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UNIQUENESS OF SOLUTIONS
OF MEAN FIELD EQUATIONS IN R?
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(Communicated by Joachim Krieger)

ABSTRACT. In this paper, we prove uniqueness of solutions of mean field equa-
tions with general boundary conditions for the critical and subcritical total
mass regime, extending the earlier results for null Dirichlet boundary condi-
tion. The proof is based on new Bol’s inequalities for weak radial solutions
obtained from rearrangement of the solutions.

1. INTRODUCTION

Let © C R? be an open bounded domain and consider the mean field equation

Au—l—pﬁluzo in €,

1
(1) u=0 on 09).

Suzuki [23] proved that if §2 is simply-connected, then for 0 < p < 87 the equation
(1) has a unique solution. Later in [8] the authors extended this result to the
case p = 8m. Recently in [5] Bartolucci and Lin extended the result to multiply-
connected domains. Indeed they proved the following.

Theorem A (Theorem 2 in [5]). Let §2 be an open, bounded, and multiply-connected
domain of class Ct. Then equation (1) admits at most one solution for 0 < p < 8.

The proof relies on a generalization of the classical Bol’s inequality for multiply-
connected domains (see Theorem C below). A necessary and sufficient condition
for the existence of a solution at the critical parameter p = 87 is also provided in
[5].

In this paper, among other results, we study uniqueness of solutions of the general
mean field equation

K(z)e" .
Au + PT. K@er = f inQ,

2
@) u=g on 01,

on simply-connected domains, where K is a prescribed positive C? function. We
shall prove the following uniqueness results for p < 8.
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Theorem 1.1. Let Q be an open, bounded and simply-connected domain, and let
K € C%(Q)NC(Q) be positive. Assume that v; € C*(Q)NC(Q), i = 1,2, satisfy

(3) Av; + Ke'' = f;(z),
where fo > f1 > —AIn(K) in Q. If ve —v1 > c on Q, va — vy = ¢ on I8 for some

ceR, and
/Ke”ldx:/Ke”2dx:p,
Q Q

The above theorem is equivalent to the next uniqueness result. Indeed Theorem
1.1 follows from Theorem 1.2 by letting w; = In K + v;, i=1,2, and Theorem 1.2
follows from Theorem 1.1 by letting K = 1.

then p > 8.

Theorem 1.2. Let Q be an open, bounded, and simply-connected domain. Assume

that w; € C2(Q)NC(Q), i = 1,2, satisfy
(4) Aw; + e = fi(z),
where fo > f1 >0 in Q. If wy —wy > ¢ on Q, wy —wy = ¢ on I for some ¢ € R,

and
/ewldz = / e?dx = p,
Q Q

Corollary 1.3. Let Q be an open, bounded and simply-connected domain, and let
K € C?*(Q)NC(Q) be positive. Assume that u; € C*(Q)NC(Q), i = 1,2 satisfy

then p > 8.

Ke"
A - _ = .
(5) ui +p Ko fi(=),

where fo > f1 > —AIn(K) in Q, and uz —uy > c on Q. If uy —uy = ¢ on 0N for
some c € R, then p > 8.

We also present the following uniqueness results on multiply-connected domains.

Theorem 1.4. Let 2 be an open, bounded and multiply-connected domain, and let
K € C%(Q)NC(Q) be positive. Assume that v; € C*(Q) N C(Q), i = 1,2, satisfy

(6) Av; + Ke' = f;(z),

where fo > f1 > —AIn(K). Ifvg —v1 > ca —c1 on Q, v; + In(K) = ¢; and
vy + In(K) = c2 on 9Q for some c1,co € R, and

/Ke”lda::/Kevzdx:p,
Q Q

Corollary 1.5. Let Q be an open, bounded and multiply-connected domain, and let
K € C*(Q) N C(Q) be positive. Assume that u; € C*(Q) NC(Q), i = 1,2 satisfy

Ke™
f Kewi = fi(@),
Q

where fo > f1 > —Aln(K). Ifus —us > co—c1 on Q, ug + In(K) = ¢1 and
us + In(K) = ¢y on IQ for some c1,co € R, then p > 8.

then p > 8.
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We should mention that Theorems 1.1 and 1.2, and Corollary 1.3 are known in
some special cases and also when the wight K is singular (see [4]).

We shall use a new idea from [14] regarding the rearrangement of the solutions
according to the standard metric on a sphere (projected to R?) and compare the
total masses of the solutions. In particular, we shall show a reversed Bol’s inequality
in exterior domain for weak radial solutions (Proposition 3.1).

2. PRELIMINARIES

Bol’s isoperimetric inequality plays a crucial role in the proof of our main results.
In this section we gather some results on Bol’s inequality that will be used in
subsequent sections. Let us first recall the classical Bol’s isoperimetric inequality;
see [2,4,6,8,21,23], and [7] for a detailed history of the Bol’s inequality.

Theorem B. Let Q C R? be a simply-connected and assume u € C%(Q) N C(Q)
satisfies

(8) Au+e* >0, / edr < 8.
Q

Then for every w € Q of class C' the following inequality holds:

o (L)L)

Moreover the inequality in (9) is strict if Au+ e* > 0 somewhere in w or w is not
simply-connected.

For A > 0 the function Uy defined by

NS

A2 y[?
(10) Uy:=—-2In(1+ ) + 21n(\)
satisfies
AUy + U =0,
and

(L) =5 ) (= f )

for all » > 0 and A > 0, where B,. denotes the ball of radius r centered at the origin
in R2.

Note that Theorem B requires €2 to be simply-connected but w can be multiply-
connected. Recently in [5] Theorem B is extended to the case where Q C R? is
multiply-connected and u is constant on 0f2.

Theorem C (Theorem 3 in [5]). Let Q be an open and bounded domain of class
C' in R? and assume u € C*(Q) N C(Q) satisfies (8) and u = ¢ on O, for some
constant ¢ € R. Then (9) holds for every w € Q). Moreover the inequality is strict
if Au+ e* > 0 somewhere in w or w is not simply-connected.

Let © be an open, bounded, and multiply-connected domain of class C' in R?,
and Q* be the closure of the union of the bounded components of R? \ dQ and
O = O\ 90*. Tt is easy to see that Q C Q*. Suppose g € C(09) satisfies

where G is Lipschitz continuous in Q*, G is subharmonic in Q* and harmonic in €.
The following more general result is also proved in [5].
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Theorem D (Theorem 4 in [5]). Let Q be an open, bounded, and multiply-connected
domain of class C1 in R2. Suppose u € C%(Q) N C(Q) satisfies (8) with u = g on
09, and g € C(09) satisfies (11). Then (9) holds for every w € Q2. Moreover the
inequality is strict if Au+ e* > 0 somewhere in w or w is not simply-connected.

Next we shall recall some facts about rearrangements according to the metric on
R? which is the stereographic projection of the standard metric on the unit sphere.
Such rearrangments are discussed in detail in [14], but we also include it here for
the sake of the readers. Let Q C R? and A > 0, and suppose that u € C?()
satisfies

Au+e" > 0.
Then any function ¢ € C?(Q) which is constant on 9 can be equimeasurably
rearranged with respect to the measures e“dy and eV*dy (see [2], [4], [8], [21], [23]),
where U, is defined in (10). More precisely, for ¢ > min, g ¢ define
O :={p>t} CcCqQ,

and let 2} be the ball centered at the origin in R? such that

/ edeyz/ e“dy = a(t).
H Q4

Then a(t) is a right-continuous function, and ¢* : Q* — R defined by ¢*(y) :=
sup{t € R : y € Qf} provides an equimeasurable rearrangement of ¢ with respect
to the measure e“dy and eV*dy, i.e.

(12) / eDndy = / e“dy, Vt> ming.
{p*>t} {p>t} yeQ

We shall need the following lemma.

Proposition 2.1. Let u, € CY(Q) and assume that ¢ is constant on 0Q. Let
@*(r) be the equimeasurable rearrangement of ¢ with respect to the measure e*dy
and eV dy. Then ¢* is Lipschitz continuous on (e, R — €), for every ¢ > 0, where
R is the radius of Q*.

Proof. First note that the function ¢* is decreasing and the set
T:={t>min¢: (¢*)"'(t) is not a singleton}
Q

has Lebesgue measure zero. Indeed (¢*)71(t) is a connected closed interval for all
teT.Let0<r; <ry <Rand

a(t) =/ eU*dyz/ e'dy, Yt > min ¢.
{¢p*>t} {p>t} yeQ

For ¢*(r1), ¢*(r2) € T, we have

a(6*(ra)) — a(¢*(r)) = / Undy / U dy
{&*(lyl)>o*(r2)} {o*(ly])>¢*(r2)}

= / “dy—/ e'dy
{o(y)>¢*(r2)} {o(y)>¢*(r2)}

/ edy
{¢*(r2)<o(y)<o*(r1)}

/ eI dy.
{¢(r2)<o*(ly)<o* (1)}
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Now let m := mine*®), M; := maxe”®) and M, := max|Ve|. Then it follows
Q o Q
from the above equality that

a(@*(r2)) —a(d*(r1)) < Mip({o"(r2) < ¢"(lyl) < ¢™(r1)})
= Mpu(ry < |yl <r2) = Myz(ry —r3)
S 27TRM1(7“2 — 7‘1).
On the other hand,
a(¢™(r2)) —a(¢™(r1)) = mu({¢*(r2) < d(y) < ¢*(r1)})
> Vold
M /{¢*(rz)g¢(y>g¢*(n)} voldy
m ¢* (1)
> dsdt
Ms /¢*(rz) /{¢1(t)} ’
> L (@) = & () K (),
where
K(ri,rm) = {¢*(r2)?ti£¢*(m)}Hn_1(¢_1(t)) >0, 0<r;<rs <R

Since {¢~1(t)} = 8{x : #(x) > t}, it follows from the isoperimetric inequality that
if ¢*(r1) < max¢ — 6 and ¢*(r2) > min ¢ + ¢, for some « € (0, 1), then
yeN yeQ
K(ri,r) > C >0, Vro with r <7y <R,

for some C' > 0 independent of ¢. Hence we have

0 < a(¢*(r2)) —a(¢*(T1)) < 27TRM1M2 < 27TRM1M2.

(13) o — T ~ mK(r,r2) T mC

By approximation the above also holds for € < r1 < ro < R—e. Thus ¢* is Lipschitz
continuous on (¢, R — ¢) for every ¢ > 0. O

Now let

j(t) = / VoPdy, (1) = / V" [Pdy, Wt > mind;
{p>t} {p>t} yeQ

J(t) = / Voldy, Tt = / V6*|dy, Vt> min.
{p>t} {¢p*>t} ye

It is easy to see that both j(t) and J(t) are absolutely continuous and decreasing
in ¢t >min, g ¢. If ¢ = C on 99, it can be shown that

(14) / |Volds > / |[V¢*|ds, for a.e. t> ming.
{¢=t} {p*=t} yeQ
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1236 CHANGFENG GUI AND AMIR MORADIFAM

Indeed it follows from Cauchy-Schwarz and Bol’s inequalities that

2 W\ L
Jogme = () (s ea)
2 1
- (L) G L)
>

%%t &) (87— /Q e“)(—%/m eyt

1 / U / U d Uxy—1
= = e’ ) (8m — e (—— e’
5( o ) o == o )

/ |[V¢*|ds, for a.e. t> min¢.
{¢*=t} y€eQ

It also follows that j*(t),J*(¢) are absolutely continuous and decreasing in t >
min, ¢, since both functions are right-continuous by definition and

os.j*(t—O)—j*(t)s.j<t—o>—j<t>=/ Vofdy =0, +> ming.

{o=t yeQ
0< T (t=0) = J*(t) < J(t = 0) — J(t) = / Voldy =0, t> mino.
{p=t} y€eN

Therefore we have the following proposition.
Proposition 2.2. Let u € C?(Q) satisfy
Au+e* >0 in Q,

and let Uy, be given by (10). Suppose ¢ € C1(Q) and ¢ = C on OQ. Define the
equimeasurable symmetric rearrangement ¢* of ¢, with respect to the measures e*dy
and eV dy, by (12). Then ¢* is Lipschitz continuous on (e, R — €) for every ¢ > 0,
and j*(t), J*(t) are absolutely continuous and decreasing in t > min g ¢ and (14)
holds.

3. BOL’S TYPE INEQUALITIES
We first prove the following lemma.

Lemma 3.1. Let ¢ € C(R?\ Bg) be a decreasing radial function and

/ eVdr < oo,
(R®\Br)

lim es/ dr = 0.
S——00 {w>s}

for some R > 0. Then

Proof. Since v is decreasing,

3T 2000 < / ¢V,
4 (BA\B,.)2)

for r > 2R. Letting  — oo we obtain,

lim r2e¥(™ = 0.
T—00
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Define
r(s):==sup{r > R:¢(r) >s}, sekR
Then r(s) is well defined for s < 1(R) and lim,_, . r(s) = co. Since

es/ dz < w(r(s)? — R?)e? ("),
{¢>s}

we obtain

lim es/ dr = 0.
S§——00 {w>s}

The proof is complete. O

For the proof of our main results, we shall need the following reversed Bol’s
inequality.

Proposition 3.1. Let B be the ball of radius R in R* ¢ € C%1(R? \ Bg) be a
strictly decreasing radial function satisfying

(15) / |Viplds < 8w —/ eV fora.e. v € (R,00), and / eV < 8.
8B, R2\ B, R2\Bp

Then the following inequality holds:

o () = () (L)

Moreover if [, |Vib|ds # 8m — fRQ\BH e¥ on (R,00), then the inequality in (16) is
strict.

Proof. Let § := 1 (R) and define

k(s) = 8w —/ eVdr, and p(s) = / dx + TR,
{<s} {p>s}

for s < 8. Then

»
_i _ € — —eSul(s).
@= [ o=

[l | a
{=s} {w=sy V¥

= (/ ew)?:eS(/ ds)?
{w=s {v=s

e’ - 471'(/ dx 4+ mR?) = 4me® u(s),
{y>s}

—~
—_
EN|

~

|
5

—~
V)

~—
=

—
V)

~—

vV

for a.e. s < . Therefore

d 1

L5 1u(s) = k(s) + = k3 (5)] = p(s) +

K'(s)k(s) <0,

ds 8T Ar
for a.e. s < 8. Integrating on (—oo, 8) and using Lemma 3.1 we get
s 1 2 g B 1 2
(18) e’uls) = k(s) + o-k*(s)| = e u(B) = k(B) + k() < 0.
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Now notice that
k(B) =8 — / eVdx
R2\Bpr

and

Pu(B) = eﬁ/ dx = i6'8(/ ds)? ! ( e%ds)z.
dBr

Br 47T - E OBgr
Thus (16) follows from the inequality (18). Finally if [,, |Ve|ds # 87 — fRZ\B. e¥

on (R, c0), then the inequality (17) will be strict, and consequently (16) will also
be strict. g

Similarly one can prove the following proposition (see Proposition 2.2 in [14]).

Proposition 3.2. Let Br be the ball of radius R in R? and u € C%*(Bg) be a
strictly decreasing radial function satisfying

(19) / [Vulds < / e* fora.e. re€(0,R), and e" < 8.
OB, B, Br

Then the following inequality holds:

o (L L)

Moreover if [, [Vip|ds # [ € on (0, R), then the inequality in (20) s strict.

vl

4. PROOF OF THE MAIN RESULTS

Lemma 4.1. Let R > 0 and assume that ¢ € C%Y(R?\ Bg) is a strictly decreasing
radial function that satisfies

(21) / VY| < 8x —/ e?
OB, R2\ B,
for a.e. v € (R,00) and v = Uy, = Uy, on OBR for some Ay > A\1. Then

(22) / eVr2 S/ e S/ e
R2\Bp R2\Bp R2\ By

Moreover if [, |VU| # fRQ\B e? onr € (R,0), then the inequalities in (22) are
also strict.

Proof. Let m; = fRZ\BR eV, my = fRQ\BR eP2 and m = fR2\BR e¥. Define

() = () = (L)

It follows from Proposition 3.1 that
1
B < §m(87r —m).
On the other hand
1

1
5 = §m1(87r — m1) = §m2(87r — mg),

i.e. my and mo are roots of the quadratic equation

%2 —8rx +28=0.
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Since m satisfies
m? —8rm + 28 <0,
we have

me < m < my.

Similarly the following lemma holds (see Lemma 3.3 in [14]).

Lemma 4.2. Assume that 1 € C%'(BR) is a strictly decreasing, radial, Lipschitz
function, and satisfies

(23) /83 \Ws/B o

T r

a.e. v € (0,R) and ¢ = Uy, = Uy, for some Ay > A\ on OBgr, and R > 0. Then
there holds

(24) either/ ewg/ e or / ev’bZ/ eUre
Br Br Br Br

Moreover if the inequality in (23) is strict in a set with positive measure in (0, R),
then the inequalities in (24) are also strict.

We shall also need the following lemma.

Lemma 4.3. Assume that ¢ € C%Y(Bg) is a strictly decreasing radial function
satisfying (23) for a.e. r € (0, R). If

p:/ ewdx:/ eV < 8,
BR BR
then Ux(R) < Y(R).

Proof. By Proposition 3.2 we have

(L) -

IA
o N = N

and hence Uy (R) < ¢(R). O
Now we are ready to prove the main result of this paper, Theorem 1.2.

Proof of Theorem 1.2. First we prove that p > 87. Suppose w; and ws satisfy the
assumptions of Theorem 1.2. Then

A(w2 —wl) +€w2 — e = f2 — fl Z 0.
Now choose A > 0 and R € (0, 00) such that

2 /Q gL
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1240 CHANGFENG GUI AND AMIR MORADIFAM

and let ¢ be the symmetrization of ws — wy with respect to the measures e“*dy
and eY>dy. Then it follows from Proposition 2.2 and Fubini’s theorem that

/ Ve < / IV (w2 — w)|
{p=t} {wa—wi1=t}

< /e“’?—e“’ldx
Q

_ / eUA+¢_/ A
{o>t} {¢>t}

= / €U>‘+¢—/ |VU)\|,
{o>t} {o=t}

for a.e. t > info(wy — wy). Hence

(26) [ v [ oo

{¢=t} {¢>t}
for all ¢ > info(wy — wy). Since ¢ is decreasing in r, ¢ := Uy + ¢ is a strictly
decreasing function, and

(27) / e / Uy, ac. re(0R)
B, B,

by Proposition 2.2 and the above inequality we see that 1 € W1°°(Bg) and thus

by Morrey’s inequality ¢ € C%1(Bg).

Since wy # w9 and fQ eVl = fQ e2, then we < wy on a subset of ) with positive
measure. Hence ¢(R) < 0 and consequently ©(R) = Uy(R) + ¢(R) < Ux(R). This
is a contradiction in view of Lemma 4.3, and therefore we must have p > 8.

Next we prove that p > 8m. Suppose p = 87 and let A; > 0. With an argument
similar to the one above we may show that there exists v = Uy, + ¢ € C%(R?)

such that
/e“’ld:vz/ eUn :87r:/ew2da::/ eVda,
Q R2 Q R2

and

(28) /aB V| g/B eV de

r r

for a.e. 7 € (0,00). Since [, e¥ = [5, €U, there exists rg € (0,00) such that
¥(rg) = Uy, (ro). There exists a positive constant Ao # A; such that Uy, (rg) =
Uy, (r0) = ¥(ro). Since ¢ > Uy, in By, it follows from Proposition 4.2 that Ay < Ao

and
/ e? 2/ eUrz,
B B

o 0

On the other hand v < Uy, in R?\ B,,, and consequently it follows from Proposition

4.1 that
/ e? 2/ eUr2
R2\ B, R2\ By,

(29) 87r:p:/ ewz/ eUr2 = 8.
R? R?
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Note that if f1 #Z 0 or fo # f1, then the inequality in (29) will be strict, which is
a contradiciton . Suppose f1 = fo = 0. We may assume without loss of generality
that ¢ = wy —w; > 0 on 91, since otherwise we can switch w; and we. By (29) we
conclude that the equality in (28) holds for a.e. r € (0,00) and ¢ = U,,. It also
yields that the equality in (14) must be true for ¢ = ws — wy and ¢ > infg ¢. By
the proof of Proposition 2.2, we also know that Bol’s inequality (9) on w = {¢ > t}
must be equality, and therefore {¢ > ¢} must be simply-connected for ¢ > infq ¢
by Theorem D. This is a contradiction since {¢ > ¢} is not simply-connected when
info ¢ <t < 0. The contradiction implies p > 8. O

Proof of Theorem 1.4. The proof follows from Theorem D and the same argument
used in the proof of Theorem 1.2. O
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