Trajectory, respectively. The “No Thermal Stress”
trajectory corresponded to ~0% cell death and greater symbiont density than the
Protective Trajectory.

The Acute Thermal Stress category was composed of two binary variables to
indicate the presence/absence of acute thermal stress. The calculation of this was as
follows: first the MMM+ 1 °C and MMM+ 2 °C were computed for a given time
series, then the daily mean temperatures within 90 days before a bleaching event
were inspected to determine if temperatures exceeded MMM+ 1 °C (in which case
Acute1 would equal 1) and MMM+ 2 °C (in which case Acute2 would equal 1).

Ordinal logistic regression. Using the eight explanatory variable categories
described above, and bleaching prevalence scores from 1 to 4 as the response
variable, we performed an ordinal logistic regression analysis to determine how the
relative log odds of a given bleaching prevalence score depends on the interactions
among the explanatory variables. Ordinal regression models have been adeptly
used in ecological studies where data are often present as semi-quantitative
variables in which relative differences between values are of importance73,74.
Furthermore, logit functions have been previously implemented to predict the
presence/absence of bleaching using gridded remote-sensed data72,75, or to explain
the influence of a range of environmental and coral physiological factors on reef
ecosystem response following a disturbance52. These logit models are multivariate
extensions of generalized linear regression models76, providing parameter estimates
via maximum likelihood estimation (MLE) to model the relative log odds of, for
our purposes, observing one bleaching prevalence score or less versus observing the
remaining greater bleaching prevalence scores:

ln
P yi � jð Þ
P yi>jð Þ

� �
¼ Cj þ B1zi1 þ � � � þ Bpzip: ð1Þ

Here i indexes each of N observations, with bleaching observation yi, and the left-
hand side quantity is referred to as the logit of the probability of observing
bleaching prevalence score j or lower, for j= 1, 2, or 3 (observations with bleaching
prevalence scores of 4 contribute to the regression through calculation of the log-
odds). Note that the odds are defined as the ratio of the probability of an event
occurring to the probability of the event not occurring, which is exactly the ratio
inside the natural logarithm. Each Cj is an MLE-computed model intercept, and
each Bk is the MLE coefficient corresponding to each standardized independent
variable zik, for k= 1,…, p, where p is the number of independent variables used in
a given model. A fundamental component of this model is the assumption of
proportional odds, or parallel regression, which implies Bk values are independent
of the logit level j. The validity of this parallel regression assumption was
ascertained using Brant’s Wald test77, as well as a likelihood ratio test (α= 0.05).

As each time series was the sole source of its explanatory variables, we can
expect many of these variables to be correlated with each other (multicollinear). If
left unaccounted for, multicollinearity obscures the interpretation of the
explanatory variables and their coefficients, and may decrease the statistical power
of the logit analysis78. The degree of multicollinearity among the 20 explanatory
variables used in the logistic regression was assessed by calculating the condition
indices and variance-decomposition proportions79 of the matrix of explanatory
variables. This revealed the following nontrivial multicollinearities: (1) DHW90

with CSADuring; (2) DTR90 with DTR30; (3) MMM with MMMTotal; and (4)
DTRTotal with DTRSS and DTRFW (Table 1). Note that within each of these four
multicollinear groupings, the multicollinear variables come from the same
explanatory variable category (for example, both DHW90 and CSADuring are both
from the Cumulative Thermal Stress category). Therefore, for each logit model, we
selected at most one variable from a category without multicollinearity erroneously
influencing our results. Spatial autocorrelation within each covariate was
determined by calculating Moran’s I and examining correlograms, from which we
determined significant spatial autocorrelation typically up to distances of 500 km
(Supplementary Fig. 5). To account for this, we also added a random effect to the
highest-ranked logit models, from which we failed to conclude a marginal model
improvement (see below).

All permutations of all possible explanatory variables were used to compute a
total of 10,367 logit models, where all logit models were computed using a
multinomial logistic regression function (“mnrfit”) in MATLAB. Model
comparison was performed using a bias correction for small sample sizes to
Akaike’s Information Criterion, AICC

80, and all models within ΔAICC ≤ 2 of the
best model (ΔAICC= 0), which have statistically indistinguishable performances81,
are presented in Supplementary Fig. 6. McFadden’s pseudo-R2 was also computed
for the highest ranked models, and ranged from 0.26 to 0.30, with that of the
highest-ranked model equal to 0.30. While the logit model with the lowest AICC, as
well as all models within ΔAICC ≤ 2, provide a general outline for the coefficients of
the critical independent variables in explaining bleaching prevalence, these
parameter estimates have errors of unknown distribution. Additionally, the
possible existence of outliers in the high-frequency temperature variability data
may influence the results of the logit parameter estimates, and therefore, delete-1
jackknife resampling was used to compute estimates of bias and standard errors.
We found a slight positive bias that did not significantly alter the influence of high-
frequency temperature variability relative to the other covariates. Estimates of
standard errors for all logit parameters of all models within ΔAICC ≤ 2 can be seen
in standard error bars (Fig. 3b and Supplementary Fig. 6). Specifically, the error
bars seen in Fig. 3c are the standard errors from each contribution summed in
quadrature. A modified jackknife resampling scheme was also performed, in which
instead of leaving out one site at a time, sites within 10 km of each other were
grouped together and each of these proximity groups was left out incrementally
before fitting OLR models to the remaining data. This spatial resampling analysis
(Supplementary Fig. 7) did not result in significantly different parameter estimates
than the full model presented in Fig. 3b. Estimates for the intercept terms C1, C2,
and C3 (±non-resampled standard errors) were found to be 0.72 ± 0.35, 1.41 ± 0.38,
and 2.00 ± 0.42, respectively, indicating no significant difference between bleaching
prevalence categories within our dataset. Using the statistical computing software
R82 (https://www.r-project.org), a random effect grouping variable was added to
each of the highest-ranked models, which grouped reefs within 5 km of each other.
These resulting mixed effects models were compared to their fixed effects
equivalents to determine model fit improvement, and the inclusion of a random
effect did not improve the fit of any of the 20 highest-ranked models
(Supplementary Data 3). Furthermore, to account for possible nonlinear
interactions between covariates, such as Depth × DTR30 or Acute1 × DHW30, we
also included a nonlinear interaction term to the highest-ranked model and
determined model fit improvement. The AICC of these nonlinear models
(Supplementary Table 1) indicated that the addition of a nonlinear interaction term
did not significantly improve the fit of the original highest-ranked model displayed
in Fig. 3b. Therefore, as our main result, we ultimately report the fixed effects ORL
model parameter estimates with no nonlinear or interaction terms (Fig. 3b).

The SST-based OLR analysis summarized in Fig. 5 was performed using the
CoRTAD 4 km weekly SST data55 pixels that were closest to our in situ bleaching
observations. The quantities MMM, MMMMax

15, Acute1, Acute2, DHW, ROTCSS,
and ROTC90 (Table 1) were computed from the CoRTAD temperature data. This
resulted in a total of 27 covariates (20 as described above, and 7 new ones
computed from the CoRTAD data). We then proceeded to fit OLR models using all
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permutations of covariates, with the constraint that within each model, we only
include ≤1 covariate from each category listed in Table 1. This produced 60,479
models, from which we performed model comparison using AICC, resulting in 12
dominant models being identified as statistically indistinguishable. From here, we
concluded that when 4 km SST metrics are incorporated into our model
framework, high-frequency temperature variability and depth remain the most
influential covariates on bleaching prevalence, acting to attenuate bleaching
(Fig. 5). Furthermore, acute and cumulative thermal stress exacerbate bleaching
prevalence the most, and the SST-derived version of the latter contributes
substantially to this effect. The results presented in Fig. 5 ultimately mirror those
from Fig. 3b, c, indicating that DTR is the main driver of bleaching prevalence,
regardless of whether SST or in situ quantities of the other predictors are used.
Common covariates in these models were MMM, MMMMax, MMM4 km, DHW30,
DHW4 km, Acute1, Acute24 km, and ROTC90-4 km, and each of these 12 highest-
ranked models included at least one SST-based covariate. The AICC values of these
models ranged from 129.19 to 131.12, with McFadden’s pseudo-R2 values ranging
from 0.35 to 0.38, which presents a considerable improvement to the highest-
ranked model that was fit to only in situ values, which had an AICC equal to 143.75
and a McFadden’s pseudo-R2 of 0.30. To highlight the importance of High-
Frequency Temperature Variability in model improvement, we also fit these
models to the data and excluded the Daily Temperature Range covariate, which
was either DTR30 or DTR90. This significantly decreased model performance, with
AICC values ranging from 153.46 to 169.57, and McFadden’s pseudo-R2 values
ranging from 0.12 to 0.23, which supports the idea that DTR30 is the dominant
driving variable for the bleaching response.

Data availability. All 118 temperature time series used in this study are archived
with the NOAA National Centers for Environmental (NCEI), with accession
number 0170826 83.
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