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Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change.
Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypoth-
esized that epigenetic processes and microbial associations might facilitate adaptive responses. However, current evidence is
equivocal and understanding of the underlying processes is limited. Here, we discuss prospects for observing transgenerational
plasticity in corals and the mechanisms that could enable adaptive plasticity in the coral holobiont, including the potential
role of epigenetics and coral-associated microbes. Well-designed and strictly controlled experiments are needed to distin-
guish transgenerational plasticity from other forms of plasticity, and to elucidate the underlying mechanisms and their relative

importance compared with genetic adaptation.

terizes the Anthropocene' has raised concerns over whether

the pace of organismal adaptation will be sufficient to miti-
gate projected detrimental effects on populations, communities and
ecosystems®. The appearance and fixation of new adaptive genetic
mutations generally requires many generations, suggesting that
only organisms with short generation times will be able to adapt at
rates matching the pace of environmental change. However, genetic
adaptation can sometimes occur remarkably rapidly — within just a
few generations — when standing genetic variation and recombina-
tion rates are high® (Box 1). Furthermore, it is increasingly recog-
nized that acclimatization through phenotypic plasticity may buffer
populations against rapid environmental change, allowing genetic
adaptation to catch up over the longer term*.

The fate of tropical coral reefs is of particular concern due to their
high social, ecological and economic value, and their sensitivity to
environmental change®. Hermatypic scleractinians (reef-building
corals), the ecosystem engineers of coral reefs, live close to their
upper thermal limits, and elevated summer temperatures can cause
mass coral bleaching and mortality®. Some reef-building corals are
also sensitive to the declining saturation state of carbonate ions

| he unprecedented rate of environmental change that charac-

that accompanies ocean acidification’, and declining water quality
associated with altered land use and precipitation regimes®. Reef-
building corals provide shelter, food and habitat, and therefore loss
of live coral and associated structural complexity leads to declines in
the diversity and abundance of other reef organisms>'°. The future
of coral reefs will therefore depend on the capacity of these founda-
tion species to respond adaptively to rapid environmental change.
Recent experiments indicate that some coral and reef fish spe-
cies can, at least to some extent, acclimatize to warming and
acidifying oceans via developmental and/or transgenerational plas-
ticity (TGP)'""? (Box 2). However, there are profound limitations to
our current understanding of the underlying mechanisms of TGP
and how these might interact with genetic adaptation’®. While it has
been suggested that epigenetic processes may be involved', there are
divergent opinions on the strength of evidence for transgenerational
inheritance via epigenetic marks, even in some well-characterized
model organisms'>">. Moreover, exact mechanisms and the extent
to which they have an effect are still unclear and under discussion®*.
Understanding multigenerational effects in corals is further compli-
cated by the intimate relationships that they form with diverse suites
of microorganisms that may contribute to phenotypic plasticity'®"”
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Box 1| The pace of genetic adaptation.

A common misconception is that genetic adaptation occurs
slowly and cannot possibly match the rate of ongoing climate
change. Genetic adaptation is the change in allele frequencies
in a population between generations, leading to a shift in mean
trait values. This process does not require the appearance of new
beneficial mutations (which potentially requires many genera-
tions); instead, it recombines and redistributes existing genetic
variants, termed ‘standing genetic variation. In genetically
diverse populations, such redistribution can happen very rapidly,
potentially leading to positive selection fuelling adaptation'!’.
Metapopulations inhabiting broad environmental gradients can
collectively harbour extensive standing genetic variation, cre-
ating an additional opportunity for genetic adaptation via the
spread of adaptive alleles among populations through migration
(‘genetic rescue’; see the figure below)'>. A major unknown is
the relative importance of genetic adaptation versus phenotypic
plasticity in responding to rapid environmental change and how
the two may interact.
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Rapid genetic adaptation to global warming in a metapopulation,
based on standing genetic variation. Two populations are each
represented by a network of genetically diverse genotypes, recombining
through time. Occasional migration events (vertical lines) tie the two
networks together and provide a way to share adaptive alleles. Warmer
genotype colour indicates higher heat tolerance. In this example, the
warm-adapted low-latitude population ‘rescues’ the cool-adapted high-
latitude population by supplying heat-tolerant alleles.

and by their propensity for asexual reproduction. While the long
lifespans and extensively overlapping generations typical of scle-
ractinian corals might be expected to restrict the pace of genetic
adaptation, this effect may be offset by other characteristics, par-
ticularly their close associations with a diverse range of microbes,
high standing genetic variation (Box 1), colonial organization and
high fecundity*®.

In this Perspective, we discuss mechanisms that could potentially
enable plastic responses to climate change in reef corals. We pro-
vide a brief review of the available evidence (and the lack thereof)
for the scope of transgenerational epigenetic inheritance to effect
rapid phenotypic change in corals. We then predict the relative
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Box 2 | Ecological and mechanistic context of TGP.

TGP occurs when the phenotype of a new generation is influenced
by the environment experienced by the previous generation(s).
TGP is adaptive when the exposure of parents to a particular
environment leads to improved performance of offspring in
the same environment®, with classic examples of adaptive TGP
including morphological defences in animals'® and the shorten-
ing of lifecycles in plants®. Parents can influence the phenotype
of their offspring through a range of mechanisms, including the
transmission of nutrients or other cytoplasmic factors, such as
hormones and proteins, or, in some cases, through epigenetic
processes, such as CpG methylation, histone modifications and
variants, or non-coding RNAs. The transmission of epigenetic
marks between generations (transgenerational epigenetic inher-
itance via the gametes) is of particular interest because it has
the potential to explain many examples of transgenerational
phenotypic effects that are not easily accounted for by inherited
genetic variation'".

Distinguishing TGP from developmental plasticity is chal-
lenging. A number of recent studies have shown that negative
effects of projected future climate change on marine organisms
are greatly reduced if both parents and their offspring experience
the same altered environmental condition'"'>'"*. These studies
show that the parental environment can affect the offspring
phenotype and may be examples of TGP. However, in all of the
examples cited, the developing eggs or embryos (for example, in
the mother) also experienced the altered environmental condi-
tions, therefore it is not possible to rule out that the observed
improvement in offspring performance is induced during early
zygotic development rather than being TGP sensu stricto. While
distinguishing between these possibilities is not critical if we sim-
ply want to know whether performance improves when multiple
generations experience the same novel environmental condi-
tions, itisimportant in terms of establishing the mechanistic basis
of the changes observed. Future studies that aim to understand
the mechanistic basis of TGP in marine organisms, while logisti-
cally challenging, will need to employ more complex experimen-
tal designs and spanning at least two to three generations (see
Fig. 1). Research so far has generally assumed a simplistic situ-
ation where each generation is considered to be completely dis-
crete (Case A, Fig. 1), and consequently phenotypic differences
in F2 offspring between treatments are considered to be TGP by
F1 parents. However, for most species it is unknown when the
primordial germ cells develop, and consequently, TGP cannot
be conclusively distinguished until the F3 generation (Case B).
Ideally, the timing of germ cell development, or any effect on
the developing reproductive cells is known before commencing
TGP experiments, enabling divisions between treatments to be
completed at the correct time (Case C).

importance of TGP in various life-history traits, and strategies
that are shared among, or unique to, foundation coral-reef species.
Lastly, we discuss the potential of microbes to facilitate acclimatiza-
tion in the coral holobiont.

Potential mechanisms for TGP

Phenotypic plasticity is a ubiquitous phenomenon that is increas-
ingly gaining scientific attention as we focus on understanding the
potential for organisms to respond to rapid changes in their envi-
ronment. As global climate change is likely to occur on timescales
that span multiple generations of corals (and many other multicel-
lular organisms), attention has focussed on exploring the potential

NATURE CLIMATE CHANGE | VOL 7 | SEPTEMBER 2017 | www.nature.com/natureclimatechange

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



NATURE CLIMATE CHANGE DoI:10.1038/NCLIMATE3374

for adaptive TGP (Box 2). While TGP has now been documented
in a range of organisms at the phenotypic level®?', the underlying
mechanisms are largely unknown.

Recent developments in omics technologies have enabled greater
insight into the molecular pathways associated with plastic phe-
notypic responses and, in some cases, identified key genes whose
altered expression may contribute to buffering against adverse
environmental conditions within a generation*** and across mul-
tiple generations**®. Epigenetics, a term originally coined by

Experimental design

PERSPECTIVE

Waddington in 1940, was intended to explain the phenomenon
of cellular differentiation in multicellular organisms from a single
genome®. More recently, the concept has evolved to include all
mechanisms that potentially regulate gene expression, such as DNA
methylation, histone modifications and variants, and noncoding
and antisense RNAs. The discovery that some epigenetic marks are
meiotically heritable (for example, the maternal DNA (CpG motif)
methylation state of the agoutilocus in mice?”?*) led to an explosion
of interest around epigenetic mechanisms driving transgenerational
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Figure 1| Identifying TGP in offspring depending on generational overlap in exposure. Three hypothetical cases of overlap between generations (right)
highlight the difficulties of determining TGP from developmental plasticity in a common experimental design (left). Phenotypic differences observed

in the experiment could be due to transgenerational and/or developmental plasticity (as shown in the bottom table) depending on the overlap of
environmental exposure between generations (Cases A-C). Case A depicts a situation where environmental treatments affect only one generation at a
time; this is often assumed to be the case in TGP experiments. Case B depicts a situation where primordial germ cells are present at birth and thus the
current and subsequent generations are exposed to the environmental treatment at the same time. Case C depicts a situation where the timing of effect
on the subsequent generation is known, and division between treatments can be completed at the appropriate time. In all cases, critical to distinguishing
phenotypic change due to TGP, or what may be a mixture of TGP and developmental plasticity, is the division of siblings (sexual) or clones (asexual)
between the treatments at the commencement of the experiments (F1), and full orthogonal crossing of treatment conditions in each generation (or
appropriate generational split). Interactions between exposures of generations, that is, TGP resulting from exposure of the parents versus grandparents to
environmental change, can also be determined in the highlighted cases (when reared to the F3 generation) due to the orthogonal example experimental
design displayed.
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Figure 2 | Potential pathways that may enable TGP in corals include somatic, genetic and epigenetic factors of the coral gametes as well as their
associated microbes transmitted vertically from one generation to the next. For details, see section ‘Potential mechanisms for TGP".

phenotypic plasticity across a wide range of organisms. While an
increasing number of studies demonstrate association between epi-
genetic marks and overall phenotypes (including gene expression),
causality remains to be established”. Moreover, the mechanisms
involved seem to be highly variable across the tree of life, suggesting
that there is no universal regulator of gene expression. For example,
transgenerational inheritance linked to patterns of CpG methylation
seems common in plants®, but has been established in only a very
limited number of cases in animals?®***!. These examples mostly
implicate atypical genomic regions, for example, retrotransposons
that affect the transcription of neighbouring genes'**. Furthermore,
the low levels of correlation found between the transcriptome and
the methylome of several multicellular organisms®>*, combined
with the lack of a CpG methylation system in some of the most
widely studied model animals, including the fruit fly Drosophila
and the roundworm Caenorhabditis***, weakens the case for its
significance as a universal regulator of gene expression'>*, and
hence a universal mediator of TGP. In corals, DNA methylation
levels correlate strongly with gene function; broadly and uniformly
expressed ‘housekeeping’ genes are strongly methylated, whereas
genes responsible for inducible or cell-specific functions are weakly
methylated®* (Fig. 2). Nevertheless, it remains to be seen whether
this divergent methylation causes or is caused by differences in
gene expression, whether it responds to environmental cues', and
whether it can be passed across generations. In summary, we do not
dismiss a potential role for epigenetic inheritance in TGP of cor-
als, but evidence is currently largely lacking, and mechanisms other
than DNA methylation need increased attention.

Non-coding and antisense RNAs from the maternal cytoplasm
can potentially affect zygotic transcriptional activity and provide
short-term epigenetic memory that fades out with cell divisions®
(Fig. 2). However, for some genes, transcriptional states established
early in development can be maintained through mitotic divi-
sions by epigenetic mechanisms*. Furthermore, epigenetic cross-
talk**?, for example a positive feedback loop between chromatin
and small RNAs, can promote long-term epigenetic memory in
some organisms*, but again this field remains highly understudied
in corals.

Histone tail modifications and non-canonical histones modu-
late chromatin structure, and hence gene expression**** (Fig. 2). In
the cases where TGP is associated with histone modifications over
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multiple generations, it is likely that multiple epigenetic mecha-
nisms affect target genomic regions. For example, temperature-
induced changes in gene expression in Caenorhabditis last for over
14 generations, and are strongly associated with a histone modifica-
tion that alters the chromatin structure and triggers a cascade that
affects RNA-mediated gene silencing®. In corals, histone modifica-
tions are virtually unstudied, representing a major research gap that
hinders our understanding of molecular mechanisms of TGP.

In addition to epigenetic mechanisms, parents can affect their
offspring via a range of factors transmitted to the embryo through
paternal and maternal germ cells* (Fig. 2). For example, nutritional
factors passed through the oocyte’s cytoplasm, such as lipids and
carbohydrates, may directly influence the metabolic capacity of the
early zygote and larva. Maternal provisioning of proteins can equip
the oocyte and zygote with inaugural machinery for important func-
tions before zygotic translation begins. Furthermore, the pool of
maternal mRNA provides templates for early protein synthesis in the
embryo, before zygotic transcription begins. In a range of plant spe-
cies, hormones have been shown to play major roles in transgenera-
tional environmental effects on offspring growth and development®.
Transmission of mitochondria represents another potentially impor-
tant pathway for maternal effects, especially in eukaryotic cells where
cross-talk is assumed between the nuclear genome and mitochon-
dria, with the organelle essentially acting as an interface between the
environment and the epigenome* through metabolites*~*.

Genetic information inherited from parents can contain copy
number variations, repeat expansions or contractions, and the prod-
ucts of recombination events. Finally, gametes, embryos or larvae
might undergo natural selection for alleles that provide advantage
in the parental environment, particularly in highly fecund species.
Such selection within full-sib larval families has been demonstrated
experimentally in corals®. The resulting shift in the distribution of
offspring phenotypes could be misinterpreted as TGP but is actually
due purely to genetic adaptation.

These examples illustrate the diversity of mechanisms by which
the parental environment could influence offspring phenotype,
and warrant consideration in explaining TGP. Understanding the
causal molecular mechanisms underlying adaptive phenotypes will
be a major challenge, even in well-studied model organisms, but is
needed to better predict the potential of these processes to enable
organismal acclimatization to environmental changes.
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In the next two sections, we first evaluate some of the com-
mon and unique life-history traits of corals that could enhance or
hinder TGP. Secondly, given that oocytes could theoretically act
as transgenerational vectors for the parental microbiome, we dis-
cuss the potential contributions that microbes, including bacteria,
viruses and symbiotic protists, such as Symbiodinium spp., could
make to the phenotype and fitness of the coral host, as well as to the
capacity for rapid adaptive responses in the holobiont.

Predictors of TGP in corals

Evidence of phenotypic plasticity across a range of coral life-history
stages and traits is mounting, highlighting significant capacity for
scleractinian corals to respond to altered environmental conditions.
Within a lifetime, some corals can modulate their gross colony
growth form to optimize light environments for photosynthesiz-
ing endosymbionts®, physiologically acclimatize to elevated tem-
peratures®, and show signs of acclimatization under pH stress'**.
These examples suggest that corals may retain phenotypic plastic-
ity in their adult life stage, which can itself be a trait affected by
the corals’ environment®. In tandem with high levels of intragen-
erational plasticity, multigenerational exposure of corals to altered
environmental conditions can equip their offspring with enhanced
stress tolerance'. In the brooding coral Pocillopora damicornis, the
parental generation suffered metabolic depression under elevated
temperature and CO, conditions, but the F1 larval offspring showed
partial metabolic restoration to elevated conditions compared with
offspring from un-exposed parents'?. It is unclear, however, whether
these beneficial parental effects last throughout the lifespan of the
F1 generation and beyond. Furthermore, as explained in Box 2,
it is difficult to disentangle TGP from developmental plasticity in
this type of experiment, because the brooding larvae experienced
the same environments as the parents. Regardless of the underly-
ing mechanisms, these results highlight the importance of consid-
ering the ecological implications of multigenerational exposure to
projected future environmental conditions when predicting the
response of reef corals to climate change.

Corals vary enormously in their life-history traits, some of which
may promote, and others impede, TGP. For example, adaptive TGP
might be expected when the parental environment is a reliable pre-
dictor of environmental conditions that their offspring will experi-
ence®**. Because short-range offspring dispersal typically enhances
environmental predictability among generations®, the benefits
of TGP are expected to be inversely proportional to the dispersal
capacity of the organism. The three main reproductive strategies
that characterize coral-reef species — broadcast or pelagic spawn-
ing, benthic or demersal spawning, and brooding — represent a
spectrum of dispersal potential, and hence differences between
parental and offspring environmental conditions. Broadcast spawn-
ing, the most common mode of sexual reproduction in tropical reef
corals®, potentially provides greater offspring dispersal compared
to demersal spawning; while brooding represents the least disper-
sive reproductive mode”. The high offspring-dispersal potential of
broadcast spawners suggests that, in these cases, there may be lim-
ited correlation between the environmental conditions experienced
by parents and offspring. Thus we predict TGP is least likely to be
observed in broadcast spawners, as it should provide little selective
advantage. Instead, broadcast spawners are predicted to produce
offspring with a high capacity for developmental plasticity or off-
spring with a wide range of phenotypes (bet-hedging)***. TGP is
more likely to be adaptive in brooding corals because the offspring
are more likely to settle in a habitat that is similar to that of the
parents. However, the relative importance of TGP across coral-reef
species can only be understood via testing a range of species with
robust experimental designs (see Fig. 1).

Longevity of some corals means that a genotype selected at the
recruitment stage for an environment may be mismatched with

changing environmental conditions as the sessile colony ages, so the
selective advantages of TGP are likely to correlate with longevity.
Modular organisms, such as scleractinians, octocorals, bryozoans
and crustose coralline algae often not only have long lifespans but
also reproduce asexually®*®!, which may result in exceptional lifes-
pans of the genotype compared to other organisms*>®, a feat only
possible via substantial environmental tolerance or phenotypic
plasticity®’. Importantly, since such old colonies tend to be large
and therefore highly fecund®, they can potentially hinder genetic
adaptation of the population by swamping the gamete pool with
genotypes that are no longer a good match to the local environment.
This can substantially reduce the rate of genetic adaptation in these
organisms and may elevate the role of within-generation plasticity
and TGP in helping the next cohort of recruits survive.

In long-lived corals, somatic mutations may accrue over the
lifetime of modular colonies'®, highlighting another mechanism
that could potentially aid phenotypic responses to environmental
changes within the lifespan of the colony. Evolution through somatic
mutations, as in the case of transgenerational epigenetic inherit-
ance, is more likely to have a role in organisms that lack distinct
segregation of the somatic and germ lines, such as fungi, plants
and corals (but see ref. 65), or produce larvae asexually. Whether
or not such mutations can be passed on to subsequent genera-
tions and hence contribute to genetic adaptation (Box 1) in corals
remains controversial®*.

In summary, we predict that TGP is unlikely to be the main
driver of plasticity in most coral species since the vast majority are
broadcast spawners*, for which the parental environment is a rela-
tively poor predictor of the offspring environment. On the other
hand, extended longevity in some corals could result in a mismatch
between the genotype and present-day environmental conditions,
and we predict that such species have evolved substantial capacity
for plasticity in the offspring. Brooding corals are expected to benefit
from both within-generation plasticity and TGP, because the devel-
oping embryo experiences the same environment as both its mother
colony and subsequent juvenile and adult stages; and because many
brooding corals have relatively short lifespans.

Potential involvement of microbes in coral acclimatization
Corals live in close association with a range of eukaryotic and
prokaryotic microorganisms that may adapt or acclimatize faster
than their metazoan host, potentially providing additional adaptive
capacity to the holobiont. The coral holobiont®’ is an inter-domain
community of complex and dynamic associations involving the pho-
tosynthetic alveolate Symbiodinium and a range of bacteria, fungi
and viruses, some of which have been central to the success of the
Scleractinia as the dominant contemporary tropical reef-builder®
(Fig. 3). Although components of the holobiont have separate evo-
lutionary trajectories®, the intimate nature of some coral-microbial
associations implies that their interactions may contribute to the
overall fitness of the holobiont®. In comparison with the coral host,
the orders of magnitude greater diversity, shorter generation times,
and remarkable metabolic range of the coral microbiome suggest
that some microbes could make contributions to adaptive responses
of the holobiont. Here we consider the most prominent members of
the coral microbiome and discuss how their evolution might affect
coral performance under climate change. Such contributions are
particularly relevant in the context of the long generation times of
many corals and the rapid pace of current environmental change.
Symbiodinium. The well-studied coral-Symbiodinium associa-
tion best illustrates the potential of microbial symbionts to effect
rapid phenotypic change at the level of the coral holobiont, either
through their own evolution” or changes in community compo-
sition (Fig. 3). The dinoflagellate genus Symbiodinium contains
enormous genetic and functional diversity”', and communities
associated with corals vary among species, environments and host
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microhabitats’. The short generation time of Symbiodinium means
that its rate of mutation is much faster than for the coral host'%, and
this, combined with its large within-host population sizes, poten-
tially facilitates rapid responses to altered thermal environments,
either through selection of existing genetic variants or through the
evolution of novel adaptations”™”*. Alternatively, the composition of
host-associated Symbiodinium communities may vary temporally
in response to environmental conditions or at different host life-
history stages”, either through shuffling of existing symbionts’™ or
through acquisition of new Symbiodinium types from the environ-
ment (that is, switching)'®. In particular, high genetic and pheno-
typic diversity among Symbiodinium taxa provides scope for some
coral species to vary the composition of associated Symbiodinium
communities, balancing photosynthetic activity (and hence growth)
with stress tolerance, a type of acclimatory mechanism for respond-
ing to environmental extremes’””78, If associations enhance host
health, they would also be likely to enhance the size and maternal
provisioning of eggs and larvae, optimally positioning offspring
within the natal environment through maternal effects”. Vertical
transmission of Symbiodinium from maternal parent to gametes or
brooded larvae by corals whose larvae typically settle in the parental
habitat®*® could increase the likelihood that juvenile corals establish
a symbiont community suited to ambient environmental conditions.
Conversely, the acquisition of symbiotic communities from the envi-
ronment (horizontally) in the case of broadcast spawning corals,
whose larvae typically disperse more widely”, may represent a strat-
egy to ensure that juveniles settling under a range of environmental
conditions acquire Symbiodinium types that are locally adapted (but
see ref. 75). The generally greater diversity of Symbiodinium com-
munities in early life-history stages compared to in adults” could be
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viewed as a bet-hedging strategy, providing juvenile corals with the
opportunity to fine-tune endosymbiotic communities to suit ambi-
ent conditions. Finally, the retention of low-abundance background
Symbiodinium types in adult stages of some corals'®®" may provide
further adaptive capacity to the holobiont (but see 82), facilitating
future shuffling of dominant Symbiodinium types in response to
changing environmental conditions”%.

Bacteria. Host-associated bacterial communities could also con-
tribute to the adaptive capacity of their coral hosts, given the enor-
mous breadth of their metabolic capabilities and of mechanisms
that contribute to their rapid evolution®. Roles in immunity, nitro-
gen fixation, nutrient cycling, osmoregulation and oxidative stress
responses have been suggested for bacteria associated with different
microhabitats within the coral host®. The potential significance of
specific bacterial groups is suggested by their vertical transmission®
and common presence within the tissues of a wide range of cor-
als®>®¢_ In particular, whereas transient, highly variable communities
are typically associated with external coral mucus layers, low and
relatively stable numbers of ‘core’ types are more generally associ-
ated with host cells**. Bacterial community changes and resulting
shifts in the holobiont metabolic network may provide further
scope for maintaining holobiont functions in the face of environ-
mental change. For example, transplantation of corals to a warmer
environment resulted in shifts in the associated bacterial commu-
nity that correlated with increased holobiont thermotolerance®.
Additionally, higher bacterial diversity in deep compared to shallow
water corals®® suggests that some deep habitat-specific microbes
may be involved in nutrient cycling specific to the low-irradiance
environments. Both genetic and epigenetic processes contribute
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to high phenotypic plasticity and rapid evolution in bacteria®. In
addition, bacterial pathogens and mutualists are known to induce
alterations in host epigenomes, leading to potentially long-lasting
imprinting effects that provide a form of plasticity to their hosts®".
Importantly, although all these examples illustrate how bacteria
could, in principle, contribute to plastic responses of the holobiont
and generally improve its function, direct experimental evidence of
this is lacking, highlighting this area as a research priority"’.

Viruses and other microbiome components. The potential of other
components of the holobiont to contribute to the adaptive capacity of
corals is unknown. Although viral infections generally have negative
consequences for the fitness of their hosts, there are examples from
other symbiotic systems of viral infections enacting non-mutational
alterations to the host that buffer environmental effects’”. In addi-
tion, viruses of coral-associated eukaryotes and bacteria (bacterio-
phages) potentially contribute metabolic and functional diversity to
the holobiont via several mechanisms. First, viral infection of animal
hosts can prevent the invasion of foreign bacteria via signalling and
immune system modulation®. Second, direct bacteriophage infec-
tion and lysis may regulate the abundance of specific bacteria within
the holobiont, fulfilling an immunity-like function®’. Third, phages
may be agents of lateral gene transfer between microbial members
of the holobiont®. Also, phage-induced and virus-induced mortality
of bacterial and host cells may contribute to nutrient remineraliza-
tion within the system, altering holobiont physiology and microbial
ecology (the ‘revolving door” hypothesis)®. Another mechanism by
which viruses could influence coral-associated bacterial commu-
nities is through genetic rearrangement. For example, shuffling of
bacterial genes may result in wider metabolic potential, with coin-
cident beneficial consequences for the coral host, for example, a
broader range of products produced by dimethylsulfoniopropionate
(DMSP)-metabolizing bacteria might enhance bacteria-mediated
production of sulfur-based antimicrobials”. Despite such possible
beneficial roles, however, viruses more typically have negative effects
on host fitness and, in the case of corals, have been implicated in
bleaching®® and disease!®.

In summary, the short generation times, large population sizes
and high turnover of microbes, combined with their prodigious
diversity, provide a range of potential mechanisms to enable the
coral holobiont to respond to environmental change on ecologically
relevant time-scales. Thus the emergent property of adaptive capac-
ity of the holobiont could simply reflect ‘selfish’ evolution on the
part of the symbiont. However, not all ‘symbionts’ are beneficial, for
example, some Symbiodinium types are almost certainly opportun-
ists that provide little or no benefit to their coral hosts®*'”; a number
of bacteria are pathogenic, causing a variety of diseases in corals'®%
and coral-associated bacteria may become pathogenic through the
acquisition of prophages'®. It is also conceivable that proviruses
associated with bacteria or Symbiodinium could cause host-cell lysis
upon emergence from the lysogenic state triggered by environmen-
tal stress. Thus, although evidence is accumulating that some host-
associated microbes might facilitate adaptive responses in corals,
the fitness consequences of climate-change-induced evolution of
the coral microbiome are unclear. There is also uncertainty around
the extent to which increased stress tolerance might involve physi-
ological trade-offs that compromise host health and fitness'*, and
whether selection occurs at the level of individuals or the holobiont.

Summary and future directions

The processes and pathways that could potentially facilitate rapid
adaptive responses in reef-building corals are diverse, but there is a
great deal of uncertainty around what contributions they will make
to climate-change adaptation. Beneficial effects of parental exposure
to offspring phenotype have been demonstrated in reef fishes and
initial evidence has been presented for corals, however the extent
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Box 3 | Future research directions.

1. Demonstrate TGP in corals and other reef organisms via
well-designed, strictly controlled experiments (for example,
see Fig. 1).

2. Test causality between epigenetic mechanisms and phenotypes.

3. Demonstrate heritability of epigenetic marks in corals.

4. Understand therelative contributions of parental provisioning,
genetic and epigenetic mechanisms, and changes in the
microbiome to adaptive responses in corals.

5. Further develop model organisms closely related to scleractinian
corals, such as the sea anemones Nematostella and Exaiptasia,
on which advanced techniques, such as gene-knockdown and
transgenesis are possible.

6. Understand flexibility of coral-microbial associations,
including the control of microbial communities by the host
and the microbes.

7. Improve models of the interaction of TGP and genetic
adaptation.

8. Determine the pace of genetic adaptation in members of the
coral holobiont.

to which TGP occurs in reef organisms can only be elucidated via
experiments that tease apart developmental plasticity from TGP
(Box 2 and Fig. 1). Understanding the relative contributions of
parental provisioning, genetic and epigenetic mechanisms and
changes in the microbiome to adaptive responses is paramount for
predicting the fate of coral reefs as environmental conditions change.
The revolution in omics approaches provides unparalleled opportu-
nities for exploring the roles of the different components in coral
adaptive responses if coupled with appropriate experimental design.

While reef-building corals present many challenges for genetic
or epigenetic analyses, understanding the adaptive capacity of these
critically important organisms requires the application of such
molecular approaches within a rigorous experimental framework.
Coral research can benefit enormously from advances made on
the more tractable ‘model’ animals and better integration with the
mainstream molecular genetics community. Recent technological
advances allow transgenesis, gene knockdown, and a range of other
methods to be applied to the sea anemone Nematostella, a ‘near’ rel-
ative of corals. The symbiotic sea anemone, Exaiptasia, holds similar
promise as an experimental system of particular relevance to coral
biology. However, empirical studies on classical model organisms
cannot completely replace those on corals, because many cellular
and molecular processes show substantial taxonomic variability.
For example, CpG methylation appears to have quite different roles
in vertebrates compared with insects, and the methylation patterns
implied in corals differ from expectations based on either of these!®.

The potential for adaptive responses of the coral holobiont via its
microbial partners is perhaps the most distinct, but also the most
controversial, aspect of coral acclimatization. Rapid responses in the
coral-associated microbiome do not need to rely on mutation, but
may arise from changes in the relative abundance (or lifestyles, for
example, pathogenic switch) of associated microorganisms, acqui-
sition of novel microbes (with novel functions) from the environ-
ment, or horizontal gene transfer among microbes'®. Importantly,
most of these processes have not been tested or unequivocally
proven in the coral holobiont system, highlighting an important
research priority?”. Furthermore, while changes in the genetic and
community composition of coral-associated microbes may be fast,
their evolution (including that of Symbiodinium spp.) is inherently
selfish. The available (admittedly limited) evidence suggests that
microbes may not coevolve with their coral hosts, and thus adap-
tation of coral-associated microbes may lead to host-switching,
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non-symbiotic (that is, free-living) or even parasitic (pathogenic)
strains, rather than the provision of benefits to their coral host. The
likelihood of these alternative pathways will depend on the specific-
ity and strength of coral-microbe associations.

Throughout this paper we have largely discussed TGP in rela-
tion to its potential to influence offspring phenotype in an adaptive
capacity. However, TGP can also be maladaptive'*'%. This increases
the need to understand TGP in response to climate change for con-
servation and management, since it could potentially constrain
evolutionary processes'® and hinder future species persistence.
Correlated effects also need to be explored, as the individual pheno-
type is comprised of a range of traits that are unlikely to be equally
affected by the environment or exhibit the same capacity for plastic-
ity. Different life stages may be oppositely affected'’’. This is further
amplified in the coral holobiont where all components may not be
plastically and/or adaptively shifting in the same direction or over
the same timescales.

Given the enormous momentum in the climate system, the fate
of coral reefs in the Anthropocene will largely depend on the rate at
which reef-building corals can adapt or acclimatize to environmen-
tal change. There is an urgent need to fill important research gaps
around TGP in corals (Box 3) to be able to inform conservation
efforts and policymaking. This includes research into the cellular
and molecular mechanisms, the temporal dynamics (for example,
time frame for adaptive response), the strength and speed of host
versus microbial plasticity, and the interaction between adaptive
plasticity and evolution.

Received 21 December 2016; accepted 26 July 2017;
published online 1 September 2017

References

1. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team,
Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

2. Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. B
368, 20120080 (2013).

3. Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental
evolution. Nat. Rev. Genet. 14, 827-839 (2013).

4.  Munday, P. L., Warner, R. R., Monro, K., Pandolfi, ]. M. & Marshall, D. J.
Predicting evolutionary responses to climate change in the sea. Ecol. Lett.
16, 1488-1500 (2013).

5. Pandolfi, ]. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting
coral reef futures under global warming and ocean acidification. Science
333,418-422 (2011).

6. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals.
Nature 543, 373-377 (2017).

7. Albright, R. et al. Reversal of ocean acidification enhances net coral reef
calcification. Nature 531, 362-365 (2016).

8. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral
reefs: review and synthesis. Mar. Pollut. Bull. 50, 125-146 (2005).

9. Graham, N. A. J. & Nash, K. L. The importance of structural complexity in

coral reef ecosystems. Coral Reefs 32, 315-326 (2013).

Fabricius, K. E., Death, G., Noonan, S. & Uthicke, S. Ecological effects

of ocean acidification and habitat complexity on reef-associated

macroinvertebrate communities. Proc. R. Soc. B 281, 20132479 (2014).

11. Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid

transgenerational acclimation of a tropical reef fish to climate change.

Nat. Clim. Change 2, 30-32 (2012).

Seminal study demonstrating adaptive transgenerational plasticity to

climate change in a coral-reef fish.

Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building

coral Pocillopora damicornis and the potential for trans-generational

acclimatization in coral larvae under future climate change conditions.

J. Exp. Biol. 218, 2365-2372 (2015).

Daxinger, L. & Whitelaw, E. Transgenerational epigenetic inheritance:

more questions than answers. Genome Res. 20, 1623-1628 (2010).

Critical review of evidence for transgenerational epigenetic inheritance.

Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences

host DNA methylation and phenotypic plasticity in environmentally

susceptible corals. Evol. Appl. 9,1165-1178 (2016).

The only study to date that links environmental variation to epigenetic

changes in corals.

10.

12.

13.

14.

634

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Ptashne, M. Epigenetics: core misconcept. Proc. Natl Acad. Sci. USA

110, 7101-7103 (2013).

Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere

provides evidence for symbiont switching in reef-building corals. ISME J.

10, 2693-2701 (2016).

Webster, N. S. & Reusch, T. B. H. Microbial contributions to the persistence of
coral reefs. ISME J. http://dx.doi.org/10.1038/ismej.2017.66 (2017).

van Oppen, M. J. H,, Souter, P,, Howells, E. J., Heyward, A. & Berkelmans, R.
Novel genetic diversity through somatic mutations: fuel for adaptation of reef
corals? Diversity 3, 405-423 (2011).

Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of
defences in animals and plants. Nature 401, 60-63 (1999).

Herman, J. J. & Sultan, S. E. Adaptive transgenerational plasticity in plants:
case studies, mechanisms, and implications for natural populations.

Front. Plant Sci. 2, 1-10 (2011).

Salinas, S., Brown, S. C., Mangel, M. & Munch, S. B. Non-genetic

inheritance and changing environments. Non-Genet. Inherit.
https://doi.org/10.2478/ngi-2013-0005 (2013).

Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of
reef coral resistance to future climate change. Science 344, 895-898 (2014).
Demonstrates the link between environmental change and gene expression
levels, as well as rapid acclimatization in corals.

Moya, A. et al. Rapid acclimation of juvenile corals to CO,-mediated
acidification by upregulation of heat shock protein and Bcl-2 genes. Mol. Ecol.
24, 438-452 (2015).

Veilleux, H. D. et al. Molecular processes of transgenerational acclimation to a
warming ocean. Nat. Clim. Change 5, 1074-1078 (2015).

Goncalves, P. et al. Rapid transcriptional acclimation following transgenerational
exposure of oysters to ocean acidification. Mol. Ecol. 25, 4836-4849 (2016).
Waddington, C. H. Organisers and Genes (Cambridge Univ. Press, 1940).
Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics
and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J.
12, 949-957 (1998).

Morgan, H. D,, Sutherland, H. G. E., Martin, D. I. K. & Whitelaw, E. Epigenetic
inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314-318 (1999).
Metzger, D. C. H. & Schulte, P. M. Epigenomics in marine fishes.

Mar. Genomics 30, 43-54 (2016).

Rakyan, V. K. et al. Transgenerational inheritance of epigenetic states at

the murine AxinFu allele occurs after maternal and paternal transmission.
Proc. Natl Acad. Sci. USA 100, 2538-2543 (2003).

Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T. & Lehner, B.
Transgenerational transmission of environmental information in C. elegans.
Science 356, 320-323 (2017).

Libbrecht, R., Oxley, P. R,, Keller, L. & Kronauer, D. J. C. Robust DNA
methylation in the clonal raider ant brain. Curr. Biol. 26, 391-395 (2016).
Meng, D. et al. Limited contribution of DNA methylation variation

to expression regulation in Arabidopsis thaliana. PLOS Genet.

12, 1006141 (2016).

Lyko, F, Ramsahoye, B. H. & Jaenisch, R. Development: DNA methylation in
Drosophila melanogaster. Nature 408, 538-540 (2000).

Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights
from epigenomics. Nat. Rev. Genet. 9, 465-476 (2008).

Bestor, T. H., Edwards, J. R. & Boulard, M. Notes on the role of dynamic

DNA methylation in mammalian development. Proc. Natl Acad. Sci. USA
112, 6796-6799 (2015).

Dimond, J. L. & Roberts, S. B. Germline DNA methylation in reef corals:
patterns and potential roles in response to environmental change. Mol. Ecol.
25, 1895-1904 (2016).

Dixon, G. B., Bay, L. K. & Matz, M. V. Evolutionary consequences of DNA
methylation in a basal metazoan. Mol. Biol. Evol. 33, 2285-2293 (2016).
Klosin, A. & Lehner, B. Mechanisms, timescales and principles of trans-
generational epigenetic inheritance in animals. Curr. Opin. Genet. Dev.

36, 41-49 (2016).

Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene
expression. Nat. Rev. Genet. 16, 71-84 (2015).

Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification:
patterns and paradigms. Nat. Rev. Genet. 10, 295-304 (2009).

Rey, O., Danchin, E., Mirouze, M., Loot, C. & Blanchet, S. Adaptation to global
change: a transposable element-epigenetics perspective. Trends Ecol. Evol.

31, 514-526 (2016).

Jenuwein, T. & Allis, C. D. Translating the histone code. Science

293, 1074-1080 (2001).

Karli¢, R., Chung, H.-R., Lasserre, J., Vlahovicek, K. & Vingron, M.

Histone modification levels are predictive for gene expression.

Proc. Natl Acad. Sci. USA 107, 2926-2931 (2010).

Hamdoun, A. & Epel, D. Embryo stability and vulnerability in an always
changing world. Proc. Natl Acad. Sci. USA 104, 1745-1750 (2007).

NATURE CLIMATE CHANGE | VOL 7 | SEPTEMBER 2017 | www.nature.com/natureclimatechange

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



NATURE CLIMATE CHANGE po::

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.
73.

74.

NATURE CLIMATE CHANGE | VOL 7 | SEPTEMBER 2017 | www.nature.com/natureclimatechange

Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics.
Mitochondrion 10, 12-31 (2010).

Marden, J. H. Nature’s inordinate fondness for metabolic enzymes:

why metabolic enzyme loci are so frequently targets of selection. Mol. Ecol.
22, 5743-5764 (2013).

Shaughnessy, D. T. et al. Mitochondria, energetics, epigenetics, and cellular
responses to stress. Environ. Health Perspect. 122, 1271 (2014).

Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and
acidification lead to the adaptation of life history and physiology in a marine
metazoan? J. Exp. Biol. 220, 551-563 (2017).

Dixon, G. B. et al. Genomic determinants of coral heat tolerance across
latitudes. Science 348, 1460-1462 (2015).

Willis, B. L. Phenotypic plasticity versus phenotypic stability in the reef corals
Turbinaria mesenterina and Pavona cactus. Proc. Fifth Int. Coral Reef Symp.
4,107-112 (1985).

Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of
coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2016).
Burton, T. & Metcalfe, N. B. Can environmental conditions experienced in
early life influence future generations? Proc. R. Soc. B 281, 20140311 (2014).
Burgess, S. C. & Marshall, D. J. Adaptive parental effects: the importance of
estimating environmental predictability and offspring fitness appropriately.
Oikos 123, 769-776 (2014).

Galloway, L. E. & Etterson, J. R. Transgenerational plasticity is adaptive in the
wild. Science 318, 1134-1136 (2007).

Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical
patterns in the reproductive biology of scleractinian corals.

Ann. Rev. Ecol. Evol. Syst. 40, 551-571 (2009).

Richmond, R. H. Competency and dispersal potential of planula larvae

of a spawning versus a brooding coral. In Proc. 6th Int. Coral Reef Symp.

2, 827-831 (1988).

Crean, A. J. & Marshall, D. J. Coping with environmental uncertainty:
dynamic bet hedging as a maternal effect. Philos. Trans. R. Soc. B

364, 1087-1096 (2009).

Padilla-Gamino, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D.
From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae)
ITS2 sequence assemblages in the reef building coral Montipora capitata.
PLoS One 7, 38440 (2012).

Highsmith, R. C. Reproduction by fragmentation in corals.

Mar. Ecol. Prog. Ser. 7, 207-226 (1982).

Ayre, D. ]. & Resing, J. M. Sexual and asexual production of planulae in reef
corals. Mar. Biol. 90, 187-190 (1986).

Devlin-Durante, M. K. & Miller, M. W., Caribbean Acropora Research Group,
Precht, W. E & Baums, I. B. How old are you? Genet age estimates in a clonal
animal. Mol. Ecol. 25, 5628-5646 (2016).

Reusch, T. B. H. Climate change in the oceans: evolutionary versus
phenotypically plastic responses of marine animals and plants. Evol. Appl.
7,104-122 (2014).

Hall, V. R. & Hughes, T. P. Reproductive strategies of modular organisms:
comparative studies of reef-building corals. Ecology 77, 950-963 (1996).
Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of
germline segregation in Metazoa: evidence for a germ stem cell lineage

in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. R. Soc. B
283,20152128 (2016).

Schweinsberg, M., Pech, R. A. G., Tollrian, R. & Lampert, K. P. Transfer of
intracolonial genetic variability through gametes in Acropora hyacinthus
corals. Coral Reefs 33, 77-87 (2013).

Rohwer, F. et al. Diversity and distribution of coral-associated bacteria.

Mar. Ecol. Prog. Ser. 243, 1-10 (2002).

Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral
microbiome: underpinning the health and resilience of reef ecosystems.
Annu. Rev. Microbiol. 70, 317-340 (2016).

Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host-microbe
symbioses are not holobionts. mBio 7, €02099-15 (2016).

Chakravarti, L. ], Beltran, V. H. & van Oppen, M. J. H. Rapid thermal
adaptation in photosymbionts of reef-building corals. Glob. Change Biol.
http://dx.doi.org/10.1111/gcb.13702 (2017).

Experimental demonstration of rapid genetic adaptation of Symbiodinium
to increased water temperatures.

van Oppen, M. J., Baker, A. C., Coffroth, M. A. & Willis, B. L.

In Coral Bleaching 83-102 (Springer, 2009).

Rowan, R. Review—diversity and ecology of zooxanthellae on coral reefs.

J. Phycol. 34, 407-417 (1998).

Howells, E. J. et al. Coral thermal tolerance shaped by local adaptation of
photosymbionts. Nat. Clim. Change 2, 116-120 (2012).

Hume, B. C. C. et al. Ancestral genetic diversity associated with the rapid spread
of stress-tolerant coral symbionts in response to Holocene climate change.
Proc. Natl Acad. Sci. USA 113, 4416-4421 (2016).

8/NCLIMATE3374

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

PERSPECTIVE

Poland, D. M. & Coffroth, M. A. Trans-generational specificity within a
cnidarian-algal symbiosis. Coral Reefs 36, 119-129 (2017).

Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. & Sinclair, W. A
community change in the algal endosymbionts of a scleractinian coral
following a natural bleaching event: field evidence of acclimatization.

Proc. R. Soc. B 275, 1359-1365 (2008).

Ziegler, M. et al. Coral microbial community dynamics in response

to anthropogenic impacts near a major city in the central Red Sea.

Mar. Pollut. Bull. 105, 629-640 (2016).

Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation
and unexpected symbiont partners enable reef-building corals to tolerate
extreme temperatures. Glob. Change Biol. 22, 2702-2714 (2016).
Demonstration of the role of Symbiodinium community composition on
corals’ thermal tolerance.

Quigley, K. M., Willis, B. L. & Bay, L. K. Maternal effects and Symbiodinium
community composition drive differential patterns in juvenile survival in the
coral Acropora tenuis. R. Soc. Open Sci. 3, 160471 (2016).

Sharp, K. H,, Distel, D. & Paul, V. J. Diversity and dynamics of bacterial
communities in early life stages of the Caribbean coral Porites astreoides.
ISME J. 6, 790-801 (2012).

Quigley, K. M. et al. Deep-sequencing method for quantifying background
abundances of Symbiodinium types: exploring the rare Symbiodinium
biosphere in reef-building corals. PLoS One 9, €94297 (2014).

Lee, M. J. et al. Most low-abundance “background” Symbiodinium spp. are
transitory and have minimal functional significance for symbiotic corals.
Microb. Ecol. 71, 771-783 (2016).

Bay, L. K., Doyle, J., Logan, M. & Berkelmans, R. Recovery from bleaching

is mediated by threshold densities of background thermo-tolerant symbiont
types in a reef-building coral. R. Soc. Open Sci. 3, 160322 (2016).
McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the
life sciences. Proc. Natl Acad. Sci. USA 110, 3229-3236 (2013).

Ainsworth, T. D. et al. The coral core microbiome identifies rare bacterial taxa
as ubiquitous endosymbionts. ISME J. 9, 2261-2274 (2015).

Neave, M. J. et al. Differential specificity between closely related corals and
abundant Endozoicomonas endosymbionts across global scales. ISME J.

11, 186-200 (2017).

Ziegler, M., Seneca, E. O., Yum, L. K., Palumbj, S. R. & Voolstra, C. R.
Bacterial community dynamics are linked to patterns of coral heat tolerance.
Nat. Commun. 8, 14213 (2017).

Hernandez-Agreda, A., Leggat, W., Bongaerts, P. & Ainsworth, T. D.

The microbial signature provides insight into the mechanistic basis of coral
success across reef habitats. mBio 7, €00560-16 (2016).

Réthig, T., Yum, L. K., Kremb, S. G., Roik, A. & Voolstra, C. R. Microbial
community composition of deep-sea corals from the Red Sea provides insight
into functional adaption to a unique environment. Sci. Rep. 7, 44714 (2017).
Casadests, J. & Low, D. A. Programmed heterogeneity: epigenetic mechanisms
in bacteria. J. Biol. Chem. 288, 13929-13935 (2013).

Celluzzi, A. & Masotti, A. How our other genome controls our epi-genome.
Trends Microbiol. 24, 777-787 (2016).

Roossinck, M. J. The good viruses: viral mutualistic symbioses.

Nat. Rev. Microbiol. 9, 99-108 (2011).

Shui, J.-W. et al. HVEM signalling at mucosal barriers provides host defence
against pathogenic bacteria. Nature 488, 222-225 (2012).

Barr, J. J., Youle, M. & Rohwer, F. Innate and acquired bacteriophage-mediated
immunity. Bacteriophage 3, €25857 (2013).

Rohwer, F. & Vega Thurber, R. L. Viruses manipulate the marine environment.
Nature 459, 207-212 (2009).

Vega Thurber, R. L., Payet, J. P, Thurber, A. R. & Correa, A. M. S.

Virus-host interactions and their roles in coral reef health and disease.

Nat. Rev. Microbiol. 15, 205-216 (2017).

Seminal review of the role of viruses in the phenotypic performance of the
coral holobiont.

Raina, J. B. et al. DMSP biosynthesis by an animal and its role in coral thermal
stress response. Nature 502, 677-680 (2013).

Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ
bleaching event: atypical herpes-like viruses and a new megavirus infecting
Symbiodinium. Front. Microbiol. 7, 127 (2016).

Levin, R. A,, Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence
for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J.
11, 808-812 (2017).

Soffer, N., Brandt, M. E., Correa, A. M., Smith, T. B.

& Vega Thurber, R. L. Potential role of viruses in white plague coral disease.
ISME]. 8,271-283 (2014).

LaJeunesse, T. C,, Lee, S. Y., Gil-Agudelo, D. L., Knowlton, N. & Jeong,

H. J. Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist
‘zooxanthella’ found in bleached and diseased tissues of Caribbean reef corals.
Eur. J. Phycol. 50, 223-238 (2015).

635

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



PERSPECTIVE

NATURE CLIMATE CHANGE DoI: 10.1038/NCLIMATE3374

102. Harvell, D. et al. Coral disease, environmental drivers, and the balance
between coral and microbial associates. Oceanography 20, 172-195 (2007).

103. van Oppen, M. J. H,, Leong, J. A. & Gates, R. D. Coral-virus interactions:
a double-edged sword? Symbiosis 47, 1-8 (2009).

104. Sampayo, E. M. et al. Coral symbioses under prolonged environmental change:
living near tolerance range limits. Sci. Rep. 6, 36271 (2016).

105. Sarda, S., Zeng, J., Hunt, B. G. & Yi, S. V. The evolution of invertebrate gene
body methylation. Mol. Biol. Evol. 29, 1907-1916 (2012).

106. Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary
framework for hosts and their microbiomes. mSystems 1, €00028-16 (2016).

107. Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive
evolution of gene expression in nature. Nature 525, 372-375 (2015).

108. Kronholm, I. & Collins, S. Epigenetic mutations can both help and hinder
adaptive evolution. Mol. Ecol. 25, 1856-1868 (2016).

109. Ancel, L. W. Undermining the Baldwin expediting effect: does phenotypic
plasticity accelerate evolution? Theor. Popul. Biol. 58, 307-319 (2000).

110. Marshall, D. J. Transgenerational plasticity in the sea: context-dependent
maternal effects across the life history. Ecology 89, 418-427 (2008).

111. Messer, P. W. & Petrov, D. A. Population genomics of rapid adaptation by soft
selective sweeps. Trends Ecol. Evol. 28, 659-669 (2013).
Review of mechanisms that produce soft selective sweeps, with a case for
soft sweeps dominating rapid adaptation in many species.

112. Whiteley, A. R,, Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A.
Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42-49 (2015).

113. Holeski, L. M., Jander, G. & Agrawal, A. A. Transgenerational defense
induction and epigenetic inheritance in plants. Trends Ecol. Evol.
27, 618-626 (2012).

114. Parker, L. M. et al. Adult exposure influences offspring response to ocean
acidification in oysters. Glob. Change Biol. 18, 82-92 (2012).

Acknowledgements

We dedicate this paper to our close friend and colleague, Dr. Sylvain Foret, a leader in
coral genomics and invertebrate epigenetics who passed away unexpectedly days before
this paper was submitted. The workshop where this paper was conceived was organized
and funded by the ARC Centre of Excellence for Coral Reef Studies with additional
support from the King Abdullah University of Science and Technology (KAUST)

(M.A., M.L.B,, T.R. and C.R.V.) and the KAUST Office of Competitive Research Funds
award OCRF-2016-CRG4-25410101 (T.R. and M.L.B.). The authors would like to thank
Xavier Pita for his help with Figs 1-3, Heno Hwang for his help with the figure in Box 1,
and Hillary Smith for her help with Figs 2 and 3.

Author contributions

This paper is the result of a workshop organized by G.T., PL.M., B.L.W. and ] M.D. All
co-authors contributed to discussions. G.T. wrote the first draft of the manuscript with
input from J.M.D., B.L.W. and P.L.M. All co-authors contributed to subsequent drafts.
Figures conceived and designed by: Fig. 1, ].M.D; Fig. 2, H.P; Fig. 3, L.B,, D.G.B., R.V.T,
C.R.V, S.-A.W. and B.L.W. Box 1 was written by M.V.M., Box 2 by PL.M. The figure in
Box 1 was conceived and designed by M.V.M.

Additional information

Reprints and permissions information is available online at www.nature.com/reprints
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations. Correspondence should be addressed to G.T.

Competing financial interests
The authors declare no competing financial interests.

636 NATURE CLIMATE CHANGE | VOL 7 | SEPTEMBER 2017 | www.nature.com/natureclimatechange

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



