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1. Introduction

In this paper, we shall consider three classes of Liouville-type equations and systems: asym-
metric Sinh-Gordon equation, cosmic string equation and Toda system. These problems arise
in geometry and mathematical physics. We are mainly concerned about the symmetry and
uniqueness questions under certain assumptions on the mass associated to these problems.

1.1. Asymmetric Sinh-Gordon equation

Consider the following version of the asymmetric Sinh-Gordon equation

u o ou
—Au = Io% in Q,
Jo (e + e*¥) dx (1)
u=0 on 02,

where @ € [—1,1),a # 0, p > 0 is a parameter and 2 C R? is a bounded domain with
smooth boundary 9. Equation (1) is known also as Neri’s mean field equation and arises in
the context of the statistical mechanics description of 2D-turbulence introduced in [36]. In
the model where the circulation number density is subject to a probability measure, under a
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stochastic assumption on the vortex intensities one obtains the following equation (see [35]):

P P(dp)
—Ay = in Q,
! p/[—l,ll § Jlii1yxq P P(dp) dx . )

u=0 on 082,

where u stands for the stream function of a turbulent Euler flow, P is a Borel probability
measure defined in [—1, 1] describing the point vortex intensity distribution and p > O isa
physical constant associated to the inverse temperature. Equation (1) is related to the latter
model when P is supported in two points.

On the other hand, a deterministic assumption on the vortex intensities yields the following

model (see [44]):
eu eozu
Au=p|——te_" ) ing,
Hep <fQ o dx ol Jo e dx) o
u=0 on 9€2.

)

Concerning the analysis of the latter equation we refer the interested readers to [1, 19-22,
24-27,40,43]. The arguments presented here do not apply to (3), and we postpone its analysis
to a forthcoming paper.

Observe that by taking o« = —1 in (1) we end up with the standard Sinh-Gordon equation,
while for P supported in a single point we derive the standard mean field equation
eu

—F inQ,

P fQ et dx (4)
u=0 on 052,

—Au =

which is related to the prescribed Gaussian curvature problem and Euler flows (see [2, 12, 13]
and [8, 29], respectively). The latter equation has been widely studied and we refer to the sur-
veys [33, 48]. We note that even though the equation in (4) is related to geometric applications,
the Dirichlet boundary conditions are usually not natural in this geometric setting. Recently
in [16-18] the authors proved the sphere covering inequality (see Theorem 2.5 below) which
leads to several symmetry and uniqueness results for the latter equation. The sphere covering
inequality [17] will also be a crucial tool in this paper.

Returning to (1), some partial existence results and blow-up analysis was carried out in
[41, 42], while a complete existence result for (2) with supp P C [0, 1] was given in [14].
On the other hand, we are not aware of any symmetry or uniqueness results for the latter
equation with the only exception of [45] where (3) is considered. We present here several
results in this direction, under natural assumptions both on the parameter p and the domain
Q. Due to different features of problem (2) depending on whether supp P C [0, 1] orsupp P C
[—1, 1] we will distinguish these two cases in the discussion below. In the first situation we may
rewrite (1) as

eu +eau
—-Au=p—————— ing,
Jo (e + e™) dx (5)
u=g(x) >0 on 0%2,

with a € (0,1). Our first result is the following.
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Theorem 1.1. Let Q@ C R? be a bounded, simply-connected domain and g € C(3R2) be a
non-negative function. Suppose p < 4. If u; and u, are two solutions of (5) such that

/Q (e" +e™) dx = /Q (e"2 + ™2 dx, (6)

then u; = up.

Corollary 1.2. Under the condition of Theorem 1.1, assume further Q and g are evenly
symmetric about a line. Then, any solution of (5) must be evenly symmetric about that line.
In particular, if Q is radially symmetric and g is a non-negative constant, then u is radially
symmetric.

We will exploit the fact that for supp P C [0, 1] equation (2) shares some features with the
mean field equation (4). Indeed we shall rewrite (2) in the form of (4) and apply the sphere
covering inequality (see [17]) to get the desired results.

Remark 1.3. The argument for Theorem 1.1 can be adapted to treat the more general case
where the probability measure P in (2) is supported at (m + 1) points, i.e.,

eu_‘_ealu_i_“._{_eamu

—Au = in €2,
pr (eu+ea1u+,,,eamu) dx
u=g> 0 on €2,
. . . 8
with a; € (0, 1) for all i. Indeed if p < and
m+1

/ (e“1 4 et .. e“”’“l) dx = / (e“2 4 et ... e“’"“z) dx,
Q Q

then we must necessarily have u; = uy. In particular, Corollary 1.2 also generalizes to the
above equation. The case where a; > 1 fore some i can be carried out as well and we refer to
Remark 1.5 for more details.

On the other hand, for the general case supp P C [—1, 1], the problem (2) substantially
differs from the standard equation (4). In this case we may rewrite (1) as

et — p—au

no.
ol tem)de )

u=20 on 092,
with a € (0, 1]. Observe that u = 0 is a solution of the latter problem. We indeed show that

—Au=p

8w
for p < I

n the trivial solution is the only solution.
a

8
Theorem 1.4. Suppose p < I il and Q@ C R2 bounded, simply-connected. Then, Eq. (7)
a

admits only the trivial solution u = 0.

The proof is based on the sphere covering inequality (see Section 2 in [17] ). Roughly
speaking, letting v; = u, v, = —au we will consider a symmetrization of v, — v; with respect
to two suitable measures to get the conclusion.
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Remark 1.5. Let us point out that in Egs. (5) and (7) we are consideringa < land a<1
(respectively) due to the physical motivations. However, we can treat the case a > 1 as well.
More precisely, letting v = au in (5) we may rewrite the latter equation in a form to which
we can apply Theorem 1.2 with a new parameter o = ap. Therefore, the conclusions of

4
Theorem 1.1 and Corollary 1.2 still hold true for p < il and a > 1. On the other hand,

a
one can easily see from the proof of Theorem 1.4 that the assumption a < 1 is not needed
and we get the same conclusion for a > 1.

Remark 1.6. The same arguments clearly apply to the following version of (1):
—Au =¢é"+ @—le"‘” in Q,
(8)
u=g(x) >0 on 9§2.
We have:
1. Leta = a € (0,1). Suppose 2 C R? is a bounded, simply-connected domain and g €
C(9%2) is a non-negative function. If u; and u; are two solutions of (8) such that

/ e dx = / e dx < 4,
Q Q
then u; = us.

Moreover, suppose that €2 and g are evenly symmetric about a line. Let u be a solution
of (8) Then, u is evenly symmetric about that line. In particular, if €2 is radially symmetric
and g is a non-negative constant, then u is radially symmetric.

2. Leta = —a,a € (0,1]. Suppose 2 C R? bounded, simply-connected. If u is a solution of
(8) with ¢ = 0 such that
8

1+a

/ (e” + e_””) dx <
Q

then u = 0.
Moreover, similar results hold for a > 1 (see Remark 1.5).

The above results follow by suitably adapting the proofs of Theorem 1.1, Corollary 1.2, and
Theorem 1.4 and we omit the details here.

Finally, we have the following remark concerning the sharpness of the above results.

Remark 1.7. Consider for simplicity the standard Sinh-Gordon equation with ¢ = —1 in
(1). Even though the associated energy functional is coercive for p < 8 (see [41]), we can
not extend Theorem 1.1, Corollary 1.2, and Theorem 1.4 to the range p < 8x (as it holds
for the standard mean field equation (4)). In [45] (Section 2) the authors provide non-trivial
solutions for (3) with p < 8.

1.2. Cosmic string equation

We will next discuss the following problem to which we will refer to as the cosmic string
equation:

—Au=e™+h(x)e* inQ,

)
u=gx >0 on 092,
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with a > 0, and @ C R? is a smooth bounded domain containing the origin and 4 is of the
form
h(x) = e NG®) (10)
where N € N and Gy is the Green’s function with pole at 0, i.e.,
—AGy(x) =8¢ in€,
Go(x) =0 onof2.

(11)

Observe that
h>0 inQ\ {0} and h(x) = |x|*N  near 0.

Equation (9) describes the behavior of selfgravitating cosmic strings for a massive W-boson
model coupled with Einstein’s equation where g is a physical parameter and N the string’s
multiplicity (see [37, 50]). Observe that for a = 1 the Eq. (9) is also related to the Gaussian
curvature with conic singularities (see [48] and references therein).

Many results concerning (9) have been established especially for the full plane case. We
refer to [10, 11, 50] for existence results, to [37, 38] for what concerns symmetry issues,
and to [47] for blow-up analysis. In particular, in [37, 38] the authors provide necessary
and sufficient conditions for the solvability of (9) in the full plane in the context of radially
symmetric solutions, depending on the values of the total mass § = fRZ (e“” + |x|2N e”) dx.
For N € (—1,0] it follows from a moving plane argument that all the solutions to (9) are
radially symmetric, under suitable assumptions on the domain 2. However, it remains an
open problem if the results in [37, 38] are sharp for the non-radial framework. We prove the
following result.

Theorem 1.8. Let @ C R? be a bounded, simply-connected domain, a > 0, N > 0
and g € C(02) be non-negative. Suppose uy and uy are two distinct solutions of (9)
such that

8w
Jo (e + ey dx < — if a=1,
a

(12)
Jo (e +e2)dx <8t  if a<l
Then uy and uy can not intersect, i.e., either
Uy > U or Uy < U in Q. (13)

Corollary 1.9. Let @ C R? be a a bounded, simply-connected domain, a > 0, N > 0 and
g € C(0R2) be non-negative. Assume

4
er“”dx§7 if a>1,

Joetdx <4m if a<l

(14)

Then (9) has a unique solution u for any y satisfying (14). In particular, if 0 € Q and Q, g are
evenly symmetric about a line passing through the origin, then u is evenly symmetric about that
line. Consequently, if Q2 is radially symmetric about the origin and g is a non-negative constant,
then u is radially symmetric about the origin.
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The proof is based on a simple manipulation of Eq. (9) and the sphere covering inequality
(see Theorem 2.5 below or [17]).

Remark 1.10. Theorem 1.8 and Corollary 1.9 can be generalized for the following more
general equation (we refer to [38] for applications of this equation)

m
—Au= Z hi(x) e*™ in L,
i=0
u=gkx >0 on €2,
where g; > 0 and
hi(x) — e—47TNiG0(X)’

with N; > 0 for all i. Let aps = max;{a;}. Using similar arguments as in the proofs of Theorem
1.8, one can check the assumptions (12) and (14) (where m = 1) should be replaced by

f (e“M“1 + e“M“Z) dx < _tem ,
Q aM(m + 1)
and

/ eaMu dx 5 8—7-[’

Q aM(m + 1)
respectively.

1.3. Liouville-type systems

We also study the following class of Liouville-type systems:
—Au; = Ae"t — Be2

—Auy = Bl — Alet n (15)
U = up = g(x) on 0€2,
with g € C(9€2) and
A,A',B,B >0, A+A =B+B :=M>0. (16)

Observe that we allow some of the above coefficients to be zero.

The latter system is deeply connected both with geometry and mathematical physics. For
example, by taking A = B’ = 2, B = A’ = 1 we recover the 2 x 2 Toda system which has been
extensively studied in the literature. This equation appears in the description of holomorphic
curves in CPN (see [7, 9, 32]). It also arises in the non-abelian Chern-Simons theory in the
context of high critical temperature superconductivity (see [15,47, 50]). The case A = B’ = 1
and B = A" = t with a singular source was considered in [39] in unbounded domains.

For what concerns Toda-type systems we refer to [28, 30, 31] for blow-up analysis, to [32]
for classification issues, and to [5, 23, 34] for existence results. On the other hand, we are
not aware of any symmetry or uniqueness results for Liouville-type systems alike (15). In this
direction we provide the following result.
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Theorem 1.11. Let (11, uz) be a solution of (15) and (16). Let M be as defined in (16). Suppose
that Q is a bounded, simply-connected domain and

Then u; = uy = u, where u is the unique solution to
—Au=De* ingQ,
{ u=g(x) onods,
andD:=A—-B=B — A’

Remark 1.12. For Toda-type systems where A = B' = 2, B = A’ = 1, the above result asserts
that if Q is bounded, simply-connected and

then u; = up = u, where u is the unique solution to
—Au =¢é" in €2,
u=g(x) onodS.

Arguing as in the proof of the sphere covering inequality (see Section 2 below or [17]),
we will consider a symmetrization of u; — u; with respect to two suitable measures to get
the latter result. The uniqueness property will then follow by applying the sphere covering
inequality to the scalar equation.

A similar argument can be carried out for the following singular version of (15):

—Au; = Ae*! — Be"2 — 4w ady

in 2,
—Auy = Be2 — Ae" — 4ady (17)
up = uy = gx) on 0€2,

where ¢ > 0 and 0 € . Recall the definitions of M, D in (16) and in Theorem 1.11,
respectively. By using the Green’s function Gy with pole at 0 as in (11) we may consider

ui(x) = u(x) + 4raGy(x) (18)
which satisfies
— A% = Ah(x)e"t — Bh(x)e™
- - - in 2,
—Aly = Bh(x)e*? — A’h(x)e"
U =1 = g(x) on 92,
with h(x) = e~ 472G0®) We have the following result.

Theorem 1.13. Let (uy,uz) be a solution of (17) with @ > 0 and (16). Let u; be as in (18).
Suppose 2 is bounded, simply-connected and
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Then u; = uy = u, where u is the unique solution to
—Au=De" —4nrady in$,

u =g(x) on 0€2.

The next remark concerns a possible generalization of the results we have obtained so far
for multiply-connected domains.

Remark 1.14. All the previous results hold for multiply-connected domains with constant
boundary condition, i.e., g(x) = ¢ € R. This follows from the same arguments and the sphere
covering inequality (Theorem 2.5) for multiply-connected domains. See Remark 2.6 below.

The paper is organized as follows. In Section 2 we recall the main ingredients of the
sphere covering inequality. In Section 3 we present our strategy for proving the uniqueness
result of Theorem 1.1, the symmetry result of Corollary 1.2, and the uniqueness result of
Theorem 1.4. In Section 4 we show how to get the no intersection property of Theorem 1.8 and
the symmetry property of Corollary 1.9. In Section 5 we provide the proof of the uniqueness
result inTheorems 1.11 and 1.13.

1.4. Notation

The symbol B, (p) will denote the open metric ball of radius 7 and center p. Where there is no
ambiguity, with a little abuse of notation we will write x and dx to denote (x, y) € R? and the
integration with respect to (x, y), respectively.

2, The sphere covering inequality

In this section we recall the main ingredients of the sphere covering inequality proved in [17]
as we will need them in the sequel. Roughly speaking, the latter result asserts that the total
area of two distinct surfaces with Gaussian curvature equal to 1, conformal to the Euclidean
unit disk with the same conformal factor on the boundary, must cover the whole unit sphere
after a proper rearrangement. See [17] for more details. Let us start by recalling the standard
Bol’s isoperimetric inequality as in [46, 49] (see also [6] in its original form).

Proposition 2.1. Let Q@ C R? be a simply-connected set and u € C*(S2) be such that
Au+éet >0 and /e”dx§8rr.
Q

Then, for any @ CC 2 of class C' it holds

(s =3 (o) o [ o2)

The basic function, which satisfies the above properties and will be used in the sequel, is
the following:

)\.2|X|2

Up(x) = —2In (l + ) +2InA, (19)
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for A > 0. Observe that
)\2’,2
AU, 4 eV =0 and / eV dx = 87 ——>
B,(0) 8+ A%r

forallr > 0.
Now the idea is to consider symmetric rearrangements with respect to two distinct
measures. More precisely, let w € C%(R2) be such that

Aw + ¢ > 0. (20)

Then, any function ¢ € C?*(Q) can be equimeasurably rearranged with respect to the
measures e" dx and eV dx (see [3]). Indeed, for t > min g @ (x) let B} be the ball centered

at the origin such that
/ et dx = / e" dx.
By (o>t}

Then, if we let ¢* : Bf — R to be ¢*(x) = sup{t € R : x € B}, it holds that ¢*
is a symmetric equimeasurable rearrangement of ¢ with respect to the measures e¢” dx and

eVt dx, ie.,
f eVUr dx = / e” dx, (21)
{p*>1} {p>1}

for all t > min _g ¢ (x). Moreover, by using Bol's inequality stated in Proposition 2.1 we get
the following estimate on the gradient of the rearrangement (see [17]).

Proposition 2.2. Let w € C2(Q) be such that it satisfies (20) with @ C R? being simply-
connected. Let Uy, be as in (19). Suppose ¢ € C*(Q) is such that ¢ = C on Q. If ¢p*
is the equimeasurable symmetric rearrangement of ¢ with respect to the measures " dx and
eV dx, then

/ |Vo*| do S/ Vol do,
{p*=t} {p=t}

forall t > min g ¢ (x).
We shall also need the following counterpart of Bol’s inequality in the radial setting
(see [17]).

Proposition 2.3. Let ¥ € C%!(Br(0)) be a strictly decreasing radial function satisfying

/ V| do < / eV dx fora.e.re (0,R) and / eV dx < 8.
3B,(0) B,(0) Br(0)

Then
v 2
(/ 62d0’> Z—(/ ewdx) <8n—/ ewdx>.
9BR(0) 2 \JBr0) Br(0)

The main idea is then to relate the strictly decreasing radial function i with two
radial solutions U,,,U,, defined in (19) with Ay >X;, such that Y =U,, =U,,
on dBg(0).
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Proposition 2.4. U, , Uy, defined in (19) with A, > Aj. Let ¢ € C%1(Bgr(0)) be a strictly
decreasing radial function satisfying

/ VY| do < / eV dx fora.e.r € (0,R) (22)
9B,(0)

B,(0)

and y = Uy, = U,, on dBr(0). Then, either

/ eV dx < / eUn dx or / eV dx > / eV dx.
Br(0) Br(0) Br(0) Br(0)

Moreover, we have

/ (eUll + eUkZ) dx = 8.
Br(0)

We can now state the sphere covering inequality as in [17].

Theorem 2.5. Let Q@ C R? be a simply-connected set and let w; € C*(Q), i = 1,2 be such
that

Aw; + " = fi(x) in Q, (23)
where f, > fi > 0 in Q. Suppose

{Wz >wp, wp Ewp inQ,

Wy = W on 0€2,

Then, it holds

/ (ew1 + ewz) dx > 8.
Q

Moreover, if some f; % 0 then the latter inequality is strict.

The idea is to consider a symmetric rearrangement ¢ of w, — w; with respect to the
measures e"! dx and eVt dx for a suitabler,. Then, by using Eq. (23) and the properties of
the rearrangements (see also Proposition 2.2), it is possible to show that (22) holds true for
Y = U,, + ¢. Applying then Proposition 2.4 one can deduce that

/ (e + ") dx > / (e +eY2) dx = 87
Q Br(0)

See [17] for full details.

Remark 2.6. We point out that the sphere covering inequality holds as long as Bol’s inequality
holds. Indeed, if Aw+e" > 0in 2 which is simply-connected, then Bol's and sphere covering
inequalities hold in any region €; C €2 for general boundary data. In particular, ©2; does not
need to be simply-connected. Moreover, Bol’s inequality and sphere covering inequalities hold
for a multiply-connected domain €2, provided that we have constant boundary conditions
(see [4]).
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3. Asymmetric Sinh-Gordon equation

In this section we study uniqueness and symmetry of solutions of asymmetric Sinh-
Gordon equation (1), and prove Theorems 1.1 and 1.4. The first one relies mainly on
the sphere covering inequality (see Theorem 2.5). On the other hand, the second one is
based on the arguments which yield the sphere covering inequality, which we collected in
Section 2.

Let us start with the case supp P C [0, 1] which we recall here for convenience

u au
Jo (e + &™) dx (24)
u:g(x) >0 on 0<2,

witha € (0,1), p > 0,and g € C(92).

Proof of Theorem 1.1. Let u; and uy be solutions of Eq. (24) satisfying the assumptions of
Theorem (1.1). We aim to show that u; = u,. We proceed by contradiction by assuming that
this is not the case. Rewrite Eq. (24) as

2e4 ol — U
A = .
wt pr (e + e) dx pr (et + em) dx
Let
v:u—i—logZ—}—logp—log(/ (" + &™) dx). (25)
Q
Then v satisfies
u __ au
Avte =fu) = pr° (26)

,on (e + e) dx

It follows from (6) that there exists two regions 1,2, C € (not necessarily simply-
connected) such that u; > u; in Qq, up > ug in 3, and u; = uy on 927 U 92,. We
have that v1, v, defined by (25) satisty

Avi+ €' = f(u;) in Q.
Moreover
1 >1v, IinQ, v, >v; in and i =v, ondf2; Uai,.

Since g > 0, both solutions u; and u, are positive in € by the maximum principle. By the
latter fact it is also easy to see that

f@u1) > f(u2) >0 in and f(uz) > f(u1) >0 in 5.

Therefore, by applying the sphere covering inequality (Theorem 2.5, see also Remark 2.6), we
get (observe that f; # 0)

T R PR
Q (951 Q)
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Recalling now the definition of v in (25) and (6) we have

2p
4 — ui aul ui aul
0 fQ(e“1+e“”1) T (/;z(e + ¢ )dx-i—v/g(e + ¢ )dx)

2,0 Ui up / v v
215@m+wwudx£ﬁe +e) dx= | (" +e%) dx> L6

Hence p > 4, which is a contradiction. The proof is now complete. O

Proof of Corollary 1.2. Without loss of generality we can assume that Q and g are evenly
symmetric with respect to the line y = 0. Suppose u is a solution of (5), which is not evenly
symmetric about y = 0. Then u; = u and uy(x, y) = u(x, —y) are two distinct solutions of
(5) satisfying the condition (6). Thus it follows from Theorem 1.1 that p > 4. O

We consider now the general case supp P C [—1, 1] which yields to (7), i.e.:
et — g—au

in €2,

Jo (e + ) dx (27)

u=0 on 0€2,

—Au=p

with a € (0,1), p > 0. We give here the proof of the uniqueness result for the trivial solution
u=0.

Proof of Theorem 1.4. Let u be a solution of (27). We will show that # = 0 in Q. Assume by
contradiction this is not the case and let

vi = —au + log p — log (/ (e" +e ™) dx) ,
Q

(28)
vy = u—+log p — log </ (e" +e™™) dx) '
Q
Then we have
Ay —v) + (1 +a)(e”? —e) =0.
Letting further
wi = v; +log(1 + a), i=1,2, (29)
we deduce
A(wy —wy) + (e — ") = 0. (30)

Since u = 0 on 9%, we get
w1 = wy = log(1 + a) + log p — log (f (e” + e_““) dx) on 9Q2. (31)
Q

It follows that there exists at least one region Q C Q (not necessarily simply-connected) such
that

{wl % w, in S~2, (32)

W] =w; onasl,
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and
A(wy — wy) + (ew2 — Wl) =0 in Q. (33)

We point out that Q may coincide with Q. Without loss of generality we may assume wy > wy.
From Eq. (27) and the definitions of w; in (28) and (29) we derive that

Avi + ae”t = ge”?

and thus

Awy +e" = ——
! (1+a

We now proceed as in the proof of the sphere covering inequality. Let A, > X; be such that
U, > Uy, in B1(0) and Uy, = U,, on 9B (0), where Uj, is given as in (19), and such that

-/Newl dx = / eUn dx.
Q B1(0)

Since w satisfies (34) we can find a symmetric equimeasurable rearrangement ¢* of w, — w;
with respect to the two measures e"! dx and eYn1 dx. See the discussion after (20). In particular

we have
/ e dx = / e dx
{p*>t} {wr—w1>t}

for t > 0. We first estimate the gradient of the rearrangement by Proposition 2.2, then exploit
Eq. (33), the equation satisfied by Uj, and the properties of the rearrangements to obtain

/ V"] do 5/ IV.(ws — wi)l do
{p*=t} {w2—wr1=t}
= / (e" —e™) dx
{wr—wy>t}

= / eUnte" gy — / eUn dx
{p*>t} {p*>t}

:/ U T¢* dx—/ VU, | do,
{p*>1} {p*=t}
for a.e. t > 0. Therefore

[ v o< [ neay
{p*=t} {p*>t}

e + ae"z) >0 in Q. (34)

fora.e.t > 0.Since ¢* is decreasing by construction, U, , +¢™* is a strictly decreasing function.
Moreover, by the above estimate we derive

/ |V(U,\1 + ga*)l do < / eUnte” gy fora.e.r > 0. (35)
9B,(0) B (0)

Furthermore, since ¢* > 0, we clearly have

/ eUnte" gy > / eUn dx.
B1(0) B1(0)
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By the latter estimate, (34) and (35) we can exploit Proposition 2.4 with ¢ = U, + ¢* to get

/ eUnte" gy > / V2 dx.
B1(0) B1(0)
Thus

/N (eW1 + ewz) dx = / <eU*1 + eUli””*) dx > / (eUAl + eUAZ) dx = 8.
Q B1(0) B1(0)

Recall now the definitions of w; in (28) and (29). We have

p(l + a) u —au
fQ (e”—l—e—“”) T /fz(e +e ) dx > 8w,

and hence
8w o

u —au d .
1—|—a§f9(e”+e_“”)dx/§(e T dese

The above inequality is indeed strict. To see this, we note that the equality would yield the
equality in (35) which corresponds to equality in Bol’s inequality in Proposition 2.1 for w;
and consequently w; should satisfy Aw; + "' = 0, which contradicts (34). In view of the

, we therefore have shown u = 0 in  as desired. O

. 8w
assumption p < =
a

4, Cosmic string equation

In this section we study the cosmic string equation
—Au=e™+ h(x)e* in €,
(36)
u=g(x) >0 on 0€2,
witha > 0and h as in (10). We will rewrite this equation in a form suitable to apply the sphere
covering inequality, Theorem 2.5, to prove Theorem 1.8.

Proof of Theorem 1.8. First suppose a > 1. Let u; and u, be two solutions of (36) witha > 1,
N > 0 satisfying (12). We proceed by contradiction. Suppose there exists €21, 2, C € (not
necessarily simply-connected) such that

u; > up in and up > u; in Q.
The Eq. (36) can be rewritten as
Au+ 2™ = ™ — h(x) "
Multiply this equation by a and let
v =au+log(2a). (37)

Then v satisfies

Av+e' =f(u):= a(e“” — h(x) e”). (38)
Let v, v2 be defined by (37) (u replaced by u; and uy, respectively). Then we have

Avi+ €' = f(u;) in Q.
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Furthermore, we get
1>V, inQ;, wm>v Iin and v =v, onadf2 UodRs.

Since g > 0, it follows from the maximum principle that both solutions u; and u; are positive
inside 2. Note also that h(x) < 1. It is now easy to see that

f(u1) > f(up) >0 in and f(uz) > f(u1) >0 in ;.

By the sphere covering inequality (Theorem 2.5, see also Remark 2.6) we conclude that

/ (" +¢%) dx > f (" +¢) dx + / (¢ +¢%) dx > 16m.
Q Qi 1953

Using the expression of v in (37) we deduce
Za/ (e““1 —i—e““Z) dx > 167,
Q

which contradicts the assumption

For what concerns the case a < 1 we write (36) in the form
Au+ 26" = (e” — ™) + (e” — h(x) e”).
The argument is then developed as before so we skip the details. The proof is now complete.

O

Proof of Corollary 1.9. Without loss of generality we assume that €2 and g are evenly symmet-
ric with respect to the line y = 0. Observe that the associated Green’s function (and hence A,
see (10)) is evenly symmetric with respect to the line y = 0. We consider just the case a > 1
since for a < 1 one can proceed in the same way. Suppose u is a solution of (5) satistying (14),
which is not evenly symmetric about y = 0. Then u; = u and u,(x, y) = u(x, —y) are two
distinct intersecting solutions of (9). It follows from Theorem 1.8 that

8
2/ e““dx:/ (e““1 +e““2) dx > —n.
Q Q a

which contradicts (14). O

5. Liouville-type systems in domains
In this section we consider the class of Liouville-type systems
—Au; = Ae't — Be2
in €,
—Auy = Ble"2 — Ale (39)
Uy = Uy = g(x) on 9%,
where A, A’, B, B’ satisfy condition (16), and prove Theorem 1.11.

Proof of Theorem 1.11. Let (u;, u;) be a solution of (39). We will prove that there exists a
unique u solving a mean field equation as stated in Theorem 1.11 such that u; = u; = u
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in Q. Assume by contradiction u; £ uy. Asin the proof of Theorem 1.4, the strategy is to apply
the argument of the sphere covering inequality in Theorem 2.5 (see Section 2) to the functions
u; and uy. We start by recalling that the coefficients in (39) are such that A+ A" = B+B' := M.
Hence

A(up —up) + M (e — ") = 0.

Letting
w; = u; + log M, i=12, (40)
we deduce that
A(wy —wy) + (e — ") =0, (41)
and
wy; = wy = log M + g(x) on 0L2. (42)

It follows that there exists at least one region Q C Q (not necessarily simply-connected) such
that

wy # wy in EZ,
~ (43)
w] =w,; onosl,

and
Awy —w) + (e —e")=0 inQ. (44)
Without loss of generality we can assume w, > wj in Q.

Using the first equation in (39), the definitions of w; in (29), and the fact that M = A + A’
we get

Au; + Ae¥! = Be*2

and hence
/

Awy + " = ( e+ Be“2> >0 in Q. (45)

A+ A

The rest of the argument is very similar to the proof of Theorem 1.4 so we will skip the details.
Let A, > Xy be such that Uy, > Uy, in B1(0) and Uy, = U,, on dB;(0), where U, is given as

in (19), and
/~ e dx = / eUn dx.
Q B1(0)

Recalling (45) we can find a symmetric equimeasurable rearrangement ¢* of w, — wy with
respect to the two measures e"! dx and 1 dx. Reasoning as in the proof of Theorem 1.4
we get

/ IV(Uy, +¢*)ldo < / eVt dx fora.e.r > 0.
dB,(0) B+(0)

Furthermore Uy, + ¢™ is a strictly decreasing function. Hence from Proposition 2.4 to y =

Uy, + ¢* we deduce
/ eUnte" gy > / e dx.
B1(0) B1(0)
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Therefore

/~ (ew1 + ewz) dx = / (eUAl + eUli”p*) dx > / (eUAl + eUM) dx = 8.
Q B1(0) B1(0)

It follows from the definitions of w; that
M /; (e”1 + e“z) dx > 8m.
Q

Thus
8w

— <[ (e”1 +e”2) dx < / (e”1 +e”2) dx.
M —Jg Q

Arguing as in the proof of Theorem 1.4 it is easy to show that the latter inequality is strict,
which is a contradiction. Hence u; = u, in Q. Letting u := u; = u, and using the system

(39) we get
—Au=De"* in{,
u=g(x) onaL,
where werecall D:= A — B= A’ — B'. Note that M := A + A’ = B + B’ and hence
A—B
A+ A

Since €2 is simply-connected and the latter bound holds true, by the sphere covering
inequality of Theorem 2.5 we deduce that u is unique. This concludes the proof of
Theorem 1.11. O

< 4.

D
/ De' dx < 4w — = 4w
Q M

We conclude this section by giving the proof of Theorem 1.13 regarding the uniqueness of
solutions of the system

—Au; = Ae"! — Be"2 — 4mrady

—Auy = Be2 — Ae" — 4ady (46)

up =up = g(x) on 0L2.
Proof of Theorem 1.13. Let (uy, uz) be a solution of (46) with & > 0. By using the Green’s
function Gy with pole in 0 as in (11) we desingularize the problem by setting

Ui (x) = u(x) + 4raGy(x).

Indeed (46) is equivalent to

— A% = Ah(x)e' — Bh(x)e™

AT = Bh@ER — Ah@en . (47)
U =y = g(x) on 9%,
where
h(x) = e 4m@Co), (48)
Observe that

h>0 inQ\{0} and  h(x) = |x[** nearO.
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Assume now by contradiction that %i; # % and suppose, without loss of generality, that
Uy > U in € Q. Recall that A + A" = B+ B’ := M. Therefore, by (47) we have

Aty —uy) + Mh(x) (eaz — eal) =0.
Note also that k(x) < 1. Since %, > #; in 2 we deduce
A — ) +M(e? —é1) >0 inQ.

With an argument similar to the one in the proof of Theorem 1.11 we get a contradiction.
Thus %; = U, := U and ¥ satisfies

— A% =Dh(x)é" inQ,
u=g(x) on %2,

where D := A — B = A’ — B'. Arguing as in the proof of Theorem 1.11 we deduce that % is
unique. O
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