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We report results of a deep all-sky search for periodic gravitational waves from isolated neutron
stars in data from the first Advanced LIGO observing run. This search investigates the low
frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored
in initial LIGO. The search was made possible by the computing power provided by the volunteers
of the Einstein@Home project. We find no significant signal candidate and set the most stringent
upper limits to date on the amplitude of gravitational wave signals from the target population,
corresponding to a sensitivity depth of 48.7 [1/

√
Hz]. At the frequency of best strain sensitivity, near

100 Hz, we set 90% confidence upper limits of 1.8×10−25. At the low end of our frequency range, 20
Hz, we achieve upper limits of 3.9×10−24. At 55 Hz we can exclude sources with ellipticities greater
than 10−5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038kg m2.

I. INTRODUCTION

In this paper we report the results of a deep all-sky Ein-
stein@Home [1] search for continuous, nearly monochro-
matic gravitational waves (GWs) in data from the first
Advanced LIGO observing run (O1). A number of all-sky
searches have been carried out on initial LIGO data, [2–
15], of which [2, 3, 7, 9, 14] also ran on Einstein@Home.
Einstein@Home is a distributed computing project which
uses the idle time of computers volunteered by the gen-
eral public to search for GWs.
The search presented here covers frequencies from

20 Hz through 100 Hz and frequency derivatives from
−2.65 × 10−9 Hz/s through 2.64 × 10−10 Hz/s. A large
portion of this frequency range was not explored in initial
LIGO due to lack of sensitivity. By focusing the available
computing power on a subset of the detector frequency
range, this search achieves higher sensitivity at these low
frequencies than would be possible in a search over the
full range of LIGO frequencies. In this low-frequency
range we establish the most constraining gravitational
wave amplitude upper limits to date for the target signal
population.

II. LIGO INTERFEROMETERS AND THE

DATA USED

The LIGO gravitational wave network consists of two
observatories, one in Hanford (WA) and the other in Liv-
ingston (LA) separated by a 3000-km baseline [16]. The
first observing run (O1) [17] of this network after the
upgrade towards the Advanced LIGO configuration [18]
took place between September 2015 and January 2016.
The Advanced LIGO detectors are significantly more sen-
sitive than the initial LIGO detectors. This increase in
sensitivity is especially significant in the low-frequency
range of 20 Hz through 100 Hz covered by this search:
at 100 Hz the O1 Advanced LIGO detectors are about a
factor 5 more sensitive than the Initial LIGO detectors
during their last run (S6 [19]), and this factor becomes

≈ 20 at 50 Hz. For this reason all-sky searches did not
include frequencies below 50 Hz on initial LIGO data.
Since interferometers sporadically fall out of operation

(“lose lock”) due to environmental or instrumental dis-
turbances or for scheduled maintenance periods, the data
set is not contiguous and each detector has a duty fac-
tor of about 50%. To remove the effects of instrumental
and environmental spectral disturbances from the anal-
ysis, the data in frequency bins known to contain such
disturbances have been substituted with Gaussian noise
with the same average power as that in the neighbouring
and undisturbed bands. This is the same procedure as
used in [3]. These bands are identified in the Appendix.

III. THE SEARCH

The search described in this paper targets nearly
monochromatic gravitational wave signals as described
for example by Eqs. 1-4 of [9]. Various emission mecha-
nisms could generate such a signal, as reviewed in Section
IIA of [15]. In interpreting our results we will consider a
spinning compact object with a fixed, non-axisymmetric
ℓ = m = 2 mass quadrupole, described by an equatorial
ellipticity ǫ.
We perform a stack-slide type of search using the GCT

(Global correlation transform) method [20–22]. In a
stack-slide search the data is partitioned in segments, and
each segment is searched with a matched-filter method
[23]. The results from these coherent searches are com-
bined by summing the detection statistic values from the
different segments, one per segment (Fi), and this deter-
mines the value of the core detection statistic:

F :=
1

Nseg

Nseg∑

i=1

Fi. (1)

The “stacking” part of the procedure is the summing and
the “sliding” (in parameter space) refers to the fact that
the Fi that are summed do not all come from the same
template.
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the technical details: A transition-scale parameter F̂ (0)
∗

is used to tune the behaviour of the β̂S/GLtL statistic

to match the performance of the standard average 2F
statistic in Gaussian noise while still statistically out-
performing it in the presence of continuous or transient
single-detector spectral disturbances. Based on injection
studies of fake signals in Gaussian-noise data, we set an

average 2F transition scale of F̂ (0)
∗ = 65.826. According

to Eq. 67 of [30], with Nseg = 12 this 2F value cor-
responds to a Gaussian false-alarm probability of 10−9.
Furthermore, we assume equal-odds priors between the
various noise hypotheses (“L” for line, “G” for Gaussian,
“tL” for transient-line).

B. Identification of undisturbed bands

Even after the removal of disturbed data caused by
spectral artefacts of known origin, the statistical prop-
erties of the results are not uniform across the search
band. In what follows we concentrate on the subset of the
signal-frequency bands having reasonably uniform statis-
tical properties, or containing features that are not imme-
diately identifiable as detector artefacts. This comprises
the large majority of the search parameter space.
Our classification of “clean” vs. “disturbed” bands

has no pretence of being strictly rigorous, because strict
rigour here is neither useful nor practical. The classi-
fication serves the practical purpose of discarding from
the analysis regions in parameter space with evident dis-
turbances and must not dismiss detectable real signals.
The classification is carried out in two steps: an auto-
mated identification of undisturbed bands and a visual
inspection of the remaining bands.
An automatic procedure, described in Section IIF of

[31], identifies as undisturbed the 50-mHz bands whose

maximum density of outliers in the f − ḟ plane and aver-
age 2F are well within the bulk distribution of the values
for these quantities in the neighbouring frequency bands.
This procedure identifies 1233 of the 1600 50-mHz bands
as undisturbed. The remaining 367 bands are marked as
potentially disturbed, and in need of visual inspection.
A scientist performs the visual inspection by looking

at various distributions of the β̂S/GLtL statistic over the
entire sky and spindown parameter space in the 367 po-
tentially disturbed 50-mHz bands. She ranks each band
with an integer score 0,1,2 ranging from “undisturbed”
(0) to “disturbed” (2) . A band is considered “undis-
turbed” if the distribution of detection statistic values
does not show a visible trend affecting a large portion
of the f − ḟ plane. A band is considered “mildly dis-
turbed” if there are outliers in the band that are localised
in a small region of the f − ḟ plane. A band is consid-
ered “disturbed” if there are outliers that are not well
localised in the f − ḟ plane.

Fig. 2 shows the β̂S/GLtL for each type of band. Fig. 3

shows the β̂S/GLtL for a band that harbours a fake signal

injected in the data to verify the detection pipelines. In
the latter case, the detection statistic is elevated in a
small region around the signal parameters.
Based on this visual inspection, 1% of the bands be-

tween 20 and 100 Hz are marked as “disturbed” and ex-
cluded from the current analysis. A further 6% of the
bands are marked as “mildly disturbed”. These bands
contain features that can not be classified as detector
disturbances without further study, therefore these are
included in the analysis.
Fig. 4 shows the highest values of the detection statis-

tic in half-Hz signal-frequency bands compared to the
expectations. The set of candidates from which the high-
est detection statistic values are picked, does not include
the 50-mHz signal-frequency bands that stem entirely
from fake data, from the cleaning procedure, or that were
marked as disturbed. Two 50-mHz bands that contained
a hardware injection [32] were also excluded, as the high
amplitude of the injected signal caused it to dominate
the list of candidates recovered in those bands. In this
paper we refer to the candidates with the highest value
of the detection statistic as the loudest candidates.
The highest expected value from Gaussian noise over

Ntrials independent trials of 2F is determined1 by numer-
ical integration of the probability density function given,
for example, by Eq. 7 of [33]. Fitting to the distribution
of the highest 2F values suggests that Ntrials ≃ Ntempl,
with Ntempl being the number of templates searched.

The p-value for the highest 2F measured in any half-Hz
band searched with Ntrials independent trials is obtained
by integrating the expected noise distribution (χ2

4Nseg

given in Section III) between the observed value and in-
finity, as done in Eq. 6 of [33]. The distribution of these
p-values is shown in Fig. 5 and it is not consistent with
what we expect from Gaussian noise across the measured
range. Therefore, we can not exclude the presence of a
signal in this data based on this distribution alone, as
was done in [3].

IV. HIERARCHICAL FOLLOW UP

Since the significance of candidates is not consistent
with what we expect from Gaussian noise only, we must
investigate “significant” candidates to determine if they
are produced by a signal or by a detector disturbance.
This is done using a hierarchical approach similar to what
was used for the hierarchical follow-up of sub-threshold
candidates from the Einstein@Home S6 all-sky search [2].
At each stage of the hierarchical follow-up a semi-

coherent search is performed, the top ranking candidates
are marked and then searched in the next stage. If the
data harbours a real signal, the significance of the recov-
ered candidate will increase with respect to the signifi-
cance that it had in the previous stage. On the other

1 After a simple change of variable from 2F to Nseg × 2F .
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ID f [Hz] α [rad] δ [rad] ḟ [Hz/s] 2F 2FH1 2FL1 2FDM-off

1 58.970435900 1.87245 −0.51971 −1.081102× 10−9 81.4 48.5 33.4 55
2 62.081409292 4.98020 0.58542 −2.326246× 10−9 81.9 45.5 39.0 52
3 97.197674733 5.88374 −0.76773 2.28614× 10−10 86.5 55.0 31.8 58
4 99.220728369 2.842702 −0.469603 −2.498113× 10−9 80.2 41.4 45.8 55

TABLE III. Stage-3 follow-up results for each of the 4 candidates that survive the DM-off veto. For illustration purposes
in the 7th and 8th column we show the values of the average single-detector detection statistics. Typically, for signals, the
single-detector values do not exceed the multi-detector 2F .

Parameter Value

Tcoh 2160 hrs
Tref 1168447494.5 GPS sec
Nseg 1
δf 9.0× 10−8 Hz

δḟc 1.1× 10−13 Hz/s
γ 1

msky 4×10−7

TABLE IV. Search parameters, rounded to the first decimal
place, for the follow-up of surviving LIGO O1 candidates in
LIGO O2 data. Tref is the reference time that defines the
frequency and frequency derivative values.

Candidate Expected 2F ± 1σ Loudest 2F recovered
1 85± 18 44
2 90± 19 52
3 84± 18 49
4 77± 17 47

TABLE V. Highest 2F expected after the follow-up in O2
data, if the candidates were due to a signal, compared with the
highest 2F recovered from the follow-up. The 2F expected
in Gaussian noise data is 52± 3.

due to Gaussian noise alone, is 52±3, assuming indepen-
dent search templates.
If a candidate in Table III were due to a signal, the

loudest 2F expected after the follow-up would be the
value given in the second column of Table V. This ex-
pected value is obtained by scaling the 2F in Table III
according to the different duration and the different noise
levels between the data set used for the third follow-up
and the O2 data set. The expected 2F also folds-in a
conservative factor of 0.9 due to a different mismatch of
the O2 template grid with respect to the template grid
used for the third follow-up. Thus the expected 2F in
Table V is a conservative estimate for the minimum 2F
that we would expect from a signal candidate.
The loudest 2F after the follow-up in O2 data is also

given in Table V. The loudest 2F recovered for each
candidate are ≈ 2σ below the expected 2F for a signal
candidate. The recovered 2F are consistent with what is
expected from Gaussian data. We conclude that it is un-
likely that any of the candidates in Table III arises from
a long-lived astronomical source of continuous gravita-
tional waves.

V. RESULTS

The search did not reveal any continuous gravitational
wave signal in the parameter volume that was searched.
We hence set frequentist 90% confidence upper limits on
the maximum gravitational wave amplitude consistent
with this null result in 0.5 Hz bands, h90%

0 (f). Specif-

ically, h90%
0 (f) is the GW amplitude such that 90% of a

population of signals with parameter values in our search
range would have been detected by our search. We de-
termined the upper limits in bands that were marked as
undisturbed in Section III B. These upper limits may
not hold for frequency bands that were marked as mildly
disturbed, which we now consider disturbed as they were
excluded by the analysis. These bands, as well as bands
which were excluded from further analysis, are identified
in Appendix A 3.
Since an actual full scale fake-signal injection-and-

recovery Monte Carlo for the entire set of follow-ups in
every 0.5 Hz band is prohibitive, in the same spirit as
[2, 5, 31], we perform such a study in a limited set of trial
bands. We choose 20 half-Hz bands to measure the up-
per limits. If these half-Hz bands include 50-mHz bands
which were not marked undisturbed, no upper limit in-
jections are made in those 50-mHz bands.
The amplitudes of the fake signals bracket the 90%

confidence region typically between 70% and 100%. The
h0 versus confidence data is fit in this region with a sig-
moid of the form

C(h0) =
1

1 + exp( a−h0

b )
(7)

and the h90%
0 value is read-off of this curve. The fitting

procedure3 yields the best-fit a and b values and the co-
variance matrix. Given the binomial confidence values
uncertainties, using the covariance matrix we estimate
the h90%

0 uncertainty.
For each of these frequency bands we determine the

sensitivity depth D90% [39] of the search corresponding

to h90%
0 (f):

D90% :=

√
Sh(f)

h90%
0 (f)

[1/
√
Hz], (8)

3 We used the linfit Matlab routine.
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Appendix A: Tabular data

1. Upper limit values

f (Hz) h90%
0 × 1025 f (Hz) h90%

0 × 1025 f (Hz) h90%
0 × 1025 f (Hz) h90%

0 × 1025

20.00 38.8 ± 4.9 20.55 32.2 ± 4.1 21.05 28.2 ± 3.6 21.55 25.5 ± 3.3
22.05 23.3 ± 3.0 22.55 21.6 ± 2.8 23.05 20.7 ± 2.6 23.55 19.9 ± 2.5
24.05 18.9 ± 2.4 24.55 18.4 ± 2.3 25.05 18.7 ± 2.4 25.55 14.6 ± 1.9
26.05 13.3 ± 1.7 26.55 12.8 ± 1.6 27.05 12.2 ± 1.6 27.55 11.1 ± 1.4
28.05 10.2 ± 1.3 28.55 9.0 ± 1.2 29.05 8.7 ± 1.1 29.55 8.2 ± 1.0
30.05 7.8 ± 1.0 30.55 7.6 ± 1.0 31.05 7.8 ± 1.0 31.55 6.9 ± 0.9
32.05 6.5 ± 0.8 32.55 6.4 ± 0.8 33.05 6.3 ± 0.8 33.55 6.2 ± 0.8
34.05 5.8 ± 0.7 34.55 5.9 ± 0.8 35.05 5.8 ± 0.7 35.55 5.8 ± 0.7
36.05 5.6 ± 0.7 36.55 5.6 ± 0.7 37.05 5.2 ± 0.7 37.55 4.8 ± 0.6
38.05 4.7 ± 0.6 38.55 4.6 ± 0.6 39.05 4.3 ± 0.6 39.55 4.3 ± 0.5
40.05 4.2 ± 0.5 40.55 4.3 ± 0.6 41.05 4.2 ± 0.5 41.55 3.9 ± 0.5
42.05 3.8 ± 0.5 42.55 3.7 ± 0.5 43.05 3.7 ± 0.5 43.55 3.6 ± 0.5
44.05 3.6 ± 0.5 44.55 3.9 ± 0.5 45.05 3.5 ± 0.4 45.55 3.3 ± 0.4
46.05 3.2 ± 0.4 46.55 3.1 ± 0.4 47.05 3.0 ± 0.4 47.55 3.0 ± 0.4
48.05 3.0 ± 0.4 48.55 3.0 ± 0.4 49.05 2.9 ± 0.4 49.55 2.9 ± 0.4
50.05 2.9 ± 0.4 50.55 2.8 ± 0.4 51.05 2.8 ± 0.4 51.55 2.8 ± 0.4
52.05 2.8 ± 0.4 52.55 2.8 ± 0.4 53.05 2.7 ± 0.3 53.55 2.7 ± 0.3
54.05 2.7 ± 0.3 54.55 2.8 ± 0.4 55.05 2.8 ± 0.4 55.55 2.7 ± 0.3
56.05 2.7 ± 0.3 56.55 2.7 ± 0.3 57.05 2.8 ± 0.4 57.55 2.8 ± 0.4
58.05 2.9 ± 0.4 58.55 3.0 ± 0.4 59.05 2.9 ± 0.4 59.55 3.3 ± 0.4
60.05 3.2 ± 0.4 60.55 2.7 ± 0.3 61.05 2.7 ± 0.3 61.55 2.6 ± 0.3
62.05 2.6 ± 0.3 62.55 2.6 ± 0.3 63.05 2.6 ± 0.3 63.55 2.7 ± 0.3
64.05 2.7 ± 0.3 64.55 2.7 ± 0.3 65.05 2.7 ± 0.3 65.55 2.6 ± 0.3
66.05 2.5 ± 0.3 66.55 2.5 ± 0.3 67.05 2.5 ± 0.3 67.55 2.5 ± 0.3
68.05 2.5 ± 0.3 68.55 2.5 ± 0.3 69.05 2.5 ± 0.3 69.55 2.6 ± 0.3
70.05 2.5 ± 0.3 70.55 2.5 ± 0.3 71.05 2.5 ± 0.3 71.55 2.4 ± 0.3
72.05 2.4 ± 0.3 72.55 2.4 ± 0.3 73.05 2.4 ± 0.3 73.55 2.4 ± 0.3
74.05 2.4 ± 0.3 74.55 2.4 ± 0.3 75.05 2.4 ± 0.3 75.55 2.3 ± 0.3
76.05 2.2 ± 0.3 76.55 2.2 ± 0.3 77.05 2.2 ± 0.3 77.55 2.2 ± 0.3
78.05 2.2 ± 0.3 78.55 2.2 ± 0.3 79.05 2.2 ± 0.3 79.55 2.2 ± 0.3
80.05 2.2 ± 0.3 80.55 2.2 ± 0.3 81.05 2.2 ± 0.3 81.55 2.2 ± 0.3
82.05 2.2 ± 0.3 82.55 2.2 ± 0.3 83.05 2.2 ± 0.3 83.55 2.2 ± 0.3
84.05 2.1 ± 0.3 84.55 2.1 ± 0.3 85.05 2.1 ± 0.3 85.55 2.1 ± 0.3
86.05 2.1 ± 0.3 86.55 2.2 ± 0.3 87.05 2.2 ± 0.3 87.55 2.1 ± 0.3
88.05 2.0 ± 0.3 88.55 2.0 ± 0.3 89.05 2.0 ± 0.3 89.55 2.0 ± 0.2
90.05 1.9 ± 0.2 90.55 1.9 ± 0.2 91.05 2.0 ± 0.2 91.55 1.9 ± 0.2
92.05 1.9 ± 0.2 92.55 1.9 ± 0.2 93.05 1.9 ± 0.2 93.55 1.9 ± 0.2
94.05 1.8 ± 0.2 94.55 1.8 ± 0.2 95.05 1.8 ± 0.2 95.55 1.8 ± 0.2
96.05 1.8 ± 0.2 96.55 1.8 ± 0.2 97.05 1.8 ± 0.2 97.55 1.8 ± 0.2
98.05 1.8 ± 0.2 98.55 1.8 ± 0.2 99.05 1.8 ± 0.2 99.55 1.8 ± 0.2

TABLE VI: First frequency of each half-Hz signal frequency band in
which we set upper limits and upper limit value for that band. The
uncertainties correspond to the 11% relative difference bracket discussed
in Section V

.
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2. Cleaned-out frequency bins

fL (Hz) LFS (Hz) HFS (Hz) IFO

19.9995 0.001 0.001 L
20.0 0.001 0.001 H

20.24999 0.001 0.001 H
20.25014 0.001 0.001 L

20.5 0.001 0.001 H
20.5 0.001 0.001 L

20.7163 0.002 0.002 L
20.73 0.002 0.002 L

20.74121875 0.001 0.001 H
20.7423125 0.001 0.001 H
20.9995 0.001 0.001 L
21.0 0.001 0.001 H

21.24998 0.001 0.001 H
21.25011 0.001 0.001 L
21.3575 0.001 0.001 L
21.3842 0.001 0.001 L
21.41043 0.001 0.001 L
21.41043 0.001 0.001 L
21.4374 0.001 0.001 L
21.4639 0.001 0.001 L

21.499987 0.001 0.001 L
21.5 0.001 0.001 H

21.7028 0.002 0.002 L
21.7165 0.002 0.002 L
21.7344 0.001 0.001 L
21.9995 0.001 0.001 L
22.0 0.001 0.001 H

22.24997 0.001 0.001 H
22.25008 0.001 0.001 L
22.499974 0.001 0.001 L

22.5 0.001 0.001 H
22.6893 0.002 0.002 L
22.7 0.0005 0.0005 L

22.703 0.002 0.002 L
22.72233 0.001 0.001 L

22.815340625 0.001 0.001 H
22.81654375 0.001 0.001 H

22.9995 0.001 0.001 L
23.0 0.001 0.001 H

23.24996 0.001 0.001 H
23.25005 0.001 0.001 L
23.3039 0.001 0.001 L
23.3306 0.001 0.001 L
23.35683 0.001 0.001 L
23.35683 0.001 0.001 L
23.3838 0.001 0.001 L
23.4103 0.001 0.001 L

23.499961 0.001 0.001 L
23.5 0.001 0.001 H

23.6758 0.002 0.002 L
23.6895 0.002 0.002 L
23.71026 0.001 0.001 L
23.97079 0.0016 0.0008 L
23.9995 0.001 0.001 L
24.0 0.0005 0.0005 H
24.0 0.001 0.001 H

24.24995 0.001 0.001 H
24.25002 0.001 0.001 L
24.499948 0.001 0.001 L

24.5 0.001 0.001 H

fL (Hz) LFS (Hz) HFS (Hz) IFO

24.6623 0.002 0.002 L
24.676 0.002 0.002 L

24.69819 0.001 0.001 L
24.8894625 0.001 0.001 H
24.890775 0.001 0.001 H
24.9995 0.001 0.001 L
25.0 0.001 0.001 H

25.24994 0.001 0.001 H
25.24999 0.001 0.001 L
25.2503 0.001 0.001 L
25.277 0.001 0.001 L

25.30323 0.001 0.001 L
25.30323 0.001 0.001 L
25.3302 0.001 0.001 L
25.3567 0.001 0.001 L

25.499935 0.001 0.001 L
25.5 0.001 0.001 H
25.6 0.0005 0.0005 L

25.6488 0.002 0.002 L
25.6625 0.002 0.002 L
25.68612 0.001 0.001 L
25.9995 0.001 0.001 L
26.0 0.001 0.001 H

26.24993 0.001 0.001 H
26.24996 0.001 0.001 L
26.499922 0.001 0.001 L

26.5 0.001 0.001 H
26.6353 0.002 0.002 L
26.649 0.002 0.002 L

26.67405 0.001 0.001 L
26.963584375 0.001 0.001 H
26.96500625 0.001 0.001 H

26.9995 0.001 0.001 L
27.0 0.001 0.001 H

27.1967 0.001 0.001 L
27.2234 0.001 0.001 L
27.24963 0.001 0.001 L
27.24963 0.001 0.001 L
27.24992 0.001 0.001 H
27.24993 0.001 0.001 L
27.2766 0.001 0.001 L
27.3031 0.001 0.001 L

27.499909 0.001 0.001 L
27.5 0.001 0.001 H

27.6218 0.002 0.002 L
27.6355 0.002 0.002 L
27.66198 0.001 0.001 L
27.9995 0.001 0.001 L
28.0 0.001 0.001 H

28.2499 0.001 0.001 L
28.24991 0.001 0.001 H
28.499896 0.001 0.001 L

28.5 0.001 0.001 H
28.5 0.0005 0.0005 L

28.6083 0.002 0.002 L
28.622 0.002 0.002 L

28.64991 0.001 0.001 L
28.9995 0.001 0.001 L
29.0 0.001 0.001 H

29.03770625 0.001 0.001 H
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fL (Hz) LFS (Hz) HFS (Hz) IFO

29.0392375 0.001 0.001 H
29.1431 0.001 0.001 L
29.1698 0.001 0.001 L
29.19603 0.001 0.001 L
29.19603 0.001 0.001 L
29.223 0.001 0.001 L
29.2495 0.001 0.001 L
29.24987 0.001 0.001 L
29.2499 0.001 0.001 H
29.2767 0.001 0.001 L
29.3031 0.001 0.001 L

29.499883 0.001 0.001 L
29.5 0.001 0.001 H

29.5948 0.002 0.002 L
29.6085 0.002 0.002 L
29.63784 0.001 0.001 L
29.9995 0.001 0.001 L
30.0 0.001 0.001 H

30.24984 0.001 0.001 L
30.24989 0.001 0.001 H
30.49987 0.001 0.001 L

30.5 0.001 0.001 H
30.5813 0.002 0.002 L
30.595 0.002 0.002 L

30.62577 0.001 0.001 L
30.943 0.001 0.001 H
30.9738 0.001 0.001 H
30.9995 0.001 0.001 L
31.0 0.001 0.001 H

31.0895 0.001 0.001 L
31.111828125 0.001 0.001 H
31.11346875 0.001 0.001 H

31.1162 0.001 0.001 L
31.14243 0.001 0.001 L
31.14243 0.001 0.001 L
31.1694 0.001 0.001 L
31.1959 0.001 0.001 L
31.2231 0.001 0.001 L
31.2495 0.001 0.001 L
31.24981 0.001 0.001 L
31.24988 0.001 0.001 H

31.4 0.0005 0.0005 L
31.4127 0.003 0.003 H
31.4149 0.003 0.003 H

31.499857 0.001 0.001 L
31.5 0.001 0.001 H

31.5678 0.002 0.002 L
31.5815 0.002 0.002 L
31.6137 0.001 0.001 L
31.94116 0.001 0.001 H
31.973 0.001 0.001 H
31.9995 0.001 0.001 L
32.0 0.0005 0.0005 H
32.0 0.001 0.001 H

32.24978 0.001 0.001 L
32.24987 0.001 0.001 H
32.499844 0.001 0.001 L

32.5 0.001 0.001 H
33.7 0.01556 0.01556 L
33.8 0.0005 0.0005 L
34.3 0.0005 0.0005 L
34.7 0.02778 0.02778 H

fL (Hz) LFS (Hz) HFS (Hz) IFO

34.7 0.13 0.13 L
35.3 0.02778 0.02778 H
35.3 0.13 0.13 L

35.706385 0.003055 0.003055 L
35.7095265 0.01222 0.01222 H

35.9 0.10222 0.10222 H
35.958055 0.009165 0.009165 L

36.7 0.10722 0.10722 H
36.7 0.0005 0.0005 L
37.3 0.01 0.01 H

38.955 0.001 0.001 L
38.9674 0.001 0.001 H
38.9815 0.001 0.001 L
38.9995 0.001 0.001 L
39.0 0.001 0.001 H

39.0087 0.001 0.001 L
39.0351 0.001 0.001 L
39.24957 0.001 0.001 L
39.2498 0.001 0.001 H

39.408315625 0.001 0.001 H
39.41039375 0.001 0.001 H

39.4598 0.002 0.002 L
39.4735 0.002 0.002 L

39.499753 0.001 0.001 L
39.5 0.001 0.001 H

39.51714 0.001 0.001 L
39.6 0.0005 0.0005 L

39.92644 0.001 0.001 H
39.9666 0.001 0.001 H
39.9995 0.001 0.001 L
40.0 0.0005 0.0005 H
40.0 0.001 0.001 H

40.24954 0.001 0.001 L
40.24979 0.001 0.001 H
40.4463 0.002 0.002 L
40.46 0.002 0.002 L

40.49974 0.001 0.001 L
40.5 0.001 0.001 H

40.50507 0.001 0.001 L
40.8215 0.001 0.001 L
40.8482 0.001 0.001 L
40.87443 0.001 0.001 L
40.87443 0.001 0.001 L
40.9014 0.001 0.001 L
40.9246 0.001 0.001 H
40.9279 0.001 0.001 L
40.9551 0.001 0.001 L
40.9658 0.001 0.001 H
40.9815 0.001 0.001 L
40.9995 0.001 0.001 L
41.0 0.001 0.001 H

41.24951 0.001 0.001 L
41.24978 0.001 0.001 H
41.4328 0.002 0.002 L
41.4465 0.002 0.002 L

41.4824375 0.001 0.001 H
41.484625 0.001 0.001 H
41.493 0.001 0.001 L

41.499727 0.001 0.001 L
41.5 0.001 0.001 H

41.92276 0.001 0.001 H
41.965 0.001 0.001 H
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fL (Hz) LFS (Hz) HFS (Hz) IFO

41.9995 0.001 0.001 L
42.0 0.001 0.001 H

42.24948 0.001 0.001 L
42.24977 0.001 0.001 H
42.4193 0.002 0.002 L
42.433 0.002 0.002 L

42.48093 0.001 0.001 L
42.499714 0.001 0.001 L

42.5 0.001 0.001 H
42.5 0.0005 0.0005 L

42.7679 0.001 0.001 L
42.7946 0.001 0.001 L
42.82083 0.001 0.001 L
42.82083 0.001 0.001 L
42.8478 0.001 0.001 L
42.8743 0.001 0.001 L
42.9015 0.001 0.001 L
42.92092 0.001 0.001 H
42.9279 0.001 0.001 L
42.9642 0.001 0.001 H
42.9995 0.001 0.001 L
43.0 0.001 0.001 H

43.24945 0.001 0.001 L
43.24976 0.001 0.001 H
43.4058 0.002 0.002 L
43.4195 0.002 0.002 L
43.46886 0.001 0.001 L
43.499701 0.001 0.001 L

43.5 0.001 0.001 H
43.556559375 0.001 0.001 H
43.55885625 0.001 0.001 H
43.91908 0.001 0.001 H
43.9634 0.001 0.001 H
43.9995 0.001 0.001 L
44.0 0.001 0.001 H

44.24942 0.001 0.001 L
44.24975 0.001 0.001 H
44.3923 0.002 0.002 L
44.406 0.002 0.002 L

44.45679 0.001 0.001 L
44.499688 0.001 0.001 L

44.5 0.001 0.001 H
44.7143 0.001 0.001 L
44.741 0.001 0.001 L

44.76723 0.001 0.001 L
44.76723 0.001 0.001 L
44.7942 0.001 0.001 L
44.8207 0.001 0.001 L
44.8479 0.001 0.001 L
44.8743 0.001 0.001 L
44.91724 0.001 0.001 H
44.9626 0.001 0.001 H
44.9995 0.001 0.001 L
45.0 0.001 0.001 H

45.24939 0.001 0.001 L
45.24974 0.001 0.001 H
45.3788 0.002 0.002 L
45.3925 0.002 0.002 L
45.4 0.0005 0.0005 L

45.44472 0.001 0.001 L
45.499675 0.001 0.001 L

45.5 0.001 0.001 H

fL (Hz) LFS (Hz) HFS (Hz) IFO

45.63068125 0.001 0.001 H
45.6330875 0.001 0.001 H

45.9 0.0005 0.0005 L
45.9154 0.001 0.001 H
45.9618 0.001 0.001 H
45.9995 0.001 0.001 L
46.0 0.001 0.001 H

46.24936 0.001 0.001 L
46.24973 0.001 0.001 H
46.3653 0.002 0.002 L
46.379 0.002 0.002 L

46.43265 0.001 0.001 L
46.499662 0.001 0.001 L

46.5 0.001 0.001 H
46.6607 0.001 0.001 L
46.6874 0.001 0.001 L
46.71363 0.001 0.001 L
46.71363 0.001 0.001 L
46.7406 0.001 0.001 L
46.7671 0.001 0.001 L
46.7943 0.001 0.001 L
46.8207 0.001 0.001 L
46.91356 0.001 0.001 H
46.961 0.001 0.001 H
46.9995 0.001 0.001 L
47.0 0.001 0.001 H

47.24933 0.001 0.001 L
47.24972 0.001 0.001 H
47.3518 0.002 0.002 L
47.3655 0.002 0.002 L
47.42058 0.001 0.001 L
47.499649 0.001 0.001 L

47.5 0.001 0.001 H
47.704803125 0.001 0.001 H
47.70731875 0.001 0.001 H

47.8 0.0005 0.0005 L
47.91172 0.001 0.001 H
47.94158 0.0032 0.0016 L
47.9602 0.001 0.001 H
47.9995 0.001 0.001 L
48.0 0.0005 0.0005 H
48.0 0.001 0.001 H

48.2493 0.001 0.001 L
48.24971 0.001 0.001 H

48.3 0.0005 0.0005 L
48.3383 0.002 0.002 L
48.352 0.002 0.002 L

48.40851 0.001 0.001 L
48.499636 0.001 0.001 L

48.5 0.001 0.001 H
48.6071 0.001 0.001 L
48.6338 0.001 0.001 L
48.66003 0.001 0.001 L
48.66003 0.001 0.001 L
48.687 0.001 0.001 L
48.7135 0.001 0.001 L
48.7407 0.001 0.001 L
48.7671 0.001 0.001 L
48.90988 0.001 0.001 H
48.9594 0.001 0.001 H
48.9995 0.001 0.001 L
49.0 0.001 0.001 H
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fL (Hz) LFS (Hz) HFS (Hz) IFO

49.24927 0.001 0.001 L
49.2497 0.001 0.001 H
49.3248 0.002 0.002 L
49.3385 0.002 0.002 L

49.499623 0.001 0.001 L
49.5 0.001 0.001 H

49.778925 0.001 0.001 H
49.78155 0.001 0.001 H
49.90804 0.001 0.001 H
49.9995 0.001 0.001 L
50.0 0.001 0.001 H

50.24924 0.001 0.001 L
50.3113 0.002 0.002 L
50.325 0.002 0.002 L

50.49961 0.001 0.001 L
50.5 0.001 0.001 H

50.5535 0.001 0.001 L
50.5802 0.001 0.001 L
50.60643 0.001 0.001 L
50.60643 0.001 0.001 L
50.6334 0.001 0.001 L
50.6599 0.001 0.001 L
50.6871 0.001 0.001 L
50.7135 0.001 0.001 L
50.9062 0.001 0.001 H
51.0 0.001 0.001 H
51.2 0.0005 0.0005 L

51.24921 0.001 0.001 L
51.2978 0.002 0.002 L
51.3115 0.002 0.002 L

51.499597 0.001 0.001 L
51.5 0.001 0.001 H

51.853046875 0.001 0.001 H
51.85578125 0.001 0.001 H
51.90436 0.001 0.001 H

52.0 0.001 0.001 H
52.24918 0.001 0.001 L
52.2843 0.002 0.002 L
52.298 0.002 0.002 L

52.499584 0.001 0.001 L
52.4999 0.001 0.001 L
52.5 0.001 0.001 H

52.5266 0.001 0.001 L
52.55283 0.001 0.001 L
52.55283 0.001 0.001 L
52.5798 0.001 0.001 L
52.6063 0.001 0.001 L
52.6335 0.001 0.001 L
52.6599 0.001 0.001 L
52.90252 0.001 0.001 H

53.0 0.001 0.001 H
53.24915 0.001 0.001 L
53.2708 0.002 0.002 L
53.2845 0.002 0.002 L

53.499571 0.001 0.001 L
53.5 0.001 0.001 H

53.90068 0.001 0.001 H
53.92716875 0.001 0.001 H
53.9300125 0.001 0.001 H

54.0 0.001 0.001 H
54.1 0.0005 0.0005 L

54.2573 0.002 0.002 L

fL (Hz) LFS (Hz) HFS (Hz) IFO

54.271 0.002 0.002 L
54.4463 0.001 0.001 L
54.473 0.001 0.001 L

54.49923 0.001 0.001 L
54.49923 0.001 0.001 L
54.499558 0.001 0.001 L

54.5 0.001 0.001 H
54.5262 0.001 0.001 L
54.5527 0.001 0.001 L
54.5799 0.001 0.001 L
54.6063 0.001 0.001 L
54.89884 0.001 0.001 H

55.0 0.001 0.001 H
55.2438 0.002 0.002 L
55.2575 0.002 0.002 L

55.499545 0.001 0.001 L
55.5 0.001 0.001 H

55.897 0.001 0.001 H
56.0 0.0005 0.0005 H
56.0 0.001 0.001 H

56.001290625 0.001 0.001 H
56.00424375 0.001 0.001 H

56.3927 0.001 0.001 L
56.4194 0.001 0.001 L
56.44563 0.001 0.001 L
56.44563 0.001 0.001 L
56.4726 0.001 0.001 L
56.4991 0.001 0.001 L

56.499532 0.001 0.001 L
56.5 0.001 0.001 H
56.5 0.0005 0.0005 L

56.5263 0.001 0.001 L
56.5527 0.001 0.001 L
56.89516 0.001 0.001 H

57.0 0.001 0.001 H
57.0 0.0005 0.0005 L

57.499519 0.001 0.001 L
57.5 0.001 0.001 H

57.89332 0.001 0.001 H
58.0 0.001 0.001 H

58.0754125 0.001 0.001 H
58.078475 0.001 0.001 H
58.3391 0.001 0.001 L
58.3658 0.001 0.001 L
58.39203 0.001 0.001 L
58.39203 0.001 0.001 L
58.419 0.001 0.001 L
58.4455 0.001 0.001 L

58.499506 0.001 0.001 L
58.5 0.001 0.001 H

58.89148 0.001 0.001 H
59.0 0.001 0.001 H

59.499493 0.001 0.001 L
59.5 0.001 0.001 H

59.88964 0.001 0.001 H
59.926975 0.004 0.002 L

60.0 0.001 0.001 H
60.0 0.06 0.06 H
60.0 0.06 0.06 L

60.149534375 0.001 0.001 H
60.15270625 0.001 0.001 H

60.2855 0.001 0.001 L
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fL (Hz) LFS (Hz) HFS (Hz) IFO

60.3122 0.001 0.001 L
60.33843 0.001 0.001 L
60.33843 0.001 0.001 L
60.3654 0.001 0.001 L
60.3919 0.001 0.001 L
60.49948 0.001 0.001 L

60.5 0.001 0.001 H
60.8878 0.001 0.001 H
61.0 0.001 0.001 H

61.499467 0.001 0.001 L
61.5 0.001 0.001 H
62.0 0.001 0.001 H

62.22365625 0.001 0.001 H
62.2269375 0.001 0.001 H
62.28483 0.001 0.001 L
62.28483 0.001 0.001 L

62.3 0.0005 0.0005 L
62.499454 0.001 0.001 L

62.5 0.001 0.001 H
62.8 0.0005 0.0005 L

62.8254 0.003 0.003 H
62.8298 0.003 0.003 H
63.0 0.001 0.001 H

63.499441 0.001 0.001 L
63.5 0.001 0.001 H
64.0 0.0005 0.0005 H
64.0 0.001 0.001 H

64.297778125 0.001 0.001 H
64.30116875 0.001 0.001 H
64.499428 0.001 0.001 L

64.5 0.001 0.001 H
65.0 0.001 0.001 H
65.2 0.0005 0.0005 L

65.499415 0.001 0.001 L
65.5 0.001 0.001 H
65.7 0.0005 0.0005 L
66.0 0.001 0.001 H

66.3719 0.001 0.001 H
66.3754 0.001 0.001 H

66.499402 0.001 0.001 L
66.5 0.001 0.001 H

66.665 0.001 0.001 L
67.0 0.001 0.001 H

67.499389 0.001 0.001 L
67.5 0.001 0.001 H
67.6 0.0005 0.0005 L
68.0 0.001 0.001 H
68.1 0.0005 0.0005 L

68.499376 0.001 0.001 L
68.5 0.001 0.001 H
68.6 0.0005 0.0005 L
69.0 0.001 0.001 H

69.499363 0.001 0.001 L
69.5 0.001 0.001 H
70.0 0.001 0.001 H

70.49935 0.001 0.001 L
70.5 0.001 0.001 H
71.0 0.001 0.001 H
71.0 0.0005 0.0005 L

71.499337 0.001 0.001 L
71.5 0.001 0.001 H
71.5 0.0005 0.0005 L

fL (Hz) LFS (Hz) HFS (Hz) IFO

71.91237 0.0048 0.0024 L
72.0 0.0005 0.0005 H
72.0 0.001 0.001 H

72.499324 0.001 0.001 L
72.5 0.001 0.001 H
73.0 0.001 0.001 H

73.499311 0.001 0.001 L
73.5 0.001 0.001 H
73.9 0.0005 0.0005 L
74.0 0.001 0.001 H
74.4 0.0005 0.0005 L
74.5 0.001 0.001 H
75.0 0.001 0.001 H
75.5 0.001 0.001 H
76.0 0.001 0.001 H
76.3 0.0005 0.0005 L

76.3235 0.001 0.001 H
76.3235 0.001 0.001 H

76.411925 0.001 0.001 H
76.5 0.001 0.001 H

76.50035 0.001 0.001 H
76.588775 0.001 0.001 H
76.6772 0.001 0.001 H
76.75 0.001 0.001 L

76.765625 0.001 0.001 H
76.8 0.0005 0.0005 L

76.85405 0.001 0.001 H
76.942475 0.001 0.001 H

77.0 0.001 0.001 H
77.0309 0.001 0.001 H

77.119325 0.001 0.001 H
77.20775 0.001 0.001 H
77.296175 0.001 0.001 H

77.3 0.0005 0.0005 L
77.3846 0.001 0.001 H

77.473025 0.001 0.001 H
77.5 0.001 0.001 H

77.56145 0.001 0.001 H
77.749975 0.001 0.001 L

78.0 0.001 0.001 H
78.5 0.001 0.001 H

78.74995 0.001 0.001 L
79.0 0.001 0.001 H
79.2 0.0005 0.0005 L
79.5 0.001 0.001 H
79.7 0.0005 0.0005 L

79.749925 0.001 0.001 L
80.0 0.0005 0.0005 H
80.0 0.001 0.001 H
80.5 0.001 0.001 H

80.7499 0.001 0.001 L
81.0 0.001 0.001 H
81.5 0.001 0.001 H

81.749875 0.001 0.001 L
82.0 0.001 0.001 H
82.1 0.0005 0.0005 L
82.5 0.001 0.001 H
82.6 0.0005 0.0005 L

82.74985 0.001 0.001 L
83.0 0.001 0.001 H
83.5 0.001 0.001 H

83.749825 0.001 0.001 L
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fL (Hz) LFS (Hz) HFS (Hz) IFO

83.897765 0.0056 0.0028 L
84.0 0.001 0.001 H
84.5 0.001 0.001 H

84.7498 0.001 0.001 L
85.0 0.001 0.001 H
85.0 0.0005 0.0005 L
85.5 0.001 0.001 H
85.5 0.0005 0.0005 L

85.749775 0.001 0.001 L
86.0 0.001 0.001 H
86.5 0.001 0.001 H

86.74975 0.001 0.001 L
87.0 0.001 0.001 H
87.5 0.001 0.001 H

87.749725 0.001 0.001 L
87.9 0.0005 0.0005 L
88.0 0.0005 0.0005 H
88.0 0.001 0.001 H
88.4 0.0005 0.0005 L
88.5 0.001 0.001 H

88.7497 0.001 0.001 L
89.0 0.001 0.001 H
89.5 0.001 0.001 H

89.749675 0.001 0.001 L
90.0 0.001 0.001 H
90.3 0.0005 0.0005 L
90.5 0.001 0.001 H

90.74965 0.001 0.001 L
90.8 0.0005 0.0005 L
91.0 0.001 0.001 H
91.3 0.0005 0.0005 L
91.5 0.001 0.001 H

91.749625 0.001 0.001 L
92.0 0.001 0.001 H
92.5 0.001 0.001 H

92.7496 0.001 0.001 L
93.0 0.001 0.001 H
93.5 0.001 0.001 H
93.7 0.0005 0.0005 L

93.749575 0.001 0.001 L
94.0 0.001 0.001 H
94.2 0.0005 0.0005 L

94.2381 0.003 0.003 H
94.2447 0.003 0.003 H
94.5 0.001 0.001 H

94.74955 0.001 0.001 L
95.0 0.001 0.001 H
95.5 0.001 0.001 H

95.749525 0.001 0.001 L
95.88316 0.0064 0.0032 L

96.0 0.0005 0.0005 H
96.0 0.001 0.001 H
96.5 0.001 0.001 H
96.6 0.0005 0.0005 L

96.7495 0.001 0.001 L
97.0 0.001 0.001 H
97.1 0.0005 0.0005 L
97.5 0.001 0.001 H

97.749475 0.001 0.001 L
98.0 0.001 0.001 H
98.5 0.001 0.001 H

98.74945 0.001 0.001 L

fL (Hz) LFS (Hz) HFS (Hz) IFO

99.0 0.001 0.001 H
99.0 0.0005 0.0005 L
99.5 0.001 0.001 H
99.5 0.0005 0.0005 L

99.749425 0.001 0.001 L
99.9989 0.001 0.001 H
100.0 0.001 0.001 H

TABLE VII: Instrumental lines identified and “cleaned” before the Ein-
stein@Home runs. The different columns represent: (I) the central fre-
quency of the instrumental line; (II) Low-Frequency-Side (LFS) of the
knockout band; (III) High-Frequency-Side (HFS) of the knockout band;
(IV) the interferometer in which the instrumental lines were identified.



20

3. 50-mHz signal-frequency bands where the upper

limit value does not hold

start band start band start band start band
band type band type band type band type

20.40 M 20.90 D 20.80 M 21.45 M
22.40 D 23.90 M 24.45 D 24.20 M
25.25 M 25.60 M 26.05 M 26.90 M
27.50 D 27.45 M 27.85 D 27.55 M
28.55 D 28.90 M 29.15 D 30.60 D
30.85 M 31.10 M 31.40 I 31.75 M
32.35 M 32.90 M 33.05 M 34.80 M
34.60 C 34.65 C 34.70 C 34.75 C
35.20 C 35.25 C 35.30 C 35.35 C
35.70 M 35.80 C 35.85 C 35.90 C
35.95 C 36.60 M 36.60 C 36.65 C
36.70 C 36.75 C 37.25 M 39.75 M
40.20 M 40.85 D 42.80 M 43.65 M
44.70 D 44.65 M 45.30 D 45.35 M
46.90 M 47.65 M 48.95 M 50.25 M
51.00 M 52.30 M 52.60 M 52.80 I
53.05 M 54.70 M 55.05 M 55.60 M
56.80 D 57.10 M 58.95 M 59.50 M
59.55 M 59.95 C 60.00 C 61.00 M
61.05 M 62.45 D 62.05 M 66.65 M
74.50 D 74.45 M 75.00 M 76.60 D
76.65 M 83.30 M 85.80 M 89.40 D
89.35 M 90.00 M 99.95 D

TABLE VIII: 50-mHz search-frequency bands that are excluded from
the results. Bands are excluded from the results if they were identified
as disturbed based on visual inspection (D), if they were identified as
mildly disturbed based on visual inspection then excluded later in the
analysys (M), if they contained a hardware injection (I) or where the
results were produced from entirely fake data as detailed in Table I (C).
Bands labelled D, C or I are excluded from the analysis.
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49MTA Eötvös University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary

50Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, 00-716, Warsaw, Poland
51University of Birmingham, Birmingham B15 2TT, United Kingdom
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