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Abstract For certain roots of unity, we consider the categories of weight modules
over three quantum groups: small, unrestricted and unrolled. The first main theorem
of this paper is to show that there is a modified trace on the projective modules of
the first two categories. The second main theorem is to show that category over the
unrolled quantum group is ribbon. Partial results related to these theoremswere known
previously.
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Introduction

For an odd ordered root of unity ξ and lattice L , letU L
ξ ,UH

ξ and U L
ξ be the unrestricted,

unrolled and small quantum groups, respectively (see Sect. 3). Let Codd (resp. C H
odd,

resp. C odd) be the category of U L
ξ (resp. UH , resp. U L

ξ ) weight modules. The usual
construction of quantum invariants do not directly apply to these categories because
of the following obstructions: the categories are not semi-simple and have vanishing
quantumdimensions. Partial results overcoming these obstructions have been obtained

B Nathan Geer
nathan.geer@gmail.com

Bertrand Patureau-Mirand
bertrand.patureau@univ-ubs.fr

1 Mathematics and Statistics, Utah State University, Logan, UT 84322, USA

2 UMR 6205, LMBA, Univ. Bretagne - Sud, 56000 Vannes, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-017-0993-4&domain=pdf
http://orcid.org/0000-0002-1285-4746


118 N. Geer, B. Patureau-Mirand

in [10,18–21,23]. In this paperwe generalize some of these results using a new concept
called generically semi-simple (loosely meaning the category is graded and semi-
simple on a dense portion of the graded pieces). In [4,7], the results of this paper will
be used in future work to construct topological invariants. Remark that since the first
version of this paper, interesting new generalizations of unrolled quantum groups have
been studied in the recent preprints [1,25].

The first part of this paper contains a general theory with two main theorems which
extend properties of generic simple objects to general properties in the full category.
The first (Theorem 2) loosely says that if a category is generically semi-simple, pivotal
and braided such that there is a twist for every generic simple object then the full
category has a twist and so the category is ribbon. The second (Theorem 3) loosely
says that if a category is generically semi-simple and pivotal with a right trace on its
projective objects whose modified dimension satisfies d(V ) = d(V ∗) for all generic
simple objects V then the right trace is a (two-sided) trace.

We apply these theorems to the categories of modules over the different quan-
tum groups mentioned above. It was previously known that C H

odd is a braided pivotal
category and Codd is a pivotal category with a right trace, see [19] and [20], respec-
tively. Here we remark that C H

odd and Codd are generically semi-simple (see Sect. 4.3).
In Sect. 4.4 we show that each generic simple module in C H

odd has a twist and thus
Theorem 2 implies C H

odd is ribbon. Section 4.5 contains a proof that the modified
dimension satisfies d(V ) = d(V ∗) for all generic simple objects V of Codd and so
Theorem 3 implies the unique right trace (up to global scalar) on the ideal of projective
modules of Codd is a trace. This unique trace (up to global scalar) induces a trace on
C odd.

The main theorems in this paper about C H
odd and Codd use deep results developed

by De Concini, Kac, Procesi, Reshetikhin and Rosso in the series of papers [11–14].
In particular, we use the quantum coadjoint action. In general, these results hold for
odd ordered roots of unity. However, in Sect. 5 we show directly that in the case of
sl(2) the results discussed above hold for even and odd ordered roots of unity. In
particular, we show Csl(2) is braided and C H

sl(2) and C sl(2) have unique traces. Finally,
in Sect. 6 we conjecture that Sects. 4.4 and 4.5 generalize to even ordered root of
unity.

1 Tensor categories

In this section we give the basic definitions for tensor categories and the functors
induced by graphic calculus.

1.1 Pivotal and ribbon categories

We recall the definition of pivotal and ribbon tensor categories, for more details see
for instance, [2]. In this paper, we consider strict tensor categories with tensor product
⊗ and unit object I. Let C be such a category. The notation V ∈ C means that V is
an object of C .

The category C is a pivotal category if it has duality morphisms
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The trace on projective representations of quantum groups 119

−→
coevV : I → V ⊗ V ∗, −→

ev V : V ∗ ⊗ V → I,
←−
coevV : I → V ∗ ⊗ V and

←−
ev V : V ⊗ V ∗ → I

which satisfy compatibility conditions (see for example [2,19]). In particular, the left
dual and right dual of a morphism f : V → W in C coincide:

f ∗ =
(−→
ev W ⊗ IdV ∗

)
(IdW ∗ ⊗ f ⊗ IdV ∗)

(
IdW ∗ ⊗ −→

coevV
)

=
(
IdV ∗ ⊗ ←−

ev W

)
(IdV ∗ ⊗ f ⊗ IdW ∗)

( ←−
coevV ⊗ IdW ∗

)
: W ∗ → V ∗.

Then there is a natural notion of right categorical (partial) trace in C : for any
V,W ∈ C ,

trR : EndC (V ) → k

f �→ ←−
ev V ( f ⊗ IdV ∗)

−→
coevV

and

ptrR : EndC (V ⊗ W ) → EndC (V )

f �→ (IdV ⊗ ←−
ev W )( f ⊗ IdW ∗)(IdV ⊗ −→

coevW )

and analogous left categorical (partial) trace trL (resp. ptrL ) defined using
−→
ev and

←−
coev.

A braiding on C consists of a family of natural isomorphisms {cV,W : V ⊗ W →
W ⊗ V } satisfying the Hexagon Axiom:

cU,V⊗W = (IdV ⊗ cU,W ) ◦ (cU,V ⊗ IdW ) and

cU⊗V,W = (cU,W ⊗ IdV ) ◦ (IdU ⊗ cV,W )

for all U, V,W ∈ C . We say C is braided if it has a braiding. If C is pivotal and
braided, one can define a family of natural automorphisms

θV = ptrR(cV,V ) : V → V .

We say that C is ribbon and the morphism θ is a twist if

θV ∗ = (θV )∗ (1)

for all V ∈ C .

Remark 1 An equivalent definition of a ribbon category is a braided left rigid bal-

anced category. Left rigid means that there are left duals (V, V ∗, −→
ev V ,

−→
coevV ) and

the balance θ is a natural automorphism of the identity functor satisfying θU⊗V =
(θU ⊗ θV ) ◦ cV⊗U ◦ cU⊗V and Eq. (1).
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120 N. Geer, B. Patureau-Mirand

1.2 k-categories

Let k be a integral domain. A k-category is a category C such that its hom-sets are left
k-modules, the composition of morphisms is k-bilinear, and the canonical k-algebra
map k → EndC (I), k �→ k IdI is an isomorphism. A tensor k-category is a tensor
category C such that C is a k-category and the tensor product of morphisms is k-
bilinear. An object V of C is simple if EndC (V ) = kIdV . Let V be an object in C
and let α : V → W and β : W → V be morphisms. The triple (V, α, β) (or just the
object V ) is a retract of W if βα = IdV . An object W is a direct sum of the finite
family (Vi )i of objects of C if there exist retracts (Vi , αi , βi ) of W with βiα j = 0 for
i 	= j and IdW = ∑

i αiβi . An object which is a direct sum of simple objects is called
semi-simple.

1.3 Traces on ideals in pivotal categories

Here we recall the definition of a (right) trace on an (right) ideal in a pivotal k-category
C , for more details see [23]. By a right ideal of C we mean a full subcategory I of
C such that:

1. If V ∈ I and W ∈ C , then V ⊗ W ∈ I.
2. If V ∈ I and if W ∈ C is a retract of V , then W ∈ I.

One defines similarly the notion of a left ideal by replacing in the above definition
V ⊗ W ∈ I by W ⊗ V ∈ I. A full subcategory I of C is an ideal if it is both a right
and left ideal.

If I is a right ideal in C then a right trace on I is a family of linear functions

{tV : EndC (V ) → k}V∈I

such that following two conditions hold:

1. If U, V ∈ I then for any morphisms f : V → U and g : U → V in C we have

tV (g f ) = tU ( f g).

2. If U ∈ I and W ∈ C then for any f ∈ EndC (U ⊗ W ) we have

tU⊗W ( f ) = tU
(
ptrR( f )

)
.

The notion of a left trace on a left ideal is obtained by replacing (2) in the above
definition with tW⊗U ( f ) = tU

(
ptrL( f )

)
for all f ∈ EndC (W ⊗ U ). A family t =

{tV }V∈I is a trace if I is an ideal and t is both a left and right trace.
The class of projectivemodulesProj inC is an ideal. In a pivotal category projective

and injective objects coincide (see [23]). The idealProj is an important example which
we will consider later in this paper.
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The trace on projective representations of quantum groups 121

1.4 Colored ribbon graph invariants

Let C be a pivotal category. A morphism f : V1 ⊗ · · · ⊗ Vn → W1 ⊗ · · · ⊗ Wm

in C can be represented by a box and arrows (we use Turaev’s convention ([30]) for
orientations of diagrams):

Wm...W1

f

Vn...V1

Boxes as above are called coupons. By a ribbon graph in an oriented manifold �, we
mean an oriented compact surface embedded in� which decomposed into elementary
pieces: bands, annuli, and coupons (see [30]) and is the thickening of an oriented
graph. In particular, the vertices of the graph lying in Int� = �\∂� are thickened
to coupons. A C -colored ribbon graph is a ribbon graph whose (thickened) edges are
colored by objects of C and whose coupons are colored by morphisms of C . The
intersection of a C -colored ribbon graph in � with ∂� is required to be empty or to
consist only of vertices of valency 1. When � is a surface the ribbon graph is just a
tubular neighborhood of the graph.

A C -colored ribbon graph in R
2 is called planar. A C -colored ribbon graph in

S2 = R
2 ∪ {∞} is called spherical. A C -colored ribbon graph in R

3 or R2 × [0, 1]
are called spatial.

For i ∈ {2, 3}, theC -colored ribbon graphs inRi−1×[0, 1] form a category GriC as
follows: objects of GriC are finite sequences of pairs (X, ε), where X ∈ C and ε = ±.
Morphisms of GriC are isotopy classes of C -colored ribbon graphs in R

i−1 × [0, 1].
By a (1,1)-ribbon graph in GriC we mean a C -colored ribbon graph which is an
endomorphism of an object (V,+) in GriC . Let F : GriC → C be the Reshetikhin-
Turaev k-linear functor (see [22]). If C is a ribbon category, the functor on planer
graphs F : Gr2C → C extends to the functor on spatial graphs F : Gr3C → C .

1.5 Renormalized colored ribbon graph invariants

The motivation of this paper is to provide the underpinnings for the construction of
topological invariants. With this in mind, in this subsection, we recall the notion of
renormalized colored ribbon graph invariants introduced and studied in [18,20–23].
This subsection is independent of the rest of the paper. The theory of renormal-
ized invariants produces nontrivial invariants in some situations when the standard
approaches fail. In particular, these invariants can be nontrivial when quantum dimen-
sion vanish. The renormalized invariant of closed C -colored ribbon graph can be
computed in three steps: (1) cut a special edge of a closed C -colored ribbon graph, (2)
applyF to the resulting graph to obtain an endomorphism and (3) apply to the endomor-
phism a k-linear functional to obtain a number. If this functional has certain properties
then the number is an invariant of the ribbon graph. Here is a more precise definition:
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122 N. Geer, B. Patureau-Mirand

Let C be a pivotal (resp., ribbon) category. Let Tadm be a class of planar (resp.
spatial) C -colored (1,1)-ribbon graphs. We denote an element of Tadm by TV where
V is the object of C which colors the open edge of the (1,1)-ribbon graph. We call V
the section of TV . Given such a graph TV the right braid closure gives a well defined
equivalence class of a closed ribbon graph T̂V in R

2 (resp. in R
3). Let Ladm be the

class of right braid closures of elements of Tadm. Let t = {tV : EndC (V ) → k}V be
a family of linear maps where V runs over all the sections of elements TV ∈ Tadm.
Suppose that t satisfies the condition:

If TV , T ′
W ∈ Tadm such that T̂V is isotopic to T̂ ′

W then tV (F(TV )) = tW
(
F(T ′

W )
)
.

We call the function

F′ : Ladm → k defined by F′(T̂V
) = tV (F(TV ))

the renormalized invariant associated with Ladm and t.
We will now give some examples of renormalized invariants.

Example 1 T-ambi pair Let A be a class of simple objects in a pivotal k-category C .
The classes Tadm and Ladm are formed by the trivalent ribbon planar graphs whose
edges are colored by elements of A. The family t = (tV )V∈A is determined by a
mapping d : A → k

× constant on isomorphism classes of objects. Then the map
tV is determined by tV (λ IdV ) = λd(V ). If F′ is invariant by isotopy in the sphere
S2 (here we consider an isomorphism S2 
 R

2 ∪ {∞}) then we say that (A,d) is a
trivalent-ambidextrous pair or t-ambi for short. A (modified) 6 j-symbol is the value
of a tetrahedron under F′. These 6 j-symbols are the elementary algebraic ingredients
of a renormalized Turaev–Viro-type invariant of 3-manifolds defined by state sums on
triangulations [20,22].

Example 2 Right traceLet t be a right trace on a right ideal I in a pivotalk-categoryC ,
see Sect. 1.3. Let Tadm be all the C -colored (1,1)-ribbon planar graphs whose sections
are in I. Then F′ is a invariant of planar isotopy but in general it is not an invariant
of isotopy in the sphere S2. Nevertheless, for V ∈ I one can set d(V ) = tV (IdV )

then Corollary 7 of [23] implies that for A = {V ∈ I : V is simple, V ∗ ∈ I, d(V ) =
d(V ∗)}, (A,d) is a trivalent-ambidextrous pair and the restriction of F′ to A-colored
graphs is an invariant of isotopy in the sphere S2.

Example 3 (Two-sided) trace Let C be a pivotal (resp. ribbon) k-category and let t
be a trace on an ideal I. Again, let Tadm be all C -colored (1,1)-ribbon planar (resp.
spatial) graphs whose sections are in I. By setting d(V ) = tV (IdV ) for V ∈ I then
Theorem 5 of [23] implies F′ is an invariant of spherical (resp. spatial) ribbon graphs.
Moreover, Ladm is formed by the C -colored ribbon graphs with at least one edge in I.

1.6 G-graded and generically G-semi-simple categories

We now fix a group G.
Definition 1 Grading: A pivotal k-category is G-graded if for each g ∈ G we have a
nonempty full subcategory Cg of C stable by retract such that

1. C = ⊕
g∈G Cg ,
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The trace on projective representations of quantum groups 123

2. if V ∈ Cg , then V ∗ ∈ Cg−1 ,
3. if V ∈ Cg , V ′ ∈ Cg′ then V ⊗ V ′ ∈ Cgg′ ,
4. if V ∈ Cg , V ′ ∈ Cg′ and HomC (V, V ′) 	= 0, then g = g′.
For a subset X ⊂ G we say:

1. X is symmetric if X−1 = X ,
2. X is small in G if the group G can not be covered by a finite number of translated

copies of X , in other words, for any g1, . . . , gn ∈ G, we have
⋃n

i=1(giX ) 	= G.

Definition 2 Semi-simplicity:

1. A k-category C is semi-simple if all its objects are semi-simple.
2. A k-category C is finitely semi-simple if it is semi-simple and has finitely many

isomorphism classes of simple objects.
3. A G-graded category C is a generically G-semi-simple category (resp. generically

finitely G-semi-simple category) if there exists a small symmetric subset X ⊂ G
such that for each g ∈ G\X , Cg is semi-simple (resp. finitely semi-simple). We
callX the singular locus ofC . By a generic simple object wemean a simple object
of Cg for some g ∈ G\X .

Remark 2 For a generically G-semi-simple categoryC with singular locusX , its ideal
Proj of projective objects contains all objects ofCg for g ∈ G\X . In particular, generic
simple objects of C are projective.

The notion of generically G-semi-simple categories appears in [20,22] through the
following generalization of fusion categories (in particular, fusion categories satisfy
the following definition when G is the trivial group, X = ∅ and d = b = qdimC is
the quantum dimension):

Definition 3 (Relative G-spherical category) Let C be a generically finitely G-semi-
simple pivotal k-category with singular locus X ⊂ G and let A be the class of generic
simple objects of C . We say that C is (X ,d)-relative G-spherical if
1. there exists a map d : A → k

× such that (A,d) is a t-ambi pair,
2. there exists a map b : A → k such that b(V ) = b(V ∗), b(V ) = b(V ′) for any

isomorphic objects V, V ′ ∈ A and for any g1, g2, g1g2 ∈ G\X and V ∈ Gg1g2 we
have

b(V ) =
∑

V1∈irr(Cg1 ), V2∈irr(Cg2 )

b(V1)b(V2) dimk(HomC (V, V1 ⊗ V2))

where irr(Cgi ) denotes a representing set of isomorphism classes of simple objects
of Cgi .

We finish this section by recalling the following theorem and corollary which we
use later to show certain algebras are semi-simple. For a proof of the theorem see [15].

Theorem 1 (the Density Theorem) Let A be an algebra over an algebraically closed
field k. Let {Vi }i be a set of irreducible pairwise nonisomorphic finite-dimensional
modules over A. Then the map ⊕iρi : A → ⊕

i Endk(Vi ) is surjective.
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124 N. Geer, B. Patureau-Mirand

Corollary 1 Let C be the category of finite-dimensional modules of the finite-
dimensional algebra A. Let {Vi }i be a set of irreducible pairwise nonisomorphic
finite-dimensional modules over A. If

dim(A) =
∑
i

dim(Vi )
2

then C is semi-simple.

Proof From the Density Theorem we know that ⊕iρi : A → ⊕
i Endk(Vi ) is surjec-

tive. The assumption on the dimensions implies that this map is a injective. Thus, A is
isomorphic to the direct sum of matrix algebras which is semi-simple and it follows
that C is semi-simple. ��

2 Extension of generic properties

Let C be a pivotal k-category. In this section we present two theorems which extend
properties observed for generic simple objects of C to general properties in the full
category.

Proposition 1 If C is a braided pivotal k-category then the class of objects

{V ∈ C : θV ∗ = (θV )∗}

forms a full subcategory of C which is ribbon.

Proof For each object V ∈ C , consider the automorphism

The family (EV )V∈C defines a natural transformation (as E∗ is an automorphism of the
identity functor, its naturality is just the fact that EV f = f EU for any f : U → V ).
Its inverse is given by

The naturality of cV,V implies that the image by F of a C -colored diagram is invariant
by Reidemester II and III moves so that for any V,W ∈ C

(2)
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The trace on projective representations of quantum groups 125

showing that E∗ is a monoidal transformation. Finally, the dual of the right partial
trace is given by the left partial trace so

(EV )∗ = E −1
V ∗ . (3)

For any object V ∈ C , (θV )∗ = (EV )∗ ◦ θV ∗ so (θV )∗ = θV ∗ ⇐⇒ EV = IdV and
the class in the proposition is clearly a subpivotal category of C because of properties
(2), (3) of the natural automorphism E∗. ��

The following theorem generalizes an argument of Ha (see [24, Proposition 3.7]).

Theorem 2 Let C be a generically G-semi-simple pivotal braided category. If
θ(V )∗ = θ(V ∗) holds for any generic simple object V , then C is a ribbon category,
i.e., θ is a twist on the full category C .

Proof Consider the natural automorphismE∗ of the proof of Proposition 1.By assump-
tion we have EV = IdV for any generic simple object V . By naturality, this property
is stable by direct sums so it is also true for any semi-simple object that is a direct
sum of generic simple objects. Now for any homogenous object W ∈ Cg , let h ∈ G
be such that h, hg /∈ X and let V ∈ Ch . Then V ⊗ W ∈ Chg is semi-simple and

IdV ⊗ IdW = EV⊗W = EV ⊗ EW = IdV ⊗EW

thus EW = IdW and θ(W )∗ = θ(W ∗). ��
For the second theoremwe first recall the relation between (right) trace and duality:

Proposition 2 (see [23, Lemmas 2 & 3])

1. If I is a right ideal then I∗ = {V ∈ C , V ∗ ∈ I} is a left ideal and

I is an ideal ⇐⇒ I∗ = I.

2. If t is a right trace on the right ideal I then t∗ is a left trace on I∗ where by
definition, t∗V ( f ) = tV ∗( f ∗) for any V ∈ I, any f ∈ EndC (V ) and

t is a trace ⇐⇒ t∗ = t.

Definition 4 1. A pseudo-monoid class in a pivotal category C is a class of objects
stable by dual, retracts and tensor product.

2. Let t be a right trace on a right ideal I. The horizontal part of I for t is the class

I= = {V ∈ I : V ∗ ∈ I and tV = t∗V }.

Remark 3 An ideal of a pivotal category is a pseudo-monoid and the converse is
partially true. Indeed one could define the idealizer of a pseudo-monoid M to be the
full subcategory of C whose objects are

IC (M) = {V ∈ C : V ⊗ M ⊂ M ⊃ M ⊗ V }.
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126 N. Geer, B. Patureau-Mirand

Then one can prove that IC (M) is a subpivotal category of C which containsM such
that M is an ideal in IC (M).

Proposition 3 Let t be a right trace on a right ideal I. Then the horizontal part I= of
I is a pseudo-monoid. Furthermore, I= is stable by direct sum in the following weak
sense: if {Vi }i is a finite family of object of I= and W ∈ I ∩ I∗ is isomorphic to their
direct sum, then W ∈ I=.

Proof If V is a retract of W ∈ I= then there are α : V → W, β : W → V with
βα = IdV . Then V ∗ is a retract of W ∗ ∈ I= so V ∗ ∈ I. For any f ∈ EndC (V ), by
definition t∗V ( f ) = tV ∗( f ∗) but

tV ( f ) = tV ( fβα) = tW (α fβ) = tW ∗(β∗ f ∗α∗) = tV ∗(α∗β∗ f ∗) = tV ∗( f ∗).

So V ∈ I= and I= is stable by retract (recall in particular that an isomorphic object
is a retract).

Let V ∈ I= and let φV : V
∼→ V ∗∗ be the pivotal isomorphism. Then for any

f ∈ EndC (V ), tV ( f ) = tV (φ−1
V f ∗∗φV ) = tV ∗∗( f ∗∗φVφ−1

V ) = tV ∗∗( f ∗∗). Given
g ∈ EndC (V ∗) then g is the dual of f = φV g∗φ−1

V ∈ EndC (V ) so

tV ∗(g) = tV ∗( f ∗) = tV ( f ) = tV ∗∗( f ∗∗) = t∗V ∗(g)

and (I=)∗ ⊂ I=.
LetV,W ∈ I= and let f ∈ EndC (V⊗W ). ThenV ∗ ∈ I and t is right ambidextrous

by [23, Lemma 4] so t(ptrR( f )∗) = t(ptrL( f ′)) = t(ptrL( f )) where f ′ = (φV ⊗
IdW ) f (φ−1

V ⊗ IdW ) so

t( f ) = t(ptrR( f )) = t(ptrR( f )∗) = t(ptrL( f ))

= t(ptrL( f )∗) = t(ptrR( f ∗)) = t( f ∗)

thus V ⊗ W ∈ I=.
If W is a direct sum of objects of I= with associated projectors pi = αiβi , then

so is W ∗ with projectors p∗
i . Now for any f ∈ EndC (W ), f = (∑

i pi
)
f
(∑

i pi
) =∑

i, j pi f p j so

t( f ) =
∑
i

t(pi f pi ) +
∑
i 	= j

����t( f p j pi ) =
∑
i

t
(
βi f αi��βiαi

) =
∑
i

t
(
α∗
i f

∗β∗
i

) = t( f ∗).

��
An object V ∈ C is nonzero if IdV 	= 0. For the next theorem, we will make the

following assumption that is true for example if C is a category of finite-dimensional
representations of aHopfk-algebra:Wewill assume thatC is aKrull-Schmidt category
and that for any nonzero V ∈ C , V ⊗ · and · ⊗ V are faithful functors. The former
implies that any object in C is isomorphic to an unique direct sum of indecomposable
objects (an object is indecomposable if it is not isomorphic to a direct sum of two
nonzero objects).
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The trace on projective representations of quantum groups 127

Theorem 3 Let C be a generically G-semi-simple pivotal category with the above
assumption. Let t be a right trace on Proj and let d = {d(V ) ∈ k}V∈Proj denote the
associated modified dimension. If d(V ) = d(V ∗) holds for any generic simple object
V , then t is a trace on Proj.

Proof By assumption we have that any generic simple object V is in Proj= as
EndC (V ) 
 k 
 EndC (V ∗) so the right trace on these endomorphisms is determined
by d(V ) = d(V ∗). Since Proj= is stable by direct sums it contains any semi-simple
object that is a direct sum of generic simple objects. Let W be a indecomposable
projective object. Then there exists g such that W ∈ Cg . Let h ∈ G be such that
h, h−1g /∈ X (recall that X is small) and let V ∈ Ch . Then W ∈ IV = Proj thus
there exists U ∈ C such that W is a retract of V ⊗ U . As C = ⊕

g∈G Cg , we can
assume up to replacing U by one of its summand that U ∈ Ch−1g . Then U is a semi-
simple direct sum of generic simple objects and an element of Proj=. Since Proj= is
a pseudo-monoid then V ⊗U ∈ Proj= and W ∈ Proj= as W is a retract. In addition,
since Proj= is stable by direct sums we get that W ∈ Proj= even if W ∈ Proj is not
indecomposable. Thus, Proj= = Proj and t = t∗ on Proj. In other words, t is a trace.

��

3 Quantum groups at roots of unity

In this section we first recall some of the deep results established by De Concini, Kac,
Procesi, Reshetikhin and Rosso in the series of papers [11–14]. Then we observe that
the twist θ and the modified dimension d are generically self-dual. As a consequence
we get the existence of a ribbon structure associated with the unrolled quantum group
and the existence of a trace on Proj for the categories of weight modules over the
small, unrolled and unrestricted groups.

3.1 The small, the unrolled and the unrestricted

Let g be a simple finite-dimensional complex Lie algebra of rank n and dimension
2N + n with the following:

1. a Cartan subalgebra h,
2. a root system consisting in simple roots {α1, . . . , αn} ⊂ h∗,
3. a Cartan matrix A = (ai j )1≤i, j≤n ,
4. a set Δ+ of N positive roots,
5. a root lattice LR = ⊕

i Zαi ⊂ h∗,
6. a scalar product 〈·, ·〉 on the real span of LR given by its matrix DA = (〈

αi , α j
〉)
i j

where D = diag(d1, . . . , dn) and the minimum of all the di is 1.

The Cartan subalgebra has a basis {Hi }i=1···n determined by αi (Hj ) = a ji and its
dual basis of h∗ is the fundamental weights basis which generate the lattice of weights
LW . Let ρ = 1

2

∑
α∈Δ+ α ∈ LW .

Let q be an indeterminate and for i = 1, . . . , n, let qi = qdi . Let 
 be an integer
such that 
 ≥ 2 (and 
 /∈ 3Z if g = G2). Let ξ = e2

√−1π/
 and r = 2

3+(−1)


. For
x ∈ C and k, l ∈ N we use the notation:
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128 N. Geer, B. Patureau-Mirand

ξ x = e
2iπx


 , {x}q = qx − q−x ,

[x]q = {x}q
{1}q , [k]q ! = [1]q [2]q · · · [k]q ,

[
k

l

]

q
= [k]q !

[l]q ![k − l]q ! .

Let K
 be the subring of C(q) made of fractions that have no poles at ξ (K
 is a
localization of C[q]). A K
-module can be specialized at q = ξ (the specialization is
the tensor product with the K
-module C where q acts by ξ ).

For each lattice L with LR ⊂ L ⊂ LW , there is an associated quantum group
which contains the group ring of L: define U L

q as the K
-algebra with generators
Kβ, Xi , X−i for β ∈ L , i = 1, . . . , n and relations

K0 = 1, KβKγ = Kβ+γ , KβXσ i K−β = qσ 〈β,αi 〉Xσ i , (4)

[Xi , X− j ] = δi j
Kαi − K−1

αi

qi − q−1
i

, (5)

1−ai j∑
k=0

(−1)k
[
1 − ai j

k

]

qi

Xk
σ i Xσ j X

1−ai j−k
σ i = 0, if i 	= j (6)

where σ = ±1. Drinfeld and Jimbo consider the quantum group corresponding to LR .
The algebra U L

q is a Hopf algebra with coproduct Δ, counit ε and antipode S defined
by

Δ(Xi ) = 1 ⊗ Xi + Xi ⊗ Kαi , Δ(X−i ) = K−1
αi

⊗ X−i + X−i ⊗ 1,

Δ(Kβ) = Kβ ⊗ Kβ, ε(Xi ) = ε(X−i ) = 0, ε(Kαi ) = 1,

S(Xi ) = −Xi K
−1
αi

, S(X−i ) = −Kαi X−i , S(Kβ) = K−β .

The unrestricted quantum groupU L
ξ is theC-algebra obtained fromU L

q by specializing
q to ξ .

TheunrolledquantumgroupUH = UH
ξ is the algebra generatedby Kβ, Xi , X−i , Hi

for β ∈ L , i = 1, . . . , n with Relations (4), (5), (6) where q = ξ plus the relations

[Hi , Xσ j ] = σai j Xσ j , [Hi , Hj ] = [Hi , Kβ ] = 0 (7)

where σ = ±1. The algebra UH is a Hopf algebra with coproduct Δ, counit ε and
antipode S defined as above on Kβ, Xi , X−i and defined on the elements Hi for
i = 1, . . . , n by

Δ(Hi ) = 1 ⊗ Hi + Hi ⊗ 1, ε(Hi ) = 0, S(Hi ) = −Hi .

For a fixed choice of a convex order β∗ = (β1, . . . , βN ) of Δ+ define recursively a
convex set of root vectors (X±β)β∈β∗ in U L

ξ (see Sects. 8.1 and 9.1 of [8]). The small
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quantum groupU L
ξ is a finite-dimensional quotient ofU L

ξ . When 
 is odd or g is simply

laced,1 it is the quotient of U L
ξ by the relations

Xr±β = 0 and K 2r
γ = 1 for all β ∈ Δ+, γ ∈ LR .

The dimension of U L
ξ is then r2N (2r)n[L :LR]. From now on if it is clear we will not

write the superscript L in U L
ξ or U L

ξ .

3.2 Pivotal structures

For any central group-like element c, the element φ = cK2ρ inU whereU is Uξ , UH

or U ξ is group-like and satisfies S2(x) = φxφ−1. It follows that U is a pivotal Hopf
algebra and the category of finite-dimensionalU -modules is a pivotal C-category, for
details see [5,20]. Here the dual is given by the dual vector space V ∗ = HomC(V,C)

equipped with the transpose action composed with antipodal morphism S. The dual-

ity morphisms
−→
ev and

−→
coev are the standard evaluation and coevaluation, whereas

←−
ev=−→

ev ◦τ ◦ (φ ⊗ 1) and
←−
coev= τ ◦ (φ−1 ⊗ 1)◦ −→

coev where τ is the flip.

Remark 4 The h-adic version of the quantum group Uh(g) = Uh is the C[[h]]-
topological Hopf algebra with generators Xi , X−i , Hi for i = 1, . . . , n and Relations
(5), (6) and (7) where q and Kαi are replaced by e

h/2 and qHi
i , respectively. The cate-

gory of finite-dimensional topologically free Uh-modules is a pivotal category where
the pivotal element is normally given by K2ρ . In this paper, for g = sl2 or when the
order 
 of the root of unity is odd, we use φ = K 1−r

2ρ instead of K2ρ which also defines
a pivotal structure. The reason we make this choice is because the pivotal structure for
φ = K 1−r

2ρ is compatible with the braiding and trace consider in future subsections.
The pivotal structure corresponding to K2ρ does not have such compatibilities: the
left and right twist differ by a square and the modified dimensions of V and V ∗ are
not equal.

4 Quantum groups at odd ordered roots of unity

In this section we consider the case when 
 is an odd integer. In this case, 
 = r . To
make the notation clear we will write Codd, C H

odd and C odd for the categories in this
section.

4.1 Weight modules

Let Z0 be the subalgebra of U L
ξ generated by {Xr±β, Kr

γ : β ∈ Δ+, γ ∈ L}. Then Z0

is a sub-Hopf algebra contained in the center of U L
ξ . Moreover, Z0 is isomorphic to

1 Simon Lentner pointed to us that the non simply laced case with even root of unity is more tricky (see
[26, Sect. 8.2.]).
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the Hopf algebra of regular functions of a group G = Spec(Z0) which is Poisson-Lie
dual to a complex simple Lie group with Lie algebra g (see [12]). Here Spec(Z0) is
the algebraic variety of algebra homomorphisms from Z0 to C.

By a Uξ -weight modulewemean a finite-dimensional module over U which restrict
to a semi-simple module over Z0. Since Xr±β = 0 and K 2r

γ = 1 in U ξ we say all

finite-dimensional U ξ -modules are weight modules. Finally, a finite-dimensional UH -
module V is a UH -weight module if it is a semi-simple module over the subalgebra
generated by {Hi : i = 1 · · · n} and for any γ = ∑

i ciαi ∈ L then q
∑

i di ci Hi = Kγ

as operators on V . Let Codd (resp. C H
odd, resp. C odd) be the category of Uξ (resp. UH ,

resp. U ξ ) weight modules. As the action of each Kβ is determined by the action of the
Hi ’s it follows that C H

odd does not depend on the lattice L .
For g ∈ G = Homalg(Z0,C) let Cg be the full subcategory of Codd whose objects

are modules where each z ∈ Z0 act by g(z). For g ∈ G with g(Xr±β) = 0 for all

β ∈ Δ+ we say g is diagonal and the modules of Cg are nilpotent. Similarly, C H
odd is

graded by the group D of diagonal elements of G.
The dual of a weight module is a weight module. This implies that the category

Codd (resp. C H
odd, resp. C odd) is a subpivotal C-category of the category of all finite-

dimensional modules.

4.2 The braiding on C H
odd

In this subsection we briefly recall the existence of a braiding for C H
odd. We refer to

Theorem 41 of [20] for details.
Recall the h-adic quantum group Uh(g) = Uh defined in Remark 4. For a root

β ∈ LR , let qβ = q〈β,β〉/2. Let expq(x) = ∑∞
i=0

(1−q)i xi

(1−qi )(1−qi−1)···(1−q)
. Consider the

following elements of the h-adic version of the quantum group Uh :

HHh = q
∑

i, j di (A
−1)i j Hi⊗Hj , Řh =

∏
β∈β∗

expq−2
β

((
qβ − q−1

β

)
Xβ ⊗ X−β

)
(8)

where the product is ordered by the convex order β∗ of Δ+. It is well known that
Rh = HHh Řh defines a quasi-triangular structure on Uh (see for example [27]). Let

exp<
q (x) = ∑r−1

i=0
(1−q)i xi

(1−qi )(1−qi−1)···(1−q)
. Replacing the occurrences of expq−2

β
with

exp<

q−2
β

in the formula of Řh gives an element of Uq ⊗ Uq (seen as a subalgebra of

Uh[h−1]⊗2) called the truncated quasi-R-matrix. Specializing for q = ξ we get an
element Ř< ∈ Uξ ⊗ Uξ . The action of R< = HHh Ř< determines a braiding on C H

given by cV,W (v ⊗ w) = τ(R<(v ⊗ w)) where τ is the flip. Summarizing we have:

Proposition 4 The category C H
odd is a braided pivotal category.
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4.3 Semi-simple

Here we explain why Codd and C H
odd are generically semi-simple categories. The g-th

graded piece of Codd can be described using ideals of the algebra: Cg is the category
of weight module whose annihilator contains the two-sided ideal Ig generated by
{z − g(z) : z ∈ Z0}. Hence Cg is identified with the category of finite-dimensional
modules of the finite-dimensional algebra Uξ /Ig . For generic g, we will prove that the
algebra Uξ /Ig is semi-simple which will imply the category Cg is semi-simple.

A diagonal element of g ∈ G is regular if g(Kr±β) 	= ±1 for all β ∈ Δ+. For
regular g, the category Cg has rn nonisomorphic highest weight irreducible modules

Vi . These modules are also modules over U LR
ξ which is a subset of U L

ξ . Then Corol-

lary 3.2 of [11] implies that these modules have dimension r N . Therefore, we have∑
i dim(Vi )2 = r2N+n . The PBW theorem implies dim(U L

ξ ) = ∑
i dim(Vi )2. Thus,

Corollary 1 implies that for regular g, the category Cg is semi-simple.
De Concini and Kac consider certain derivations ei and f

i
for i = 1, ..., n. For

each t ∈ C, in [11, Section 3.5], it is shown these derivations give automorphisms
exp tei and exp t f i of (a completion of) the algebra Uξ . Let G̃ be the group generated
by all these automorphisms. This group leaves Z0 invariant and acts as holomorphic
transformations on the algebraic variety Spec(Z0). The action of G̃ on Spec(Z0) is
called the quantum coadjoint action. Theorem 6.1 of [12] considers the orbits of this
action. In particular, part (d) of this theorem says that the union of all G̃ orbits which
contain at least one regular element of G is Zariski open and dense in G. This can be
reformulated as there exist a set X with the following two properties: (1) G\X is a
Zariski dense open subset of G and (2) for each g ∈ G\X there is a regular d and
an outer automorphism of Uξ inducing an isomorphism of algebras Uξ /Ig → Uξ /Id .
Therefore, for each g ∈ G\X the algebra Uξ /Ig is semi-simple. By replacing X with
X ∪X−1 we can assume X is symmetric. Thus, we have shown Codd is a generically
finitely G-semi-simple category with singular locus X .

Remark 5 By definition, every G̃ orbit in G that contains an element of G\X also
contains a regular element and thus a diagonal element of G.

Recall C H
odd is graded by the groupD. Let XD be all the nonregular elements ofD.

It follows from Lemma 7.1 of [9] that C H
odd is a generically D-semi-simple category

with the singular locus XD.
The results described here and in Sect. 3 imply the following proposition.

Proposition 5 The category C H
odd is a genericallyD-semi-simple braided pivotal cat-

egory.

4.4 The ribbon structure in C H
odd.

Let V be a generic simple object of C H
odd. We will show that θV ∗ = (θV )∗. Since V

is simple, the morphism θV is a scalar times the identity of V . Moreover, (θV )∗ is the
same scalar times IdV ∗ . The module V is determined by its highest weight which is
of the form λ + (r − 1)ρ. Its dual V ∗ has highest weight −λ + (r − 1)ρ. To compute
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the twist on V notice that HHh is the only part of the R-matrix contributing to the
following computation:

θV (v) = ptrR(cV,V )(v) = q〈λ,λ〉−(r−1)2〈ρ,ρ〉v

where v is a highest weight vector of V (see [20] for more details). As 〈−λ,−λ〉 =
〈λ, λ〉 then a similar calculation shows that the scalar determining θV ∗ is equal to
the scalar determining both θV and (θV )∗. Thus, Proposition 5 and the results of this
subsection imply that C H

odd satisfies the hypothesis of Theorem 2 and so we have:

Theorem 4 The category C H
odd is a ribbon category.

Note that, in [20] we showed that a subcategory of C H
odd is ribbon.

4.5 The trace on the ideal of projective Uξ -modules

From Theorem 4.7.1 of [19] the ideal Proj of projective Uξ -modules in Codd admits
a unique nontrivial right trace which we denote by {tV }V∈Proj. In this subsection we
use Theorem 3 to show this right trace is a trace.

To apply the theorem we need to show d(V ) = d(V ∗) for any generic simple Uξ -
module V . We now explain how we reduce this equality to a computation related to
open Hopf links. Let V0 be the weight Uξ -module determined by the highest weight
vector v0 such that Xiv0 = 0 for i = 1, ..., n and Kγ v0 = q

∑
i di ci 〈(r−1)ρ,αi 〉v0 for

γ = ∑
i ciαi ∈ L . The module V0 is isomorphic to V ∗

0 . To simplify notation, in
the following computations we identify these modules with an isomorphism. Given a
simple module and a morphism g : W → W define 〈g〉 ∈ C as g = 〈g〉 IdW . Suppose
f : V0 ⊗ V → V0 ⊗ V is a morphism in C . Then

d(V )
〈
ptrL( f )

〉 = tV (ptrL( f )) = tV ∗
0
((ptrR( f ))∗)

= d(V ∗
0 )

〈
(ptrR( f ))∗

〉 = d(V0)
〈
ptrR( f )

〉
(9)

where the second equality is from Lemma 4(b) of [23] and the final equality holds
because V0 is isomorphic to V ∗

0 . Therefore, to compute d(V ) we need to give a mor-
phism f : V0 ⊗ V → V0 ⊗ V and compute its left and right partial trace. We will do
this now using the braiding of Uh(g).

Recall that the algebraUh and its R-matrix given in Sect. 4.2. Let V h
0 be the simple

Uh-weight module with highest weight (r − 1)ρ. So V h
0 has dimension r N and a

highest weight vector v0 such that Hiv0 = 〈(r − 1)ρ, αi 〉v0 for i = 1, ..., n. The
module V h

0 ⊗ C[h−1] contains its Uq analog V q
0 = Uq .v0 which specialize at q = ξ

to the Uξ -module V0.
We consider the Uh-module V h

0 ⊗ Uh . Let W0 ⊂ LR be the set of weights of V h
0

and pλ the projector of V h
0 on the weight space of weight λ. In general, if v and w are

vectors of weight λ andμ, respectively then HHh(v ⊗w) = q〈λ,μ〉v ⊗w = v ⊗Kλw.
So the action of HHh on V h

0 ⊗Uh is given by
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HHh =
∑
λ∈W0

pλ ⊗ Kλ. (10)

Consider the endomorphism fUh of V
h
0 ⊗ Uh given by the square of the braiding.

In other words, fUh is the morphism determined by the action of R21R12.
Since Xr±α vanishes on V h

0 the only portion of the quasi R-matrix contributing
to fUh is terms of the truncated quasi R-matrix. Then Eqs. (8) and (10) imply fUh

determines an element fUq ∈ AutK

(Vq

0 ) ⊗Uq . Moreover, these equations imply that
q can be specialized at ξ to obtain an element fUξ

∈ AutC(V0) ⊗ Uξ . Then for any
representation ρV : Uξ → End(V ), fV = (Id⊗ρV )( fUξ

) is an automorphism of the
Uξ -module V0 ⊗ V ( f∗ defines a natural automorphism of the functor V0 ⊗ ∗).
Lemma 1 For any generic simple Uξ -module V we have ptrR( fV ) = r N IdV0 .

Proof Consider a highest weight vector v0 of V0. Then Eq. (10) implies that

Ř<(v0 ⊗ x) = v0 ⊗ K2(r−1)ρx + (
terms ∈ V ′

0 ⊗ Uξ

)

where x ∈ Uξ and V ′
0 is the sum of weight spaces of V0 of weight strictly less than

(r − 1)ρ. Therefore,

ptrR( fV )(v0) = ptrR(p(r−1)ρ ⊗ ρV (K2(r−1)ρ))(v0)

= v0

(∑
i

x∗
i

(
K 1−r
2ρ K2(r−1)ρxi

))

= r Nv0

where xi is a basis of V and x∗
i is its dual basis. Since V0 is simple then ptrR( fV ) =

r N IdV . ��
Let V be a simple module of Cg where g ∈ G\X . Then there exists an outer

automorphism γ ∈ G̃ such that ρV ◦γ is a nilpotent representation of Uξ (see Remark
5). We say ρV ◦ γ is a nilpotent deformation of V .

Lemma 2 The element δq = ptrL( fUq ) belongs to the center of Uq and can be spe-
cialized to obtain an element δξ in the center of Uξ . Then for any generic simple
Uξ -module V we have ptrL( fV ) = ρV (δξ ). Moreover,

ptrL( fV ) =
∏

α∈Δ+

{r〈μ, α〉}
{〈μ, α〉} IdV (11)

where μ + (r − 1)ρ is the highest weight of a nilpotent deformation of V .

Proof Recall that the morphism fUh : V h
0 ⊗Uh → V h

0 ⊗Uh is given bymultiplication
on the left by a truncated part of R21R12. Using Eqs. (8), (10) and the definition of
partial trace,we have that ptrL( fUh ) is aUh-endomorphismgiven by leftmultiplication
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of an element δh ofUh . Thus, δh is an element of the center of Uh . Moreover, δh is an
element of Uq seen as a subalgebra of Uh[h−1] because it is equal to δq = ptrL( fUq ).
Therefore, δq is central since δh is central.

Let Zξ be the specialization at q = ξ of the center of Uq . Then by definition of the
derivations ei and f

i
it follows that the automorphisms of G̃ act trivially on Zξ . Since

δξ ∈ Zξ , it acts as the same scalar endomorphism on V and on any of its nilpotent
deformation. Hence the general formula in Eq. (11) can be deduced from the casewhen
V is the nilpotent module with highest weight μ + (r − 1)ρ which was computed in
Proposition 45 of [20]. ��

Theorem 5 The right trace {tV }V∈Proj on Proj in Codd is a trace. This trace is unique
up to a global scalar since this is true for the right trace.

Proof Let V be a generic simple Uξ -module. Combining Equation (9) and Lemmas
1 and 2 we have

d(V ) = d(V0)
〈
ptrR( f )

〉
〈
ptrL( f )

〉 = d(V0)r
N

∏
α∈Δ+

{〈μ, α〉}
{r〈μ, α〉} (12)

where μ + (r − 1)ρ is the highest weight of a nilpotent deformation of V . The dual
of such a nilpotent module has highest weight −μ + (r − 1)ρ. Thus, Eq. (12) implies
d(V ) = d(V ∗). Now from Sects. 3.2 and 4.3, Codd is a generically G-semi-simple
pivotal category so the theorem follows from Theorem 3. ��

Corollary 2 There exists a unique trace (up toglobal scalar) on theprojectivemodules
of C odd.

Proof Consider the projection morphism Uξ → U ξ . Using this morphism each pro-
jective U ξ weight module becomes a projective Uξ weight module. In fact we have
C odd ∼= ⊕

g∈G0
Cg where G0 = {g ∈ G : g(Xr±β) = 0, g(Kr

β) = ±1, β ∈ Δ+}.
It follows that the trace of Theorem 5 induces a trace on the idea of projective U ξ -

module. This trace is unique because from Theorem 4.7.1. of [19] there exists unique
nontrivial right trace on the projective ideal of U ξ -modules. ��

5 The case of sl(2)

In the previous subsections we considered three versions of the quantum groups asso-
ciated with any Lie algebra g, associated with different lattices L when q was a root
of unity of odd order. The main reason the we do not treat even ordered roots of unity
above is because we use results on the quantum coadjoint action which at this point
requires odd order roots of unity (see [12]). In this sectionwe treat the case of all orders
of roots of unity for the Drinfeld-Jimbo quantization of sl(2) (i.e., the root lattice LR).
In this case we can prove the needed results involving the quantum coadjoint action
directly using the Casimir element.
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Let 
 ≥ 2, ξ = e2iπ/
 and r = 2

3+(−1)


. As above we consider the three versions
of quantum sl(2) associated with the root lattice:

Uξ (sl(2)) = U =
〈
E, F, K±1|K E−ξ2EK =FK−ξ2K F=[E, F]− K − K−1

ξ−ξ−1 =0

〉
,

UH
ξ (sl(2)) = UH = 〈U, H |[H, K ] = [H, E] − 2E = [H, F] + 2F = 0〉 and

U = U/(Er , Fr , K 2r − 1).

As above, let Csl(2), C H
sl(2) and C sl(2) be their categories of weight modules, respec-

tively. These categories are graded as follows: Let Z0 be the subalgebra generated by
Er , Fr and Kr . The center of U is generated by Z0 with the Casimir element

Ω = {1}2EF + K ξ−1 + K−1ξ = {1}2FE + K ξ + K−1ξ−1

which satisfies the polynomial equation Cr (Ω) = {1}2r Er Fr − (−1)
(Kr + K−r )

whereCr is the renormalized r th Chebyshevpolynomial (determinedbyCr (2 cos θ) =
2 cos(rθ)).

The set

G =
{
M(κ, ε, ϕ) =

((
1 ε

0 κ

)
,

(
κ 0
ϕ 1

))
: ε, ϕ ∈ C, κ ∈ C

∗
}

is a group where the multiplication is given by componentwise matrix multiplication.
Also, as above Homalg(Z0,C) is a group where the multiplication is given by g1g2 =
g1 ⊗ g2 ◦ Δ. Then the morphism Homalg(Z0,C) → G given by

M(κ, ε, ϕ)(Kr ) = κ,

M(κ, ε, ϕ)(Er ) = {1}−rε and

M(κ, ε, ϕ)(Fr ) = (−1)
{1}−rϕκ−1.

is a group homomorphism. We use this morphism to identify G and Homalg(Z0,C).
For each g ∈ G let Cg be the full subcategory of Csl(2) whose objects are modules

where each z ∈ Z0 act by g(z). As above, for g ∈ G with g(Er ) = g(Fr ) = 0 we
say g is diagonal and the modules of Cg are nilpotent. Also, a diagonal element g is
regular if g(Kr ) 	= ±1. The categoryC H

sl(2) is graded by the groupD 
 (C/2Z,+) 

h∗/LR 
 (C∗,×) of diagonal elements of G. Finally C sl(2) is Z/2Z-graded as a full
subcategory of Csl(2).

As above it is known that the element φ = K 1−r
2ρ in U , UH and U satisfies S2(x) =

φxφ−1. It follows thatCsl(2),C H
sl(2) andC sl(2) are all pivotalC-categories. Moreover,

UH is braided, see [20] for the odd case and [21] for the even.

Lemma 3 The category Csl(2) is generically G-semi-simple category with singular
locus

X =
{
M(κ, ε, ϕ) : κ + 1

κ
− εϕ

κ
= ±2

}
.
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Proof A direct calculation showsX is small and symmetric.We consider the quantum
coadjoint action G̃ on G, see [11] and above. Let B ⊂ G be the union of all G̃-orbits
which contain a regular element. To prove the lemma we will show that the category
Ch is semi-simple for each h ∈ B and that G\X ⊂ B. To do this we follow an
argument similar to the one in Sect. 4.3: direct construction shows that for any regular
g the category Cg has r nonisomorphic highest weight modules of dimension r (also
see Corollary 3.2 of [11]). Thus, the PBW Theorem and Corollary 1 imply that for
regular g, the category Cg semi-simple.

Now let h = M(κh, ε, ϕ) ∈ B then by definition of B there exists regular g =
M

(
κg, 0, 0

) ∈ G such that g and h are in the same G̃-orbit. Then the G̃-action gives an
outer automorphism of U inducing an isomorphism of algebras U/Ig → U/Ih and so
Ch is semi-simple. Finally, the elementΩq = {1}2EF+Kq−1+K−1q is in the center
of the K
-algebra Uq and specializes to Ω . The quantum coadjoint action is constant
on Ω = Ωξ because as explained above this action is constant on the subalgebra of U
corresponding to the center of Uq . Therefore, if V and W are modules of Cg and Ch ,
respectively, then Cr (Ω) acts on both V and W by

−(−1)
(κg + κ−1
g ) = (−1)
εϕκ−1

h − (−1)
(κh + κ−1
h ).

Since g is regular then κg 	= ±1, so −εϕκ−1
h + κh + κ−1

h 	= ±2. Thus, h ∈ G\X . ��
Corollary 3 The category C H

sl(2) is ribbon.

Proof Let XH = Z/2Z ⊂ C/2Z and let d ∈ C/2Z\XH . The proof of Lemma 3 and
the forgetful functor C H

sl(2) → Csl(2) imply Cd has r nonisomorphic highest weight
modules of dimension r (one can also see this by direct construction). Then the PBW
Theorem andCorollary 1 imply thatCd is semi-simple. Combining thiswith the results
at the beginning of this subsection we haveC H

sl(2) is generically G-semi-simple pivotal
braided category with singular locus XH . It is known that for a generic simple object
V that θ(V )∗ = θ(V ∗), see [20] for the odd case and [21] for the even. The corollary
follows from Theorem 2. ��

Note when 
 is ever Corollary 3 was previously known, see [21,28,29]. When 
 is
odd it was known that C H

sl(2) contained a subcategory which is ribbon, see [20].
Nextwe prove thatCsl(2) has a trace and show themodified dimensions only depend

on the action of the Casimir element. First, the projective cover of the trivial module is
self-dual, see [16,17] for the even case and [19] for the odd. Therefore, Corollary 3.2.1
of [19] implies the ideal Proj of projective Uξ -modules admits a unique (up to global
scalar) nontrivial right trace which we denote by {tV }V∈Proj. We will show this right
trace is a trace. As above letUh = Uh(sl(2)) be the h-adic quantum group generated by
E, F and H . Let V h

0 be the highest weight module ofUh with a highest weight vector
v0 such that Hv0 = (r −1)v0. Let V

q
0 be the highest weight Uq -module with a highest

weight vector v such that Kv0 = qr−1v0. Let V0 be the highest weight U-module
which is the specialization of Vq

0 . LetW0 be the set of weights of V h
0 . ThenW0 ⊂ LR

if 
 is odd and W0 ⊂ 1
2 LR if 
 is even. Let fUh and fUq be as in Sect. 4.5. As above in

the odd case q can be specialized at ξ to obtain an element fUξ
∈ AutC(V0) ⊗ U and
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any for representation ρV : U → End(V ), fV = (Id⊗ρV )( fUξ
) is an automorphism

of the U-module V0 ⊗ V .

Lemma 4 For any generic simple Uξ (sl(2))-module V we have ptrR( fV ) = r IdV0 .

Proof The proof of Lemma 1 applies here for general 
. ��
Lemma 5 There exists a polynomial P(X) ∈ C[X ] such that for any generic simple
Uξ (sl(2))-module V we have ptrL( fV ) = P(ω) IdV where ω = 〈ρV (Ω)〉.
Proof As in the proof of Lemma 2 the morphism ptrL( fUh ) is given by left multi-
plication of a central element δh of Uh(sl(2)). The center of Uh(sl(2)) is generated
by the Casimir element Ωh . So there exists a polynomial P(X) ∈ C[X ] such that
δh = P(Ωh). Here the partial closure is taken in Uh(sl(2)). On the other hand, the
partial trace of the central element δq = ptrL( fUq ) is taken in Uq(sl(2))-mod. Recall
that the pivotal structure of Uh(sl(2))-mod and Uq(sl(2))-mod differ by K−r , see
Remark 4. In particular, taking the left closer with respect to V h

0 and V q
0 differ by

the constant (−1)r−1 determined by K−rv0 = q−r(r−1)v0 = (−1)r−1v0. Therefore,
δh viewed as an element of Uq (i.e., seen as the subalgebra of Uh[h−1]) is equal to
the element (−1)r−1δq . Now the morphism ptrL( fV ) is given by left multiplication
by δξ which is specialization a of δq . Thus, ptrL( fV ) = (−1)r−1P(ω) IdV where
ω = 〈ρV (Ω)〉. ��
Corollary 4 Let V be a generic simple Uξ (sl(2))-module. Then there exists α ∈
(C\Z) ∪ rZ such that 〈ρV (Ω)〉 = (−1)r

(
qα + q−α

)
and

d(V ) = (−1)r−1
r−1∏
j=1

{ j}
{α + r − j}

= (−1)r−1 r {α}
{rα} = (−1)r−1r

q(1−r)α + · · · + q(r−3)α + q(r−1)α
. (13)

Moreover, d(V ) = d(V ∗). Here we have fixed the global scalar of the right trace by
defining d(V0) = tV0(IdV0) = (−1)r−1.

Proof From Eq. (9) we have d(V ) = d(V0)〈ptrR( f )〉
〈ptrL ( f )〉 . So by Lemmas 4 and 5 we have

d(V ) = d(W ) for any generic simpleW such that 〈ρW (Ω)〉 = 〈ρV (Ω)〉. The proof of
Lemma 3 implies there exists a nilpotent simple module W in the quantum coadjoint
orbit of V . Moreover, this proof implies that the action of Ω is the same on V and
W . Since W is nilpotent there exists α ∈ (C\Z) ∪ rZ such that Ω acts on W by
(−1)r

(
qα + q−α

)
. From [10] it is shown that the modified quantum dimension of W

is given by the formula in Eq. (13). Thus, Eq. (13) follows.
To see the last statement of the corollary, notice S(Ω) = Ω so 〈ρV (Ω)〉 =

〈ρV ∗(Ω)〉 and d(V ) = d(V ∗). ��
Theorem 3, Lemma 3 and Corollary 4 imply the following corollary.

Corollary 5 The right trace {tV }V∈Proj on Proj in Csl(2) is a trace.
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Corollary 6 There exists a unique (up toglobal scalar) traceon theprojectivemodules
of C sl(2).

6 Conjectures for quantum groups at even ordered roots of unity

Let g be a simple finite-dimensional complex Lie algebra with data h,Δ+, LR, LW , ...

discussed in Sect. 3.1. Let 
 be an even integer such that 
 ≥ 2 (and 
 /∈ 3Z if g = G2).
Let ξ = e2

√−1π/
 and r = 
/2.As above, for each lattice L , consider the three versions

of the quantum groups: U L
ξ (g),UH

ξ (g) and U L
ξ (g).

The case when 
 is even the situation is not very well developed at this time and
needs additional work to apply the results of this paper. For example, the subalgebra Z0
of U L

ξ (g) generated by {Xr±β, Kr
γ : β ∈ Δ+, γ ∈ L} is not necessarily commutative:

if 〈β, αi 〉 = 1 then Eq. (4) implies

Kr
βX j = qr〈β,αi 〉X j K

r
β = −X j K

r
β.

So one must first define an appropriate notion of weight modules for the algebras

U L
ξ (g),UH

ξ (g) and U L
ξ (g). Also, as mentioned above the quantum coadjoint action is

not worked out for case when 
 is even. Some work in this direction has been done
for 
 ∈ 4Z, see [3].

We are lead to the following question, “For even ordered ξ , can one define categories

of weight modulesCeven,C H
even andC even overU L

ξ (g),UH
ξ (g) andU L

ξ (g), respectively,
such that the following conjectures are true?”

Conjecture 1 For even ordered ξ , there exists a categoryC H
even of modules overUH

ξ (g)
which is ribbon.

Conjecture 2 For even ordered ξ , there exists a categoryCeven of weight modules over
U L

ξ (g) such that there exists a unique (up to global scalar) two-sided trace on the ideal
of projective modules of Ceven.

Conjecture 3 For even ordered ξ , there exists a categoryC even of modules overU L
ξ (g)

such that there exists a unique (up to global scalar) two-sided trace on the ideal of
projective modules of C even.

The conjectures in this section are motivated by applications in low-dimensional
topology. In particular, when 
 = 4 and g = sl(2) in [6] it is shown that the closed
3-manifold invariant of [9] associated with the categoryC H

sl(2) are a canonical normal-
ization of Reidemeister torsion defined by Turaev which gives rise to a Topological
Quantum Field Theory (TQFT). It would be interesting to see what properties the
analogous topological invariants have for other Lie algebras at similar level. The first
step in defining such invariants is a proof of Conjecture 1. Also, Conjecture 3 would
also be interesting in generalizing the work of [4].
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