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ABSTRACT

We prove symmetry and uniqueness results for three classes of
Liouville-type problems arising in geometry and mathematical physics:
asymmetric Sinh-Gordon equation, cosmic string equation and Toda
system, under certain assumptions on the mass associated to these
problems. The argument is in the spirit of the sphere covering inequality
which for the �rst time is used in treating di�erent exponential
nonlinearities and systems.
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1. Introduction

In this paper, we shall consider three classes of Liouville-type equations and systems: asym-

metric Sinh-Gordon equation, cosmic string equation and Toda system. These problems arise

in geometry and mathematical physics. We are mainly concerned about the symmetry and

uniqueness questions under certain assumptions on the mass associated to these problems.

1.1. Asymmetric Sinh-Gordon equation

Consider the following version of the asymmetric Sinh-Gordon equation




−1u = ρ
eu + α

|α|
eαu

∫
�
(eu + eαu) dx

in�,

u = 0 on ∂�,

(1)

where α ∈ [−1, 1),α 6= 0, ρ > 0 is a parameter and � ⊂ R
2 is a bounded domain with

smooth boundary ∂�. Equation (1) is known also as Neri’s mean �eld equation and arises in

the context of the statistical mechanics description of 2D-turbulence introduced in [36]. In

the model where the circulation number density is subject to a probability measure, under a
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stochastic assumption on the vortex intensities one obtains the following equation (see [35]):





−1u = ρ

∫

[−1,1]
β

eβu P(dβ)∫∫
[−1,1]×� eβu P(dβ) dx

in�,

u = 0 on ∂�,

(2)

where u stands for the stream function of a turbulent Euler �ow, P is a Borel probability

measure de�ned in [−1, 1] describing the point vortex intensity distribution and ρ > 0 is a

physical constant associated to the inverse temperature. Equation (1) is related to the latter

model when P is supported in two points.

On the other hand, a deterministic assumption on the vortex intensities yields the following

model (see [44]):




−1u = ρ

(
eu∫

�
eu dx

+ α
|α|

eαu∫
�
eαu dx

)
in�,

u = 0 on ∂�.

(3)

Concerning the analysis of the latter equation we refer the interested readers to [1, 19–22,

24–27, 40, 43]. The arguments presented here do not apply to (3), andwe postpone its analysis

to a forthcoming paper.

Observe that by taking α = −1 in (1) we end up with the standard Sinh-Gordon equation,

while for P supported in a single point we derive the standard mean �eld equation




−1u = ρ
eu∫

�
eu dx

in�,

u = 0 on ∂�,

(4)

which is related to the prescribed Gaussian curvature problem and Euler �ows (see [2, 12, 13]

and [8, 29], respectively). The latter equation has been widely studied and we refer to the sur-

veys [33, 48].We note that even though the equation in (4) is related to geometric applications,

the Dirichlet boundary conditions are usually not natural in this geometric setting. Recently

in [16–18] the authors proved the sphere covering inequality (see Theorem 2.5 below) which

leads to several symmetry and uniqueness results for the latter equation. The sphere covering

inequality [17] will also be a crucial tool in this paper.

Returning to (1), some partial existence results and blow-up analysis was carried out in

[41, 42], while a complete existence result for (2) with suppP ⊂ [0, 1] was given in [14].

On the other hand, we are not aware of any symmetry or uniqueness results for the latter

equation with the only exception of [45] where (3) is considered. We present here several

results in this direction, under natural assumptions both on the parameter ρ and the domain

�. Due to di�erent features of problem (2) depending onwhether suppP ⊂ [0, 1]or suppP ⊂

[−1, 1]wewill distinguish these two cases in the discussion below. In the �rst situationwemay

rewrite (1) as




−1u = ρ
eu + eau∫

�
(eu + eau) dx

in�,

u = g(x) ≥ 0 on ∂�,

(5)

with a ∈ (0, 1). Our �rst result is the following.
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Theorem 1.1. Let � ⊂ R
2 be a bounded, simply-connected domain and g ∈ C(∂�) be a

non-negative function. Suppose ρ ≤ 4π . If u1 and u2 are two solutions of (5) such that∫

�

(
eu1 + eau1

)
dx =

∫

�

(
eu2 + eau2

)
dx, (6)

then u1 ≡ u2.

Corollary 1.2. Under the condition of Theorem 1.1, assume further � and g are evenly

symmetric about a line. Then, any solution of (5) must be evenly symmetric about that line.

In particular, if � is radially symmetric and g is a non-negative constant, then u is radially

symmetric.

We will exploit the fact that for suppP ⊂ [0, 1] equation (2) shares some features with the

mean �eld equation (4). Indeed we shall rewrite (2) in the form of (4) and apply the sphere

covering inequality (see [17]) to get the desired results.

Remark 1.3. The argument for Theorem 1.1 can be adapted to treat the more general case

where the probability measure P in (2) is supported at (m + 1) points, i.e.,



−1u = ρ
eu + ea1u + · · · + eamu∫

�
(eu + ea1u + · · · eamu) dx

in�,

u = g ≥ 0 on ∂�,

with ai ∈ (0, 1) for all i. Indeed if ρ ≤
8π

m + 1
and

∫

�

(
eu1 + ea1u1 + · · · eamu1

)
dx =

∫

�

(
eu2 + ea1u2 + · · · eamu2

)
dx,

then we must necessarily have u1 ≡ u2. In particular, Corollary 1.2 also generalizes to the

above equation. The case where ai > 1 fore some i can be carried out as well and we refer to

Remark 1.5 for more details.

On the other hand, for the general case suppP ⊂ [−1, 1], the problem (2) substantially

di�ers from the standard equation (4). In this case we may rewrite (1) as




−1u = ρ
eu − e−au

∫
�

(
eu + e−au

)
dx

in�,

u = 0 on ∂�,

(7)

with a ∈ (0, 1]. Observe that u ≡ 0 is a solution of the latter problem. We indeed show that

for ρ ≤
8π

1 + a
the trivial solution is the only solution.

Theorem 1.4. Suppose ρ ≤
8π

1 + a
and � ⊂ R

2 bounded, simply-connected. Then, Eq. (7)

admits only the trivial solution u ≡ 0.

The proof is based on the sphere covering inequality (see Section 2 in [17] ). Roughly

speaking, letting v1 = u, v2 = −auwe will consider a symmetrization of v2 − v1 with respect

to two suitable measures to get the conclusion.
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Remark 1.5. Let us point out that in Eqs. (5) and (7) we are considering a < 1 and a≤ 1

(respectively) due to the physical motivations. However, we can treat the case a > 1 as well.

More precisely, letting v = au in (5) we may rewrite the latter equation in a form to which

we can apply Theorem 1.2 with a new parameter ρ̃ = aρ. Therefore, the conclusions of

Theorem 1.1 and Corollary 1.2 still hold true for ρ ≤
4π

a
and a > 1. On the other hand,

one can easily see from the proof of Theorem 1.4 that the assumption a ≤ 1 is not needed

and we get the same conclusion for a > 1.

Remark 1.6. The same arguments clearly apply to the following version of (1):
{

−1u = eu + α
|α|

eαu in�,

u = g(x) ≥ 0 on ∂�.
(8)

We have:

1. Let α = a ∈ (0, 1). Suppose � ⊂ R
2 is a bounded, simply-connected domain and g ∈

C(∂�) is a non-negative function. If u1 and u2 are two solutions of (8) such that∫

�

eu1 dx =

∫

�

eu2 dx ≤ 4π ,

then u1 ≡ u2.

Moreover, suppose that � and g are evenly symmetric about a line. Let u be a solution

of (8) Then, u is evenly symmetric about that line. In particular, if� is radially symmetric

and g is a non-negative constant, then u is radially symmetric.

2. Let α = −a, a ∈ (0, 1]. Suppose � ⊂ R
2 bounded, simply-connected. If u is a solution of

(8) with g = 0 such that ∫

�

(
eu + e−au

)
dx ≤

8π

1 + a
,

then u ≡ 0.

Moreover, similar results hold for a > 1 (see Remark 1.5).

The above results follow by suitably adapting the proofs of Theorem 1.1, Corollary 1.2, and

Theorem 1.4 and we omit the details here.

Finally, we have the following remark concerning the sharpness of the above results.

Remark 1.7. Consider for simplicity the standard Sinh-Gordon equation with α = −1 in

(1). Even though the associated energy functional is coercive for ρ < 8π (see [41]), we can

not extend Theorem 1.1, Corollary 1.2, and Theorem 1.4 to the range ρ ≤ 8π (as it holds

for the standard mean �eld equation (4)). In [45] (Section 2) the authors provide non-trivial

solutions for (3) with ρ < 8π .

1.2. Cosmic string equation

We will next discuss the following problem to which we will refer to as the cosmic string

equation:
{

−1u = eau + h(x) eu in�,

u = g(x) ≥ 0 on ∂�,
(9)
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with a > 0, and � ⊂ R
2 is a smooth bounded domain containing the origin and h is of the

form

h(x) = e−4πNG0(x), (10)

where N ∈ N and G0 is the Green’s function with pole at 0, i.e.,
{

−1G0(x) = δ0 in�,

G0(x) = 0 on ∂�.
(11)

Observe that

h > 0 in� \ {0} and h(x) ∼= |x|2N near 0.

Equation (9) describes the behavior of selfgravitating cosmic strings for a massive W-boson

model coupled with Einstein’s equation where a is a physical parameter and N the string’s

multiplicity (see [37, 50]). Observe that for a = 1 the Eq. (9) is also related to the Gaussian

curvature with conic singularities (see [48] and references therein).

Many results concerning (9) have been established especially for the full plane case. We

refer to [10, 11, 50] for existence results, to [37, 38] for what concerns symmetry issues,

and to [47] for blow-up analysis. In particular, in [37, 38] the authors provide necessary

and su�cient conditions for the solvability of (9) in the full plane in the context of radially

symmetric solutions, depending on the values of the total mass β =
∫
R2

(
eau + |x|2Neu

)
dx.

For N ∈ (−1, 0] it follows from a moving plane argument that all the solutions to (9) are

radially symmetric, under suitable assumptions on the domain �. However, it remains an

open problem if the results in [37, 38] are sharp for the non-radial framework. We prove the

following result.

Theorem 1.8. Let � ⊂ R
2 be a bounded, simply-connected domain, a > 0, N ≥ 0

and g ∈ C(∂�) be non-negative. Suppose u1 and u2 are two distinct solutions of (9)

such that




∫
�
(eau1 + eau2) dx ≤

8π

a
if a ≥ 1,

∫
�
(eu1 + eu2) dx ≤ 8π if a < 1

(12)

Then u1 and u2 can not intersect, i.e., either

u2 > u1 or u2 < u1 in �. (13)

Corollary 1.9. Let � ⊂ R
2 be a a bounded, simply-connected domain, a > 0, N ≥ 0 and

g ∈ C(∂�) be non-negative. Assume

γ :=





∫
�
eau dx ≤

4π

a
if a ≥ 1,

∫
�
eu dx ≤ 4π if a < 1.

(14)

Then (9) has a unique solution u for any γ satisfying (14). In particular, if 0 ∈ � and �, g are

evenly symmetric about a line passing through the origin, then u is evenly symmetric about that

line. Consequently, if� is radially symmetric about the origin and g is a non-negative constant,

then u is radially symmetric about the origin.
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The proof is based on a simple manipulation of Eq. (9) and the sphere covering inequality

(see Theorem 2.5 below or [17]).

Remark 1.10. Theorem 1.8 and Corollary 1.9 can be generalized for the following more

general equation (we refer to [38] for applications of this equation)




−1u =

m∑

i=0

hi(x) e
aiu in�,

u = g(x) ≥ 0 on ∂�,

where ai > 0 and

hi(x) = e−4πNiG0(x),

withNi ≥ 0 for all i. Let aM = maxi{ai}. Using similar arguments as in the proofs of Theorem

1.8, one can check the assumptions (12) and (14) (wherem = 1) should be replaced by
∫

�

(
eaMu1 + eaMu2

)
dx ≤

16π

aM(m + 1)
,

and ∫

�

eaMu dx ≤
8π

aM(m + 1)
,

respectively.

1.3. Liouville-type systems

We also study the following class of Liouville-type systems:




−1u1 = Aeu1 − Beu2

−1u2 = B′eu2 − A′eu1
in�,

u1 = u2 = g(x) on ∂�,

(15)

with g ∈ C(∂�) and

A,A′,B,B′ > 0, A + A′ = B + B′ := M > 0. (16)

Observe that we allow some of the above coe�cients to be zero.

The latter system is deeply connected both with geometry and mathematical physics. For

example, by takingA = B′ = 2, B = A′ = 1 we recover the 2×2 Toda systemwhich has been

extensively studied in the literature. This equation appears in the description of holomorphic

curves in CP
N (see [7, 9, 32]). It also arises in the non-abelian Chern-Simons theory in the

context of high critical temperature superconductivity (see [15, 47, 50]). The caseA = B′ = 1

and B = A′ = τ with a singular source was considered in [39] in unbounded domains.

For what concerns Toda-type systems we refer to [28, 30, 31] for blow-up analysis, to [32]

for classi�cation issues, and to [5, 23, 34] for existence results. On the other hand, we are

not aware of any symmetry or uniqueness results for Liouville-type systems alike (15). In this

direction we provide the following result.
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Theorem 1.11. Let (u1, u2) be a solution of (15) and (16). Let M be as de�ned in (16). Suppose

that� is a bounded, simply-connected domain and
∫

�

(
eu1 + eu2

)
dx ≤

8π

M
.

Then u1 ≡ u2 ≡ u, where u is the unique solution to
{

−1u =Deu in�,

u = g(x) on ∂�,

and D := A − B = B′ − A′.

Remark 1.12. For Toda-type systems whereA = B′ = 2, B = A′ = 1, the above result asserts

that if� is bounded, simply-connected and
∫

�

(
eu1 + eu2

)
dx ≤

8π

3
,

then u1 ≡ u2 ≡ u, where u is the unique solution to
{

−1u = eu in�,

u = g(x) on ∂�.

Arguing as in the proof of the sphere covering inequality (see Section 2 below or [17]),

we will consider a symmetrization of u2 − u1 with respect to two suitable measures to get

the latter result. The uniqueness property will then follow by applying the sphere covering

inequality to the scalar equation.

A similar argument can be carried out for the following singular version of (15):




−1u1 = Aeu1 − Beu2 − 4παδ0

−1u2 = B′eu2 − A′eu1 − 4παδ0
in�,

u1 = u2 = g(x) on ∂�,

(17)

where α ≥ 0 and 0 ∈ �. Recall the de�nitions of M, D in (16) and in Theorem 1.11,

respectively. By using the Green’s function G0 with pole at 0 as in (11) we may consider

ũi(x) = u(x)+ 4παG0(x) (18)

which satis�es 



−1ũ1 = Ah(x)ẽu1 − Bh(x)ẽu2

−1ũ2 = B′h(x)ẽu2 − A′h(x)ẽu1
in�,

ũ1 = ũ2 = g(x) on ∂�,

with h(x) = e−4παG0(x). We have the following result.

Theorem 1.13. Let (u1, u2) be a solution of (17) with α ≥ 0 and (16). Let ũi be as in (18).

Suppose� is bounded, simply-connected and
∫

�

(
ẽu1 + ẽu2

)
dx ≤

8π

M
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Then u1 ≡ u2 ≡ u, where u is the unique solution to
{

−1u =Deu − 4παδ0 in�,

u = g(x) on ∂�.

The next remark concerns a possible generalization of the results we have obtained so far

for multiply-connected domains.

Remark 1.14. All the previous results hold for multiply-connected domains with constant

boundary condition, i.e., g(x) = c ∈ R. This follows from the same arguments and the sphere

covering inequality (Theorem 2.5) for multiply-connected domains. See Remark 2.6 below.

The paper is organized as follows. In Section 2 we recall the main ingredients of the

sphere covering inequality. In Section 3 we present our strategy for proving the uniqueness

result of Theorem 1.1, the symmetry result of Corollary 1.2, and the uniqueness result of

Theorem1.4. In Section 4we showhow to get the no intersection property of Theorem1.8 and

the symmetry property of Corollary 1.9. In Section 5 we provide the proof of the uniqueness

result inTheorems 1.11 and 1.13.

1.4. Notation

The symbol Br(p) will denote the open metric ball of radius r and center p. Where there is no

ambiguity, with a little abuse of notation we will write x and dx to denote (x, y) ∈ R
2 and the

integration with respect to (x, y), respectively.

2. The sphere covering inequality

In this section we recall the main ingredients of the sphere covering inequality proved in [17]

as we will need them in the sequel. Roughly speaking, the latter result asserts that the total

area of two distinct surfaces with Gaussian curvature equal to 1, conformal to the Euclidean

unit disk with the same conformal factor on the boundary, must cover the whole unit sphere

a�er a proper rearrangement. See [17] for more details. Let us start by recalling the standard

Bol’s isoperimetric inequality as in [46, 49] (see also [6] in its original form).

Proposition 2.1. Let� ⊂ R
2 be a simply-connected set and u ∈ C2(�) be such that

1u + eu ≥ 0 and

∫

�

eu dx ≤ 8π .

Then, for any ω ⊂⊂ � of class C1 it holds
(∫

∂ω

e
u
2 dσ

)2

≥
1

2

(∫

ω

eu dx

) (
8π −

∫

ω

eu dx

)
.

The basic function, which satis�es the above properties and will be used in the sequel, is

the following:

Uλ(x) = −2 ln

(
1 +

λ2|x|2

8

)
+ 2 ln λ, (19)
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for λ > 0. Observe that

1Uλ + eUλ = 0 and

∫

Br(0)
eUλ dx = 8π

λ2r2

8 + λ2r2
,

for all r > 0.

Now the idea is to consider symmetric rearrangements with respect to two distinct

measures. More precisely, let w ∈ C2(�) be such that

1w + ew ≥ 0. (20)

Then, any function φ ∈ C2(�) can be equimeasurably rearranged with respect to the

measures ew dx and eUλ dx (see [3]). Indeed, for t > minx∈� φ(x) let B
∗
t be the ball centered

at the origin such that
∫

B
∗
t

eUλ dx =

∫

{φ>t}
ew dx.

Then, if we let φ∗ : B∗
t → R to be φ∗(x) = sup

{
t ∈ R : x ∈ B∗

t

}
, it holds that φ∗

is a symmetric equimeasurable rearrangement of φ with respect to the measures ew dx and

eUλ dx, i.e.,
∫

{φ∗>t}
eUλ dx =

∫

{φ>t}
ew dx, (21)

for all t > minx∈� φ(x). Moreover, by using Bol’s inequality stated in Proposition 2.1 we get

the following estimate on the gradient of the rearrangement (see [17]).

Proposition 2.2. Let w ∈ C2(�) be such that it satis�es (20) with � ⊂ R
2 being simply-

connected. Let Uλ be as in (19). Suppose φ ∈ C2(�) is such that φ ≡ C on ∂�. If φ∗

is the equimeasurable symmetric rearrangement of φ with respect to the measures ew dx and

eUλ dx, then
∫

{φ∗=t}
|∇φ∗| dσ ≤

∫

{φ=t}
|∇φ| dσ ,

for all t > minx∈� φ(x).

We shall also need the following counterpart of Bol’s inequality in the radial setting

(see [17]).

Proposition 2.3. Let ψ ∈ C0,1(BR(0)) be a strictly decreasing radial function satisfying
∫

∂Br(0)
|∇ψ | dσ ≤

∫

Br(0)
eψ dx for a.e. r ∈ (0,R) and

∫

BR(0)
eψ dx ≤ 8π .

Then
(∫

∂BR(0)
e
ψ
2 dσ

)2

≥
1

2

(∫

BR(0)
eψ dx

) (
8π −

∫

BR(0)
eψ dx

)
.

The main idea is then to relate the strictly decreasing radial function ψ with two

radial solutions Uλ1 ,Uλ2 de�ned in (19) with λ2>λ1, such that ψ =Uλ1 =Uλ2
on ∂BR(0).
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Proposition 2.4. Uλ1 ,Uλ2 de�ned in (19) with λ2 > λ1. Let ψ ∈ C0,1(BR(0)) be a strictly

decreasing radial function satisfying
∫

∂Br(0)
|∇ψ | dσ ≤

∫

Br(0)
eψ dx for a.e. r ∈ (0,R) (22)

and ψ = Uλ1 = Uλ2 on ∂BR(0). Then, either

∫

BR(0)
eψ dx ≤

∫

BR(0)
eUλ1 dx or

∫

BR(0)
eψ dx ≥

∫

BR(0)
eUλ2 dx.

Moreover, we have
∫

BR(0)

(
eUλ1 + eUλ2

)
dx = 8π .

We can now state the sphere covering inequality as in [17].

Theorem 2.5. Let � ⊂ R
2 be a simply-connected set and let wi ∈ C2(�), i = 1, 2 be such

that

1wi + ewi = fi(x) in�, (23)

where f2 ≥ f1 ≥ 0 in�. Suppose

{
w2 ≥ w1, w2 6≡ w1 in�,

w2 = w1 on ∂�,

Then, it holds
∫

�

(
ew1 + ew2

)
dx ≥ 8π .

Moreover, if some fi 6≡ 0 then the latter inequality is strict.

The idea is to consider a symmetric rearrangement ϕ of w2 − w1 with respect to the

measures ew1 dx and eUλ1 dx for a suitableλ2. Then, by using Eq. (23) and the properties of

the rearrangements (see also Proposition 2.2), it is possible to show that (22) holds true for

ψ = Uλ1 + ϕ. Applying then Proposition 2.4 one can deduce that
∫

�

(
ew1 + ew2

)
dx ≥

∫

BR(0)

(
eUλ1 + eUλ2

)
dx = 8π .

See [17] for full details.

Remark 2.6. Wepoint out that the sphere covering inequality holds as long as Bol’s inequality

holds. Indeed, if1w+ew ≥ 0 in�which is simply-connected, then Bol’s and sphere covering

inequalities hold in any region�1 ⊂ � for general boundary data. In particular,�1 does not

need to be simply-connected.Moreover, Bol’s inequality and sphere covering inequalities hold

for a multiply-connected domain �, provided that we have constant boundary conditions

(see [4]).
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3. Asymmetric Sinh-Gordon equation

In this section we study uniqueness and symmetry of solutions of asymmetric Sinh-

Gordon equation (1), and prove Theorems 1.1 and 1.4. The �rst one relies mainly on

the sphere covering inequality (see Theorem 2.5). On the other hand, the second one is

based on the arguments which yield the sphere covering inequality, which we collected in

Section 2.

Let us start with the case suppP ⊂ [0, 1] which we recall here for convenience





−1u = ρ
eu + eau∫

�
(eu + eau) dx

in�,

u = g(x) ≥ 0 on ∂�,

(24)

with a ∈ (0, 1), ρ > 0, and g ∈ C(∂�).

Proof of Theorem 1.1. Let u1 and u2 be solutions of Eq. (24) satisfying the assumptions of

Theorem (1.1). We aim to show that u1 ≡ u2. We proceed by contradiction by assuming that

this is not the case. Rewrite Eq. (24) as

1u + ρ
2eu∫

�
(eu + eau) dx

= ρ
eu − eau∫

�
(eu + eau) dx

.

Let

v = u + log 2 + log ρ − log

(∫

�

(
eu + eau

)
dx

)
. (25)

Then v satis�es

1v + ev = f (u) := ρ
eu − eau∫

�
(eu + eau) dx

. (26)

It follows from (6) that there exists two regions �1,�2 ⊂ � (not necessarily simply-

connected) such that u1 > u2 in �1, u2 > u1 in �2, and u1 = u2 on ∂�1 ∪ ∂�2. We

have that v1, v2 de�ned by (25) satisfy

1vi + evi = f (ui) in �.

Moreover

v1 > v2 in�1, v2 > v1 in�2 and v1 = v2 on ∂�1 ∪ ∂�2.

Since g ≥ 0, both solutions u1 and u2 are positive in � by the maximum principle. By the

latter fact it is also easy to see that

f (u1) > f (u2) > 0 in�1 and f (u2) > f (u1) > 0 in�2.

Therefore, by applying the sphere covering inequality (Theorem 2.5, see also Remark 2.6), we

get (observe that fi 6≡ 0)
∫

�

(
ev1 + ev2

)
dx ≥

∫

�1

(
ev1 + ev2

)
dx +

∫

�2

(
ev1 + ev2

)
dx > 16π .
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Recalling now the de�nition of v in (25) and (6) we have

4ρ =
2ρ∫

�
(eu1 + eau1) dx

(∫

�

(
eu1 + eau1

)
dx +

∫

�

(
eu1 + eau1

)
dx

)

≥
2ρ∫

�
(eu1 + eau1) dx

∫

�

(
eu1 + eu2

)
dx =

∫

�

(
ev1 + ev2

)
dx > 16π .

Hence ρ > 4π , which is a contradiction. The proof is now complete.

Proof of Corollary 1.2. Without loss of generality we can assume that � and g are evenly

symmetric with respect to the line y = 0. Suppose u is a solution of (5), which is not evenly

symmetric about y = 0. Then u1 = u and u2(x, y) = u(x,−y) are two distinct solutions of

(5) satisfying the condition (6). Thus it follows from Theorem 1.1 that ρ > 4π .

We consider now the general case suppP ⊂ [−1, 1] which yields to (7), i.e.:




−1u = ρ
eu − e−au

∫
�

(
eu + e−au

)
dx

in�,

u = 0 on ∂�,

(27)

with a ∈ (0, 1), ρ > 0. We give here the proof of the uniqueness result for the trivial solution

u ≡ 0.

Proof of Theorem 1.4. Let u be a solution of (27). We will show that u ≡ 0 in �. Assume by

contradiction this is not the case and let

v1 = −au + log ρ − log

(∫

�

(
eu + e−au

)
dx

)
,

v2 = u + log ρ − log

(∫

�

(
eu + e−au

)
dx

)
.

(28)

Then we have

1(v2 − v1)+ (1 + a)
(
ev2 − ev1

)
= 0.

Letting further

wi = vi + log(1 + a), i = 1, 2, (29)

we deduce

1(w2 − w1)+
(
ew2 − ew1

)
= 0. (30)

Since u = 0 on ∂�, we get

w1 = w2 = log(1 + a)+ log ρ − log

(∫

�

(
eu + e−au

)
dx

)
on ∂�. (31)

It follows that there exists at least one region �̃ ⊆ � (not necessarily simply-connected) such

that {
w1 6= w2 in �̃,

w1 = w2 on ∂�̃,
(32)
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and

1(w2 − w1)+
(
ew2 − ew1

)
= 0 in �̃. (33)

We point out that �̃may coincide with�.Without loss of generality wemay assumew2 > w1.

From Eq. (27) and the de�nitions of wi in (28) and (29) we derive that

1v1 + aev1 = aev2

and thus

1w1 + ew1 =

(
1

1 + a
ew1 + aev2

)
> 0 in�. (34)

We now proceed as in the proof of the sphere covering inequality. Let λ2 > λ1 be such that

Uλ2 > Uλ1 in B1(0) and Uλ1 = Uλ2 on ∂B1(0), where Uλ is given as in (19), and such that
∫

�̃

ew1 dx =

∫

B1(0)
eUλ1 dx.

Since w1 satis�es (34) we can �nd a symmetric equimeasurable rearrangement ϕ∗ of w2 −w1

with respect to the twomeasures ew1 dx and eUλ1 dx. See the discussion a�er (20). In particular

we have ∫

{ϕ∗>t}
eUλ1 dx =

∫

{w2−w1>t}
ew1 dx

for t ≥ 0. We �rst estimate the gradient of the rearrangement by Proposition 2.2, then exploit

Eq. (33), the equation satis�ed by Uλ1 and the properties of the rearrangements to obtain
∫

{ϕ∗=t}
|∇ϕ∗| dσ ≤

∫

{w2−w1=t}
|∇(w2 − w1)| dσ

=

∫

{w2−w1>t}

(
ew2 − ew1

)
dx

=

∫

{ϕ∗>t}
eUλ1+ϕ

∗

dx −

∫

{ϕ∗>t}
eUλ1 dx

=

∫

{ϕ∗>t}
eUλ1+ϕ

∗

dx −

∫

{ϕ∗=t}
|∇Uλ1 | dσ ,

for a.e. t > 0. Therefore∫

{ϕ∗=t}
|∇

(
Uλ1 + ϕ∗

)
| dσ ≤

∫

{ϕ∗>t}
eUλ1+ϕ

∗

dx,

for a.e. t > 0. Sinceϕ∗ is decreasing by construction,Uλ1+ϕ
∗ is a strictly decreasing function.

Moreover, by the above estimate we derive
∫

∂Br(0)
|∇

(
Uλ1 + ϕ∗

)
| dσ ≤

∫

Br(0)
eUλ1+ϕ

∗

dx for a.e. r > 0. (35)

Furthermore, since ϕ∗ ≥ 0, we clearly have
∫

B1(0)
eUλ1+ϕ

∗

dx ≥

∫

B1(0)
eUλ1 dx.
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By the latter estimate, (34) and (35) we can exploit Proposition 2.4 with ψ = Uλ1 + ϕ∗ to get
∫

B1(0)
eUλ1+ϕ

∗

dx ≥

∫

B1(0)
eUλ2 dx.

Thus∫

�̃

(
ew1 + ew2

)
dx =

∫

B1(0)

(
eUλ1 + eUλ1+ϕ

∗
)
dx ≥

∫

B1(0)

(
eUλ1 + eUλ2

)
dx = 8π .

Recall now the de�nitions of wi in (28) and (29). We have

ρ(1 + a)∫
�

(
eu + e−au

)
dx

∫

�̃

(
eu + e−au

)
dx ≥ 8π ,

and hence

8π

1 + a
≤

ρ∫
�

(
eu + e−au

)
dx

∫

�̃

(
eu + e−au

)
dx ≤ ρ.

The above inequality is indeed strict. To see this, we note that the equality would yield the

equality in (35) which corresponds to equality in Bol’s inequality in Proposition 2.1 for w1

and consequently w1 should satisfy 1w1 + ew1 = 0, which contradicts (34). In view of the

assumption ρ ≤
8π

1 + a
, we therefore have shown u ≡ 0 in� as desired.

4. Cosmic string equation

In this section we study the cosmic string equation
{

−1u = eau + h(x) eu in�,

u = g(x) ≥ 0 on ∂�,
(36)

with a > 0 and h as in (10).Wewill rewrite this equation in a form suitable to apply the sphere

covering inequality, Theorem 2.5, to prove Theorem 1.8.

Proof of Theorem 1.8. First suppose a > 1. Let u1 and u2 be two solutions of (36) with a > 1,

N ≥ 0 satisfying (12). We proceed by contradiction. Suppose there exists �1,�2 ⊂ � (not

necessarily simply-connected) such that

u1 > u2 in �1 and u2 > u1 in �2.

The Eq. (36) can be rewritten as

1u + 2eau = eau − h(x) eu.

Multiply this equation by a and let

v = au + log (2a) . (37)

Then v satis�es

1v + ev = f (u) := a
(
eau − h(x) eu

)
. (38)

Let v1, v2 be de�ned by (37) (u replaced by u1 and u2, respectively). Then we have

1vi + evi = f (ui) in �.
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Furthermore, we get

v1 > v2 in�1, v2 > v1 in�2 and v1 = v2 on ∂�1 ∪ ∂�2.

Since g ≥ 0, it follows from the maximum principle that both solutions u1 and u2 are positive

inside�. Note also that h(x) ≤ 1. It is now easy to see that

f (u1) > f (u2) > 0 in�1 and f (u2) > f (u1) > 0 in�2.

By the sphere covering inequality (Theorem 2.5, see also Remark 2.6) we conclude that
∫

�

(
ev1 + ev2

)
dx ≥

∫

�1

(
ev1 + ev2

)
dx +

∫

�2

(
ev1 + ev2

)
dx > 16π .

Using the expression of v in (37) we deduce

2a

∫

�

(
eau1 + eau2

)
dx > 16π ,

which contradicts the assumption
∫

�

(
eau1 + eau2

)
dx ≤

8π

a
.

For what concerns the case a < 1 we write (36) in the form

1u + 2eu =
(
eu − eau

)
+

(
eu − h(x) eu

)
.

The argument is then developed as before so we skip the details. The proof is now complete.

Proof of Corollary 1.9. Without loss of generality we assume that� and g are evenly symmet-

ric with respect to the line y = 0. Observe that the associated Green’s function (and hence h,

see (10)) is evenly symmetric with respect to the line y = 0. We consider just the case a > 1

since for a < 1 one can proceed in the same way. Suppose u is a solution of (5) satisfying (14),

which is not evenly symmetric about y = 0. Then u1 = u and u2(x, y) = u(x,−y) are two

distinct intersecting solutions of (9). It follows from Theorem 1.8 that

2

∫

�

eau dx =

∫

�

(
eau1 + eau2

)
dx >

8π

a
.

which contradicts (14).

5. Liouville-type systems in domains

In this section we consider the class of Liouville-type systems




−1u1 = Aeu1 − Beu2

−1u2 = B′eu2 − A′eu1
in�,

u1 = u2 = g(x) on ∂�,

(39)

where A,A′,B,B′ satisfy condition (16), and prove Theorem 1.11.

Proof of Theorem 1.11. Let (u1, u2) be a solution of (39). We will prove that there exists a

unique u solving a mean �eld equation as stated in Theorem 1.11 such that u1 ≡ u2 ≡ u
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in�. Assume by contradictionu1 6≡ u2. As in the proof of Theorem1.4, the strategy is to apply

the argument of the sphere covering inequality in Theorem 2.5 (see Section 2) to the functions

u1 and u2.We start by recalling that the coe�cients in (39) are such thatA+A′ = B+B′ := M.

Hence

1(u2 − u1)+ M
(
eu2 − eu1

)
= 0.

Letting

wi = ui + logM, i = 1, 2, (40)

we deduce that

1(w2 − w1)+
(
ew2 − ew1

)
= 0, (41)

and

w1 = w2 = logM + g(x) on ∂�. (42)

It follows that there exists at least one region �̃ ⊆ � (not necessarily simply-connected) such

that {
w1 6= w2 in �̃,

w1 = w2 on ∂�̃,
(43)

and

1(w2 − w1)+
(
ew2 − ew1

)
= 0 in�. (44)

Without loss of generality we can assume w2 > w1 in �̃.

Using the �rst equation in (39), the de�nitions of wi in (29), and the fact thatM = A+A′

we get

1u1 + Aeu1 = Beu2

and hence

1w1 + ew1 =

(
A′

A + A′
ew1 + Beu2

)
≥ 0 in�. (45)

The rest of the argument is very similar to the proof of Theorem 1.4 so we will skip the details.

Let λ2 > λ1 be such thatUλ2 > Uλ1 in B1(0) andUλ1 = Uλ2 on ∂B1(0), where Uλ is given as

in (19), and
∫

�̃

ew1 dx =

∫

B1(0)
eUλ1 dx.

Recalling (45) we can �nd a symmetric equimeasurable rearrangement ϕ∗ of w2 − w1 with

respect to the two measures ew1 dx and eUλ1 dx. Reasoning as in the proof of Theorem 1.4

we get
∫

∂Br(0)
|∇

(
Uλ1 + ϕ∗

)
| dσ ≤

∫

Br(0)
eUλ1+ϕ

∗

dx for a.e. r > 0.

Furthermore Uλ1 + ϕ∗ is a strictly decreasing function. Hence from Proposition 2.4 to ψ =

Uλ1 + ϕ∗ we deduce
∫

B1(0)
eUλ1+ϕ

∗

dx ≥

∫

B1(0)
eUλ2 dx.
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Therefore∫

�̃

(
ew1 + ew2

)
dx =

∫

B1(0)

(
eUλ1 + eUλ1+ϕ

∗
)
dx ≥

∫

B1(0)

(
eUλ1 + eUλ2

)
dx = 8π .

It follows from the de�nitions of wi that

M

∫

�̃

(
eu1 + eu2

)
dx ≥ 8π .

Thus
8π

M
≤

∫

�̃

(
eu1 + eu2

)
dx ≤

∫

�

(
eu1 + eu2

)
dx.

Arguing as in the proof of Theorem 1.4 it is easy to show that the latter inequality is strict,

which is a contradiction. Hence u1 ≡ u2 in �. Letting u := u1 = u2 and using the system

(39) we get
{

−1u =Deu in�,

u = g(x) on ∂�,

where we recall D := A − B = A′ − B′. Note thatM := A + A′ = B + B′ and hence∫

�

Deu dx ≤ 4π
D

M
= 4π

A − B

A + A′
< 4π .

Since � is simply-connected and the latter bound holds true, by the sphere covering

inequality of Theorem 2.5 we deduce that u is unique. This concludes the proof of

Theorem 1.11.

We conclude this section by giving the proof of Theorem 1.13 regarding the uniqueness of

solutions of the system




−1u1 = Aeu1 − Beu2 − 4παδ0

−1u2 = B′eu2 − A′eu1 − 4παδ0
in�,

u1 = u2 = g(x) on ∂�.

(46)

Proof of Theorem 1.13. Let (u1, u2) be a solution of (46) with α ≥ 0. By using the Green’s

function G0 with pole in 0 as in (11) we desingularize the problem by setting

ũi(x) = u(x)+ 4παG0(x).

Indeed (46) is equivalent to




−1ũ1 = Ah(x)ẽu1 − Bh(x)ẽu2

−1ũ2 = B′h(x)ẽu2 − A′h(x)ẽu1
in�,

ũ1 = ũ2 = g(x) on ∂�,

(47)

where

h(x) = e−4παG0(x). (48)

Observe that

h > 0 in� \ {0} and h(x) ∼= |x|2α near 0.
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Assume now by contradiction that ũ1 6≡ ũ2 and suppose, without loss of generality, that

ũ2 > ũ1 in �̃ ⊆ �. Recall that A + A′ = B + B′ := M. Therefore, by (47) we have

1(̃u2 − ũ1)+ Mh(x)
(
ẽu2 − ẽu1

)
= 0.

Note also that h(x) ≤ 1. Since ũ2 > ũ1 in �̃ we deduce

1(̃u2 − ũ1)+ M
(
ẽu2 − ẽu1

)
≥ 0 in �̃.

With an argument similar to the one in the proof of Theorem 1.11 we get a contradiction.

Thus ũ1 ≡ ũ2 := ũ and ũ satis�es
{

−1ũ =Dh(x)ẽu in�,

ũ = g(x) on ∂�,

where D := A − B = A′ − B′. Arguing as in the proof of Theorem 1.11 we deduce that ũ is

unique.
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