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Abstract

Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can
impact the rate and magnitude of organic carbon loss in the ocean through the conversion of
a portion of consumed organic carbon to CO,. Through enhanced rates of consumption,
surface bacterioplankton communities can also reduce the amount of dissolved organic car-
bon (DOC) available for export from the surface ocean. The present study investigated the
direct effects of elevated pCO, on bacterioplankton removal of several forms of DOC rang-
ing from glucose to complex phytoplankton exudate and lysate, and naturally occurring
DOC. Elevated pCO, (1000—1500 ppm) enhanced both the rate and magnitude of organic
carbon removal by bacterioplankton communities compared to low (pre-industrial and ambi-
ent) pCO, (250 —~400 ppm). The increased removal was largely due to enhanced respira-
tion, rather than enhanced production of bacterioplankton biomass. The results suggest that
elevated pCO, can increase DOC consumption and decrease bacterioplankton growth effi-
ciency, ultimately decreasing the amount of DOC available for vertical export and increasing
the production of CO, in the surface ocean.

Introduction

Marine heterotrophic bacterioplankton play a key role in the biogeochemical cycling of carbon
through their use of dissolved organic carbon (DOC) [1]. These communities convert a por-
tion of consumed DOC into biomass and respire the remainder to CO,, thereby, decreasing
total organic carbon concentrations in the ocean through the production of CO,. Via air—sea
exchange, the production of CO, in the surface ocean could lead to the loss of carbon from the
ocean [2]. DOC that escapes bacterioplankton consumption and persists on the timescales of
months to years has the potential to be exported out of the surface ocean by physical processes
and represents a major export pathway in the biological pump [3, 4, 5]. Thus, factors that affect
bacterioplankton consumption of DOC impact surface-ocean carbon inventories and the
amount of organic carbon available for export as either DOC or organic carbon associated
with bacterioplankton biomass.
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How ocean acidification affects marine bacterioplankton directly or indirectly remains a
topic of interest [6]. Recent mesocosm and culture experiments comprised of photoauto-
trophs, heterotrophic bacterioplankton, and grazers have demonstrated clear effects of elevated
pCO, on bacterioplankton growth [7-9] and extracellular enzyme activities [9-13]. Bacterio-
plankton protein production [9] and abundance [10] were shown to increase as a function of
elevated pCO,, while Motegi et al. [8] observed no effect of pCO, on other aspects of bacterio-
plankton activity (i.e. respiration, growth efficiency, and carbon demand). Multiple studies
observed enhanced rates of extracellular enzyme activity such as leucine-aminopeptidase
[10, 12], protease [9], and glucosidase [9, 11-13], suggesting accelerated hydrolysis of various
components of dissolved organic material as a function of increasing pCO,. These studies pro-
vide valuable insight to the net community effects of pCO, on organic carbon cycling. How-
ever, the effects of pCO, on heterotrophic bacterioplankton for these studies were evaluated
during nutrient-induced phytoplankton blooms (mesocosm studies) [7-10, 12, 13] or by inoc-
ulating pH-manipulated phytoplankton cultures with natural bacterioplankton communities
(culture study) [11]. Both of these experimental designs make it difficult to differentiate the
direct effects of pCO, on heterotrophic bacterioplankton physiology and organic carbon
removal from the indirect effects that pCO, may have had on the quantity and quality of the
organic carbon produced by the phytoplankton [14, 15], which could potentially also alter
microbial organic carbon removal.

Studies conducted in the absence of phytoplankton showed somewhat different results:
Yamada and Suzumura [16] observed no effect of elevated pCO, on extracellular glucosidase
activity of the free-living bacterioplankton communities. They did, however, observe an
increase in extracellular leucine-aminopeptidase and lipase activity, suggesting an increase in
the processing of protein and lipid substrates and no effect on polysaccharide use. Siu et al.
[17] observed a decrease in bacterioplankton respiration and bacterioplankton production, as
measured via >’H -thymidine incorporation, and a clear shift from more diverse bacterioplank-
ton communities at ambient pH to less diverse communities under elevated pCO, conditions.
These studies provide insight to the direct effects of elevated pCO, on bacterioplankton extra-
cellular enzyme activity and community structure but did not address the effects of pCO, on
bacterioplankton removal of organic carbon.

Here we present results from seawater culture experiments that were designed to examine
the direct effect of pCO, on net removal of organic carbon by bacterioplankton and discuss
resulting implications for bacterioplankton respiration and biomass production. Laboratory
perturbation experiments using natural bacterioplankton communities were conducted at
three contrasting sites: the Sargasso Sea, the Santa Barbara Channel, and the South Pacific Sub-
tropical Gyre. In the oligotrophic Sargasso Sea, deeper waters with elevated pCO, are brought
to the surface through convective mixing annually [18, 19]. Coastal upwelling off the west
coast of North America can induce higher-frequency variability in pCO, [20] and result in
strong shifts in pH on timescales of days in places like the Santa Barbara Channel, CA [21]. In
contrast, seasonal or higher-frequency pulses of elevated pCO, are less likely in the more per-
manently stratified oligotrophic systems such as the waters surrounding the islands of Moorea
and Tahiti, within the South Pacific Subtropical Gyre [21]. All ocean surface waters are also
subject to rising atmospheric CO, concentrations and are expected to be impacted gradually.
How this broad range in the frequency and magnitude of elevated pCO, exposure impacts
DOC processing by bacterioplankton remains largely unknown. The objective of this study
was to assess the direct effect of short-term exposure to elevated pCO, on bacterioplankton
organic carbon removal, across a variety of ocean sites.

Our results show that short-term perturbations of elevated pCO, can result in an increased
rate and magnitude of organic carbon removal by bacterioplankton, independent of the
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environmental origin of the bacterioplankton communities. These results suggest that short-
term increases in pCO, can lead to an increased loss of organic carbon due to respiration,
which may ultimately reduce surface ocean carbon inventories and the amount of DOC avail-
able for vertical export from the surface ocean.

Materials and methods
General experimental set-up and design

The same general approach was used for all three study sites. Experiments consisted of 0.2 pm-
filtered (0.2 um GSWP, Millipore, Billerica, MA) seawater or 0.2 pm-filtered phytoplankton
exudate that was inoculated with natural bacterial communities. The inoculum of natural bac-
terial communities consisted of either unfiltered whole seawater (Sargasso Sea and South
Pacific Subtropical Gyre experiments) or 1.2 um filtrate (Santa Barbara Channel experiments;
1.2 um RAWP, Millipore, Billerica, MA). Particulate organic carbon concentration in oligotro-
phic gyres is low (1-3 pmol C L") so to avoid filtration artifacts such as reduced bacterial pro-
duction (unpublished data) and contamination of DOC due to handling, the inoculum was
not pre-filtered for the experiments conducted in oligotrophic waters. Because particulate
organic carbon concentration can be much greater in coastal upwelling systems it was neces-
sary to remove large particles and organisms from the inoculum. Inoculum was added at
25-30% of final volume (Table 1), effectively diluting grazer concentrations and grazing pres-
sure. All filters were pre-rinsed with ~2 L of deionized distilled water and sample water prior
to use in order to remove organic contaminants from the filters.

Treatments. The four types of DOC treatments used in the experiments included either:
(1) unamended seawater, which provided naturally occurring DOC, (2) naturally occurring
DOC amended with glucose (~10 uM C), NH, CI (1uM) and K,HPO, (0.1uM) (CNP) [22], or
one of two phytoplankton-derived DOC mixtures: (3) phytoplankton exudate or (4) naturally
occurring DOC amended with phytoplankton lysate (~10 pM C). There was no attempt to
standardize the initial concentration of DOC in the phytoplankton exudate treatments; thus,
those treatments contained total organic carbon concentrations that were 2-3 fold greater
than those in the unamended seawater at the beginning of the experiments (Table 1).

The various treatments were generated by inoculating the 0.2 um pre-filtered seawater or
exudate with the microbial community; this solution was then divided into two polycarbonate
(PC) containers to adjust pCO, (Table 1). pCO, levels were adjusted via chemical additions
(Sargasso Sea experiment) or by bubbling with CO,-mixed air (Santa Barbara Channel and
South Pacific Subtropical Gyre experiments). Adjusted seawater incubations were then trans-
ferred into new PC carboys and CNP or lysate was added, if appropriate. A very small volume
of lysate (1.2 mL to 11.5 L of experimental volume) or CNP (12 mL to 10 L of experimental
water for the Sargasso Sea experiment; 0.28 mL to 10 L of experimental volume for the Santa
Barbara Channel experiment) was added to minimize perturbing the carbonate chemistry. All
experiments were conducted in duplicate, at in situ temperatures, and in the dark to eliminate
photoautotrophic production (Table 1). All PC bottles had been acid-washed (5% or 10%
HCL) and rinsed with deionized distilled water and sample water before use.

pCO; adjustments. Except in the Sargasso Sea, the pCO, was adjusted by bubbling with
CO,-mixed air (Scott Marrin Inc.) at ~100 mL min™* through an air stone to produce fine bub-
bles for 45 min- 4 hours depending on volume. The pCO, adjustment via bubbling was con-
ducted only once, prior to the start of the experiment, to eliminate the possibility of abiotic
removal of organic matter as a result of continued bubbling. The air in the headspace of each
sample bottle was exchanged with target CO,-mixed air every 24 hours to minimize the change
in pCO, levels throughout the experiment. Bubbling was conducted at experimental
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temperatures, which were identical to the in situ temperatures of the inoculums. In the Sar-
gasso Sea experiment, pCO, was adjusted through the addition of 0.206 g CaCO3, 0.032 g
NaHCOs3, and 29 mL of 0.1 N HCL according to the best practices guide [23]. This closed sys-
tem approach results in an inorganic carbon perturbation that is chemically identical to bub-
bling [24].

To maintain pCO, over the course of the experiments, the incubation bottle lids used for
the Santa Barbara Channel and South Pacific Subtropical Gyre experiments were equipped
with built-in gas and sampling ports to allow for sampling via positive pressure displacement
in which the treatment pCO, gas was used to pressurize the head space (< 3 PSI); thus displac-
ing the sample volume from the incubation vessel through the sample line directly into a col-
lection vessel. In the Sargasso Sea, samples were collected by decanting directly from the
incubation bottles into sample bottles.

To assess the potential change in pH over the course of an incubation we measured pH as
described below for experiments # 1-4. We found that pH changes, within a given incubation,
were minimal (0-0.04 pH units) over the course of the experiments. These pH changes corre-
spond to changes in pCO,; of ~ 1-60 ppm, which is much less than the differences in pCO,
between low and elevated-pCO, treatments (~370 -~1100 ppm). Thus, we concluded that pH
adjustments were maintained throughout experiments with very little drift in pCO,.

Sargasso Sea experiment. Water was collected from Hydrostation S (32° 10N, 64° 30°'W)
in the northwestern Sargasso Sea at a depth of 10 m using a conductivity, temperature, depth
(CTD) rosette. Sampling met the limited impact research requirements under the Bermuda
Institute of Sciences Collection and Experimental Ethics Policy. As a result, collection and
export permits were not required from the Bermuda Government at the time of this study.
Seawater culture experiments were set-up in the lab at the Bermuda Institute of Ocean Science
within hours of collection. The experiment consisted of four treatments, each in duplicate: two
pCO, treatments (ambient and elevated) combined with two DOC treatments (CNP amended
and unamended) as a full factorial design (experiment # 1, Table 1). The inoculated seawater
was partitioned into two 10 L PC carboys, one remaining unadjusted (ambient pCO, treat-
ment); the pCO, of the second carboy was adjusted to ~760 ppm using the closed system
approach (23). Duplicate 2 L PC bottles were filled with each pCO, treatment for the
unamended DOC treatments. CNP was added to the seawater remaining in the 10 L carboys
to a final concentration of 10 uM C, 1 pM N, and 0.1 pM P (as described above) and each was
then split into duplicate 2 L PC bottles, representing the amended DOC treatments. All eight
bottles were incubated within a temperature controlled upright incubator (Table 1).

Santa Barbara Channel experiments. Five experiments were conducted with surface sea-
water collected from the Santa Barbara Channel between 2012 and 2014 (experiments # 2—6,
Table 1). No specific permissions were required for near-shore seawater collection in the Santa
Barbara Channel. Each time, surface seawater was collected using a PC carboy from a near-
shore site along the coast of Santa Barbara, CA (34° 24’N, 119° 50°'W). The DOC source and
starting pCO, conditions, as well as the bacterioplankton inoculum varied between experi-
ments (Table 1). pCO, of seawater incubations were adjusted to pre-industrial (250 ppm) and
elevated (1000 ppm or 1500 ppm) levels by bubbling with CO,-mixed air in two 8 L or 20 L PC
carboys (see above) depending on experimental water requirements (Table 1). pCO, adjusted
seawater was split into duplicate 0.5 L or 2 L PC bottles and placed within a temperature con-
trolled upright incubator (Table 1).

South Pacific Subtropical Gyre experiments. Three separate experiments were con-
ducted in July 2014 with water collected near French Polynesia in the South Pacific Subtropical
Gyre (17° 36S, 149° 43°W) (experiments # 7-9, Table 1). All research was performed under
annual research permits (permit no. 438/ AME) issued by the French Polynesian Ministry of
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Foreign Affairs of International Development of the French Republic, Americans and Carib-
bean Islands Division. Seawater was collected from a depth of 25 m using a CTD rosette and
seawater cultures were prepared in two 20 L PC carboys. Treatments for each of the three
experiments included unamended and amended DOC treatments and pre-industrial

(250 ppm) and elevated (1000 ppm) pCO, in a full factorial design. One of two 20 L carboys
was bubbled with pre-industrial (250 ppm) CO,-mixed air and the other with elevated

(1000 ppm) CO,-mixed air as described below. pCO, adjusted seawater was then amended
with phytoplankton-lysate to a final addition of ~10 pM C and placed within an upright incu-
bator (Table 1). We were unable to measure pCO, at sea but applied the same flow rate and
bubbling time that resulted in effective pCO, adjustment previously.

Production of phytoplankton-derived DOC. Phytoplankton exudates and lysates were
derived from phytoplankton cultures in order to assess the impact of varying pCO, on the
microbial consumption of complex DOC. Exudates from five different diatom cultures (Dacty-
liosolen fragilissimus, Thalassiosira weissflogii, Chaetoceros socialis, Asterionellopsis glacialis)
and one coccolithophore (Emiliana huxleyi) were used in the Santa Barbara Channel experi-
ments where diatoms are often abundant. In addition, phytoplankton lysate was produced
from Emiliana huxleyi and used for the experiments conducted in the South Pacific Subtropi-
cal Gyre where coccolithophores are often present [25].

Phytoplankton cultures were grown in sterilized (double 0.2 pm filtered) seawater collected
from the Santa Barbara Channel and enriched with inorganic nutrients in a modified version
of f/2 medium [26]. Preliminary growth experiments were used to determine the ratio of N:P:
Si nutrient additions needed to induce nitrate limitation within each culture. This was done to
enhance the production of DOC in the phytoplankton cultures and to minimize the addition
of nitrate to the culture experiments. A light/ dark cycle of 14/10 hours, a photon flux density
of ~100 umol m™? 5!, and a temperature of 18°C was maintained for all cultures throughout
the growth period.

Nitrate concentration was monitored over the course of phytoplankton growth via UV
detection using an HP452A spectrophotometer (Hewlett Packard 8452A) [27] and calibrated
against a series of chemical nitrate standards (4 point curve; 0-100 umol N L™"). Exudate and
lysate was harvested from the cultures two days after nitrate concentration fell below
2.4 + 1 umol N L™ according to Nelson and Carlson [28]. Briefly, exudate was harvested via fil-
tration (0.2 um GSWP, Millipore, Billerica, MA), whereas lysate was harvested through a series
of steps including cell concentration via centrifugation (10,000 rpm) and freeze-thaw cycles.
After final centrifugation the cell pellet was abraded with a pre-combusted glass rod to gener-
ate cell lysate. Final lysate volume was 0.2 um filtered and then acidified (4 M HCI) to a pH of
~3 and stored at -20°C for one week prior to use in the South Pacific Subtropical Gyre
experiments.

Experimental samples. Experimental samples were not filtered upon removal from
experimental incubations in order to minimize contamination due to transfer and handling.
Samples for total organic carbon (TOC; carbon content of bacterioplankton biomass plus
DOC) and bacterioplankton abundance were collected throughout the incubations. pH was
monitored over regular intervals for the Sargasso Sea experiments and experiments # 2-5 in
the Santa Barbara Channel. pCO, was measured at the start of the incubations for Santa Bar-
bara Channel experiments # 2 and 4-6. Measurements of pCO, and pH were not made for the
South Pacific Subtropical Gyre experiments or the Santa Barbara Channel #10 experiment due
to logistical constraints. However, our ability to effectively alter the pCO, from ambient to tar-
get levels was demonstrated numerous times prior to these experiments (Table 1, experiments
#2-6). Thus, we used previously determined bubbling rates and duration to achieve target

PLOS ONE | DOI:10.1371/journal.pone.0173145 March 3,2017 7/26



O PLOS |one

Effects of pCO, on bacterioplankton removal of DOC

pCO, levels. The direct effect of pCO, on carbon content of bacterioplankton cells was deter-
mined during the Santa Barbara Channel follow-up experiment # 10.

Sample processing

TOC measurements—The procedures used to set up each experiment (inoculum filtration and
dilution with 0.2 pm filtrate) removed the majority of particulate organic carbon such that
changes in bacterioplankton carbon production and DOC removal were mainly a function of
the growth of the bacterioplankton. Ideally, samples collected for organic carbon would be fil-
tered in order to directly assess DOC removal independently from bacterioplankton carbon
production. However, sample handling during filtration can result in contamination that
obscures changes in DOC on the scale of a few micro-molar C. To avoid contamination, sea-
water samples from the incubation experiments were not filtered. Therefore, measured values
of organic carbon include both DOC and bacterioplankton carbon and are considered TOC.

TOC samples were collected into 60 mL high-density polyethylene bottles (Sargasso Sea
and South Pacific Subtropical Gyre) or in combusted 40 mL glass EPA vials with Teflon coated
silicone septa (Santa Barbara Channel). All TOC samples were frozen at -20°C until analysis.
Samples were analyzed via high temperature combustion method on a modified Shimadzu
TOC-V or Shimadzu TOC-L using the standardization and referencing approaches described
in Carlson et al. [29].

Bacterioplankton abundance measurement—Samples for bacterioplankton abundance
were analyzed by epifluorescence microscopy with 0, 6-diamidino -2-phenyl dihydrochloride
(5ug mL™", DAPI, SIGMA-Aldrich, St. Louis, MO, USA) according to Porter and Feig [30]
(experiments # 1 and 10), or by Flow Cytometry (FCM) on an LSR II with SYBR Green I
according to Nelson et al. [31] (experiments # 2-9). See Parsons et al. [32] and Nelson et al.
[31] regarding sample preparation and instrument settings for epifluorescence microscopy
and FCM analyses, respectively. DAPI direct counts and FCM analysis enumerate total pro-
karyotic abundance. We were not able to differentiate between bacterial and archaeal domains
and refer to the combined cell densities as bacterioplankton abundance [33].

Bacterioplankton carbon measurement—To assess the direct effect of pCO, on the carbon
content of bacterioplankton cells a follow-up experiment was conducted with water collected
from the Santa Barbara Channel during December 2015 (experiment # 10, Table 1). The exper-
imental procedure used was identical to that for all other experiments. Surface seawater was
collected using a PC carboy from a near-shore site along the coast of Santa Barbara, CA (34°
24°N, 119° 50°'W). One of two 20 L carboys filled with 0.2 qm- and 1.2 um-filtered seawater
was bubbled with pre-industrial (250 ppm) CO,-mixed air and the other with elevated
(1500 ppm) CO,-mixed air. pCO, adjusted seawater was then amended with phytoplankton-
lysate to a final addition of ~20 umol C L™" and placed within a temperature controlled incuba-
tor in the dark (Table 1).

Samples for determining the carbon content of bacterioplankton cells were collected at the
beginning of stationary phase to maximize bacterioplankton abundance and to minimize the
contribution of nanoflagellate grazers to carbon estimates. A one-liter sample was filtered onto
combusted GF75 filters (Advantec™; Dublin CA). GF75 filters were used because they have a
nominal pore size of 0.3 pm and demonstrated 92 + 2% (range = 3.7%; n = 5) cell retention.
DOC-blanks were collected simultaneously to account for adsorption of organic carbon to the
filters and were collected by filtering ~1 L of pre-filtered (0.2 um) experimental volume onto a
0.3 um GF75. Filters were placed into pre-combusted (4 hr at 400°C) glass vials, and frozen at
-40°C. Filters were shipped on dry ice to Bigelow Analytics (Bigelow Laboratories for Ocean
Sciences) and particulate organic carbon was determined using a Costech ECS 4010 elemental
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analyzer (980° combustion). Filters were analyzed within two weeks of collection and DOC-
blank values were subtracted from experimental particulate organic carbon values. Carbon
content of bacterioplankton cells (i.e. the carbon conversion factor) was calculated as particu-
late organic carbon concentration divided by bacterioplankton abundance.

Carbonate parameters. pH- Spectrophotometric pH measurements were made via absor-
bance of seawater sample at 25°C with m-cresol purple indicator dye (unpurified) following
Dickson et al. [34] for the Santa Barbara Channel experiments. The dye was frequently cali-
brated against certified reference material (Batch # 10, Dickson, La Jolla, California). pH was
measured using a Corning 430 pH meter for the Sargasso Sea experiments.

pCO, —Samples for pCO, analysis were collected into ~400 mL borosilicate bottles accord-
ing to Dickson et al. [34]. The bottles were capped immediately upon collection and pCO,
analysis was conducted within 24 hrs of sampling on a custom pCO, system according to
Hales et al. [35]. All pCO, samples were systematically referenced against standard quality gas-
ses (Scott Marrin Inc.).

Measurements of carbonate parameters were not made for the South Pacific Subtropical
Gyre and Santa Barbara Channel # 10 experiments due to logistical constraints. We used bub-
bling flow rates and duration determined from previous experimental volumes to achieve tar-
get elevated and pre-industrial pCO, levels for these experiments. For all other experiments
where pCO, was not directly measured (experiments # 1 and 3), it was calculated based on pH
and a recent local in situ measurement of total alkalinity using CO2SYS [36] and the dissocia-
tion constants for carbonic acid as refitted by Dickson and Millero [37].

Calculations

Cell-specific TOC removal—Cell-specific TOC removal was calculated as the difference in
TOC concentration (ATOC) from the start of the experiment to the beginning of stationary
phase divided by the concomitant change in bacterioplankton abundance.

Bacterioplankton carbon demand—Bacterioplankton carbon demand (BCD) is equivalent
to the carbon required for bacterioplankton biomass production (ABC) plus bacterioplankton
respiration (BR; BCD = ABC + BR), over a given period of time. BCD is also equivalent to the
total amount of DOC consumed by heterotrophic microbial communities. Therefore, bacter-
ioplankton carbon demand was calculated as the change in the concentration of DOC from
the start of the incubations to stationary phase. DOC concentration was calculated as the dif-
ference between the concentrations of TOC and BC (i.e. DOC = TOC—BC).

Bacterioplankton growth efficiency—Bacterioplankton growth efficiency, which provides an
estimate of how much of the consumed organic carbon is partitioned into cellular biomass (BC)
versus respiration [38, 39], was calculated as the increase in BC from the start of the incubations
to stationary growth phase divided by bacterioplankton carbon demand. For the Santa Barbara
Channel experiments, bacterioplankton abundance was converted to BC using the carbon con-
version factor of 30 fgC cell! measured during Santa Barbara Channel experiment # 10. This is
comparable to other published carbon conversion factors ([40], A Cano, unpublished). A lower
conversion factor of 10 fgC cell ! was used for communities from the Sargasso Sea and the
South Pacific Subtropical Gyre to reflect smaller cells in oligotrophic regions [41, 42].

Bacterioplankton respiration—Bacterioplankton respiration can be equated to the change
in ATOC by the following argument. The change in TOC between time 1 and time 2 is given
by:

ATOC = (DOC, + BC,) — (DOC, + BG,) (1)
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Then because bacterioplankton grow by consuming DOC, converting a portion of con-
sumed DOC into BC and respiring the remainder to CO,, the change in DOC between two
time points (ADOC) is given by:

ADOC = (BC, — BC,) + BR (2)

Note that in this formulation ADOC is a positive value such that when Eq 1 is rearranged
as:

ATOC = (DOC, — DOC,) + (BC, — BC,) (3)
the right hand side of Eq 2 can be substituted for (DOC; -DOGC,) in Eq 3 yielding:
ATOC = (BC, — BC,) + BR + (BC, — BC,) = BR (4)

Results

Growth patterns of the natural bacterioplankton communities within all experiments demon-
strated typical batch culture patterns of lag, exponential, and stationary growth (Figs 1, 2, and
3). However, the magnitude of the response differed between sites and treatments as described
below.

Experiments with naturally occurring DOC

Bacterioplankton communities in both elevated and pre-industrial pCO, treatments, grown
on naturally occurring DOC in the Sargasso Sea, demonstrated a less than two-fold change in
bacterioplankton abundance and no resolvable removal of TOC over the course of the incuba-
tions (Fig 1A). pCO, treatments showed no difference in cell yield (4.8 + 0.8 x10° cells mL™;
elevated pCO, vs. 4.8 + 0.3 x10° cells mL"'; ambient pCO,) or production rate (6.0 + 2.2 x10*
cells mL™" d™'; elevated pCO, vs. 7.0 + 1.4 x10* cells mL™" d™'; ambient pCO,) (Fig 1A). A simi-
lar pattern was detected in the South Pacific Subtropical Gyre for the unamended experimental
treatments (Fig 1B).

In contrast, the experiment with naturally occurring DOC from the Santa Barbara Channel
demonstrated significant increases in bacterioplankton abundance and measurable removal of
TOC in both pre-industrial and elevated pCO, treatments (Fig 1C). Although the initial rate of
increase in bacterioplankton abundance was similar for both pCO, treatments, greater maxi-
mum abundance was obtained by stationary phase with elevated pCO, (1.0 + 0.02 x10° cells
mL™Y), compared with pre-industrial (250 ppm) pCO; levels (0.9 + 0.01 x10° cells mL™) (Fig
1C). The rate of TOC removal was also greater in the elevated pCO, treatment (-2.8 + 0.9 umol
CL ™' d") relative to the pre-industrial pCO, treatment (-1.3 £ 0.5 pmol C Ltdh (Fig 1C).
The enhanced TOC removal relative to the corresponding change in bacterioplankton
abundance led to greater cell-specific consumption of TOC at elevated pCO, (71.9 + 24.4
fg C cell'!) relative to pre-industrial pCO, (46.1 + 17.7 fgC cell’; Fig 4).

Experiments with CNP

The addition of glucose in the CNP- Sargasso Sea experiment raised TOC concentration by
11.2 and 11.6 umol C L'! over the unamended treatment for the ambient and elevated pCO,
treatments, respectively. This additional labile organic carbon (in combination with ammo-
nium and phosphate) enhanced overall bacterioplankton yield by greater than an order of

magnitude (Fig 1D) compared to the unamended treatment (Fig 1A). The bacterioplankton
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Fig 1. Mean TOC concentration and mean bacterioplankton abundance for Sargasso Sea and Santa Barbara Channel CNP-
and natural-DOC experiments. Mean TOC concentration (+ SD) and mean bacterioplankton abundance (BA; + SD) averaged
across duplicate incubations through time and as a function of pCO, for natural bacterioplankton assemblages incubated with: A:
Natural DOC, Sargasso Sea Exp. #1A; B: Natural DOC, South Pacific Subtropical Gyre Exp. #7; C: Natural DOC, Santa Barbara
Channel Exp. #2A; D. CNP, Sargasso Sea Exp. #1B; E. CNP, Santa Barbara Channel Exp. #2B. For treatments at all sites, red
denotes elevated pCO,, while blue denotes ambient pCO in the Sargasso Sea experiment and pre-industrial pCO, in the Santa
Barbara Channel and South Pacific Subtropical Gyre experiments. Squares represent TOC (umol C L") while triangles denote BA
(108 cells mL™") over the course of the incubation.

doi:10.1371/journal.pone.0173145.9001
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Fig 2. Mean TOC concentration and mean bacterioplankton abundance for Santa Barbara Channel phytoplankton-DOC
experiments. Mean TOC concentration (+ SD) and mean bacterioplankton abundance (BA; + SD) averaged across duplicate
incubations through time and as a function of pCO, for natural bacterioplankton assemblages in the Santa Barbara Channel
experiments incubated with: A: D. fragilissimus-derived DOC, Exp. #3; B: T. weissflogii-derived DOC, Exp. #4; C: T. weissflogii-
derived DOC, Exp. #5A; D: C. socialis-derived DOC, Exp. #5B; E: A. glacialis-derived DOC, Exp. #5C; F: E. huxleyi-derived DOC,
Exp. #6. Red denotes elevated pCO, while blue denotes low (250 ppm) pCO,. Squares represent TOC (umol C L") while
triangles denote bacterioplankton abundance (10° cells mL™") over the course of the incubation.

doi:10.1371/journal.pone.0173145.9002
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Fig 3. Mean TOC concentration and mean bacterioplankton abundance for phytoplankton-DOC South
Pacific Subtropical Gyre experiments. Mean TOC concentration (+ SD) and mean bacterial abundance

(BA; + SD) averaged across duplicate incubations through time and as a function of pCO, for natural

bacterioplankton assemblages in the South Pacific Subtropical Gyre experiments incubated with E. huxleyi-
derived DOC: A: Exp. #7B; B: Exp. #8B; C: Exp. #9B. The same experimental design was used for these
experiments (note that only the amended treatments are shown). Red denotes elevated pCO,, while blue
denotes low (250 ppm) pCO,. Squares represent TOC (umol C L") while triangles denote BA (10° cells mL™")
over the course of the incubation.

doi:10.1371/journal.pone.0173145.9003
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(ambient or pre-industrial) pCO, (blue). Only experiments where a change in TOC was resolvable are shown.

doi:10.1371/journal.pone.0173145.9004

communities removed an amount of TOC equal to those carbon amendments in both elevated
and ambient pCO, treatments implying that throughout the incubation little, if any, of the nat-
urally occurring DOC was consumed, e.g. no priming effect was observed. However, TOC
removal rates during exponential growth were greater under elevated pCO, compared to
ambient pCO, (-4.3 + 0.5 umol CL™" d' vs. -3.1 + 1.2 umol C L™ d'', respectively; Fig 1D).
Greater bacterioplankton abundance at elevated pCO, (1.4 £ 0.02 x10° cells mL™!) relative to
ambient pCO, (1.2 + 0.04 x10° cells mL™") was proportionately smaller than enhanced TOC
removal during the same period, resulting in greater cell-specific consumption of TOC at ele-
vated pCO, (101.1 +15.6 fg C cell!) relative to ambient pCO, (81.9 + 37.7 fgC cell’; Fig 4).
The addition of glucose in the CNP- Santa Barbara Channel experiment raised TOC con-
centration by 7.5 and 10.5 umol C L' over the unamended treatment for the pre-industrial
(250 ppm) and elevated (1000 ppm) pCO, treatments, respectively. Bacterioplankton abun-
dance increased by over an order of magnitude (Fig 1E) compared to the unamended treat-
ment (Fig 1C). An amount of TOC greater than the amendments was removed in both pCO,
treatments over the course of the experiment (compare initial TOC in Fig 1C with the final
TOC in Fig 1E); however, both total TOC drawdown and the rate of TOC removal during
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exponential phase were greater under elevated pCO, (-8.0 + 0.6 umol C L™ d™') relative to the
pre-industrial pCO, treatment (-4.3 + 1.1 umol C L™ d ™). The bacterioplankton abundance in
stationary phase was also greater at elevated pCO, (1.9 + 0.1 x10° cells mL™") than at pre-indus-
trial pCO, (1.7 + 0.06 x10° cells mL™"); however, the enhanced TOC removal relative to the
increase in bacterioplankton, again resulted in greater cell-specific TOC consumption at ele-
vated pCO, (84.1 + 9.3 fg C cell ") relative to ambient pCO, (55.2 + 14.2 fg C cell; Fig 4).

Final TOC concentration in the Santa Barbara Channel experiment was drawn down to the
same final concentration with and without CNP in elevated pCO, incubations (compare Fig
1C and 1E) indicating that CNP addition did not enhance the consumption of naturally occur-
ring DOC under elevated pCO,. In contrast, final TOC concentration in the pre-industrial
pCO, CNP incubations was ~3 umol C L' lower than in the unamended incubations (com-
pare Fig 1C and 1E), indicating that the addition of CNP allowed for greater consumption of
the naturally occurring DOC (a priming effect) under pre-industrial pCO,.

Experiments with phytoplankton-derived DOC

TOC removal rates and the magnitude of TOC removal through stationary growth phase were
enhanced in elevated pCO, treatments for all experiments with phytoplankton-derived DOC
(Figs 2 and 3), indicating greater consumption of the exudates and lysates at elevated pCO,
compared to pre-industrial levels. While trends in TOC removal were consistent across experi-
ments and DOC sources, the bacterioplankton abundance yield was variable with some treat-
ments having elevated yield in high pCO, treatments (Fig 2E and 2F; Fig 3B), and others
showing no difference (Fig 1A, 1B, 1C and 1D; Fig 3A and 3C) between pCO, treatments.
Despite variability in bacterioplankton abundance yield, elevated pCO, resulted in TOC
removal by bacterioplankton that was always proportionately greater than the corresponding
increases in abundance, leading to greater cell-specific removal at elevated pCO, (Fig 4).

Carbon content of bacterioplankton cells

Trends in TOC removal and bacterioplankton abundance in the Santa Barbara Channel exper-
iment # 10 were consistent with all previous Santa Barbara Channel experiments: Greater
TOC removal through stationary growth phase was observed in elevated pCO, incubations
(-18.0 + 0.6 umol C L") relative to pre-industrial pCO, incubations (-15.6 + 0.1 umol CL™"),
while bacterioplankton abundance yield was similar across pCO, treatments (4.0 + 0.5 x10°
cells mL™; elevated pCO, vs. 3.8 + 0.1 x10° cells mL™"; pre-industrial pCO,). No resolvable dif-
ference in the carbon content of bacterioplankton cells was observed between cells as a func-
tion of pCO, (31.4 + 1.2 fg C cell '; pre-industrial pCO, vs. 31.8 + 1.8 fg C cell '; elevated
pCOy; p-value > 0.66, t-test).

Bacterioplankton carbon removal and growth dynamics

Bacterioplankton carbon removal and growth dynamics were evaluated for experiments in
which TOC removal was measureable. Effects of pCO, on carbon removal and bacterioplank-
ton growth dynamics within experiments were tested for significance by the Alexander-Gov-
ern test. This first approximation, unequal variance test was used to account for small sample
sizes (n = 2 for each pCO, level) and, therefore, an inability to test for normality and homosce-
dasticity with substantial power (p-values are reported in Table 2). Despite the fact that few
within experiment comparisons resulted in significant effects of pCO,, patterns in carbon
removal and bacterioplankton growth dynamics were consistent across all experiments and
locations, and are highly significant: cell-specific TOC removal (Fig 4) and bacterioplankton
carbon demand (Fig 5) were consistently enhanced at elevated pCO, (p-value = 0.0003,
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Table 2. P values for bacterioplankton carbon removal and growth dynamics.

Experiment # Cell-specific TOC removal p-value BCD p-value BGE p-value
1B 0.62 0.39 0.57
2A 0.40 0.17 0.40
2B 0.18 0.07 0.25

3 0.52 0.80 0.51
0.05 0.33 0.08
5A 0.33 0.03* 0.27
5B 0.34 0.41 0.23
5C 0.30 0.03* NA
6 0.19 0.12 0.32
7B 0.54 0.41 0.52
8B 0.64 0.02* 0.04*
9B 0.12 0.45 0.15
10 0.54 0.05 0.54

Alexander-Govern approximate p-values, calculated for cell-specific TOC removal, bacterioplankton carbon
demand (BCD) and bacterioplankton growth efficiency (BGE). Asterisks denote p-values < 0.05 and ‘ND’
refers to not determined, due to lack of replication.

doi:10.1371/journal.pone.0173145.t002

Fisher’s sign test; p-value < 0.0001, t-test, respectively), while bacterioplankton growth effi-
ciency (Fig 6) was significantly reduced at elevated pCO, (p-value = 0.0003, Fisher’s sign test).
Significance of these consistent patterns was tested using the consensus t-test or the Fisher’s
sign-test, when tests for normality and homoscedasticity failed. Thus, while our measurement
precision was inadequate to demonstrate statistically significant differences at any given loca-
tion, the ecological and biogeochemical significance across all sites is statistically clear in that
the consistency of the response shows that an enhancement of cell-specific TOC removal and
carbon demand, and a reduction in bacterioplankton growth efficiency, under elevated pCO,
is a common feature across the wide range of ocean habitats examined.

Discussion

The results indicate that elevated pCO, can directly influence bacterioplankton removal of
organic carbon. Elevated pCO, led to greater TOC removal by bacterioplankton communities
growing on a range of DOC from glucose to more complex DOC, consisting of phytoplankton
products or naturally occurring DOC. This result was observed across all ocean regions for
experiments where DOC was amended. Similar results were observed in the unamended Santa
Barbara Channel incubations at elevated pCO, but it was not possible to discern whether
pCO, affected consumption of naturally occurring DOC in the South Pacific Subtropical Gyre
and Sargasso Sea, as changes in TOC were below analytical detection limits in these more oli-
gotrophic environments.

Our results suggest that short-term increases in pCO, will lead to enhanced removal of bio-
available surface organic carbon by heterotrophic bacterioplankton communities. Through
observations of enhanced extracellular glucosidase activity, previous mesocosm and culture
studies suggested that elevated pCO, conditions might lead to greater removal of organic car-
bon [9, 11-13]. Here we show a clear, direct effect of elevated pCO, on bacterioplankton-
mediated organic carbon removal. Both our work and that of the mesocosm and culture stud-
ies [9, 11-13] suggest that short-term exposure to elevated pCO, will enhance the bacterio-
plankton removal of bioavailable DOC in the surface ocean.
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Fig 5. Bacterioplankton Carbon Demand. Mean (+ SD) bacterioplankton carbon demand (BCD) averaged across duplicate incubations
and calculated as the change in DOC from T, to stationary phase. Change in DOC was calculated as TOC less the carbon content of
bacterioplankton biomass (using a carbon conversion factor of 30 fg C cell”" for bacterioplankton in the Santa Barbara Channel and 10 fg C
cell”" for bacterioplankton in the Sargasso Sea and South Pacific Subtropical Gyre). Colors denote BCD at elevated pCO, (red) and low
(ambient or pre-industrial) pCO, (blue). Numbers refer to the experiment number (Table 1). Only experiments where a change in TOC was

resolvable are shown.

doi:10.1371/journal.pone.0173145.g005

Experimental design considerations

In order to investigate the direct effect of pCO, on organic carbon consumption by natural
bacterioplankton communities, we employed the following in our experimental design: (1)
Experiments were conducted in the dark to eliminate photoautotrophic organic carbon pro-
duction; (2) To ensure that the majority of organic carbon removal could be attributed to het-
erotrophic bacteria, we used seawater culture dilution methods [43] to dilute and minimize
the effects of protistan grazer populations [44, 45, 46]; (3) To further minimize the potential
effects of grazers on organic carbon consumption, calculations were made from the start of the
incubations to stationary growth phase, ensuring low grazer densities and high bacterial densi-
ties during the period over which bacterioplankton physiological parameters were estimated.
However, we cannot rule out the possibility that groups other than heterotrophic bacteria (e.g.
archaea and marine protists) contributed to organic carbon removal in these experiments
because we were unable to resolve changes in their abundance. The consumption of specific
organic compounds (i.e. amino acids) by other members of marine plankton has been
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Fig 6. Bacterioplankton growth efficiency. Mean (+ SD) Bacterioplankton growth efficiency averaged across duplicate incubations and
calculated as the change in bacterioplankton biomass carbon (using a carbon conversion factor of 30 fg C cell™* for bacterioplankton in the
Santa Barbara Channel and 10 fg C cell™" for bacterioplankton in the Sargasso Sea and South Pacific Subtropical Gyre) divided by the
concurrent change in DOC from T, to stationary phase. Colors denote bacterioplankton growth efficiency at elevated pCO, (red) and low
(ambient or pre-industrial) pCO, (blue). Numbers refer to the experiment number (Table 1). Only experiments where a change in TOC was
resolvable are shown.

doi:10.1371/journal.pone.0173145.9006

observed [47-49] but their effect on removal of bulk dissolved organic material remains largely
unquantified [50].

To minimize the potential for abiotic removal of organic carbon (e.g. via adhesion to the
incubation-bottle walls or accumulation at the air-water interface) our seawater cultures were
only bubbled before the start of the experiments (before T,). pCO, levels were maintained over
the course of the experiments through the use of gas-tight sampling ports (see methods) and
by replacing the headspace with target pCO, —gas, daily. We cannot rule out the possibility
that abiotic removal of organic carbon occurred during bubbling; however, continued abiotic
removal over the course of the experiment did not occur as is evidenced by the fact that no
resolvable removal of TOC was detected in experiments in which bacterioplankton growth
was minimal (Fig 1A and 1B, Table 1: experiments #1A, and 7A, 8A, and 9A).

We attribute organic carbon removal (ATOC) to consumption by heterotrophic bacterio-
plankton in our experiments. The filtration and dilution steps used in our experimental set-up
were designed to minimize or eliminate the contribution of non-living particulate organic car-
bon in experimental incubations. That means that a measurement of TOC represents the sum
of DOC and the carbon content of bacterioplankton biomass. It also means that the change in
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TOC (ATOC) is a measure of the amount of carbon lost to bacterioplankton respiration by the
argument described in the materials and methods section (see bacterioplankton respiration cal-
culation). This tight coupling between the direct measurement of ATOC and the production of
CO; (i.e. bacterioplankton respiration) was shown empirically in similar seawater culture
experiments, supporting the use of ATOC as a proxy for heterotrophic bacterioplankton respi-
ration in this type of experiment [45].

Bacterioplankton removal of organic carbon

Highly productive systems like the coastal upwelling regions of the Santa Barbara Channel can
create food-webs that allow for greater DOC production than heterotrophic bacterioplankton
consumption, resulting in the accumulation of bioavailable DOC [51, 52, 40]. In the present
study we show enhanced removal of naturally occurring organic carbon by Santa Barbara
Channel heterotrophic bacterioplankton communities under increased pCO,, suggesting that
rapid increases in pCO,, common in upwelling systems, can accelerate the consumption of
DOC in the surface ocean.

In contrast, removal of TOC in the naturally occurring DOC treatments conducted in the
Sargasso Sea and the South Pacific Subtropical Gyre was below limits of detection, indicating
that only a very small fraction of the naturally occurring DOC was available to the extant bac-
terioplankton on the time-scale of these experiments. This result is consistent with previous
observations indicating that because DOC production and consumption processes in the oli-
gotrophic gyres are so tightly coupled little, if any, of the DOC that accumulates in these
regions is bioavailable to surface bacterioplankton communities on the time scale of hours to
days [44, 53].

To assess the effect of pCO, on the removal of recently produced DOC in systems where
DOC use is difficult to resolve, we simulated food-web production of complex DOC by
adding phytoplankton-derived DOC to seawater culture experiments. These amendment
experiments were conducted in both coastal (Santa Barbara Channel) and open ocean
systems (South Pacific Subtropical Gyre) and show a consistent pattern of an increased magni-
tude of TOC removal with elevated pCO,. While these results show clear short-term trends
regarding the removal of phytoplankton-derived DOC, longer-term experiments (weeks to
months) must be conducted to properly evaluate whether exposure to elevated pCO, sustains
an offset in the magnitude of TOC removal compared to ambient and pre-industrial pCO,
conditions.

Collectively, our experiments indicate that short-term increases in pCO, directly influence
bacterioplankton removal of organic carbon. Elevated pCO, led to greater TOC removal by
natural bacterioplankton communities growing on a range of organic carbon compounds
from glucose, to more complex phytoplankton products, to naturally occurring DOC. Assum-
ing that heterotrophic bacterioplankton are driving the removal of TOC, then these results
suggest that short-term exposure to elevated pCO, leads to enhanced bacterioplankton respira-
tion relative to pre-industrial pCO,. Enhanced respiration under elevated pCO, coupled with
minimal change in bacterioplankton abundance yielded systematically greater cell-specific res-
piration (i.e. cell-specific TOC removal) in elevated pCO, treatments (Fig 4). Even in cases
where bacterioplankton yield was greater under elevated pCO,, that effect was outweighed by
enhanced respiration leading to greater amounts of carbon respired per cell. This result sug-
gests that during periods of acidified conditions, more bioavailable organic carbon in surface
waters will be converted to CO,, decreasing the amount of organic carbon available for poten-
tial export and increasing the likelihood that carbon will be lost from the surface ocean to the
atmosphere through outgassing of CO,.

PLOS ONE | DOI:10.1371/journal.pone.0173145 March 3,2017 19/26



O PLOS |one

Effects of pCO, on bacterioplankton removal of DOC

Bacterioplankton growth dynamics

Organic carbon removal was tracked by measuring TOC; as a result, these seawater experi-
ments do not directly address the effect of pCO, on BC production or DOC consumption.
However, these components were evaluated using the direct estimates of the carbon content of
bacterioplankton cells from the December 2015 Santa Barbara Channel experiment. Knowl-
edge of the carbon content of bacterioplankton cells enables the calculation of BC to be easily
extrapolated from cell abundance data and also enables DOC to be calculated as the difference
between TOC and BC. Estimates of BC and DOC removal can then be used to inform aspects
of bacterioplankton physiology by providing estimates of bacterioplankton carbon demand
(i.e. DOC consumption) and the fraction of consumed DOC that is converted to BC (i.e. bac-
terioplankton growth efficiency). Thus, understanding how pCO, affects the carbon content of
bacterioplankton cells enabled us to extend our results beyond carbon loss via respiration, to
the partitioning of surface organic carbon between dissolved (that which escapes or resists bac-
terioplankton consumption) and particulate (as BC) organic carbon.

We observed no direct effect of pCO, on the carbon content of bacterioplankton cells.
Assuming this equivalency across all experiments, we calculated bacterioplankton carbon
demand for all of the experiments where a change in TOC was resolvable. Bacterioplankton
carbon demand was estimated as the change in DOC from the start of the incubations to sta-
tionary growth phase and DOC was estimated as TOC—BC. These calculations revealed a con-
sistent pattern across DOC amendments and experimental location: bacterioplankton
communities grown at elevated pCO, exhibited enhanced carbon demand relative to commu-
nities at pre-industrial and ambient pCO, (Fig 5). These results suggest that bacterioplankton
communities exposed to short-term increases in pCO, reduce the amount of DOC available
for vertical export through enhanced consumption of recently produced DOC (Fig 7).

Estimates of bacterioplankton growth efficiency revealed a consistent pattern across DOC
amendment and experimental location: growth efficiencies were consistently lower at elevated
pCO, than at pre-industrial or ambient pCO, (Fig 6). This implies that a greater portion of
consumed DOC is converted to CO, by bacterioplankton communities exposed to elevated
pCO, (Fig 7). It is important to note that variable initial bacterioplankton communities likely
resulted in variable BC and that our estimate of cellular carbon conversion factor may not
accurately represent communities across experiments; however, only the absolute magnitude
of the growth efficiency values will be affected if, as our results suggest, BC is similar across
pCO, levels. Enhanced bacterioplankton respiration at elevated pCO, will consistently result
in lower growth efficiencies, regardless of the exact carbon conversion factor used.

Our estimates of bacterioplankton carbon demand and growth efficiency demonstrate a
direct effect of pCO, on bacterioplankton processing of organic carbon in the surface ocean.
While elevated pCO, had little impact on BC production, enhanced DOC removal through
accelerated bacterioplankton consumption and reduced growth efficiencies reduced the
amount of DOC available for export, relative to pre-industrial pCO, conditions (Fig 7).
Enhanced removal of DOC could also lead to increased production of recalcitrant organic
compounds via the microbial carbon pump [54]. Further experiments and measurements of
long-term DOC removal and DOC characterization are required to evaluate this possibility.

Possible mechanisms

Consumption of organic carbon is often a function of bacterioplankton community structure
and a number of studies have demonstrated that slight variations in DOC may select for spe-

cific bacterioplankton populations over timescales of hours to days [28, 40, 53, 55]. It is likely
that bacterioplankton community composition shifted over time in our experiments and it is
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Fig 7. Effects of pCO, on bacterioplankton removal of organic carbon. A depiction of the short-term effects of pCO, on the use of DOC
by bacterioplankton communities in ocean surface waters. Elevated pCO, may increase the use of DOC at lowered bacterioplankton growth
efficiencies by natural bacterioplankton communities, increasing the respiration of DOC and decreasing the magnitude of accumulated DOC
in these regions, ultimately decreasing the amount of DOC available for vertical export (i.e. export potential). Arrows represent the flux of
carbon between identified pools. Red represents processes occurring under elevated (> ambient) pCO, conditions while blue represents
processes occurring under low (ambient or pre-industrial) pCO, conditions. Dotted black arrows denote the flux of carbon between identified
pools at low pCO, to enable an easy comparison between elevated and low pCO, fluxes.

doi:10.1371/journal.pone.0173145.g007

also possible that a shift in community composition between pCO, treatments contributed to
the consistent differences in TOC removal. A recent study by Siu et al. [17] indicated that ele-
vated pCO, (~1050 ppm) could induce shifts in bacterioplankton composition. However,
pCO, manipulations in mesocosm experiments in Bergen [56, 57] and Svalbard, Norway [58—
60] showed that the free-living bacterioplankton community structure was mostly unaffected
by elevated pCO,, which ranged from ~750-1085 ppm, depending on the experiment. In the
present study the trend of enhanced bacterioplankton respiration in the presence of elevated
pCO, was observed across DOC experiments for which water was collected at various times of
the year and presumably contained different initial bacterioplankton communities. While it is
possible that the bacterioplankton community structure shifted under elevated pCO, condi-
tions, the response of enhanced respiration at elevated pCO, appeared universal despite likely
differences in initial microbial composition sampled across sites and time.

Alternatively, enhanced bacterioplankton respiration combined with low bacterioplankton
growth efficiency in elevated pCO, treatments may be a physiological response to decreased
pH. A recent study examined the expression of bacterioplankton transcripts in response to

PLOS ONE | DOI:10.1371/journal.pone.0173145 March 3,2017 21/26



O PLOS |one

Effects of pCO, on bacterioplankton removal of DOC

elevated pCO, and showed that transcripts associated with respiration were significantly
enhanced in elevated pCO, mesocosms [61]. The authors specifically showed upregulation of
respiratory proton pumps that aid in translocating protons across the cell membrane. These
results suggest that as environmental pH decreases, heterotrophic bacterioplankton upregulate
respiratory proton pumps to export protons that invade the cell as a result of low external pH.
Consistent with our observations, Bunse et al. [61] suggested that upregulating proton pumps
under low pH would be energetically costly to heterotrophic bacterioplankton and thus reduce
their overall efficiency.

There is also evidence to suggest that increasing pCO, may lead to increased removal of
organic matter in the ocean through up-regulation and/or enhanced efficiencies of extracellu-
lar enzymes [9-12]. Extracellular enzymes convert high molecular weight organic compounds
to low molecular weight compounds that can be used by heterotrophic bacterioplankton
[62-64]. These enzymes are not buffered by the cell’s cytoplasm and are directly impacted by
external changes in pH. An increase in the concentration of hydrogen ions in an enzyme’s
environment, as a result of declining pH, may alter the three-dimensional protein structure of
the enzyme’s active site and thus affect enzymatic activity [65, 66]. Recent studies report that
extracellular o and B-glucosidase activity increased in response to elevated hydrogen ion con-
centration, suggesting that a decline in pH of 0.2-0.3 pH units was closer to the pH optimum
of glucosidase activity than ambient pH [11, 12]. It may be that up-regulation of enzymes like
o and B-glucosidase by marine heterotrophic bacterioplankton in conjunction with altered
enzymatic active sites led to the increased removal of DOC measured within elevated pCO,
treatments. Further experimentation is required to explore these mechanisms.

Thus, while we do not exclude the possibility of a shift in the bacterioplankton community
under elevated pCO, conditions, we suggest that the increased respiration at elevated pCO, is
likely due to up-regulation of proton pumps and possibly the enhancement of extracellular
enzyme activity (via up-regulation and/or enhanced efficiencies).

Conclusions

This study reveals a direct impact of pCO, on bacterioplankton removal of organic carbon. In
all experiments for which TOC removal was measurable, enhanced bacterioplankton respira-
tion under elevated pCO, coupled with minimal change in bacterioplankton biomass yield
resulted in systematically greater cell-specific respiration in elevated pCO, treatments (i.e. cell-
specific TOC removal; Fig 4). Even in cases where bacterioplankton abundance yield was
greater under elevated pCO,, enhanced respiration led to greater amounts of carbon respired
per cell, increasing the likelihood that surface organic carbon will be lost to the atmosphere
through outgassing of CO,. Estimates of bacterioplankton carbon demand and growth effi-
ciency suggest that acidified conditions may also increase the ability of bacterioplankton to
consume DOC but with reduced growth efficiencies. The cumulative effect of enhanced con-
sumption and enhanced respiration under elevated pCO, would increase the fraction of sur-
face-ocean DOC respired to CO,, ultimately decreasing the effectiveness of DOC as a sink of
carbon in the ocean (Fig 7). Incorporation of these results into numerical models will enable
more accurate understanding of current air-sea carbon exchange and the impact of elevated
pCO, in surface waters on biogeochemical cycles.
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