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Abstract For certain roots of unity, we consider the categories of weight modules
over three quantum groups: small, unrestricted and unrolled. The first main theorem
of this paper is to show that there is a modified trace on the projective modules of
the first two categories. The second main theorem is to show that category over the
unrolled quantum group is ribbon. Partial results related to these theorems were known
previously.
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Introduction

For an odd ordered root of unity & and lattice L, let Z/ISL, U‘EH and Hé be the unrestricted,
unrolled and small quantum groups, respectively (see Sect.3). Let Goqq (resp. %ij’d,
resp. € odq) be the category of L{EL (resp. U™, resp. ﬁé) weight modules. The usual
construction of quantum invariants do not directly apply to these categories because

of the following obstructions: the categories are not semi-simple and have vanishing
quantum dimensions. Partial results overcoming these obstructions have been obtained
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in [10,18-21,23]. In this paper we generalize some of these results using a new concept
called generically semi-simple (loosely meaning the category is graded and semi-
simple on a dense portion of the graded pieces). In [4,7], the results of this paper will
be used in future work to construct topological invariants. Remark that since the first
version of this paper, interesting new generalizations of unrolled quantum groups have
been studied in the recent preprints [1,25].

The first part of this paper contains a general theory with two main theorems which
extend properties of generic simple objects to general properties in the full category.
The first (Theorem 2) loosely says that if a category is generically semi-simple, pivotal
and braided such that there is a twist for every generic simple object then the full
category has a twist and so the category is ribbon. The second (Theorem 3) loosely
says that if a category is generically semi-simple and pivotal with a right trace on its
projective objects whose modified dimension satisfies d(V) = d(V*) for all generic
simple objects V then the right trace is a (two-sided) trace.

We apply these theorems to the categories of modules over the different quan-
tum groups mentioned above. It was previously known that %Olgd is a braided pivotal
category and %oqq is a pivotal category with a right trace, see [19] and [20], respec-
tively. Here we remark that %Oléd and %oqq are generically semi-simple (see Sect.4.3).
In Sect.4.4 we show that each generic simple module in %Olgd has a twist and thus
Theorem 2 implies (folgd is ribbon. Section 4.5 contains a proof that the modified
dimension satisfies d(V) = d(V*) for all generic simple objects V of $p4q and so
Theorem 3 implies the unique right trace (up to global scalar) on the ideal of projective
modules of €44 is a trace. This unique trace (up to global scalar) induces a trace on
€ odd-

The main theorems in this paper about ‘ﬁolgd and %oaq use deep results developed
by De Concini, Kac, Procesi, Reshetikhin and Rosso in the series of papers [11-14].
In particular, we use the quantum coadjoint action. In general, these results hold for
odd ordered roots of unity. However, in Sect.5 we show directly that in the case of
51(2) the results discussed above hold for even and odd ordered roots of unity. In
particular, we show %y(2) is braided and %5?(2) and ?5[(2) have unique traces. Finally,
in Sect.6 we conjecture that Sects.4.4 and 4.5 generalize to even ordered root of
unity.

1 Tensor categories

In this section we give the basic definitions for tensor categories and the functors
induced by graphic calculus.

1.1 Pivotal and ribbon categories

We recall the definition of pivotal and ribbon tensor categories, for more details see
for instance, [2]. In this paper, we consider strict tensor categories with tensor product
® and unit object . Let % be such a category. The notation V € % means that V is
an object of %

The category € is a pivotal category if it has duality morphisms
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The trace on projective representations of quantum groups 119

caa)vvz I- VeV a/)vz ViV =1, c&vv: I - V*®V and

gv: VoV —1

which satisfy compatibility conditions (see for example [2,19]). In particular, the left
dual and right dual of a morphism f: V — W in % coincide:

= (e‘v’w ® Idv*> (Idy- ® f @ Idy+) (IdW* ® c&)vv)

- (Idv* ® ‘EW) (Idy+ ® f ® Idy+) (&Evv ®Idw*) LWV

Then there is a natural notion of right categorical (partial) trace in 4" for any
V.Weé,

trg : Endg (V) — k

d
[ evy(f ®Idys)coevy o

ptrr : Ende(V ® W) — End¢ (V)
> (dy ® v w)(f ® Idy)(Idy ® coevy)

and analogous left categorical (partial) trace try, (resp. ptry) defined using ev and
coev.

A braiding on € consists of a family of natural isomorphisms {cy.w : V @ W —
W ® V} satisfying the Hexagon Axiom:

cy,vew = (Idy ® cy,w) o (cy,v ® Idw) and
cugv.w = (cuw ®1Idy) o Idy ® cv,w)

forall U, V, W € €. We say € is braided if it has a braiding. If € is pivotal and
braided, one can define a family of natural automorphisms

Oy =ptrr(cy,y):V — V.
We say that € is ribbon and the morphism 6 is a twist if
Oy+ = (Oy)* (1)

forall V € €.

Remark 1 An equivalent definition of a ribbon category is a braided left rigid bal-

anced category. Left rigid means that there are left duals (V, V*, Wv, co_e)vv) and
the balance 6 is a natural automorphism of the identity functor satisfying Oygy =
(Bu ® By) o cygu o cugy and Eq. (1).
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120 N. Geer, B. Patureau-Mirand

1.2 k-categories

Let k be a integral domain. A k-category is a category ¢ such that its hom-sets are left
k-modules, the composition of morphisms is k-bilinear, and the canonical k-algebra
map k — Endy (), k +— k1Idj is an isomorphism. A tensor k-category is a tensor
category % such that % is a k-category and the tensor product of morphisms is k-
bilinear. An object V of € is simple if Endy (V) = kldy. Let V be an object in ¢
andleta : V. — Wand 8 : W — V be morphisms. The triple (V, «, ) (or just the
object V) is a retract of W if B = Idy. An object W is a direct sum of the finite
family (V;); of objects of ¢ if there exist retracts (V;, «;, B;) of W with ;o; = 0 for
i # jandIdw = ), o; Bi. An object which is a direct sum of simple objects is called
semi-simple.

1.3 Traces on ideals in pivotal categories

Here we recall the definition of a (right) trace on an (right) ideal in a pivotal k-category
&, for more details see [23]. By a right ideal of € we mean a full subcategory Z of
¢ such that:

1. fVveZandW €%, thenV QW €.
2.IfVeZandif W € € isaretractof V,then W € 7.

One defines similarly the notion of a left ideal by replacing in the above definition
VW eZbyW®V eI.Afull subcategory Z of ¢ is an ideal if it is both a right
and left ideal.

If 7 is a right ideal in ¥ then a right trace on Z is a family of linear functions

{tv : Endg (V) — k}ver

such that following two conditions hold:

1. If U, V € I then for any morphisms f : V — U and g : U — V in € we have

ty(gf) =tw(fe).

2. IfU € T and W € % then for any f € Ende (U ® W) we have

tvew (f) =ty (ptrg(f)).

The notion of a left trace on a left ideal is obtained by replacing (2) in the above
definition with tweu (f) = ty(ptr,(f)) for all f € Endg(W ® U). A family t =
{ty}vez is atrace if T is an ideal and t is both a left and right trace.

The class of projective modules Proj in ¢ is an ideal. In a pivotal category projective
and injective objects coincide (see [23]). The ideal Proj is an important example which
we will consider later in this paper.
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The trace on projective representations of quantum groups 121

1.4 Colored ribbon graph invariants

Let € be a pivotal category. A morphism f : V| ® ---QV, > W ® ---Q W,
in € can be represented by a box and arrows (we use Turaev’s convention ([30]) for
orientations of diagrams):

14} o | Win
S

Vil | Va

Boxes as above are called coupons. By a ribbon graph in an oriented manifold X, we
mean an oriented compact surface embedded in ¥ which decomposed into elementary
pieces: bands, annuli, and coupons (see [30]) and is the thickening of an oriented
graph. In particular, the vertices of the graph lying in Int ¥ = ¥\0X are thickened
to coupons. A % -colored ribbon graph is a ribbon graph whose (thickened) edges are
colored by objects of ¥ and whose coupons are colored by morphisms of 4. The
intersection of a ¢’-colored ribbon graph in ¥ with dX is required to be empty or to
consist only of vertices of valency 1. When X is a surface the ribbon graph is just a
tubular neighborhood of the graph.

A %-colored ribbon graph in R? is called planar. A €-colored ribbon graph in
$? = R? U {00} is called spherical. A €-colored ribbon graph in R or R? x [0, 1]
are called spatial.

Fori € {2, 3}, the €-colored ribbon graphs in R ~! x [0, 1] form a category Gr% as
follows: objects of Grfg are finite sequences of pairs (X, €), where X € ¥ and e = +.
Morphisms of Gr% are isotopy classes of € -colored ribbon graphs in Ri~! x [0, 1].
By a (/,1)-ribbon graph in Gr% we mean a ¢ -colored ribbon graph which is an
endomorphism of an object (V, +) in Grfg. LetF : Grig — % be the Reshetikhin-
Turaev k-linear functor (see [22]). If ¥ is a ribbon category, the functor on planer
graphs F : Gr% — % extends to the functor on spatial graphs F : Gr%, — €.

1.5 Renormalized colored ribbon graph invariants

The motivation of this paper is to provide the underpinnings for the construction of
topological invariants. With this in mind, in this subsection, we recall the notion of
renormalized colored ribbon graph invariants introduced and studied in [18,20-23].
This subsection is independent of the rest of the paper. The theory of renormal-
ized invariants produces nontrivial invariants in some situations when the standard
approaches fail. In particular, these invariants can be nontrivial when quantum dimen-
sion vanish. The renormalized invariant of closed %’-colored ribbon graph can be
computed in three steps: (1) cut a special edge of a closed %’-colored ribbon graph, (2)
apply F to the resulting graph to obtain an endomorphism and (3) apply to the endomor-
phism a k-linear functional to obtain a number. If this functional has certain properties
then the number is an invariant of the ribbon graph. Here is a more precise definition:
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122 N. Geer, B. Patureau-Mirand

Let ¥ be a pivotal (resp., ribbon) category. Let T,gm be a class of planar (resp.
spatial) €’-colored (1,1)-ribbon graphs. We denote an element of Z,qy, by Ty where
V is the object of " which colors the open edge of the (1,1)-ribbon graph. We call V
the section of Ty . Given such a graph Ty the right braid closure gives a well defined
equivalence class of a closed ribbon graph TV in R2 (resp. in R3) Let Laqm be the
class of right braid closures of elements of 7. Lett = {ty : Ende (V) — k}y be
a family of linear maps where V runs over all the sections of elements Ty € Zyqm.
Suppose that t satisfies the condition:

If Ty, T € Tadm such that TV is isotopic to T’ then ty (F(Ty)) = tW(F( )).

We call the function

F': Laam — k defined by F’(Y/"\v) =ty (F(Ty))

the renormalized invariant associated with L,qm and t.
We will now give some examples of renormalized invariants.

Example 1 T-ambi pair Let A be a class of simple objects in a pivotal k-category €.
The classes Tpgm and Lagm are formed by the trivalent ribbon planar graphs whose
edges are colored by elements of A. The family t = (ty)yca is determined by a
mapping d : A — k* constant on isomorphism classes of objects. Then the map
ty is determined by ty (A Idy) = Ad(V). If F/ is invariant by isotopy in the sphere
S? (here we consider an isomorphism $? ~ R? U {oo}) then we say that (A, d) is a
trivalent-ambidextrous pair or t-ambi for short. A (modified) 6j-symbol is the value
of a tetrahedron under F’. These 6 j-symbols are the elementary algebraic ingredients
of a renormalized Turaev—Viro-type invariant of 3-manifolds defined by state sums on
triangulations [20,22].

Example 2 Right trace Lettbe aright trace on aright ideal Z in a pivotal k-category &,
see Sect. 1.3. Let Tagm be all the €-colored (1,1)-ribbon planar graphs whose sections
are in Z. Then F’ is a invariant of planar isotopy but in general it is not an invariant
of isotopy in the sphere S2. Nevertheless, for V € 7 one can set d(V) = ty(Idy)
then Corollary 7 of [23] implies that for A= {V € Z: V issimple, V* € Z, d(V) =
d(V*)}, (A, d) is a trivalent-ambidextrous pair and the restriction of F’ to A-colored
graphs is an invariant of isotopy in the sphere S2.

Example 3 (Two-sided) trace Let € be a pivotal (resp. ribbon) k-category and let t
be a trace on an ideal Z. Again, let 7,qy, be all % -colored (1,1)-ribbon planar (resp.
spatial) graphs whose sections are in Z. By setting d(V) = ty (Idy) for V € Z then
Theorem 5 of [23] implies F’ is an invariant of spherical (resp. spatial) ribbon graphs.
Moreover, Lyqm is formed by the €-colored ribbon graphs with at least one edge in Z.

1.6 G-graded and generically G-semi-simple categories

We now fix a group G.

Definition 1 Grading: A pivotal k-category is G-graded if for each g € G we have a
nonempty full subcategory &, of ¢ stable by retract such that

L = ®yeg G
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The trace on projective representations of quantum groups 123

2. if V € €, then V* e %g”’
3.if VetV ebCythenV V' € Cyy,
4. if V € €, V' € €y and Homg(V, V') # 0, then g = g'.

For a subset X C G we say:

1. X is symmetric if Xx-l=x,
2. X is small in G if the group G can not be covered by a finite number of translated
copies of X, in other words, for any g1, ..., g, € G, we have [ J/_,(giX) #G.

Definition 2 Semi-simplicity:

1. A k-category ¢ is semi-simple if all its objects are semi-simple.

2. A k-category % is finitely semi-simple if it is semi-simple and has finitely many
isomorphism classes of simple objects.

3. A G-graded category ¥ is a generically G-semi-simple category (resp. generically
finitely G-semi-simple category) if there exists a small symmetric subset X C G
such that for each ¢ € G\ X, €, is semi-simple (resp. finitely semi-simple). We
call X the singular locus of €. By a generic simple object we mean a simple object
of €, for some g € G\ X.

Remark 2 For a generically G-semi-simple category ¢ with singular locus &X', its ideal
Proj of projective objects contains all objects of €, for ¢ € G\ X'. In particular, generic
simple objects of € are projective.

The notion of generically G-semi-simple categories appears in [20,22] through the
following generalization of fusion categories (in particular, fusion categories satisfy
the following definition when G is the trivial group, X = ) and d = b = qdim is
the quantum dimension):

Definition 3 (Relative G-spherical category) Let ¢ be a generically finitely G-semi-
simple pivotal k-category with singular locus X C G and let A be the class of generic
simple objects of €. We say that ¢ is (X, d)-relative G-spherical if

1. there exists amap d : A — k> such that (A, d) is a t-ambi pair,

2. there exists amap b : A — k such that b(V) = b(V*), b(V) = b(V’) for any
isomorphic objects V, V' € A and for any g1, g2, g182 € G\X and V € Gy 4, We
have

b(V) = > b(V)b(V2) dimy (Home (V, Vi ® V2))
Vi€irr(6y,), Vagirr(€y,)

where irr (%, ) denotes a representing set of isomorphism classes of simple objects
of €,,.
8i

We finish this section by recalling the following theorem and corollary which we
use later to show certain algebras are semi-simple. For a proof of the theorem see [15].

Theorem 1 (the Density Theorem) Let A be an algebra over an algebraically closed
field k. Let {V;}; be a set of irreducible pairwise nonisomorphic finite-dimensional
modules over A. Then the map ®; p; : A — D, Endg (V) is surjective.
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124 N. Geer, B. Patureau-Mirand

Corollary 1 Let € be the category of finite-dimensional modules of the finite-
dimensional algebra A. Let {V;}; be a set of irreducible pairwise nonisomorphic
finite-dimensional modules over A. If

dim(A) = Zdim(Vi)z

then € is semi-simple.

Proof From the Density Theorem we know that @, p; : A — €, Endi(V;) is surjec-
tive. The assumption on the dimensions implies that this map is a injective. Thus, A is
isomorphic to the direct sum of matrix algebras which is semi-simple and it follows
that € is semi-simple. O

2 Extension of generic properties

Let € be a pivotal k-category. In this section we present two theorems which extend

properties observed for generic simple objects of € to general properties in the full

category.

Proposition 1 [f € is a braided pivotal k-category then the class of objects
{(Vet:0y=(v))

forms a full subcategory of € which is ribbon.

Proof For each object V € ¥, consider the automorphism
&v = ptrg(eyy) optrglevy) = F (( ) € Endg (V).

The family (&v )y <y defines a natural transformation (as & is an automorphism of the
identity functor, its naturality is just the fact that &y f = f&y forany f : U — V).
Its inverse is given by

/
é";l =F (%) = ptrL(c;}V) optry (cy,v) = ptry(cv,v) o ptrL(c(/}V).
\

The naturality of cy v implies that the image by F of a ¢’-colored diagram is invariant
by Reidemester II and III moves so that forany V, W € ¢

Qe
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The trace on projective representations of quantum groups 125

showing that & is a monoidal transformation. Finally, the dual of the right partial
trace is given by the left partial trace so

(&) = & 3)

For any object V € €, (By)* = (&y)* o Oy so (By)* = Oyx < &y = Idy and
the class in the proposition is clearly a subpivotal category of ¢ because of properties
(2), (3) of the natural automorphism &. O

The following theorem generalizes an argument of Ha (see [24, Proposition 3.7]).

Theorem 2 Let € be a generically G-semi-simple pivotal braided category. If
0(V)* = 0(V*) holds for any generic simple object V, then € is a ribbon category,
i.e., 0 is a twist on the full category €.

Proof Consider the natural automorphism & of the proof of Proposition 1. By assump-
tion we have &y = Idy for any generic simple object V. By naturality, this property
is stable by direct sums so it is also true for any semi-simple object that is a direct
sum of generic simple objects. Now for any homogenous object W € €, leth € G
be such that 1, hg ¢ X andlet V € €. Then V ® W € %jg is semi-simple and

dy @ ldw = Svegw = &y ® sw = Ildy ®Ew
thus & = Idw and O(W)* = 6(W™). O

For the second theorem we first recall the relation between (right) trace and duality:

Proposition 2 (see [23, Lemmas 2 & 3])
1. If T is aright ideal then T* = {V € €, V* € I} is a left ideal and

Tisanideal <— IT*=1.

2. If tis a right trace on the right ideal T then t* is a left trace on T* where by
definition, tj,(f) = ty«(f*) forany V € 7, any f € Endy (V) and

tisatrace < t*=t.
Definition 4 1. A pseudo-monoid class in a pivotal category %’ is a class of objects
stable by dual, retracts and tensor product.
2. Lett be a right trace on a right ideal Z. The horizontal part of Z for t is the class
I=={VeZIZ:V*eZandty =tj}.
Remark 3 An ideal of a pivotal category is a pseudo-monoid and the converse is
partially true. Indeed one could define the idealizer of a pseudo-monoid M to be the

full subcategory of 6 whose objects are

IlyM)y={Ve?:VOIMCMDODMQV}
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126 N. Geer, B. Patureau-Mirand

Then one can prove that o (M) is a subpivotal category of ¥’ which contains M such
that M is an ideal in Iy (M).

Proposition 3 Lett be a right trace on a right ideal Z. Then the horizontal part T= of
7 is a pseudo-monoid. Furthermore, I~ is stable by direct sum in the following weak
sense: if {V;}; is a finite family of object of = and W € I NT* is isomorphic to their
direct sum, then W € 1~.

Proof If V is aretractof W € 7~ then thereare o : V — W, B : W — V with
Ba = Idy. Then V* is a retract of W* € 7= so V* € Z. For any f € End4(V), by
definition tj, (f) = ty«(f*) but

tv (f) =ty (fBa) =tw(afB) = tw+(B" fra®) = ty«(a™B* f*) = ty«(f").

So V € I= and Z~ is stable by retract (recall in particular that an isomorphic object
is a retract).

Let V € Z= and let ¢y : V — V** be the pivotal isomorphism. Then for any
f € Endg(V), ty(f) = ty(¢y,' f¥¢v) = tye(fvey") = tyw(f*). Given
g € Endg (V™) then g is the dual of f = ¢>Vg*¢;1 € End¢ (V) so

ty«(8) =tv«(f) =ty (f) = ty=(f™) =1t} ()

and (Z7)* CI~.

LetV, W € ZT= andlet f € Endyy(V®W).Then V* € 7 and tis right ambidextrous
by [23, Lemma 4] so t(ptrg (f)*) = t(ptr, (f) = t(ptr, (f)) where f’ = (¢v ®
dw) f (4" ®1dw) so

t(f) = tptrg (f) = tptrg (/)" = tptr, (f))
= t(ptr, (/)) = tptrg (f™) = t(f)

thus V@ W e Z7.

If W is a direct sum of objects of Z= with associated projectors p; = «;B;, then
so is W* with projectors p. Now for any f € Endg (W), f = (Z, Pi)f(z,- pi) =
Zi,j Pi fpj SO

W) =Y Wpifp) + Y _ttppy = Y _t(Bifaifear) = Y _t(of ) =t(f5).

i#j i
O

An object V € ¥ is nonzero if Idy # 0. For the next theorem, we will make the
following assumption that is true for example if €’ is a category of finite-dimensional
representations of a Hopfk-algebra: We will assume that %’ is a Krull-Schmidt category
and that for any nonzero V € ¥, V ® - and - ® V are faithful functors. The former
implies that any object in € is isomorphic to an unique direct sum of indecomposable
objects (an object is indecomposable if it is not isomorphic to a direct sum of two
nonzero objects).
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The trace on projective representations of quantum groups 127

Theorem 3 Let € be a generically G-semi-simple pivotal category with the above
assumption. Let t be a right trace on Proj and let d = {d(V) € k}ycproj denote the
associated modified dimension. If d(V) = d(V*) holds for any generic simple object
V, then t is a trace on Proj.

Proof By assumption we have that any generic simple object V is in Proj~ as
Endy (V) >~ k >~ Endy (V*) so the right trace on these endomorphisms is determined
by d(V) = d(V*). Since Proj~ is stable by direct sums it contains any semi-simple
object that is a direct sum of generic simple objects. Let W be a indecomposable
projective object. Then there exists g such that W € %,. Let h € G be such that
h,h~'g ¢ X (recall that X is small) and let V € %},. Then W € Zy = Proj thus
there exists U € % such that W is a retract of V ® U. As ¢ = P g G, We can
assume up to replacing U by one of its summand that U € %), ¢- Then U is a semi-
simple direct sum of generic simple objects and an element of Proj~. Since Proj~ is
a pseudo-monoid then V ® U € Proj~ and W € Proj~ as W is a retract. In addition,
since Proj~ is stable by direct sums we get that W € Proj~ even if W € Proj is not
indecomposable. Thus, Proj~ = Proj and t = t* on Proj. In other words, t is a trace.

O

3 Quantum groups at roots of unity

In this section we first recall some of the deep results established by De Concini, Kac,
Procesi, Reshetikhin and Rosso in the series of papers [11-14]. Then we observe that
the twist 6 and the modified dimension d are generically self-dual. As a consequence
we get the existence of a ribbon structure associated with the unrolled quantum group
and the existence of a trace on Proj for the categories of weight modules over the
small, unrolled and unrestricted groups.

3.1 The small, the unrolled and the unrestricted

Let g be a simple finite-dimensional complex Lie algebra of rank n and dimension
2N + n with the following:

a Cartan subalgebra b,

a root system consisting in simple roots {«q, ..., o,} C h*,

a Cartan matrix A = (a;j)1<i,j<n»

aset AT of N positive roots,

aroot lattice Lg = @; Za; C bh*,

a scalar product (-, -) on the real span of Lg given by its matrix DA = ((a,-, o J))
where D = diag(dy, ..., d,) and the minimum of all the d; is 1.

SNk L=

ij

The Cartan subalgebra has a basis {H;};=1..., determined by o; (H;) = aj; and its
dual basis of h* is the fundamental weights basis which generate the lattice of weights
Lw.Letp = % ZaeA* o € Ly.

Let ¢ be an indeterminate and fori = 1,...,n, let ¢; = q%. Let £ be an integer
such that € > 2 (and £ ¢ 3Z if g = G»). Let & = e>V=17/¢ and r =
x € Cand k, | € N we use the notation:

20
m . For
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128 N. Geer, B. Patureau-Mirand

2imx X

g=et, x),=q"—q",

N -

Let K, be the subring of C(g) made of fractions that have no poles at & (K is a
localization of C[gq]). A K¢-module can be specialized at ¢ = & (the specialization is
the tensor product with the Ky,-module C where g acts by &).

For each lattice L with Lg C L C Ly, there is an associated quantum group
which contains the group ring of L: define UqL as the K,-algebra with generators
Kg, Xi, X_jforpeL,i=1,...,nand relations

Ko=1, KK, =Kpy, KpXoiK_p=q"P"X,;, €
Ko, — K
[X;, X_j] = &) ———, )
qgi — 4;
176!,'.,' 1
— ajj 1—aij—k e .
D <‘“k[ k U} XEiXoi Xy, N = 0,0 £ ©)
k=0 qi

where 0 = =£1. Drinfeld and Jimbo consider the quantum group corresponding to L .
The algebra Z/{qL is a Hopf algebra with coproduct A, counit € and antipode S defined
by

AX)=10X;+X; ® Koy, AX_)=Kg'®X_i+X_;®1,

A(Kpg) = Kg ® Kg, €(X;) =e(X-j) =0, €(Kq;) =1,
S(Xi)Z—XiKa_,.l, S(X_i) =—Ko; X_i, S(Kg) =K_g.
The unrestricted quantum group Z/{gl‘ is the C-algebra obtained from L{qL by specializing

qtoé.

The unrolled quantum groupU™ = Z/{SH isthe algebra generatedby Kg, X;, X_;, H;
forpeL,i=1,...,n with Relations (4), (5), (6) where ¢ = £ plus the relations

[Hi, Xoj] = 0aijXsj, [Hi, Hj] = [H;, Kg] =0 (N

where ¢ = +1. The algebra &/" is a Hopf algebra with coproduct A, counit € and
antipode S defined as above on Kg, X;, X_; and defined on the elements H; for
i=1,...,nby

AH)=1®H +H ®1, €(H;) =0, S(H;)) = —H,.

For a fixed choice of a convex order B, = (B1, ..., By) of A1 define recursively a
convex set of root vectors (X+g)gep, in Z/ISL (see Sects. 8.1 and 9.1 of [8]). The small
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quantum group U&_L is a finite-dimensional quotient of Z/lé.L. When ¢ is odd or g is simply
laced,’ it is the quotient of L{Z:.L by the relations

XLz =0and K" =1forall Be A,y € Lg.

The dimension of Zjé is then r2V (2r)"[L: Lg]. From now on if it is clear we will not

. . . —L
write the superscript L in L{g“ or Uy .

3.2 Pivotal structures

For any central group-like element c, the element ¢ = cK5, in U where U is Ug, U H
or Hé is group-like and satisfies S?(x) = ¢x¢ . It follows that U is a pivotal Hopf
algebra and the category of finite-dimensional U-modules is a pivotal C-category, for
details see [5,20]. Here the dual is given by the dual vector space V* = Homc (V, C)
equipped with the transpose action composed with antipodal morphism S. The dual-
ity morphisms ev and coev are the standard evaluation and coevaluation, whereas

ev=ev ot o (p®1)and coev=T o (¢~ '® o coev where 7 is the flip.

Remark 4 The h-adic version of the quantum group Uu(g) = U, is the C[[h]]-
topological Hopf algebra with generators X;, X_;, H; fori = 1, ..., n and Relations
(5), (6) and (7) where ¢g and K|, are replaced by e//? and qlﬂi, respectively. The cate-
gory of finite-dimensional topologically free Uj,-modules is a pivotal category where
the pivotal element is normally given by K. In this paper, for g = sl or when the
order £ of the root of unity is odd, we use ¢ = Kzlljr instead of K>, which also defines
a pivotal structure. The reason we make this choice is because the pivotal structure for
¢ =K 21p—r is compatible with the braiding and trace consider in future subsections.
The pivotal structure corresponding to K, does not have such compatibilities: the
left and right twist differ by a square and the modified dimensions of V and V* are
not equal.

4 Quantum groups at odd ordered roots of unity
In this section we consider the case when ¢ is an odd integer. In this case, £ = r. To

make the notation clear we will write %oqd, %Ogd and € oqq for the categories in this
section.

4.1 Weight modules

Let Zg be the subalgebra on/ISL generated by {X;ﬂ, K, : BeAq, yeL}ThenZ
is a sub-Hopf algebra contained in the center of Z/ISL. Moreover, Z is isomorphic to

! Simon Lentner pointed to us that the non simply laced case with even root of unity is more tricky (see
[26, Sect.8.2.]).
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the Hopf algebra of regular functions of a group G = Spec(Z) which is Poisson-Lie
dual to a complex simple Lie group with Lie algebra g (see [12]). Here Spec(Zy) is
the algebraic variety of algebra homomorphisms from Zg to C.

By allg-weight module we mean a finite-dimensional module over ¢/ which restrict
to a semi-simple module over Zy. Since X', g = 0 and K}%’ =1lin ng we say all

finite-dimensional I/, g-modules are weight modules. Finally, a finite-dimensional ¢/ H_
module V is a U -weight module if it is a semi-simple module over the subalgebra
generated by {H; : i = 1---n}and forany y = >, c;o;; € L then qzi diciHi — K,
as operators on V. Let oqq (resp. %Oﬁ’d, resp. € odd) be the category of Us (resp. U,
resp. ﬁg) weight modules. As the action of each K g is determined by the action of the
H;’s it follows that %Oﬁ’d does not depend on the lattice L.

For g € G = Homyg(Zy, C) let €, be the full subcategory of 6,44 whose objects
are modules where each z € Zj act by g(z). For g € G with g(X’iﬂ) = 0 for all

B € A, we say g is diagonal and the modules of G, are nilpotent. Similarly, ‘Kozd is
graded by the group D of diagonal elements of G.

The dual of a weight module is a weight module. This implies that the category
Goaa (resp. ‘golgd, resp. €odd) is a subpivotal C-category of the category of all finite-
dimensional modules.

4.2 The braiding on ¢4,
In this subsection we briefly recall the existence of a braiding for %ogd' We refer to
Theorem 41 of [20] for details.

Recall the h-adic quantum group Uy (g) = Uj, defined in Remark 4. For a root
— gBB2 -y (=q)'x’ i
B e L.R, let g = ¢ .LeF equ(.x) =32 T —g D =g Consider the
following elements of the /-adic version of the quantum group Uj,:

Cd(A)Y . H: . v _
HH" = g2 @O0 R = TT exp, 2 ((ar—as') Xs@x-5) ®
peb.

where the product is ordered by the convex order f, of AT, It is well known that
R" = HH" R" defines a quasi-triangular structure on Uy, (see for example [27]). Let

expy (x) = Z?;& (l_qi)((ll_—qql.):f)lm T Replacing the occurrences of eXp, -2 with

exp;_2 in the formula of R" gives an element of U, ® U, (seen as a subalgebra of
8

Uy, [h’]]®vz) called the truncated quasi-R-matrix. SEecializing for ¢ = & we get an
element R< € Ug ® Uz. The action of R< = HH"R= determines a braiding on ¢’/
given by cy,w (v ® w) = T(R~(v ® w)) where t is the flip. Summarizing we have:

Proposition 4 The category (fofd’d is a braided pivotal category.
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4.3 Semi-simple

Here we explain why %444 and ‘Ktﬁd are generically semi-simple categories. The g-th
graded piece of %oqq can be described using ideals of the algebra: € is the category
of weight module whose annihilator contains the two-sided ideal I, generated by
{z — g(2) : z € Zp}. Hence € is identified with the category of finite-dimensional
modules of the finite-dimensional algebra Uf¢ / I. For generic g, we will prove that the
algebra U /I, is semi-simple which will imply the category ¢, is semi-simple.

A diagonal element of g € G is regular if g(KjEﬁ) # +1 for all B € A;. For
regular g, the category ¢, has " nonisomorphic highest weight irreducible modules

V;. These modules are also modules over L{;“ R which is a subset of L{é_.L . Then Corol-

lary 3.2 of [11] implies that these modules have dimension 7"V. Therefore, we have
Y- dim(V;)? = r*V+". The PBW theorem implies dim(@4) = }_; dim(V;)*. Thus,
Corollary 1 implies that for regular g, the category %, is semi-simple.

De Concini and Kac consider certain derivations ¢; and i ; fori = 1, ..., n. For
each r € C, in [11, Section 3.5], it is shown these derivatigns give automorphisms
expre; andexp? f ; of (a completion of) the algebra ;. Let G be the group generated
by all these automorphisms. This group leaves Z invariant and acts as holomorphic
transformations on the algebraic variety Spec(Zyp). The action of G on Spec(Zp) is
called the quantum coadjoint action. Theorem 6.1 of [12] considers the orbits of this
action. In particular, part (d) of this theorem says that the union of all G orbits which
contain at least one regular element of G is Zariski open and dense in G. This can be
reformulated as there exist a set X’ with the following two properties: (1) G\X is a
Zariski dense open subset of G and (2) for each g € G\ X there is a regular d and
an outer automorphism of ¢ inducing an isomorphism of algebras Uz /I, — Uz /1.
Therefore, for each g € G\ X the algebra Uz /I, is semi-simple. By replacing X" with
X U X! we can assume X is symmetric. Thus, we have shown %,qq is a generically
finitely G-semi-simple category with singular locus X

Remark 5 By definition, every G orbit in G that contains an element of G\ X" also
contains a regular element and thus a diagonal element of G.

Recall %ij’d is graded by the group D. Let Xp be all the nonregular elements of D.
It follows from Lemma 7.1 of [9] that %ﬂd is a generically D-semi-simple category
with the singular locus X'p.

The results described here and in Sect. 3 imply the following proposition.

Proposition 5 The category %Ogd is a generically D-semi-simple braided pivotal cat-
egory.

4.4 The ribbon structure in %Oflld.
Let V be a generic simple object of %Olgd. We will show that Oy« = (fy)*. Since V
is simple, the morphism 6y is a scalar times the identity of V. Moreover, (0y)* is the
same scalar times Idy+. The module V is determined by its highest weight which is
of the form A + (r — 1) p. Its dual V* has highest weight —A + (r — 1) p. To compute
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the twist on V notice that HH" is the only part of the R-matrix contributing to the
following computation:

—(r—1)2
By (v) = ptrg(ey,y)(v) = g HH =Ty

where v is a highest weight vector of V (see [20] for more details). As (—A, —1) =
(A, 1) then a similar calculation shows that the scalar determining fy« is equal to
the scalar determining both 6y and (6y)*. Thus, Proposition 5 and the results of this
subsection imply that ‘Koﬁ’d satisfies the hypothesis of Theorem 2 and so we have:

Theorem 4 The category ‘folgd is a ribbon category.

Note that, in [20] we showed that a subcategory of ‘Kolgd is ribbon.

4.5 The trace on the ideal of projective I{;-modules

From Theorem 4.7.1 of [19] the ideal Proj of projective Ug-modules in 6,qq admits
a unique nontrivial right trace which we denote by {ty }ycproj. In this subsection we
use Theorem 3 to show this right trace is a trace.

To apply the theorem we need to show d(V) = d(V*) for any generic simple Ue-
module V. We now explain how we reduce this equality to a computation related to
open Hopf links. Let Vj be the weight Us-module determined by the highest weight
vector vg such that X;vg = O fori = 1,...,n and K, vy = qu dici{(r=Dp.aidy o for
y = Y>.;cio; € L. The module Vj is isomorphic to V. To simplify notation, in
the following computations we identify these modules with an isomorphism. Given a
simple module and a morphism g : W — W define (g) € Cas g = (g) Idw. Suppose
f:Vo®V — Vy® V is a morphism in €. Then

d(V){ptr, () = tv (ptr, () = tyz ((Ptrg(f))
= d(V)((ptrg (f)*) = d(Vo){ptr (£)) ©)

where the second equality is from Lemma 4(b) of [23] and the final equality holds
because V) is isomorphic to V{j'. Therefore, to compute d(V') we need to give a mor-
phism f: Vo ® V — Vp ® V and compute its left and right partial trace. We will do
this now using the braiding of Uj, (g).

Recall that the algebra Uj, and its R-matrix given in Sect.4.2. Let V(f be the simple
Ujp-weight module with highest weight (r — 1)p. So Voh has dimension 7V and a
highest weight vector vg such that Hivg = ((r — 1)p, @j)vo for i = 1, ...,n. The
module Voh ® C[h~'] contains its U, analog Voq = U, .vo which specialize at ¢ = &
to the Uz -module Vj.

We consider the Uj-module Voh ® Uj,. Let Wy C Lg be the set of weights of V(f’
and p”* the projector of Voh on the weight space of weight A. In general, if v and w are
vectors of weight A and 1, respectively then HH" (v ®@w) = ¢*Mov@w = v® Ky w.
So the action of HH" on Voh ® Uy, is given by
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HH" = " p* ® K. (10)
reWy

Consider the endomorphism f, of Vé’ ® Uy, given by the square of the braiding.
In other words, fy, is the morphism determined by the action of R1 Ry».

Since X!, , vanishes on Voh the only portion of the quasi R-matrix contributing
to fy, is terms of the truncated quasi R-matrix. Then Eqs. (8) and (10) imply fy,
determines an element f7,, € Autg, (Voq ) ® U, . Moreover, these equations imply that
g can be specialized at & to obtain an element fi;, € Autc(Vo) ® Uz. Then for any
representation py : Us — End(V), fy = (Id ®pv)( fug) is an automorphism of the
Us-module Vo ® V (fix defines a natural automorphism of the functor Vp ® *).

Lemma 1 For any generic simple Uz -module V we have ptrp(fv) = rN Idy,.

Proof Consider a highest weight vector vy of Vp. Then Eq. (10) implies that
Ié<(vo ®x) =v9® Kogr—1)px + (terms € Vé ®Ug)

where x € Ug and Vj is the sum of weight spaces of Vj of weight strictly less than
(r — 1)p. Therefore,

ptr (fy)(vo) = ptrg(p" V2 @ py (Kar—1)p)) (v0)

= 1 (le* (KzlerZ(r—l)pxi)>
i
=V

where x; is a basis of V and x;" is its dual basis. Since Vj is simple then ptr (fy) =
N
r'V Idy. O

Let V be a simple module of &, where g € G\X. Then there exists an outer
automorphism y € G such that py o y is a nilpotent representation of U (see Remark
5). We say py o y is a nilpotent deformation of V.

Lemma 2 The element 84 = ptry (fu,) belongs to the center of Uy and can be spe-
cialized to obtain an element 8¢ in the center of Ug. Then for any generic simple
Ug-module V we have ptr; (fv) = pv (8¢). Moreover,

_ {rip, a)}
ptrp (fv) = ang T ) Idy (11)

where p + (r — 1) p is the highest weight of a nilpotent deformation of V.

Proof Recall that the morphism fy, : Voh U, — Voh ® Uy, is given by multiplication
on the left by a truncated part of Ry1Rj2. Using Egs. (8), (10) and the definition of
partial trace, we have that ptr; (fy, ) is a Uj-endomorphism given by left multiplication
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of an element §;, of Uj,. Thus, J;, is an element of the center of Uj,. Moreover, §;, is an
element of U, seen as a subalgebra of U, [h~!] because it is equal to §; = ptr ( fu,,).
Therefore, 8, is central since &y is central.

Let Z¢ be the specialization at ¢ = § of the center of U,. Then by definition of the
derivations ¢; and f it follows that the automorphisms of G act trivially on Zg. Since
8¢ € Zg, it acts as the same scalar endomorphism on V and on any of its nilpotent
deformation. Hence the general formula in Eq. (11) can be deduced from the case when
V is the nilpotent module with highest weight i 4+ (r — 1) p which was computed in
Proposition 45 of [20]. O

Theorem 5 The right trace {ty }y cproj on Proj in oaq is a trace. This trace is unique
up to a global scalar since this is true for the right trace.

Proof Let V be a generic simple U -module. Combining Equation (9) and Lemmas
1 and 2 we have

d(Vo)(ptr (f)) N {(, o)}
d(V)= ——————=="1 — d(V, _— 12
S ey R § S ey 12

where &t + (r — 1)p is the highest weight of a nilpotent deformation of V. The dual
of such a nilpotent module has highest weight —u 4 (r — 1) p. Thus, Eq. (12) implies
d(V) = d(V*). Now from Sects.3.2 and 4.3, Gyqq is a generically G-semi-simple
pivotal category so the theorem follows from Theorem 3. O

Corollary 2 There exists a unique trace (up to global scalar) on the projective modules

of € oda-

Proof Consider the projection morphism U — Ug. Using this morphism each pro-
jective Hg weight module becomes a projective Ug weight module. In fact we have
Codd = @gego G Where Go = {g € G : g(X/, bp) = 0, g(K/g) =41, Be Ay},

It follows that the trace of Theorem 5 induces a trace on the idea of projective I/, £-
module. This trace is unique because from Theorem 4.7.1. of [19] there exists unique
nontrivial right trace on the projective ideal of 27,; -modules. O

5 The case of s[(2)

In the previous subsections we considered three versions of the quantum groups asso-
ciated with any Lie algebra g, associated with different lattices L when ¢ was a root
of unity of odd order. The main reason the we do not treat even ordered roots of unity
above is because we use results on the quantum coadjoint action which at this point
requires odd order roots of unity (see [12]). In this section we treat the case of all orders
of roots of unity for the Drinfeld-Jimbo quantization of sl(2) (i.e., the root lattice L ).
In this case we can prove the needed results involving the quantum coadjoint action
directly using the Casimir element.
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Let¢ >2,& =e?/t and r = 3+(2—f1)£ As above we consider the three versions

of quantum s[(2) associated with the root lattice:
£1 2 2 K—K!
Us(s12)) =U=(E, F, K*'|[KE-£*EK=FK —£§*KF=[E, F]—ﬁzo,
USH(S[Q)) =uU" = WU, H|[H, K= [H,E|—2E =[H, F]+2F =0) and
U=U/E",F',K¥ —1).

As above, let €1(2), 5551[1(2) and ?g[(z) be their categories of weight modules, respec-
tively. These categories are graded as follows: Let Z be the subalgebra generated by
E”, F" and K". The center of U is generated by Zp with the Casimir element

Q={1PEF+Ke "+ K "¢ ={(1))FE+ K+ K '¢!

which satisfies the polynomial equation C,(£2) = (WE"F" — (=DYK" + K™)
where C, is the renormalized rth Chebyshev polynomial (determined by C,- (2 cos 0) =
2 cos(rb)).

The set

g= {M(K,E,go): (<(1) i) (I; (1))) te,0eC,k E(C*}

is a group where the multiplication is given by componentwise matrix multiplication.
Also, as above Homyjg(Z, C) is a group where the multiplication is given by g1 g2 =
g1 ® g2 o A. Then the morphism Homye (Zo, C) — G given by

M, e, 9)(K") = k,
Mk, e, 9)(E") = {1}7"¢ and
Mk, e, 9)(F") = (=1} "L,

is a group homomorphism. We use this morphism to identify G and Homyjg(Zp, C).

For each g € G let ¢, be the full subcategory of €5(2) whose objects are modules
where each z € Zj act by g(z). As above, for g € G with g(E") = g(F") = 0 we
say g is diagonal and the modules of €, are nilpotent. Also, a diagonal element g is
regular if g(K") # +£1. The category %;{(2) is graded by the group D >~ (C/27Z, +) >~
h*/Lg >~ (C*, x) of diagonal elements of G. Finally ?5[(2) is Z/27Z-graded as a full
subcategory of Gi(2).

As above it is known that the element ¢ = K 21;’ inU, U and U satisfies S2(x) =

¢x¢~ 1. It follows that € [(2)> %;[1(2) and € ((2) are all pivotal C-categories. Moreover,
UH is braided, see [20] for the odd case and [21] for the even.

Lemma 3 The category G512y is generically G-semi-simple category with singular
locus

1
X:{M(K,s,fp):/c—i———%::iﬁ}.
K K
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Proof A direct calculation shows X is small and symmetric. We consider the quantum
coadjoint action G on G, see [11] and above. Let B C G be the union of all G-orbits
which contain a regular element. To prove the lemma we will show that the category
%), is semi-simple for each 4 € B and that G\X C B. To do this we follow an
argument similar to the one in Sect. 4.3: direct construction shows that for any regular
g the category %, has r nonisomorphic highest weight modules of dimension r (also
see Corollary 3.2 of [11]). Thus, the PBW Theorem and Corollary 1 imply that for
regular g, the category %, semi-simple.

Now let h = M (kp, &, ) € B then by definition of B there exists regular g =
M (/cg, 0, 0) € G such that g and % are in the same G -orbit. Then the G-action gives an
outer automorphism of ¢/ inducing an isomorphism of algebras //1, — U/1; and so
@ is semi-simple. Finally, the element 2, = { 1YYEF+Kq~'+K~'gisinthe center
of the K-algebra U/, and specializes to §2. The quantum coadjoint action is constant
on £2 = §2¢ because as explained above this action is constant on the subalgebra of U/
corresponding to the center of I, . Therefore, if V and W are modules of ¢, and %,
respectively, then C, (£2) acts on both V and W by

—(=D kg + 1) = (=D ' = (=D (kn + x5 1),
Since g is regular then kg # *£1, so —srp/ch_l +kp + /ch_l # 2. Thus, h € G\X. O

Corollary 3 The category % S12) is ribbon.

Proof Let Xy = Z/27Z C C/2Z and letd € C/2Z\ Xy . The proof of Lemma 3 and
the forgetful functor (5;[’(2) — Gs1(2) imply 6y has r nonisomorphic highest weight
modules of dimension r (one can also see this by direct construction). Then the PBW
Theorem and Corollary 1 imply that €7 is semi-simple. Combining this with the results
at the beginning of this subsection we have € s1(2) is generically G-semi-simple pivotal
braided category with singular locus X'y. It is known that for a generic simple object
V that 6(V)* = 6(V*), see [20] for the odd case and [21] for the even. The corollary
follows from Theorem 2. O

Note when ¢ is ever Corollary 3 was previously known, see [21,28,29]. When ¢ is
odd it was known that ¢ ) contained a subcategory which is ribbon, see [20].

Next we prove that €5(2) has a trace and show the modified dimensions only depend
on the action of the Casimir element. First, the projective cover of the trivial module is
self-dual, see [16, 17] for the even case and [19] for the odd. Therefore, Corollary 3.2.1
of [19] implies the ideal Proj of projective /s-modules admits a unique (up to global
scalar) nontrivial right trace which we denote by {ty }y cproj. We will show this right
trace is a trace. As above let U, = Uy (s1(2)) be the h-adic quantum group generated by
E, Fand H. Let Voh be the highest weight module of U, with a highest weight vector
vg such that Hvg = (r — 1)vg. Let V(;I be the highest weight (/,-module with a highest
weight vector v such that Kvy = ¢"'vg. Let Vo be the highest weight Z/-module
which is the specialization of Voq. Let Wy be the set of weights of Voh. Then Wy C Lg
if £ is odd and Wy C %LR if £is even. Let fy, and fy4, be as in Sect.4.5. As above in
the odd case ¢ can be specialized at § to obtain an element f;, € Autc(Vo) ® U and
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any for representation py : U/ — End(V), fy = Id®py)( fu&_) is an automorphism
of the /-module Vy ® V.

Lemma 4 For any generic simple Uz (s(2))-module V we have ptr g (fv) = r Idy,.
Proof The proof of Lemma 1 applies here for general €. O

Lemma 5 There exists a polynomial P(X) € C[X] such that for any generic simple
Uz (s1(2))-module V we have ptr; (fv) = P(w)Idy where w = (py (£2)).

Proof As in the proof of Lemma 2 the morphism ptr; (fy,) is given by left multi-
plication of a central element §;, of Uy (s((2)). The center of U (sl(2)) is generated
by the Casimir element §2;,. So there exists a polynomial P(X) € C[X] such that
8n = P($2;). Here the partial closure is taken in Uj(sl(2)). On the other hand, the
partial trace of the central element 6, = ptr; ( fuq) is taken in U, (5[(2))-mod. Recall
that the pivotal structure of U (s[(2))-mod and U, (s(2))-mod differ by K", see
Remark 4. In particular, taking the left closer with respect to Voh and Vg differ by
the constant (—1)"~! determined by K vy = ¢ " "~Duvg = (=1)"~vg. Therefore,
8y viewed as an element of U4, (i.e., seen as the subalgebra of Uj [h_l]) is equal to
the element (—l)r’I(Sq. Now the morphism ptr; (fy) is given by left multiplication
by 8¢ which is specialization a of §,. Thus, ptr; (fy) = (=)' P(w)1dy where
o = (pv(£2)). m|

Corollary 4 Let V be a generic simple Ug (sI(2))-module. Then there exists a €
(C\Z) U rZ such that {py (£2)) = (—1)" (¢% + ¢~*) and

r—1

_ ()
d(v) = (-1)! T~
V)= (=1 ]Ul{aﬂ—f}

i) (—)'r

(1
= {ro} N q(lfr)“+...+q(r73)oz +q(r—l)a'

13)

Moreover, d(V) = d(V*). Here we have fixed the global scalar of the right trace by
defining d(Vp) = ty, (Idy,) = (=)'~ 1.

Proof From Eq.(9) we have d(V) = W. So by Lemmas 4 and 5 we have
L

d(V) = d(W) for any generic simple W such that (pw (£2)) = (pv (£2)). The proof of
Lemma 3 implies there exists a nilpotent simple module W in the quantum coadjoint
orbit of V. Moreover, this proof implies that the action of §2 is the same on V and
W. Since W is nilpotent there exists « € (C\Z) U rZ such that 2 acts on W by
(=D (q“ + q““). From [10] it is shown that the modified quantum dimension of W
is given by the formula in Eq. (13). Thus, Eq. (13) follows.

To see the last statement of the corollary, notice S(£2) = £2 so (py(£2)) =
(py=(£2)) and d(V) = d(V™). o

Theorem 3, Lemma 3 and Corollary 4 imply the following corollary.

Corollary 5 The right trace {ty }y eproj on Proj in €sy2) is a trace.
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Corollary 6 There exists aunique (up to global scalar) trace on the projective modules

of € s12)-

6 Conjectures for quantum groups at even ordered roots of unity

Let g be a simple finite-dimensional complex Lie algebra with data b, A", Lg, L, ...
discussed in Sect. 3.1. Let £ be an even integer such that £ > 2 (and ¢ ¢ 3Zif g = G»).
Leté = e2V=1m/ andr = ¢ /2. As above, for each lattice L, consider the three versions

—L
of the quantum groups: Z/{SL (9), L{%_H (g? anq U (9). o
The case when £ is even the situation is not very well developed at this time and
needs additional work to apply the results of this paper. For example, the subalgebra Z
ofL{SL (g) generated by {X, e K;, : B € Ay, y € L}isnotnecessarily commutative:
if (B, a;) = 1 then Eq. (4) implies

KpXj=q"PX;Kp = —X K}

So one must first define an appropriate notion of weight modules for the algebras

USL (9), Z/{f (g) and USL (g). Also, as mentioned above the quantum coadjoint action is
not worked out for case when ¢ is even. Some work in this direction has been done
for ¢ € 47, see [3].

We are lead to the following question, “For even ordered &, can one define categories

of weight modules Geyen, ‘geljen and ?even over Z/l%.L (9), L{EH (g) and Zjé (g), respectively,

such that the following conjectures are true?”

Conjecture 1 Foreven ordered £, there exists a category 4.2, of modules over L[SH (9)
which is ribbon.

Conjecture 2 For even ordered &, there exists a category Geven 0f weight modules over
L{g‘ (g) such that there exists a unique (up to global scalar) two-sided trace on the ideal
of projective modules of Geyen-

Conjecture 3 For even ordered &, there exists a category ?even of modules over I/, é (@)
such that there exists a unique (up to global scalar) two-sided trace on the ideal of
projective modules of & even-

The conjectures in this section are motivated by applications in low-dimensional
topology. In particular, when £ = 4 and g = s[(2) in [6] it is shown that the closed
3-manifold invariant of [9] associated with the category ‘551[1(2) are a canonical normal-
ization of Reidemeister torsion defined by Turaev which gives rise to a Topological
Quantum Field Theory (TQFT). It would be interesting to see what properties the
analogous topological invariants have for other Lie algebras at similar level. The first
step in defining such invariants is a proof of Conjecture 1. Also, Conjecture 3 would
also be interesting in generalizing the work of [4].
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