
On the Use of Burst Buffers for Accelerating Data-Intensive
Scientific Workflows

Rafael Ferreira da Silva
University of Southern California
Information Sciences Institute

Marina del Rey, CA
rafsilva@isi.edu

Scott Callaghan
University of Southern California
Southern California Earthquake

Center
Los Angeles, CA
scottcal@usc.edu

Ewa Deelman
University of Southern California
Information Sciences Institute

Marina del Rey, CA
deelman@isi.edu

ABSTRACT
Science applications frequently produce and consume large volumes
of data, but delivering this data to and from compute resources can
be challenging, as parallel file system performance is not keeping
up with compute and memory performance. To mitigate this I/O
bottleneck, some systems have deployed burst buffers, but their
impact on performance for real-world workflow applications is not
always clear. In this paper, we examine the impact of burst buffers
through the remote-shared, allocatable burst buffers on the Cori
system at NERSC. By running a subset of the SCEC CyberShake
workflow, a production seismic hazard analysis workflow, we find
that using burst buffers offers read andwrite improvements of about
an order of magnitude, and these improvements lead to increased
job performance, even for long-running CPU-bound jobs.

KEYWORDS
Scientific Workflows, Burst Buffers, High-Performance Computing,
In Transit Processing

ACM Reference Format:
Rafael Ferreira da Silva, Scott Callaghan, and Ewa Deelman. 2017. On the
Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows.
In WORKS’17: WORKS’17: 12th Workshop on Workflows in Support of Large-
Scale Science, November 12–17, 2017, Denver, CO, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3150994.3151000

1 INTRODUCTION
Today’s computational and data science applications process and
produce vast amounts of data (from remote sensors, instruments,
etc.) for conducting large-scale modeling, simulations, and data
analytics. These applications may comprise thousands of computa-
tional tasks and process large datasets, which are often distributed
and stored on heterogeneous resources. Scientific workflows are a
mainstream solution to process complex and large-scale computa-
tions involving numerous operations on large datasets efficiently.
As a result, they have supported breakthrough research across many
domains of science [18, 26].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WORKS’17, November 12–17, 2017, Denver, CO, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5129-4/17/11. . . $15.00
https://doi.org/10.1145/3150994.3151000

Typically, scientific workflows are described as a directed-acyclic
graph (DAG), whose nodes represent workflow tasks that are linked
via dataflow edges, thus prescribing serial or parallel execution of
nodes. In this paradigm, a task is executed once all its parent tasks
(dependencies) have successfully completed. Although some work-
flow portions are CPU-intensive, many workflows include post-
processing analysis and/or in transit visualization tasks that often
process large volumes of data [18]. Traditionally, workflows have
used the file system to communicate data between tasks. However,
to cope with increasing application demands on I/O operations,
solutions targeting in situ and in transit processing have become
mainstream approaches to attenuate I/O performance bottlenecks.
While in situ is well adapted for computations that conform with
the data distribution imposed by simulations, in transit processing
targets applications where intensive data transfers are required [8].

By augmenting data volumes and processing times, the advent
of Big Data and extreme-scale applications have posed novel chal-
lenges to the high-performance computing (HPC) community, for
both users and solution providers (e.g. workflow management soft-
ware developers, cyberinfrastructure providers, and hardware man-
ufacturers). In order to meet the computing challenges posed by
current and upcoming scientific workflow applications, the next-
generation of exascale supercomputers will increase the processing
capabilities to over 1018 Flop/s [31]—memory and disk capacity will
also be significantly increased, and new solutions to manage power
consumption will be explored. However, the I/O performance of
the parallel file system (PFS) is not expected to improve much. For
example, the PFS I/O peak performance for the upcoming Sum-
mit (Oak Ridge National Laboratory, ORNL) and Aurora (Argonne
National Laboratory, ANL) supercomputers will not outperform
Titan’s (ORNL) performance, despite being six years newer [17].

Burst Buffers (BB) [1, 29, 30] have emerged as a non-volatile
storage solution that is positioned between the processors’ mem-
ory and the PFS, buffering the large volume of data produced by
the application at a higher rate than the PFS, while seamlessly
and asynchronously draining the data to the PFS. Advantages and
limitations of the use of BB for improving I/O performance of sin-
gle application executions (e.g., a regular job submitted to a batch
queue system) have been an active topic of discussion in the past
few years [16, 24, 29]. However, there has been little analysis on the
use of BB for scientific workflows [6]. In a recent survey study [11],
we characterized workflow management systems w.r.t. their ability
to handle extreme-scale applications. Although several systems
orchestrate the execution of large-scale workflows efficiently, the
optimization of I/O throughput is still a steep challenge.

https://doi.org/10.1145/3150994.3151000
https://doi.org/10.1145/3150994.3151000

WORKS’17, November 12–17, 2017, Denver, CO, USA R. Ferreira da Silva et al.

In this paper, we propose an architectural model for enabling
the use of BB for scientific workflows. More specifically, we discuss
practical issues and limitations to support an implementation of a
BB available on the Cori system at the National Energy Research
Scientific Computing Center (NERSC) facility [3]. Using the Pega-
sus [7] workflowmanagement system, we evaluate the performance
gain of a real-world data-intensive workflow (produces/consumes
over 550 GB of data) when its intermediate data is stagged in/out
to/from the BB. Experimental results show that the use of a burst
buffer may significantly improve the average I/O performance for
both read and write operations, however parallel efficiency should
be carefully considered when deciding whether to manage all the
workflow’s intermediate data via a BB. In addition, improvements
in I/O bandwidth may be limited by the frequency of I/O operations;
i.e. draining the data to the PFS may become the bottleneck.

This paper is structured as follows. Section 2 provides back-
ground on data-intensive scientific workflows, and an overview of
burst buffer architectures. Section 3 presents an overview of the
proposed architectural model for using BB for scientific workflow
executions. The experimental evaluation with a real world work-
flow using a large HPC system is presented in Section 4. Section 5
discusses related work, and underlines the contributions of this
paper w.r.t. the state-of-the-art. Section 6 concludes the paper, and
identifies directions for future research.

2 BACKGROUND
2.1 Data-Intensive Scientific Workflows
Scientists want to extract the maximum information out of their
data—which are often obtained from scientific instruments and
processed in large-scale, heterogeneous distributed systems such
as campus clusters, clouds, and national cyberinfrastructures such
as the Open Science Grid (OSG) and XSEDE. In the era of Big Data
Science, applications are producing and consuming ever-growing
data sets, and among other demands (e.g., CPU and memory), I/O
throughput has become a bottleneck for such applications. For
instance, the automated processing of real-time seismic interfer-
ometry and earthquake repeater analysis, and the 3D waveform
modeling to calculate physics-based probabilistic seismic hazard
analysis [9] both have enormous demands of CPU, memory, and
I/O—as presented later on in this paper (Section 4.1). That work-
flow application consumes/produces over 700GB of data. In another
example, a bioinformatics workflow for identifying mutational over-
laps using data from the 1000 genomes project consumes/produces
over 4.4TB of data, and requires over 24TB of memory across all
the tasks [10].

In a recent survey on the management of data-intensive work-
flows [19], several techniques and strategies, including scheduling
and parallel processing, are presented on how workflow systems
manage data-intensive workflows. Typical techniques include the
clustering of workflow tasks to reduce the scheduling overhead,
or grouping tasks that use the same set of data thus reducing the
number of data movement operations. Data-aware scheduling tech-
niques also target reducing the number of data movement opera-
tions and have been proven efficient for high-throughput computing
workloads. In the HPC universe, data-aware techniques have also
been explored for in situ processing [11, 17]; however, for in transit

or post-processing analyses improvement to the I/O throughput is
still a requirement.

2.2 Burst Buffers
A burst buffer (BB) is a fast, intermediate non-volatile storage layer
positioned between the front-end computing processes and the
back-end parallel file system. Although the total size of the PFS
storage is significantly larger than the storage capability of a burst
buffer, the latter has the ability to rapidly absorb the large volume
of data generated by the processors, while slowly draining the data
to the PFS—the bandwidth into the BB is often much larger than
the bandwidth out of it. Conversely, a burst buffer can also be used
to stage data from the PFS for data delivery to processors at high
speed. The BB concept is not novel; however, it has gained much
attention recently due to the increase in complexity and volume
of data from modern applications, and cost reductions for flash
storage.

Basically, a burst buffer consists of the combination of rapidly
accessed persistent memory with its own processing power (e.g.,
DRAM), and a block of symmetric multi-processor compute units
accessible through high-bandwidth links (e.g., PCI Express, or PCIe
for short). Although the optimal implementation of burst buffers is
still an open question, two main representative architectures have
been deployed: the (1) node-local BB, and the (2) remote-shared
BB [28]. In a node-local configuration, the BB is co-allocated with
the compute nodes, while in a remote-shared configuration, the BB
is deployed into I/O nodes with high-connectivity to compute nodes
via a high-speed serial connection. Advantages of the local deploy-
ment include the ability to linearly scale the BB bandwidth with the
number of compute nodes—the drawback of this approach is that
write operations to the PFS may negatively impact the application
execution due to the required extra computing power to perform
the operation. The remote deployment, on the other hand, mitigates
this effect since the I/O nodes have their own processing—but this
approach may become an impediment under network congestion.
Both approaches have already been widely adopted by current HPC
facilities, and in forthcoming HPC systems.

NERSC Burst Buffer. In this paper, we conduct experiments using
computational resources from the National Energy Research Scien-
tific Computing Center (NERSC). NERSC’s burst buffer has been
deployed on Cori, a petascale HPC system and #6 on the June 2017
Top500 list [1]. The NERSC BB is based on Cray DataWarp [15],
Cray’s implementation of the BB concept (Figure 1). A DataWarp
node is a Cray XC40 service node directly connected to the Aries
network, with PCIe SSD Cards installed on the node. The burst
buffer resides on specialized nodes that bridge the internal inter-
connect of the compute system (Aries HSN) and the storage area
network (SAN) fabric of the storage system through the I/O nodes.
Each BB node contains a Xeon processor, 64 GB of DDR3 mem-
ory, and two 3.2 TB NAND flash SSD modules attached over two
PCIe gen3 x8 interfaces, which is attached to a Cray Aries network
interconnect over a PCIe gen3 x16 interface. Each node provides ap-
proximately 6.4 TB of usable capacity and a peak of approximately
6.5 GB/sec of sequential read and write bandwidth1.

1http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer

On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows WORKS’17, November 12–17, 2017, Denver, CO, USA

Figure 1: Architectural overview of a burst-buffer node on

Cori at NERSC.

3 MODEL AND DESIGN

Typical workflow executions on HPC systems rely on the underly-

ing parallel file system for staging the computational data to the

compute nodes where the workflow tasks are running. As previ-

ously discussed, the increasing complexity of current and forth-

coming workflow applications, in particular the production and

consumption of large volumes of data, imposes challenges for cur-

rent and upcoming systems, since the performance of the PFS has

not increased to the same extent as computing and memory capabil-

ities. As a result, technologies such as burst buffers have emerged

as a solution to mitigate this effect, in particular for in transit and

post-processing applications.

A current trend in HPC applications is the shifting of the appli-

cation paradigm towards in memory approaches (e.g., in situ pro-

cessing). In spite of impressive achievements to date, non-intrusive

approaches are still not available. More specifically, numerous work-

flow applications are composed of legacy codes [26], and thus chang-

ing the code to fit modern paradigms is improbable (in some cases,

source codes for well established legacy applications are not even

available any longer). Therefore, workflow management systems

should provide mechanisms to improve the execution of such ap-

plications by leveraging state-of-the-art built-in system solutions.

In this paper, we propose a practical approach for enabling burst

buffer usage for scientific workflows via a non-intrusive method.

Our model seeks to abstract configuration and parameter specifici-

ties for using burst buffers. In order to enable such seamless use of

BB within workflow applications, we argue that a workflow system

should automate the following steps:

(1) Burst buffer reservations (either persistent or scratch) should

be automatically handled by the workflow management sys-

tem. This operation includes reservation creation and release,

as well as stage in and stage out operations for transient

reservations. For such types of reservations, the workflow

system needs to implement stage in/out operations at the

beginning/end of each job execution.

(2) Workflow systems should automatically map the workflow

execution directory (typically known as the execution scratch

directory) to the burst buffer reservation. Hence, no changes

to the application code are necessary, and the application

job directly writes its output to the burst buffer reservation.

(3) I/O read operations should be performed directly from the

burst buffer. To this end, the workflow system should make

read and write operations from the BB transparent to the

application. A simple approach to achieve such transparency

is to point the execution directory to the BB reservation (see

item above), or to automatically create symbolic links to data

endpoints into the burst buffer.

In this paper, we opt for using persistent reservations since stage

in/out operations do not need to be performed for intermediate files

(reducing the number of data movement operations between the

PFS and the BB reservation, and vice-versa), which also facilitates

its deployment and management. It is noteworthy that persistent

reservations mitigate the burden for coordinating stage in/out data

to/from the BB reservation, which may also impact the job execu-

tion. On the other hand, for HPC systems where queueing times

are systematically long, the cost of stage in/out operation may be

negligible, and provisioning BB as late as job start time may yield

better overall BB utilization at the system level.

4 EXPERIMENTAL EVALUATION

4.1 Target Scientific Workflow Application

As part of its research program of earthquake system science, the

Southern California Earthquake Center (SCEC) [25] has developed

CyberShake [14], a high performance computing software platform

that uses 3D waveform modeling to compute physics-based prob-

abilistic seismic hazard analysis (PSHA) estimates for California.

CyberShake performs PSHA by first generating a velocitymesh pop-

ulated with material properties, then using this mesh as input to an

anelastic wave propagation code, AWP-ODC-SGT, which generates

Strain Green Tensors (SGTs). This is followed by post-processing,

in which the SGTs are convolved with slip time histories for each

of about 500,000 different earthquakes to generate synthetic seis-

mograms for each event. The seismograms are further processed

to obtain intensity measures, such as peak spectral acceleration,

which are combined with the probability of each earthquake, ob-

tained from the UCERF2 earthquake rupture forecast[23], to obtain

a hazard curve relating ground motion intensities to probability of

exceedance. Hazard curves from many (200–400) geographically

dispersed locations can be interpolated to produce a hazard map,

communicating regional hazard (Figure 2).

For the purposes of exploring burst buffer performance and im-

pact, we focused primarily on the two CyberShake job types which

together account for 97% of the compute time: the wave propagation

code AWP-ODC-SGT, and the post-processing code DirectSynth

which synthesizes seismograms and produces intensity measures.

Although the DirectSynth post-processing could theoretically be

performed in situ, in practice these two codes are often run on dif-

ferent computational systems depending on node type. They were

WORKS’17, November 12–17, 2017, Denver, CO, USA R. Ferreira da Silva et al.

Figure 2: CyberShake hazard map for Southern California,

showing the spectral accelerations at a 2-second period ex-

ceeded with a probability of 2% in 50 years.

also written and are maintained by different developers, making it

undesirable to combine the two jobs to enable in situ processing.

AWP-ODC-SGT. The AWP-ODC-SGT code is a modified version

of AWP-ODC, an anelastic wave propagation MPI CPU code devel-

oped within the SCEC community and has demonstrated excellent

scalability at large core counts (over 10,000 cores) [5]. It takes as in-

put a velocity mesh of about 10 billion points, as well as some small

parameter files. For this experiment, we selected a representative

simulation, which requires about an hour on 313 Cori nodes, and

produces ∼ 275 GB of output. Two of these simulations, one for

each horizontal component, must be run in order to produce the

pair of SGTs needed for CyberShake post-processing (i.e., fx.sgt
and fy.sgt, a total of ∼ 550 GB) for a single geographic site.

DirectSynth. The DirectSynth code is an MPI code, which per-

forms seismic reciprocity calculations. It takes as input a list of

fault ruptures and the SGTs generated by AWP-ODC-SGT. From

each rupture 10–600 individual earthquakes, which vary in slip and

hypocenter location are created, and the slip time history for each

earthquake is convolvedwith the SGTs to produce a two-component

seismogram. DirectSynth code follows themaster-worker paradigm,

in which a task manager reads in the list of ruptures, creates a queue

of seismogram synthesis tasks, and then communicates the tasks

to the workers via MPI. Processes within the DirectSynth job, the

SGT handlers, each read in part of the SGT files, accounting for

the majority of data read. Worker processes request and receive

the SGTs needed for the convolution from the SGT handlers over

MPI. Output data is forwarded to an aggregator, which in total

writes 4 files per rupture totaling about 4 MB. For this paper, we

selected a CyberShake site with about 5,700 ruptures, resulting in

about 23,000 files totaling about 22 GB. Running on 64 Cori nodes,

this job takes about 8 hours to complete and produces the outputs

CyberShake requires for a single geographic site.

4.2 Workflow Implementation

Pegasus-WMS [7] provides the necessary abstractions for scien-

tists to create workflows and allows for transparent execution of

these workflows on a range of compute platforms including cam-

pus clusters, clouds, and across national cyberinfrastructures. Since

its inception, Pegasus has become an integral part of the produc-

tion scientific computing landscape in several scientific commu-

nities. During execution, Pegasus translates an abstract resource-

independent workflow into an executable workflow, determining

the specific executables, data, and computational resources required

for the execution. Workflow execution with Pegasus includes data

management, monitoring, and failure handling, and is managed

by HTCondor DAGMan [13]. Individual workflow tasks are man-

aged by a task scheduler (HTCondor [27]), which supervises task

execution on local and remote resources.

SCEC has used Pegasus to create, plan, and run CyberShake

workflows for over a decade. Since the complete end-to-end execu-

tion of the workflow requires tens of thousands of CPU hours, we

have implemented a smaller version which includes the two Cyber-

Shake jobs we are using in our test2. Figure 3 shows a graphical

representation of theworkflow jobswith data and control dependen-

cies. The workflow is composed of two tightly-coupled parallel jobs

(SGT_generator, i.e. AWP-ODC-SGT; and direct_synth), and two
system jobs (bb_setup and bb_delete). The computational jobs op-
erate as described in the previous section. For runs utilizing the BB,

the SGT_generator job writes to the BB (instead of directly to the

disk), while the direct_synth job reads from it. The system jobs

are standalone jobs used to perform management operations in the

burst buffer—for this experiment the first job creates a persistent

reservation, and the second releases it.

At NERSC, in order to create a BB reservation, one needs to sub-

mit a regular standalone job to the batch system, which includes the

set of directives to spawn a new BB reservation (either as scratch or

persistent), e.g., #BB create_persistent name=myreservation.
Although the burst buffer reservation creation process is performed

upon job scheduling3, the job remains in the queue until its execu-

tion (as any regular batch job). In our workflow model (Figure 3),

the SGT_generator job would only start to run once the bb_setup
job is completed—even though the BB reservation may have been al-

ready up and running for many hours. Not only may this negatively

impact the workflow makespan, it may also result in idle cycles for

the BB. To circumvent this issue, we have leveraged DAGMan’s

PRE script concept, which allows jobs to specify processing that
will be done before the job submission. We removed the control

dependency between BB creation and the first computing job, and

defined a PRE script to the SGT_generator job that checks the state
of the BB reservation creation using the scontrol command. Once
the reservation is up and running, DAGMan proceeds with the job

submission to HTCondor. In this approach, the control dependency

2Available online at https://github.com/rafaelfsilva/bb-workflow
3As soon as the scheduler reads the job, the Burst Buffer resource is scheduled, even
though the job has not yet executed (http://www.nersc.gov/users/computational-
systems/cori/burst-buffer/example-batch-scripts/).

On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows WORKS’17, November 12–17, 2017, Denver, CO, USA

Figure 3: A general representation of the CyberShake test

workflow.

is represented by the verification step of the PRE script, which

triggers the job submission. As a result, the SGT_generator job is
submitted as soon as the BB reservation is enabled.

4.3 Experiment Conditions

Experiments are conducted with Cori, a Cray XC40 system at

NERSC. Cori consists of two partitions, one with Intel Xeon Haswell

processors (Phase I, peak performance of 2.3 PFlops) and another

with Intel Xeon Phi Knights Landing (KNL) processors (Phase

II, peak performance of 29.1 PFlops). For this work, we used the

Haswell partition, where each node is composed of 32 cores per

node on two 16-core Haswell processors (total of 2,388 cores). Cori

also features a 1.8 PB Cray Data Warp Burst Buffer with I/O oper-

ating at 1.7 TB/sec. For the experiments conducted in this paper,

the bb_setup job creates a persistent BB reservation of 700GB.
Due to our limited allocation of computing cycles at NERSC, and

since a single execution of de facto SGT_generator (AWP-ODC-

SGT) job would consume up to 30% of our current allocation, we

developed a synthetic version of the generator job that mimics its

I/O behavior for write operations for the SGT files, but significantly

reducing the number of CPU cycles needed.

The direct_synth job remains the same. The conclusions of
the experimental evaluation discussed in this paper are derived

from I/O performance data gathered with Darshan [2]. Darshan

is an HPC lightweight I/O profiling tool that captures an accurate

picture of I/O behavior (including POSIX IO, MPI-IO, and HDF5

IO) in MPI applications, and is part of the default software stack on

Cori.

The goal of this experimental evaluation is to measure the im-

pact of I/O write and read operations to/from the burst buffer for

staging in/out intermediate data during the workflow execution.

As in our model we create a single BB persistent reservation per

workflow run, it is crucial that the I/O throughput yielded by the

BB overcomes the application I/O bottleneck. We performed several

runs of the CyberShake test workflow (Figure 3) for (1) different

numbers of computational nodes (1–313), and (2) different num-

bers of rupture files (1–5734) to be processed by DirectSynth. The

former investigates the ability of the burst buffer to scale with the

application’s parallel efficiency. The latter studies the impact on the

application’s makespan when the application becomes more CPU-

bound—in our case this is achieved by augmenting the number of

rupture files. Although the number of I/O operations also increase

in this scenario, the complexity of the computation is significantly

augmented as the number of rupture files increase (i.e., the increase

on the time spent performing operations in the user space is pro-

portionally larger than the time spent on system operations). For

each experiment, we performed several runs of the workflow to

obtain measurements within standard errors below 3%.

4.4 Results and Discussion

Overall Write Operations. Figure 4-top shows the average I/O

performance estimate for write operations for the synthetic AWP-

ODC-SGT (SGT_generator) job for varying numbers of compute
nodes on Cori. Note that each node is composed of 32 cores, thus a

complete execution (313 nodes) of this job uses 10,016 cores. Perfor-

mance gain values (Figure 4-bottom) represent the average runtime

gain for “I/O write” operations (not the task runtime itself) w.r.t.

the one-node execution performance. Overall, write operations to

the PFS (No-BB) have nearly constant I/O performance; we mea-

sured around 900 MiB/s regardless of the number of nodes used.

Likely, the PFS automatically balances the I/O bandwidth in order

to provide an adequate QoS for all users. Due to slight variations

in the measured I/O bandwidth, performance gain values present

negligible variations (between 0.95 to 1.0). Workflow runs with the

BB, on the other hand, significantly surpass the PFS I/O bandwidth

for write operations. Base values obtained for the BB executions (1
node, 32 cores) are over 4,600 MiB/s, and peak values scale up to

∼ 8, 200 MiB/s for 32 nodes (1,024 cores). Increasing the number of

nodes (≥ 64), we observe a slight drop in the I/O performance due

to the large number of concurrent write operations. Although this

may be seen as a limitation on the use of burst buffers, the perfor-

mance degradation is below 10% and the job runtime significantly

benefits from the high degree of parallelism.

Overall Read Operations. Figure 5-top shows the average I/O

performance estimate for read operations for the direct_synth job,
which consumes the SGT files generated by the SGT_generator job.
Typically, CyberShake runs of this job are set to 64 nodes (optimal

runtime/parallel efficiency balance). For this experiment, we ran

this same job with different numbers of nodes (1 to 128) in order

to measure the impact on I/O performance for read operations at

different levels of parallelism. Similarly to write operations, read

operations from the PFS yield similar performance regardless of

the number of nodes used, while the I/O performance varies for

reads from the BB—single-node performance of 4,000 MiB/s, peak

values up to about 8,000 MiB/s, and then a small dropoff as node

counts increase. Although the measured I/O read performance is

WORKS’17, November 12–17, 2017, Denver, CO, USA R. Ferreira da Silva et al.

0

2500

5000

7500

10000

1 4 8 16 32 64 128 256 313
Nodes

M
iB

/s

BB no−BB

0.75

1.00

1.25

1.50

1.75

1 4 8 16 32 64 128 256 313
nodes

Pe
rfo

rm
an

ce
 G

ai
n

BB no−BB

Figure 4: Average I/O performance estimate for write opera-
tions at the MPI-IO layer (top), and average I/O write perfor-
mance gain (bottom) for the SGT_generator job.

slightly lower than that for write operations (about 5%), we argue
that read and write operations achieve similar levels of performance.
Notice that I/O write performance gain values (Figure 5-bottom)
are marginally higher. This result is due to the lower performance
yielded by the 1-node execution. Again, we observe a similar small
drop in the performance for runs using 64 nodes or above, which
may indicate an I/O bottleneck when draining the data to/from
the underlying parallel file system. Since queueing time between
jobs within a workflow scheduled on Cori may be several hours,
a fraction of the files transferred to the BB reservation might be
temporarily removed from the BB to improve the efficiency of other
users’ jobs on the system. Therefore, if the queueing time between
two subsequent jobs could be decreased, the observed drop in the
performance may be shifted upwards, i.e. I/O contention may occur
when using a larger number of nodes.

I/O Performance per Process. Figures 6 and 7 show the average
time of I/O read operations per process for POSIX and MPI-IO for
each horizontal component file (fx.sgt and fy.sgt), respectively.
POSIX operations (Figure 6) represent buffering and synchroniza-
tion operations with the system. Thus, although there is a visible

0

2500

5000

7500

1 4 8 16 32 64 128
Nodes

M
iB

/s

BB No−BB

0.5

1.0

1.5

2.0

1 4 8 16 32 64 128
nodes

Pe
rfo

rm
an

ce
 G

ai
n

BB No−BB

Figure 5: I/O performance estimate for read operations at
the MPI-IO layer (top), and average I/O write performance
gain (bottom) for the direct_synth job.

fx.sgt fy.sgt

1 4 8 16 32 64 128 1 4 8 16 32 64 128

0

1

2

3

Nodes

Ti
m

e
(s

ec
on

ds
)

BB No−BB

Figure 6: POSIXmodule data: Average time consumed in I/O
read operations per process for the direct_synth job.

On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows WORKS’17, November 12–17, 2017, Denver, CO, USA

fx.sgt fy.sgt

1 4 8 16 32 64 128 1 4 8 16 32 64 128

0

500

1000

1500

2000

Nodes

Ti
m

e
(s

ec
on

ds
)

BB No−BB

Figure 7: MPI-IO module data: Average time consumed in
I/O read operations per process for the direct_synth job.

difference in the average time consumed in I/O read operations per
process between the BB and PFS, these values are negligible when
compared to the job’s total runtime (approximately 8 hours for 64
nodes). Figure 7 shows the average effective time spent per process
performing MPI-IO operations. As expected, the average time con-
sumed in I/O read operations decreases as more process are used.
Note that for larger configurations (≥ 32 node), the average time
is nearly the same as when running with 16 nodes for the No-BB
configuration. This behavior is consistent with the I/O performance
estimate decline observed in Figure 5. Workflow executions using
the BB accelerate I/O read operations up to 10 times in average.
It is noteworthy to mention that these averaged values (for up to
thousands of cores) may mask slower processes, which may by
themselves delay the application execution. In some cases, e.g. 64
nodes, slowest time consumed in I/O read operations can slow-
down the application up to 12 times the averaged value. Therefore,
we also investigate the distribution of cumulative times of for I/O
operations and processing on the user space.

Cumulative CPU time. Figure 8 shows the ratio between the
time spent in the user (utime) and kernel (stime) spaces—handling
I/O-related interruptions, etc. The use of burst buffers leads the
application to a more CPU-intensive pattern. Although executions
with 32 nodes yielded the best I/O performance, performance at 64
nodes is similar, suggesting gains in application parallel efficiency
would outweigh a slight I/O performance hit at 64 nodes and lead
to decreased overall runtime.

Rupture Files. As described in Section 4.1, a typical execution
of the CyberShake workflow for a selected site in our experiment
processes about 5,700 rupture files. Since the number of rupture files
may vary for different executions of the workflow, we evaluated
the impact on the use of a burst buffer on the application’s CPU-
boundedness. Figure 9 shows the ratio between the time consumed
in the user and kernel spaces for the direct_synth job (results for
workflow runs with 64 nodes). The processing of rupture files drive
most of the CPU (user space) activities for the direct_synth job.

BB No−BB

1 4 8 16 32 64 128 1 4 8 16 32 64 128

0

25

50

75

100

Nodes

C
um

ul
at

iv
e

C
P

U
 ti

m
e

us
ag

e
(%

)

stime utime

Figure 8: Ratio between the cumulative time spent in the
user (utime) and kernel (stime) spaces for the direct_synth
job, for different numbers of nodes.

BB No−BB

1 10 100 1000 2500 5700 1 10 100 1000 2500 5700

0

25

50

75

100

Rupture Files

C
um

ul
at

iv
e

C
P

U
 ti

m
e

us
ag

e
(%

)

stime utime

Figure 9: Ratio between the cumulative time spent in the
user (utime) and kernel (stime) spaces for the direct_synth
job for different numbers of rupture files.

Not surprisingly, the more rupture files are used the more CPU-
bound the job becomes, yet burst buffers still positively impact the
application execution—for our real world workflow, the use of a
BB attenuates (about 15%) the I/O processing time of the workflow
jobs, for both read and write operations.

5 RELATED WORK
Efficient workflow scheduling is an extensively researched topic
within the field of scientific workflows. A plethora of studies have
targeted, for example, the design and development of cost- and
energy-efficient scheduling techniques, while others have focused
on the data management aspect of the problem, such as file place-
ment strategies and data-aware scheduling. Numerous survey stud-
ies have captured and analyzed the essence of those techniques [4,
19–21]. Although these solutions may improve workflow execution

WORKS’17, November 12–17, 2017, Denver, CO, USA R. Ferreira da Silva et al.

efficiency to some extent, hardware limitations may impose severe
barriers, e.g., the workflow execution may be extremely delayed
due to I/O contention. An alternative approach is to enable config-
uration refinement (e.g., change platform conditions). In previous
work [22], we investigated scheduling techniques in networked
clouds to predict dynamic resource needs using a workflow intro-
spection technique to actuate resource adaptation in response to
dynamic workflow needs, which accounts for data flows and net-
work adaptation. However, such approaches cannot be applied to
HPC systems.

Burst buffer performance has been thoroughly evaluated in di-
verse contexts, and its ability to improve I/O throughput for running
single parallel applications has been well established [16, 24, 29].
For instance, in [24] an empirical evaluation of a BB implementation
with an I/O-bound benchmark application yielded a speedup factor
of 20 when compared to the I/O bandwidth from the PFS (in this case
GPFS). Their conclusions support the experimental results obtained
in this paper, but since they focus on pure I/O-bound applications
the impact on the parallel efficiency is neglected. Point solutions at a
higher layer of abstraction have also been the target of some studies.
BurstMem [30] is a high-performance burst buffer system on top
of Memcached [12], which uses a log-structured data organization
with indexing for fast I/O absorption and low-latency, semantic-rich
data retrieval, coordinated data shuffling for efficient data flush-
ing, and CCI-based communication for high-speed data transfer.
BurstFS [29] is a file system solution for node-local burst buffers
that provides scalable metadata indexing, co-located I/O delega-
tion, and server-side read clustering and pipelining. Although these
systems present solid evaluation and promising results, they are
not production-ready. Additionally, NERSC’s BB follows a remote-
shared pattern, making it incompatible with the use of BurstFS.

In the area of workflow scheduling, Herbein et al. [16] proposed
an I/O-aware scheduling technique that consumes a model of links
between all levels in the storage hierarchy, and uses this model at
schedule time to avoid I/O contention. Experimental results show
that their technique mitigates all I/O contention on the system,
regardless of the level of underprovisioning. Unfortunately, the
approach evaluation is limited to an emulated environment for
an FCFS scheduler with support for EASY backfill, which is not
production-ready and could not be used to run our real-world data-
intensive application. The pioneer work on workflow performance
characterization using burst buffers was presented in [6], where
two workflow applications from LBNL running on Cori are eval-
uated. This work was a first step towards the efficient use of BB
for scientific workflows. Our contributions in this paper advances
this previous work in the following ways: (1) we evaluate a very
large data-intensive real-world workflow (consumes/generates over
550 GB of data); (2) we compare the performance gain for using
a BB; and (3) we measure the impact of BB at different levels of
application parallelism.

6 CONCLUSIONS
In this paper, we explored the impact of burst buffers on perfor-
mance of a real-world scientific workflow application, SCEC Cy-
berShake. Using a software stack including Pegasus-WMS and HT-
Condor, we ran a workflow on the Cori system at NERSC. The

workflow included provisioning and releasing remote-shared BB
nodes. We found that for our application, which wrote and read
about 550 GB of data, I/O write performance was improved by a
factor of 9, and I/O read performance by a factor of 15 when burst
buffers were used. Performance decreased slightly at node counts
above 64, indicating a potential I/O ceiling, which suggests that I/O
performance must be balanced with parallel efficiency when using
burst buffers with highly parallel applications.

We acknowledge that I/O contention may limit the broad ap-
plicability of burst buffers for all workflow applications. However,
solutions such as I/O-aware scheduling or in situ processing may
also not fulfill all application requirements. Therefore, we intend to
investigate the use of combined in situ and in transit analysis [8, 17],
as well as consider more intrusive approaches for changing work-
flow applications and systems to optimize for burst buffer usage.
Future work also includes the development of a production solu-
tion for workflow systems, in particular Pegasus, to include the
functionality outlined in Section 3, abstract the configuration steps
for using burst buffers, and simplify burst buffer use for workflow
users. We also intend to characterize the CyberShake workflow
(and additional applications) on forthcoming HPC systems that will
support an optimized version of the node-local pattern.

ACKNOWLEDGMENTS
This work was funded by DOE contract number #DESC0012636,
“Panorama – Predictive Modeling and Diagnostic Monitoring of Ex-
treme Science Workflows”, and by NSF contract number #1664162, “
SI2-SSI: Pegasus: Automating Compute and Data Intensive Science”.
This research used resources of the National Energy Research Sci-
entific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

CyberShake workflow research was supported by the National
Science Foundation (NSF) under the OAC SI2-SSI grant #1148493,
the OAC SI2-SSI grant #1450451, and EAR grant #1226343. This
research was supported by the Southern California Earthquake
Center (Contribution No. 7610). SCEC is funded by NSF Cooper-
ative Agreement EAR-1033462 & USGS Cooperative Agreement
G12AC20038.

REFERENCES
[1] Wahid Bhimji, Debbie Bard, Melissa Romanus, David Paul, Andrey Ovsyannikov,

Brian Friesen, Matt Bryson, Joaquin Correa, Glenn K Lockwood, Vakho Tsulaia,
et al. 2016. Accelerating science with the NERSC burst buffer early user program.
CUG2016 Proceedings (2016).

[2] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert
Latham, and Robert Ross. 2011. Understanding and improving computational
science storage access through continuous characterization. ACM Transactions
on Storage (TOS) 7, 3 (2011), 8.

[3] Cori – NERSC 2017. http://www.nersc.gov/users/computational-systems/cori/.
(2017).

[4] Lauro Beltrão Costa, Hao Yang, Emalayan Vairavanathan, Abmar Barros, Ketan
Maheshwari, Gilles Fedak, D Katz, Michael Wilde, Matei Ripeanu, and Samer
Al-Kiswany. 2015. The case for workflow-aware storage: An opportunity study.
Journal of Grid Computing 13, 1 (2015), 95–113.

[5] Yifeng Cui, Efecan Poyraz, Jun Zhou, Scott Callaghan, Phil Maechling, Thomas H.
Jordan, Liwen Shih, and Po Chen. 2013. Accelerating CyberShake Calculations on
XE6/XK7 Platforms of Blue Waters. In Proceedings of Extreme Scaling Workshop
2013.

[6] Christopher S Daley, Devarshi Ghoshal, Glenn K Lockwood, Sudip S Dosanjh,
Lavanya Ramakrishnan, and Nicholas J Wright. 2016. Performance Character-
ization of Scientific Workflows for the Optimal Use of Burst Buffers.. In 11th

On the Use of Burst Buffers for Accelerating Data-Intensive Scientific Workflows WORKS’17, November 12–17, 2017, Denver, CO, USA

Workflows in Support of Large-Scale Science, WORKS’16. 69–73.
[7] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J

Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems 46 (2015), 17–35. https://doi.
org/10.1016/j.future.2014.10.008

[8] Matthieu Dreher and Bruno Raffin. 2014. A flexible framework for asynchro-
nous in situ and in transit analytics for scientific simulations. In 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE,
277–286.

[9] Rafael Ferreira da Silva, Ewa Deelman, Rosa Filgueira, Karan Vahi, Mats Rynge,
Rajiv Mayani, and BenjaminMayer. 2016. Automating Environmental Computing
Applications with Scientific Workflows. In Environmental Computing Workshop
(ECW’16), IEEE 12th International Conference on e-Science. 400–406. https://doi.
org/10.1109/eScience.2016.7870926

[10] Rafael Ferreira da Silva, Rosa Filgueira, Ewa Deelman, Erola Pairo-Castineira,
Ian Michael Overton, and Malcolm Atkinson. 2016. Using Simple PID Controllers
to Prevent and Mitigate Faults in Scientific Workflows. In 11th Workflows in
Support of Large-Scale Science (WORKS’16). 15–24.

[11] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou,
and Ewa Deelman. 2017. A Characterization of Workflow Management Systems
for Extreme-Scale Applications. Future Generation Computer Systems 75 (2017),
228–238. https://doi.org/10.1016/j.future.2017.02.026

[12] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux journal 2004,
124 (2004), 5.

[13] James Frey. 2002. Condor DAGMan: Handling inter-job dependencies. (2002).
[14] Robert Graves, Thomas H Jordan, Scott Callaghan, Ewa Deelman, Edward Field,

Gideon Juve, Carl Kesselman, Philip Maechling, Gaurang Mehta, Kevin Milner,
et al. 2011. CyberShake: A physics-based seismic hazard model for southern
California. Pure and Applied Geophysics 168, 3-4 (2011), 367–381.

[15] Dave Henseler, Benjamin Landsteiner, Doug Petesch, Cornell Wright, and
Nicholas J Wright. 2016. Architecture and Design of Cray DataWarp. In Proc.
Cray Users’ Group Technical Conference (CUG).

[16] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC Clusters. In Pro-
ceedings of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing. ACM, 69–80.

[17] Travis Johnston, Boyu Zhang, Adam Liwo, Silvia Crivelli, and Michela Taufer.
2017. In situ data analytics and indexing of protein trajectories. Journal of
computational chemistry 38, 16 (2017), 1419–1430.

[18] Chee Sun Liew, Malcolm P Atkinson, Michelle Galea, Tan Fong Ang, Paul Martin,
and Jano I Van Hemert. 2016. Scientific workflows: moving across paradigms.
ACM Computing Surveys (CSUR) 49, 4 (2016), 66.

[19] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. 2015. A survey of
data-intensive scientific workflow management. Journal of Grid Computing 13, 4
(2015), 457–493.

[20] Li Liu, Miao Zhang, Yuqing Lin, and Liangjuan Qin. 2014. A survey on workflow
management and scheduling in cloud computing. In Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on. IEEE,
837–846.

[21] Jianwei Ma, Wanyu Liu, and Tristan Glatard. 2013. A classification of file place-
ment and replication methods on grids. Future Generation Computer Systems 29,
6 (2013), 1395–1406.

[22] Anirban Mandal, Paul Ruth, Ilya Baldin, Yufeng Xin, Claris Castillo, Gideon Juve,
Mats Rynge, Ewa Deelman, and Jeff Chase. 2015. Adapting Scientific Workflows
on Networked Clouds Using Proactive Introspection. In IEEE/ACM Utility and
Cloud Computing (UCC). https://doi.org/10.1109/UCC.2015.32

[23] 2007 Working Group on California Earthquake Probabilities. 2008. The Uniform
California Earthquake Rupture Forecast, Version 2. (2008). https://pubs.usgs.gov/
of/2007/1437/

[24] Wolfram Schenck, Salem El Sayed, Maciej Foszczynski, Wilhelm Homberg, and
Dirk Pleiter. 2017. Evaluation and Performance Modeling of a Burst Buffer
Solution. ACM SIGOPS Operating Systems Review 50, 1 (2017), 12–26.

[25] Southern California Earthquake Center 2017. http://www.scec.org. (2017).
[26] Ian J Taylor, Ewa Deelman, Dennis B Gannon, and Matthew Shields. 2007. Work-

flows for e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated.

[27] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurrency and computation: practice and
experience 17, 2-4 (2005), 323–356.

[28] Teng Wang. 2017. Exploring Novel Burst Buffer Management on Extreme-Scale
HPC Systems. Ph.D. Dissertation. The Florida State University.

[29] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan Yu. 2016.
An ephemeral burst-buffer file system for scientific applications. In High Perfor-
mance Computing, Networking, Storage and Analysis, SC16: International Confer-
ence for. IEEE, 807–818.

[30] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer, Scott Atchley, and
Weikuan Yu. 2014. Burstmem: A high-performance burst buffer system for
scientific applications. In Big Data (Big Data), 2014 IEEE International Conference
on. IEEE, 71–79.

[31] White House National Strategic Computing Initiative Workshop Proceedings
2015. https://www.nitrd.gov/nsci/files/NSCI2015WorkshopReport06142016.pdf.
(2015).

https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1109/eScience.2016.7870926
https://doi.org/10.1109/eScience.2016.7870926
https://doi.org/10.1016/j.future.2017.02.026
https://doi.org/10.1109/UCC.2015.32
https://pubs.usgs.gov/of/2007/1437/
https://pubs.usgs.gov/of/2007/1437/

	Abstract
	1 Introduction
	2 Background
	2.1 Data-Intensive Scientific Workflows
	2.2 Burst Buffers

	3 Model and Design
	4 Experimental Evaluation
	4.1 Target Scientific Workflow Application
	4.2 Workflow Implementation
	4.3 Experiment Conditions
	4.4 Results and Discussion

	5 Related Work
	6 Conclusions
	References

