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ABSTRACT

Computational science researchers running large-scale scientific
workflow applications often want to run their workflows on the
largest available compute systems to improve time to solution.
Workflow tools used in distributed, heterogeneous, high perfor-
mance computing environments typically rely on either a push-
based or a pull-based approach for resource provisioning from these
compute systems. However, many large clusters have moved to
two-factor authentication for job submission, making traditional au-
tomated push-based job submission impossible. On the other hand,
pull-based approaches such as pilot jobs may lead to increased com-
plexity and a reduction in node-hour efficiency. In this paper, we
describe a new, efficient approach based on HTCondor-G called
reverse GAHP (rvGAHP) that allows us to push jobs using reverse
SSH submissions with better efficiency than pull-based methods.
We successfully used this approach to perform a large probabilistic
seismic hazard analysis study using SCEC’s CyberShake workflow
in March 2017 on the Titan Cray XK7 hybrid system at Oak Ridge
National Laboratory.
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1 INTRODUCTION

Modern scientific applications typically require the execution of
multiple codes, may include computational and data dependencies,
and contain varied computational models ranging from a bag of
tasks to a monolithic parallel code. These applications are often
complex software suites with substantial computational and data
requirements, especially as simulations migrate from an individ-
ual researcher’s desktop to departmental, university, and national
cluster resources.

To assist with execution, many applications have turned to sci-
entific workflow tools [9, 17]. These tools provide features, such
as automation, staging of data, resource provisioning, and man-
agement and capture of metadata and provenance, which enable
scientific workflow applications to be run more efficiently and be
easily reproducible. As a natural consequence of the streamlining
workflow tools provide, application developers look to increase the
size of their simulations in order to address cutting-edge science
questions. Running at larger scales necessarily requires support for
scientific workflows on larger systems.

Typically, workflow tools perform resource provisioning using
either push-based requests, which originate from the workflow
scheduler, such as over SSH [20] or GRAM [12], or pull-based ap-
proaches [14] [4], which originate from the remote resource. How-
ever, both of these approaches have limitations. Some clusters, for
security reasons, do not permit SSH keys or X.509 proxy authentica-
tion. Pull-based approaches often result in increased overhead and
complexity, since resource provisioning may not match demand
and jobs may have heterogeneous computational requirements.

To address these concerns, we have developed a new technique,
reverse GAHP (rvGAHP). rvGAHP is an implementation of GAHP
(Grid ASCII Helper Protocol), a text-based protocol created by
HTCondor [18]. It enables communication between a client and a
grid or cloud service, which enables push-based resource provision-
ing even on systems without support for automated authentication
methods. Using this technique, the Southern California Earthquake
Center (SCEC) [3] was able to perform a month-long series of
simulations using CyberShake, a seismic hazard analysis scientific
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workflow application, on the Titan [2] Cray XK7 supercomputer at
Oak Ridge National Laboratory.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of the SCEC CyberShake science application, its
computing requirements, and the workflow tools it uses. Section 3
describes the two approaches used in the past by CyberShake to
provision resources on remote supercomputing clusters, and their
limitations on Titan. Section 4 explains our new approach, rvGAHP,
that allows us to push jobs to remote clusters that require two factor
authentication using Condor-G by employing reverse SSH connec-
tions. Section 5 describes the results and our experiences of using
rvGAHP for a CyberShake study performed in March 2017, utilizing
resources from Titan and NCSA Blue Waters [1]. Limitations are
presented in Section 6, related work is discussed in Section 7, and
the paper is concluded in Section 8. 5g

2 APPLICATION DESCRIPTION

2.1 Science Overview

Seismologists quantify the seismic hazard for a location using prob-
abilistic seismic hazard analysis (PSHA) [6]. PSHA is a technique
for estimating the probability that earthquake ground motions at
a location of interest will exceed a given level of some intensity
measure (IM), such as peak ground velocity or peak ground acceler-
ation, over a certain time period. PSHA results are useful for civic
planners, building engineers, and insurance agencies, and impact
billions of dollars a year in construction through building codes.

PSHA estimates are communicated through hazard curves, which
relate ground motion intensities to probability of exceedance for a
single site of interest. Figure 1 shows a representative hazard curve
for downtown Los Angeles. From this curve, we could determine
that this site has a 2 percent chance in 50 years of experiencing 0.4g
of acceleration, a common probability level for building engineering.
A set of hazard curves for geographically distributed locations can
be interpolated to produce a hazard map for a region by holding
either probability or ground motion constant and plotting the other
as a function of location (Figure 2).

PSHA estimates are often produced using ground motion pre-
diction equations (GMPEs). These empirically-derived attenuation
relationships are based on historical data and often include site-
specific parameters to capture local velocity structure, which may
amplify or dampen ground motions. Although computationally
inexpensive, attenuation relationships have difficulty capturing
complex physical effects, such as basin amplification and rupture
directivity, which may have large impacts on ground motions. To
accurately include these effects, simulation-based approaches are
needed. Figure 1 compares the CyberShake simulation-based results
(red triangles) to four common GMPEs (dashed lines).

CyberShake [13], developed by SCEC, performs three-dimensional
physics-based deterministic PSHA. After initial input files are gen-
erated, a velocity mesh is produced and populated with material
properties. This mesh is input to an anelastic wave propagation
code which generates a wavefield of Strain Green Tensors (SGTs).
Next, seismic reciprocity is performed using the SGTs to simulate
about 500,000 earthquakes per site of interest, generating seismo-
grams for each event [21]. The resulting seismograms are processed
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Figure 1: CyberShake hazard curve for downtown Los An-
geles (solid red curve) compared with hazard curves at the
same site from four Next Generation Attenuation empirical
GMPEs (dashed lines).
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Figure 2: CyberShake hazard map for Southern California,
showing the spectral accelerations at a 2-second period ex-
ceeded with a probability of 2% in 50 years.

to obtain intensity measures, which are combined with the individ-
ual earthquake probabilities from an earthquake rupture forecast,
UCERF?2 [15], to obtain a hazard curve. Individual PSHA results
from hundreds of locations are interpolated to produce a hazard
map.
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Table 1: CyberShake Computational Requirements (per site)

Stage Code Name

Code Type Output Data Titan Node Hours

Mesh Creation UCVM
SGT Generation AWP-ODC-SGT
Seismogram Synthesis DirectSynth
Other stages

MPI CPU 120 GB 90
MPI GPU 1500 GB 1490
MPI CPU 30 GB 2440
Sequential <1GB 10

Total

By using a physics-based approach like CyberShake, we are
able to include 3D effects such as rupture directivity and basin
amplification which lead to much of the hazard variability seen in
Figure 2.

Optimizing and automating CyberShake calculations is key to
enable simulations like those required for Figure 2 to be performed
in a reasonable makespan (end-to-end runtime of a workflow).

2.2 Technical Overview

CyberShake requires significant computational resources to per-
form PSHA. An overview of the major software components and
their computational and data requirements for generating PSHA
results for a single site, using OLCF’s Titan, is given in Table 1.

The CyberShake workflow is illustrated in Figure 3. Conceptually,
we divide the CyberShake workflow into two parts: SGT generation
and post-processing. In the SGT generation part, input files are
constructed and passed to the mesh generator, UCVM[16]. This
MPI code typically runs on 100 nodes and creates a seismic velocity
mesh of 5-10 billion points. Next, a serial code is run to produce
another set of input files, which, combined with the mesh, are
used by the SGT generator, AWP-ODC-SGT. AWP-ODC-SGT is a
modified version of AWP-ODC, an extreme-scale anelastic wave
propagation code developed within the SCEC community [7]. This
code shows speedup of a factor of 6 on GPUs for CyberShake
simulations and is typically run on 100-800 GPU nodes, depending
on problem size. AWP-ODC-SGT produces the SGTs needed by the
post-processing.

The post-processing part of the workflow is dominated by the
seismogram synthesis code DirectSynth. DirectSynth is an MPI
job, which typically runs on about 200 nodes. It uses a master-
worker paradigm, with the master handing out tasks to workers,
and data handlers sending SGT data via MPI messages to workers
upon request. This job produces seismograms and other intensity
measure files as output, which are staged back to SCEC storage
for database insertion, generation of hazard curves and maps, and
archiving.

Overall, calculating PSHA results for a single location requires
approximately 4000 node-hours and 1650 GB of data. To produce
a hazard map requires PSHA results for 200-400 sites, which can
result in a makespan of several weeks.

2.3 Workflow Tools

The heterogeneous computational requirements, data management
needs, and automation required by CyberShake calculations have
led us to use scientific workflow tools; specifically, a software stack,
which includes Pegasus-WMS, HTCondor, and the Globus Toolkit.
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Figure 3: Schematic overview of the CyberShake SGT and
post-processing workflows.

Pegasus-WMS [10] is a workflow management system, which en-
ables users to create a high-level (abstract) description of their
workflow, capturing the files, tasks, and dependencies between
them. Pegasus augments this abstract workflow with metadata cap-
ture and data transfer jobs, performs graph level optimizations for
improved performance and efficiency, and plans it for execution
on specific target resources, generating a Directed Acyclic Graph
(DAG) and job description files designed for use with HTCondor.
HTCondor [19] is a workload management system, which is used by
CyberShake to orchestrate workflow execution, manage real-time
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dependencies, and provide error handling. In particular, we heav-
ily use HTCondor’s Directed Acyclic Graph Manager (DAGMan),
which, given a DAG generated by Pegasus, can queue and execute
tasks in the DAG while respecting dependencies. To submit jobs to
remote resources, we use the HTCondor GridManager to submit
jobs to Globus. The Globus Toolkit [11] enables communication over
the grid. For CyberShake we rely especially on two components:
the GRAM protocol for communication between the workflow sub-
mission host on a SCEC server and the remote execution system,
and GridFTP for file transfer between systems. Since migrating to
a workflow-based approach using these workflow tools in 2007,
CyberShake has been successfully run for more than 100 million
core-hours on nine different clusters.

To meet SCEC’s science goals of improving and expanding physics-
based PSHA, we targeted Titan at Oak Ridge National Laboratory,
the 4th-ranked system on the June 2017 TOP500 list, as a system for
CyberShake execution. Given the excellent performance of AWP-
ODC-SGT on GPUs, Titan with over 18,000 GPU nodes is a logical
fit for CyberShake. However, this naturally requires migration of
the CyberShake scientific workflows to Titan. Due to security rea-
sons, Titan does not permit users to use SSH keys, X.509 proxies,
or any alternative method for authentication that is not two-factor.
This, in turn, complicates many methods for performing automated
resource provisioning and job submission. In the next section, we
will discuss the limitations of currently existing resource provision-
ing approaches for scientific workflow applications on systems like
Titan.

3 LIMITATIONS OF EXISTING SOLUTIONS

Workflow tool strategies for automated job submission can be
roughly divided into two classes: 1) Resource requests which origi-
nate from the workflow submission host (push-based), and 2) re-
quests which originate from the remote resource (pull-based).

3.1 Push-based

In push-based approaches, requests for resources are made on-
demand from the runtime manager component of the workflow
tool. As workflow tasks become eligible to run, resource requests
are submitted to the remote system, which start up and execute the
task. This is illustrated in Figure 4.

For example, in the CyberShake software stack, when jobs be-
come eligible in the HTCondor queue on the workflow submission
host, the HTCondor GridManager daemon submits the job to the
remote Globus GRAM frontend, where it translates the Globus Re-
source Specification Language (RSL) [8] description of the job and
requested resources into a scheduler submit script, and submits it
to the scheduler on the remote resource.

Push-based approaches are an efficient way to acquire resources,
since compute time is only consumed while workflow jobs are run-
ning. They can incur queuing delays, since the job is only submitted
to the remote queue once there is work to do and must wait on
the scheduler to run. Automated authentication from the workflow
submission host to the remote system is required. Typically, this
can be performed using approaches such as SSH keys or X.509
proxies, which do not require a human-in-the-loop. However, two-
factor authentication is becoming more common, and some systems
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Figure 5: The pull approach for resource provisioning.

may not permit these kind of automated one-factor authentication
approaches, Titan among them.

3.2 Pull-based

In pull-based approaches, requests for resources originate from
the remote system itself. Typically, a long-running process on the
remote system submits jobs to the remote scheduler, either periodi-
cally or in response to demand on the workflow submission host.
Once these jobs start, a process notifies the workflow submission
host that resources are available for scheduling. This is illustrated
in Figure 5.

For example, in the CyberShake software stack, a long-running
daemon running on the remote resource login node queries the
HTCondor DAGMan workflow job queue and, when it finds eligible-
to-run jobs, submits pilot jobs to the remote resource of a size
and length commensurate with the workflow jobs waiting to run.
When the pilot jobs start up, HTCondor processes call back to
the HTCondor collector on the workflow submission host and
advertise themselves. The HTCondor negotiator matches these
available resources on the remote cluster with the eligible-to-run
jobs on the submit host, and the workflow jobs begin execution
on the remote resource pilot jobs. Other examples of pull-based
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approaches are PanDA [14] and Work Queue [4] that dial home to
a central server to retrieve the jobs that need to run.

Since the long-running daemon only needs to be started once,
and all connections originate from the remote system, pull-based
approaches have the advantage of not requiring automated authen-
tication to the remote system. They do however require authen-
tication to the workflow submission host. They offer additional
flexibility, since multiple workflow jobs can be mapped to a single
pilot job. However, since the resource request and the workflow
job queue are separated, there is the potential for extra overhead
to be introduced. Pilot job runtimes and sizes must be selected to
account for the length of the workflow jobs, but since workflow
jobs may end before the pilot jobs, or not require all the resources
provisioned by the pilot job, resources may be consumed without
accomplishing any workflow work.

In 2015, SCEC performed a CyberShake study (Study 15.4), using
Titan for the SGT generation part of the workflow, and NCSA Blue
Waters, with its support for push-based resource provisioning, for
the post-processing part of the workflow. To enable CyberShake
workflows to run on Titan, we used a pull-based pilot job approach
like the one outlined above. We ran a long-running pilot job daemon
on the head node, which periodically checked the HTCondor queue
on the submit host to determine when new jobs were eligible to run.
If new jobs were found, the pilot job daemon submitted requests
for pilot jobs to the Titan scheduler. Although the SGT generation
part of the CyberShake workflows is dominated computationally by
AWP-ODC-SGT, it only accounts for about 25% of the SGT workflow
makespan. Therefore, requesting a pilot job wide enough to run
AWP-ODC-SGT, but long enough to accommodate the other tasks,
would result in ~75% of the computational resources sitting idle. To
avoid this, we submitted requests for four pilot jobs of varying sizes,
with dependencies between them enforced via qsub (the queue sub-
mission command on Titan). Workflow jobs were matched with
their corresponding pilot jobs using the PILOT_JOB_TYPE string.
Overall, this approach was effective in accomplishing the Cyber-
Shake study, but with high overhead. By comparing the node-hours
consumed by workflow jobs (runtime times nodes) to the node-
hours charged on Titan, we discovered our resource utilization —
the percentage of node-hours burned that were actually used for
performing workflow work, as opposed to overhead — was only
68%. Because of these inefficiencies, we were not able to perform as
much of the study on Titan as originally planned. In our experience,
it is challenging to use pull-based resource provisioning efficiently
for workflows with heterogeneous tasks.

4 REVERSE GAHP - rvGAHP

As described in the previous section, the pull-based approach is not
ideal for running large scale workflows with heterogeneous tasks
because of the possible mismatch between the resources acquired by
the pilot jobs, and the resources required by the workflow jobs that
are ready to run at a particular time on the workflow submit host.
In turn this mismatch can reduce the efficiency of resource usage.
The push-based approach has the drawback of queuing delays, but
that is often preferable over a pull-based approach when running
workflows that consume hundreds of thousands of CPU hours for
which compute efficiency is of paramount concern.

WORKS’17, November 12-17, 2017, Denver, CO, USA

For the CyberShake SGT workflows, the heterogeneous nature
of the workflow jobs mean that pilot jobs cannot be submitted
before workflow jobs are queued without wasting large quantities of
resources. For example, if an 800-node pilot job is queued and begins
execution before an AWP-ODC-SGT job is in the HTCondor queue,
most of those nodes will sit idle, since other kinds of workflow
jobs are not wide enough to fill it. To avoid running pilot jobs with
no work assigned, our solution for CyberShake Study 15.4 was to
only submit pilot jobs when there were idle workflow jobs in the
HTCondor queue - but this negates the queuing advantage of pilot
jobs. Given that, we wanted to design a push-based solution which
could run on systems like Titan.

In the push-based approach we rely on HTCondor-G to push jobs
to a remote resource using either GRAM or via SSH. HTCondor-G
runs on the workflow submit host, and launches a HTCondor-G
GridManager process whenever it detects a job in the local HTCon-
dor queue that needs to be pushed to a remote resource. If there
are no running jobs in the queue, HTCondor-G automatically shuts
down the daemon. The GridManager process submits jobs either
via

(1) Globus GRAM - connects to a Globus GRAM front end on

the remote cluster using X.509 authentication

(2) SSH - GridManager opens a SSH tunnel [20] to the remote

cluster and starts a remote BLAHP daemon, and then submits
jobs to the remote BLAHP daemon.

In both approaches, the daemon picks up credentials and uses
them without any user intervention. However, this is not possible
for systems like Titan that require two-factor token based authenti-
cation, where the token is a time dependent RSA token that has to
entered by the user when the connection is opened by HTCondor
GridManager. In order to get around these technical limitations and
avoid standing up a listening service on Titan headnode such as
GRAM, we implemented a new version of remote_gahp for HTCon-
dor, called rvGAHP. rvGAHP does not require listening services
on the remote resource. Instead, it uses a "reverse" SSH connection
from the remote resource to the submit host to establish communi-
cation between the local GridManager running on the workflow
submit host and the GAHP process running on the remote resource.
The key benefit of this approach is that it enables remote job sub-
mission without requiring the remote resource to:

(1) run services that accept incoming network connections

(2) accept SSH connections without two-factor authentication
(e.g. RSA tokens), which are sometimes prohibited by secu-
rity policy.

Our solution is illustrated in Figure 6.

The rvGAHP server running on the remote resource uses SSH to
establish a secure connection to the submit host. The SSH connec-
tion starts a proxy process that listens on a UNIX domain socket for
requests. This SSH connection remains open all the time, even when
there are no jobs running. If the SSH session gets disconnected, the
server immediately reestablishes the connection. When a remote
GAHP job is submitted, the GridManager launches a client process
to communicate with the GAHP servers. The client connects to
the proxy through the local UNIX socket and sends the name of
the GAHP to start (batch_gahp for job submission or condor_ft-
gahp for file transfer). The proxy forwards the request to the server,
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Figure 6: rvGAHP connection setup

which forks the appropriate GAHP and connects it to the SSH pro-
cess using a socketpair. Once this is done, the server immediately
establishes another SSH connection to the submit host, to prepare
for additional jobs. The client copies its stdin from the GridManager
to the proxy, and data from the proxy to stdout and back to the
GridManager. The proxy passes data to the SSH process, and the
SSH process passes data to the GAHP. Once all connections are
established, the job execution proceeds. When the GridManager is
done, the GAHP servers exit and the connections are torn down.
As with HTCondor jobs in general, the job can request an arbitrary
number of nodes and runtime, and specify any other parameters
supported by the underlying job description language (in our case,
Globus RSL) and the remote system scheduler.

Since rvGAHP is a push based approach, each workflow job is
submitted as a separate job in the remote resource queue. This tight
coupling leads to much improved resource utilization as compared
to a pilot job-based approach, where the provisioning of the nodes
from the remote resource is decoupled from the scheduling of the
workflow jobs. To enable rvGAHP, users must install the server on
the remote system in user space, the client and proxy on the submit
host, and make a few modifications to the HTCondor configuration
files. It is designed to be usable by anyone already using HTCondor.

5 APPLICATION STUDY

In March 2017, SCEC conducted a CyberShake study on Titan and
Blue Waters. In order to run end-to-end CyberShake workflows with
all processing stages on Titan, we deployed rvGAHP on Titan. The
rvGAHP server daemon ran on a Titan login node and connected
to the workflow submission host, running on a SCEC server. The
daemon had to be restarted manually whenever the login node was
rebooted, but this only happened four times in the course of the
31-day study.

Using rvGAHP, 13,334 jobs were submitted to the Titan queue,
which consumed a total of 450,000 node-hours. These jobs ranged
from 10 minutes to 9 hours and from 1 to 240 nodes. On average,
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Figure 7: Histogram showing runtime of SGT-only Cyber-
Shake workflows on Titan, using rvGAHP.

6 jobs were running on Titan on 669 nodes throughout the entire
length of the study. All SGT workflows were run on Titan, along
with 17% of the post-processing workflows. Figure 7 plots the run-
time of the 736 SGT-only workflows, and Figure 8 plots the runtime
of the 147 end-to-end (both SGT and post-processing) workflows.
We can see that the runtimes of the workflows and the SGT com-
ponent vary significantly, which caused poor resource utilization
for the pull-based approach. Being able to use Titan extensively,
combined with the push-based rvGAHP approach enabled SCEC to
reach its science goal, and improved our resource utilization to 97%,
representing a savings of 130,000 node-hours over the previous
pilot job approach. The average delay per job (sum of workflow
tools overhead and remote queue time) [5] dropped from 9.2 hours
to 0.6 hours, indicating that for CyberShake the rvGAHP approach
was much better at acquiring timely resources than pilot jobs.

6 LIMITATIONS

Our rvGAHP approach does have limitations. The long-running
daemon must run somewhere on the remote resource, so the remote
resource must have policies and hardware that permit this, and the
workflow submission host must allow single-factor authentication.
Since a new GAHP process and SSH connection is initiated per
workflow job, workflows which submit large numbers of jobs could
encounter scaling issues, though many systems enforce a limit
on the maximum number of jobs in the queue. Additionally, we
encountered a complication when transferring X.509 proxies. Even
though rvGAHP spawns the HTCondor file transfer GAHP on the
remote cluster, and that allows us to retrieve the job stdout and
stderr on job completion back on the submit host, we noticed that
if the job proxy was set to be transferred with the job using the



rvGAHP — Push-Based Job Submission using Reverse SSH Connections

Workflow duration for end-to-end workflows

40

351

301

Number of workflows
N N
o w

—
5

Hours

Figure 8: Histogram showing runtime of end-to-end (both
SGT and post-processing) CyberShake workflows on Titan,
using rvGAHP.

x509userproxy HTCondor submit script attribute, the job submit on
the remote end failed and the job was never queued on Titan. We
reverted to transferring the proxy via globus-url-copy to resolve
the issue.

7 RELATED WORK

Our work on rvGAHP is most closely related to the BOSCO work [20]
that allows users to grab opportunistic resources using SSH, using

HTCondor-G. Our work has benefited from the changes made to

HTCondor-G and GridManager to enable SSH job submissions to re-
mote clusters. The key contribution and differentiation in our work
is how the underlying SSH connections are setup. This allows us to

submit jobs to remote resources that require two-factor authentica-
tion, which cannot be achieved with BOSCO for reasons outlined
earlier in the paper. The Atlas project has deployed PanDA [14]

on OLCF Titan and uses a pull-based approach for submitting jobs
to Titan. The PanDA approach is similar to the approach that we
deployed for CyberShake (described in 3.2) for Study 15.4, and as
such is not an efficient option for CyberShake, suffering from the
same efficiency issues that we saw with pilot jobs. Our motivation
for moving to rvGAHP was driven by a desire to achieve higher
node utilization of our allocation, and the characteristics of our
workload, which made it a poor fit for pull-based approaches.

8 CONCLUSION

We have presented a new approach called rvGAHP, which extends
the traditional SSH push-based approach to include remote re-
sources that require two factor authentication, previously a barrier
to push-based techniques. rvGAHP was successfully deployed for
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a large 31-day CyberShake study conducted in March-April 2017.
Using this new approach, we were able to improve our utilization of
node hours from 68% to 97% compared to our previous pull-based
approach using pilot jobs.

While the focus of this paper is on running CyberShake on Titan,
other similar heterogeneous workloads are common in the scientific
community, as there is often a need for smaller-scale pre- and post-
processing surrounding one or more large parallel jobs where the
majority of computational work is performed. The advantages pro-
vided by rvGAHP over current solutions — increased efficiency over
pull-based approaches and access to systems currently off-limits to
push-based job submission — are broadly applicable to workflows
with heterogeneous resource requirements. Use of rvGAHP will
continue to keep the largest open-science systems accessible to
scientific workflows, encouraging application developers to scale
up their workflows and tackle novel scientific research problems.
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