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Isolated quantum many-body systems with integrable dynamics generically do not thermalize
when taken far from equilibrium. As one perturbs such systems away from the integrable point,
thermalization sets in, but the nature of the crossover from integrable to thermalizing behavior is an
unresolved and actively discussed question. We explore this question by studying the dynamics of the
momentum distribution function in a dipolar quantum Newton’s cradle consisting of highly magnetic
dysprosium atoms. This is accomplished by creating the first one-dimensional Bose gas with strong
magnetic dipole-dipole interactions. These interactions provide tunability of both the strength of
the integrability-breaking perturbation and the nature of the near-integrable dynamics. We provide
the first experimental evidence that thermalization close to a strongly interacting integrable point
occurs in two steps: prethermalization followed by near-exponential thermalization. Exact numerical
calculations on a two-rung lattice model yield a similar two-timescale process, suggesting that this
is generic in strongly interacting near-integrable models. Moreover, the measured thermalization
rate is consistent with a parameter-free theoretical estimate, based on identifying the types of
collisions that dominate thermalization. By providing tunability between regimes of integrable and
nonintegrable dynamics, our work sheds light both on the mechanisms by which isolated quantum
many-body systems thermalize, and on the temporal structure of the onset of thermalization.

I. INTRODUCTION

In classical physics, chaos and the approach to thermal
equilibrium are intimately related: the irregular space-
filling trajectories of a chaotic system sample all of phase
space. An integrable system, on the other hand, executes
simple closed orbits. Systems that are nearly but not
strictly integrable (such as the famous Fermi-Pasta-Ulam
chain [1]) have a rich multiple-timescale dynamics, and
equilibrate extremely slowly. Classical thermalization
near integrability is understood in terms of Kolmogorov-
Arnold-Moser (KAM) theory [2] and related concepts.
Classical chaos and KAM theory are based on the notion
of phase-space trajectories, whereas quantum chaotic dy-
namics and thermalization are understood in terms of a
different conceptual framework, involving random matrix
theory and the eigenstate thermalization hypothesis [3–
8]. Within this framework, there is no general theory
of thermalization in near-integrable systems, though it
has been widely discussed [9–26]. Moreover, numerical
exploration of such questions is challenging because the
achievable system sizes are quite small if one wishes to
simulate to arbitrarily long times [11, 12].

Experimental studies are far less limited by finite-size
concerns. In a pioneering experiment [27], oppositely
moving bunches of ultracold bosonic atoms were confined
to an array of one-dimensional (1D) tubes; atoms in this
quantum Newton’s cradle collided repeatedly, yet did not
thermalize as atoms in a 3D trap would. Rather than ex-

hibiting thermalization or revivals [1], a nonthermal mo-
mentum distribution persisted to long times. Such long-
lived, nonthermal states are often termed prethermal
states, and are naturally present in nearly integrable sys-
tems; they have been experimentally observed in weakly
interacting, quasi-1D quantum gases [28–30]. The ques-
tion of how such prethermal states eventually thermal-
ize, once integrability is broken in the presence of strong
interactions, remains unexplored. In particular, there
is no theoretical consensus even on the basic question
of whether relaxation involves two distinct timescales or
three [13, 14, 17–19].
Motivated by these findings, we explore the onset

of thermalization in a nearly integrable, strongly inter-
acting system—an array of dipolar quantum Newton’s
cradles consisting of dysprosium atoms—subject to an
integrability-breaking perturbation of tunable strength,
namely the magnetic dipole-dipole interaction (DDI); see
Fig. 1(a) [31]. The tunability of our system enables us
to systematically map out how the dynamics of observ-
ables changes as the system moves away from integra-
bility; this has never before been done experimentally.
We focus on an observable, the momentum distribution
of the interacting dysprosium atoms, that exhibits non-
trivial dynamics even in the integrable limit (because of
the presence of contact interactions and confining po-
tentials). We find that the dynamics of the momentum
distribution exhibits two temporal regimes: rapid de-
phasing followed by a nearly exponential approach to the
thermal distribution. This is similar to numerical results
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by retroreflecting a pair of beams in the ŷ and ẑ direc-
tions. Both beams are red-detuned from the Dy narrow-
line λ = 741-nm transition [33] by 13.7 GHz. The waist
radii of the ẑ-lattice beam and the ŷ-lattice beam at the
BEC position are 195 µm and 150 µm, respectively. Both
beams are linearly polarized, and the polarization direc-
tion is chosen to be perpendicular to the applied magnetic
field (confined to the xz-plane) such that the total AC
Stark shift is maximal, including the tensor shift [34].
The ẑ-lattice beam is polarized along ŷ, such that the
total light shift is constant for any θ. The polarization
of the ŷ-lattice beam lies in the xz-plane and is set by
a half waveplate to be perpendicular to the field direc-
tion for each θ setting. The lattice depth is calibrated
using the Kapitza-Dirac diffraction method [35]. We ex-
perimentally verified that the depth of the ẑ lattice is
independent of θ. For the ŷ lattice, we experimentally
find the optimum waveplate angle and calibrate the lat-
tice depth for each θ setting.
We used a lattice depth of V0 = 18.0(3)ER, lead-

ing to a transverse trap frequency ω⊥ = kR
√
2V0/m =

2π× 19.0(2) kHz [36], where kR = 2π/λ is the recoil mo-
mentum and ER = (h̄kR)

2/2m. To achieve V0 = 18ER,
the power of the ẑ-lattice beam is set to 250 mW and that
of the ŷ-lattice beam is tuned between 130-170 mW as
θ is changed. This power tuning is required to compen-
sate for both the θ-dependent change in the tensor part
of the atomic light shift and the loss of power through
polarization-dependent optics as the laser’s polarization
is rotated to follow θ. The Gaussian intensity profile of
the lattice beams, though broader than the ODTs, in-
creases ωx to 2π × 60(1) Hz at ω⊥ = 2π × 19.0(2) kHz.
The atoms oscillate within each tube with a frequency
1/T = 60(1) Hz.

C. Kicking the cradle in motion

After loading into the 2D lattice, we split the gas
into two equal but opposite |±2h̄kD〉 momentum states
by applying a precisely timed double-pulse 1D opti-
cal phase grating along the tube direction [27, 37, 38];

kD =
√
2π/λ. The phase grating beams are also red-

tuned 13.7 GHz from the 741-nm transition. The two
beams are linearly polarized along ẑ and are oriented
along (x̂+ ŷ)/

√
2 and (−x̂+ ŷ)/

√
2 directions. Large mo-

mentum collisions can occur every T/2 = 8.3(1) ms; the
maximum collision energy between a pair of atoms is up
to Ec = 2(2h̄kD)

2/(2m) = h × 9.0 kHz. This energy is
three-times-lower than that required for transverse mo-
tional excitations due to the large transverse trap fre-
quency ω⊥/2π = 19 kHz [39]. Atomic motion is therefore
restricted to 1D [40, 41].
We experimentally observe that kicking the gas at dif-

ferent θ leads to different populations of undiffracted
atoms. These atoms are manifest in the momentum dis-
tribution as a small central peak in the dephased mo-
mentum distribution. This central peak, though small,

has a shape and height that varies with θ and therefore
biases the distance-to-thermalization (DT) metric of the
dephased distribution. (DT is defined in Sec. II F below.)
Among the reasons for this effect may be the dependence
on the shape of the initial momentum distribution on θ
due to a dependence of the diffraction efficiency on DDI
strength. To mitigate this systematic, after kicking the
gas, we allow the distribution to evolve with θ fixed to 35◦

for 5 periods of oscillation before we rotate the field to the
desired θ setting. This rotation takes 20 ms using a linear
ramp. The ramp time is much shorter than the thermal-
ization timescale of interest. Appendix H shows data
demonstrating that this procedure results in a dephased
momentum distribution that exhibits no systematic vari-
ation in DT versus the target θ setting. Moreover, data
are shown that demonstrate that the time chosen for the
rotation also does not affect the subsequent thermaliza-
tion rate.

D. Thermalization tunability

To control thermalization, we break integrability
through collisions mediated by the angle-tuned DDI. The
effect of the DDI can be understood perturbatively as fol-
lows. In 1D, two-particle collisions only swap momenta
between particles, leaving the overall momentum distri-
bution invariant. In integrable systems, three- and more-
particle collisions also have the same property: they are
“non-diffractive.” The non-zero-range DDI breaks inte-
grability by inducing diffractive three-particle collisions,
which simultaneously change three momenta; the three
particles involved need not reside in the same tube. For
example, two particles in the same tube can collide via
short-range interactions while interacting with a third
particle in a nearby tube via the long-range DDI. This
should lead to thermalization of the momentum distribu-
tion [41].
The DDI’s anisotropic nature, proportional to 1 −

3 cos2(θ), provides control of the DDI strength through
tuning of θ; see Figs. 1(b) and 1(c) and Appendices A–
C. Several experimental imperfections can also break
integrability, though none in the strongly θ-dependent
fashion we observe. Chief among these are heating and
atom loss from spontaneous emission due to absorption of
the optical trap confinement light [42]. Neither of these
effects dominates thermalization at the employed trap
depth; see Appendices E and F. Tunneling between the
tubes also breaks integrability; however, we estimate its
contribution to the observed thermalization is negligible;
see Appendix I. Lastly, virtual excitation of transverse
motion can mediate diffractive three-body interactions
and the longitudinal confinement can break integrabil-
ity. Both contributions are expected to be small for our
system [43–46].
We note that dipolar effects were far weaker in the

Rb-based experiment of Ref. [27]. Dy has a dipole mo-
ment µ that is 10 times larger than Rb’s. Since the ther-
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FIG. 2. Evolution of post-kick momentum distributions at multiples of T . (a) 3D gas at θ = 35◦. (b) Regime I, fast dephasing
of 1D gas at θ = 35◦. While the momentum distribution of the 3D gas thermalizes after ∼5T , the 1D gases exhibit nonthermal
(i.e., non-Gaussian) distributions far longer. 1D gases in regime II for θ’s of (c) 0◦; (d) 55◦; and (e) 90◦. We diffract and evolve
with θ = 35◦ until rotation at 5T to the target θ. As can be seen in panels (c)–(e), this procedure produces nearly identical
momentum distributions after field rotation regardless of θ. Color scale is proportional to the distance to thermalization. The
best-fit Gaussian curve and the corresponding log (DT) value are shown for the 90◦ data at the earliest and latest times.

malization rate is proportional to the dipolar interaction
squared (as we demonstrate in Sec. III B), and therefore
to µ4, the contribution to the thermalization rate due to
dipolar interactions was ∼104-slower in the Rb experi-
ment.

E. Oscillation evolution and observation of

momentum distribution

After we allow the state to dephase following the ini-
tial kick, we rotate the field to the target angle θ and
hold constant the power of the lattice beams and the op-
tical dipole trap beams for a duration of varying integer
multiples of oscillation half-periods, T/2. To measure
the evolved momentum distribution along x̂, we first de-
load the lattice using a 500-µs exponential ramp, and
then suddenly turn off (in <10 µs) the ODT beams.
The lattice deloading time is slow compared to the band-
excitation timescale (∼50 µs), but fast compared to the
thermalization timescale in the 3D trap [∼100 ms, see 3D
thermalization data in Fig. 2(a)]. Therefore, this deload-
ing procedure constitutes a band-mapping operation [47]
that adiabatically transfers the quasimomentum distri-
butions in the lattice confinement directions (ŷ and ẑ)
into real momentum distributions, but does not affect
the momentum distribution along the tube direction x̂,

the direction of interest.

We image the gas along ŷ after 14 ms of time-of-flight
using absorption imaging at the 421-nm transition. The
images are the sum of the contributions from all tubes.
We integrate the 2D distribution along ẑ to obtained a 1D
distribution p(x) because the momentum distribution of
interest is along x̂ and the band-mapping procedure pro-
duces an approximately flat distribution along ẑ within
the first Brillouin zone.

We observe no atomic population outside the lowest,
ground-state band in ẑ, verifying that the 2D lattice
confinement realizes an effective 1D environment for the
atoms. We cannot directly observe the expanded atomic
distribution along ŷ, the imaging direction, but we ex-
pect atoms also remain in the ground band due to the
identical depth and deloading procedure used for both
lattices. We also note that a time-of-flight expansion
without transverse 1D confinement also eliminates com-
plications arising from interaction effects during expan-
sion. For measuring thermalization in a 3D trap as in
Fig. 2(a), we diffract the BEC without loading into the
lattice and allow the gas to evolve in the crossed ODT.
The oscillation period in the x̂-direction is 14.8(1) ms in
this trap. The 3D gas thermalizes within seven oscillation
periods.
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F. Distance-to-thermalization metric

Figure 2 shows the momentum distribution evolution
of a kicked gas in a 3D dipole trap as well as the evolution
for 1D gases at different θ’s. We quantify the distance-
to-thermalization (DT) of a measured momentum dis-
tribution p(x) by fitting p(x) to a Gaussian distribution

f(x) = ae−x2/(2σ2) + mx + b, where the last two terms
accounts for background gradient and offset of the image,
respectively. We then compute the quadrature sum of the

fit residuals, DT (t) =
√∑

i [p(xi)− p̂(xi)]
2
, where p̂(xi)

is the fitted distribution, i is the pixel index, and t is
the holding time. See Appendix F for a discussion of the
spontaneous emission heating analysis and Appendix G
for comments regarding other DT metrics.
The detection noise causesDT (t) to decrease to a finite

positive value rather than zero when p(x) becomes ther-
mal: At long holding times DT (t) reaches a constant, as
evident in Figs. 3 and 11. We use the mean and standard
deviation of all the DT (t) values in the constant region
across all measurements as the mean and uncertainty of
the noise floor, respectively. The natural log of the DT
is plotted in Fig. 3 for these θ’s.

G. Interaction regime of Lieb-Liniger model

Pre-kick, the gas is just below the strongly correlated,
Tonks-Girardeau (TG) regime of the Lieb-Liniger model
wherein the bosons fermionize [48]. This regime arises
when γ(θ) = mgtotal1D (θ)/(n1Dh̄

2), which contains the
ratio of the short-range (contact) interaction strength
[∝ gtotal1D (θ)] to kinetic energy grows larger than unity [48–
53]. The initial γ(θ) varies between 0.6–1.9, where n1D

is the 1D atomic density. The unusual angle dependence
of γ arises due to the short-range, delta-function aspect
of the intratube DDI; see Appendices A and D.
The post-kick dephasing of oscillations (which con-

stitute regime I of evolution discussed below) reduces
the initial density, allowing the gas to achieve a larger
γ(θ) = 2.2–7.4, placing the system in the crossover to the
TG; see Fig. 1(c) for a plot of γ(θ) and Appendix D for
more details. However, the post-kick kinetic energy scale
is also much larger, and whether fermionization tran-
siently persists during the far-from-equilibrium, post-kick
evolution is a priori unclear [54]. Once thermalized, the
gas is classical in nature.
One can estimate post-kick interaction effects as fol-

lows: the characteristic length-scale of the nonequilib-
rium state is given by the wavelength of the standing-
wave phase-grating pulse: λ′ = λ/

√
2 ≈ 520 nm.

A dimensionless ratio of this scale to atotal1D (θ) =

2h̄2/[mgtotal1D (θ)], defined as γ′ ≡ 2λ′/atotal1D (θ), general-
izes the zero-temperature quantity γ to this far-from-
equilibrium situation. The logic is the same as when
defining γ, or generally when considering whether a prob-
lem involves weak or strong correlations: one considers

º

º

º

º
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FIG. 3. The full θ = 35◦ evolution showing the boundary
between regime I and regime II. Solid blue line is fit to the
data between the beginning of regime II [log (DT) ≈ 1.5] and
the noise floor [log (DT) = 1]. Vertical bars indicate standard
error. Light blue horizontal band is the standard uncertainty
of the noise floor. Inset contains regime II decay results for
the same angles as in Fig. 2(c)–2(e).

the ratio of the interaction strength [55] to kinetic en-
ergy. However, since the system is far from equilibrium,
the kinetic energy is no longer set by the density, but is
in general much larger. We find that γ′(θ) ranges from
0.9 to 3.1.

III. THERMALIZATION OBSERVATIONS

We now describe the two regimes of thermalization
evolution in the experimental results. The evolution of
the kicked, bimodal distribution to a dephased, flattop
distribution at a time 7T is shown in Fig. 2(b) for the
example of θ = 35◦. Figure 3 shows the full evolution for
this θ, where the vertical dashed line at 10T demarcates
the boundary between regime I and II. See Appendix H
for more details.

A. Regime I evolution

The first regime, characterized by a fast decay in
log(DT), is governed by dephasing effects, which brings
the system to a prethermal state. Dephasing is domi-
nated by dynamics arising from the inhomogeneous trap-
ping potential in the presence of interactions. There are
two distinct dephasing processes due to the trap: (1) de-
phasing of oscillations between different harmonic tubes,
owing to their different natural frequencies and subse-
quent ensemble averaging over tubes with different T
during the imaging process; and (2) dephasing of the
oscillations of the gas in a single tube, owing to its an-
harmonicity. Both processes were discussed in Ref. [27].
These processes correspond to different physics: process
(1) yields an approximately stationary state as an ar-
tifact of averaging over tubes, while process (2) causes
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Appendix L 1)

m̂k =
1

L

2∑

`=1

L/2∑

j,j′=1

eik(j−j′)b̂†`,j b̂`,j′ . (5)

The time dependence of m̂k is studied by computing
mk(τ) = Tr[m̂kρ̂(τ)], while the expectation value of
this observable after relaxation can be obtained from the
infinite-time average [6]

m̄k = lim
τ ′→∞

1

τ ′

∫ τ ′

0

mk(τ) dτ. (6)

In the absence of degeneracies, which is ensured in our
calculations by breaking down the Hamiltonian into its
symmetry irreducible sectors, the infinite-time average
agrees with the prediction of the so-called diagonal en-
semble (DE) [5]:

mk(DE) =
∑

n

〈n|ρ̂DE|n〉 〈n|m̂k|n〉, (7)

where

ρ̂DE = lim
τ ′→∞

1

τ ′

∫ τ ′

0

ρ̂(τ) dτ. (8)

A central question we address with the exact diago-
nalization calculations is how the momentum distribu-
tion equilibrates after the quench. For that, we compute
a “distance-to-equilibrium” as the RMS deviation of the
momentum distribution function at each time from the
DE prediction:

δDE(τ) =

√∑
k [mk(τ)−mk(DE)]

2

L/2
. (9)

See Appendix L 2 for a discussion of thermalization.

B. Numerical results

We set t = 1 (our energy scale) before and after the
quench (and set our unit of time to h̄/t = 1). As men-
tioned before, our quenches start from an initial state
in thermal equilibrium. We take the temperature to be
TI = 5t′I (qualitatively similar results were obtained for

other temperatures) for an initial Hamiltonian ĤI that

has t′I = 50 and V I
r = 0. A large t′ in ĤI is chosen

to create an initial momentum distribution that peaks
at k = 0 and k = π (see Fig. 16). This is done to re-
semble the post-kick bimodal initial state created in the
experiment. After the quench, t′ in ĤF is set to 0 and
Vr is set to various nonzero but small values, so that the
evolution occurs under a (in most cases) weakly nonin-
tegrable Hamiltonian. Exploiting translation symmetry,
particle-hole symmetry, number conservation per chain
in the two-rung system, as well as parity under space re-
flection, we perform exact diagonalization calculations in

FIG. 6. Numerical results for the approach to equilibrium [see
Eq. (9)] in the two-rung hard-core boson model calculations
with 22 lattice sites and nearest neighbor coupling V = 1.6.
The symbols show results for a quench in which the system
is initialized in a state with a two-peaked momentum dis-
tribution (created through an initial Hamiltonian with strong
next-nearest neighbor coupling t′ = 50), and the integrability-
breaking interaction is turned on post-quench. Dashed lines
show results for evolution under the same final Hamiltonian,
but from an initial state that has already dephased under
the fast integrable dynamics. Specifically, the initial state
is a diagonal-ensemble state generated by a quench in which
t′ = 50 → t′ = 0 is changed but dipolar interactions are
absent. The fast dephasing at short times in the simulation
depends weakly on the strength of the integrability-breaking
perturbation.

systems with up to L = 22 sites. The value of V is kept
constant during the quench and is selected to be V = 1.6.

Figure 6 shows the “distance-to-equilibrium” δDE plot-
ted as a function of time for four values of the strength of
the integrability breaking inter-rung coupling Vr. Like in
the experiments, one can see that the exact diagonaliza-
tion results exhibit two-timescale dynamics. Prethermal-
ization occurs for times <∼ h̄/t, a time-scale set by V ∼ t.
The near-exponential approach to the diagonal ensemble
result occurs in a longer timescale, which is set by Vr.

The experiment strives to use the same initial state to
study the approach to thermalization when the strength
of the DDI (set by θ) is changed. The initial state is taken
to be the one after the short-time dephasing for a partic-
ular value of θ (θ is changed after that). We can emulate
such a procedure in our numerical calculations by “split-
ting” our single quench in which t′ is set to zero, and
Vr is made nonzero, into a two-step quench. In the first
quench, t′ is set to zero (this is a quench to the integrable

part of ĤF ) and the system is allowed to equilibrate. One
can then take the equilibrated state as the initial state
for a second quench in which the integrability-breaking
interaction Vr is turned on. Alternatively, one can take
the diagonal ensemble after the first quench as the initial
state for the second quench. Both procedures produce
indistinguishable relaxation rates (see Appendix L 3).

Using the diagonal ensemble after the first quench as
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the initial state for the second quench allows us to sep-
arate out the effects of the integrable and the noninte-
grable parts of the Hamiltonian. The ensuing dynam-
ics, shown as dashed lines in Fig. 6, are indistinguishable
from those of the original quench after the short-time de-
phasing, making apparent that regime II is entirely due
to the integrability-breaking interactions.

The similarity between the results in Fig. 3 and in
Fig. 6 is striking considering that the systems studied
experimentally and theoretically are microscopically very
different. By doing so, it highlights the robustness of our
findings about the relaxation dynamics close to a strongly
interacting integrable point [61].

V. CONCLUSIONS

In summary, we explored the far-from-equilibrium dy-
namics of a strongly interacting nearly-integrable system
as it is systematically tuned away from integrability. We
provide the first experimental demonstration that observ-
ables in such systems thermalize in a two-step process:
prethermalization followed by near-exponential thermal-
ization. A similar behavior is observed in exact numer-
ical calculations of a strongly interacting lattice model.
We have also shown that the thermalization rate in our
experiments is well-described by a DDI-dependent scal-
ing function that is consistent with perturbative expecta-
tions: The scaling is quadratic in the effective intratube
contact interactions, and also in the intra- and intertube
dipolar interactions.

Our ability to control the strength of integrability-
breaking perturbations opens a new venue to explore
quantum thermalization in strongly interacting systems.
Many questions remain, such as how thermalization de-
pends on the “quantumness” of the system, which we
can also control by changing the amount of energy de-
posited in the initial state. Our detailed characterization
of the approach to the thermal regime can also play an
important role in the development and benchmarking of
quantum Boltzmann approaches that could be used in
other areas of physics, such as heavy ion collisions.
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Appendix A: Intratube dipolar interaction

The dipole moment µ of Dy is 9.93µB. The effective
1D dipole-dipole interaction (DDI) has been derived in
the single-mode approximation to be [62–64]:

U1D
DDI(x) = V (θ)

[
V 1D
DDI(u)−

8

3
δ(u)

]
, (A1)

where

V (θ) =
µ0µ

2

4π

1− 3 cos2 θ

4l3⊥
, (A2)

V 1D
DDI(u) = −2|u|+

√
2π(1 + u2)eu

2/2erfc(|u|/
√
2), (A3)

and u = x/l⊥, l⊥ =
√
h̄/mω⊥, and erfc(u) is the comple-

mentary error function. The δ-function term in Eq. (A1)
comes from the point limit of an extended dipole [65]
and has an opposite sign to V 1D

DDI(u). For large distances
|x| � l⊥, V 1D

DDI(u) → 4/|u|3, just like the DDI in 3D.
However, V 1D

DDI(u) assumes a finite value at the origin,
becoming more sharply peaked for smaller l⊥. This be-
havior resembles that of a δ function and allows one to de-
fine an effective δ-function potential for V 1D

DDI(u) at short
distance [63].
We note that the intratube DDI is suppressed as atoms

approach within a few l⊥ by a factor of 4/|u|3/[2|u| −√
2π(1 + u2)eu

2/2erfc(|u|/
√
2)]. To understand this re-

duction in 1D, consider θ = 90◦. While most of the
DDI between atoms along x̂ is repulsive (i.e., dipoles
lying abreast), there remains a small attractive contri-
bution (i.e., dipoles lying head-to-tail) from the part of
their wavefunctions that extend transversely by l⊥. In
general, if the DDI interaction between two dipoles is
repulsive when they are separated in the longitudinal di-
rection (side-by-side), their interaction will be attractive
when separated in the transverse direction (head-to-tail),
and vice versa, reducing the strength of the DDI in either
case. See Ref. [63] for details.
In the following discussions, we use the superscript to

denote the interaction range (“sr” for short-range and
“lr” for long-range) and the subscript to denote the na-
ture of the interaction (“intra” for intratube and “inter”
for intertube).

1. Short-range part of the intratube dipolar

interaction

The magnitude of the short-range part of the 1D DDI
is given by the sum of the term proportional to the δ
function − 8

3δ(u) in Eq. (A1) and the δ-function-like part

of V 1D
DDI(u) in Eq. (A3). We calculate the strength of

the V 1D
DDI(u) by integrating it over a suitably chosen spa-

tial domain in x̂. Reference [63] determines this range

to be ±
√
2πl⊥, which is sufficiently smaller than the in-

terparticle spacing inside the tube such that the long-
range 1/r3 tail of the DDI is not double-counted. Taking
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u ∈ [−
√
2π,+

√
2π] as in Ref. [63], we find the normal-

ized strength A of the short-range part of the interaction
V 1D
DDI(u) to be

A =

∫ +
√
2π

−
√
2π

V 1D
DDI(u) du ≈ 90%

∫ +∞

−∞
V 1D
DDI(u) du = 3.6.

(A4)
This leads to a DDI-induced δ-function interaction
strength

U sr
intra(θ) = gDDI

1D (θ)δ(x) = V (θ)(A− 8/3)l⊥δ(x). (A5)

2. Long-range part of the intratube dipolar

interaction

The long-range (i.e., 1/r3-scaling) part of the intratube
DDI is given by V (θ)B, where

B =

∫ +∞

−∞
V 1D
DDI(u) du−

∫ +
√
2π

−
√
2π

V 1D
DDI(u) du

≈ 10%

∫ +∞

−∞
V 1D
DDI(u) du = 0.4. (A6)

However, not all of long-range intratube DDI con-
tributes to the integrability-breaking perturbation; only
the momentum-dependent part can lead to momentum
randomizing collisions. To find the leading momentum-
dependent part, we expand the Fourier transform of
V 1D
DDI(u) up to O(k2), which provides the terms asso-

ciated with the DDI-induced virtual interactions lead-
ing to integrability breaking; higher-order terms would
contribute less to thermalization. The k-space form of
the DDI is V 1D

DDI(k) ∼ [1 − σ expσΓ(0, σ)] [62], where
σ = (2kDl⊥)

2/2 ≈ 0.2 and Γ(0, σ) is the incomplete
Gamma function. The result is η = (γ̃ + log σ)σ, where
γ̃ = 0.577... is the Euler-Mascheroni (Euler-Gamma)
constant. The integrability-breaking term from the in-
tratube DDI is therefore ηV (θ)B.

Appendix B: Intertube dipolar interaction

Due to the lack of spatial correlations between atoms
in nearby tubes after splitting, the intertube DDI should
be calculated as that between an atom in one tube and
the integral over all x positions in the nearby tube. More
explicitly, for a tube located at (y, z),

Uy,z
inter(

~B) = n1D

∫ +∞

−∞
Vinter(~r, ~B) dx, (B1)

where

Vinter(~r, ~B) =
µ0µ

2

4π

1− 3
(
r̂ · B̂

)2

r3
. (B2)

Here ~r = (x, y, z) denotes the atomic position vector and

B̂ the direction of the magnetic field. With the geometry
of our experimental setup, we can parameterize the two
vectors as

~r = a
(x
a
, i, j

)
,

~B = B (cos θ, 0, sin θ) ,

V i,j
inter(θ) = Vinter(~r, ~B),

where a = λ/2 = 371 nm is the lattice constant and i, j
are integer indices that denote the location of each tube.
Dimer bound states are predicted to form between

pairs and arrays of tubes for any negative interaction
Uy,z
inter(θ) < 0 [66, 67]. However, these complexes would

have binding energies far lower than the post-kick atomic
collision energy, and so are unlikely to survive the kick-
ing process. We therefore do not expect intertube spatial
atomic correlations to arise from pre-kick dimer forma-
tion.

Appendix C: Calculation of U2

total(θ)

We calculate U2
total, the quadrature sum of the

integrability-breaking DDI contributions, using

U2
total(θ) = [ηU lr

intra(θ)]
2 +

∑

i,j

[
U i,j
inter(θ)

]2
, (C1)

where i, j are the tube indices, and

U lr
intra(θ) = V (θ) (n1Dl⊥)

1

2

√∫ −
√
2π

−∞

[
V 1D
DDI(u)

]2
du+

∫ +∞

+
√
2π

[
V 1D
DDI(u)

]2
du, (C2)

U i,j
inter(θ) =

√

n1D

∫ +∞

−∞

[
V i,j
inter(θ)

]2
dxi,j . (C3)

The magnitudes of the integrability-breaking intra- and

intertube DDI energies, ηU lr
intra(θ) and

√∑
i,j [U

i,j
inter(θ)]

2
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for i, j ≤ 2, are plotted in Fig. 1(c).

Appendix D: Lieb-Liniger parameter γ(θ) calculation

In the absence of a DDI, the dimensionless coupling
parameter γ due to the Van der Waals interaction is de-
fined as [68]

γVdW =
2

n1D|a1D|
=

mgVdW
1D

n1Dh̄
2 , (D1)

where n1D is the 1D particle density and the interparticle
interaction along the tube axis is well approximated by
an effective potential U1D = gVdW

1D δ(x). The 1D Van der

Waals interaction strength is gVdW
1D = −2h̄2/(ma1D) [49].

The effective 1D scattering length is given by

a1D = − l2⊥
a3D

= −435(53) nm, (D2)

where a3D = 141(17) Bohr is the weighted-average s-
wave scattering length of 162Dy as measured in two
previous experiments [69–71] and l⊥ =

√
h̄/mω⊥ =

57.3(3) nm.
With a DDI present, γ is

γ(θ) =
mgtotal1D (θ)

n1Dh̄
2 , (D3)

where gtotal1D (θ) = gDDI
1D (θ) + gVdW

1D and gDDI
1D (θ) is given

in Eq. (A5). Confinement-induced resonances modify
this expression for a1D through an additional factor of(
1− Ca3D√

2l⊥

)
= 0.87(2), where C ≈ 1.46 [49, 72]. This cor-

rection does not significantly change the shape or mag-
nitude of the theory curve in Fig. 4. Moreover, this fac-
tor could be modified by the presence of the DDI to a
value that has not been either measured or uniquely de-
termined by theories of dipolar confinement-induced res-
onances [62, 73–76]. Given this uncertainty, we choose
to use the simple expression in Eq. (D2) for a1D.

To find a weighed averaged γavg(θ), we calculate the
number of atoms in each tube by assuming a Thomas-
Fermi density distribution nTF for the BEC:

nTF(r) =
15

8π

N∏
i Ri

max

(
1−

∑

i

r2i
R2

i

, 0

)
, (D4)

where N =
∫
dr3nTF is the total atom number, Ri is

the Thomas-Fermi radius, and i = x, y, z. The TF ap-
proximation is justified given the weak dependence of
γ ∼ N2/3 on atom number [27]. We then obtain a
2D density distribution of the BEC in the yz-plane by
integrating along the tube direction:

n(y, z) =

∫
nTF(r)dx (D5)

=
5

2π

N

RyRz

[
max

(
1− y2

R2
y

− z2

R2
z

, 0

)]3/2
. (D6)

To find the number of atoms loaded into each tube Ni,j ,
we assume each tube collects atoms in a square cross sec-
tion with length a = λ/2, equal to the lattice site spacing,
at a local density n(y, z) with the atom number given by
Ni,j = a2n(yi, zj), where yi and zi denote the tube posi-
tion. This calculation neglects rearrangements of atoms
during the lattice loading procedure, i.e., tunneling when
the lattice is still shallow, but this assumption is justified
by the weak dependence of γ on atom number.

We calculate the peak atomic density of each tube us-
ing the 1D Thomas-Fermi distribution before the gas is
excited. Since γ is only weakly dependent on atom num-
ber, we use the mean-field result rather than the full TG
result, as in Ref. [77].

nTF
0 =

[
9

64
N2

i,j

(mωx

h̄

)2
|a1D|

]1/3
. (D7)

Before exciting the gas, each tube has a γi,j
0 (θ) ∝ 1/nTF

0 ,
and for the ensemble of tubes, we calculate an average
γavg
0 (θ) weighed by atom number in each tube:

γavg
0 (θ) =

∑
i,j γ

i,j
0 (θ)Ni,j∑
i,j Ni,j

. (D8)

Note that for each tube, γi,j
0 (θ) has a weak dependence

on atom number: γi,j
0 (θ) ∼ N

2/3
i,j .

For our experimental conditions, we load into approx-
imately 70 × 10 tubes, with ∼50 atoms in the cen-
tral tubes, resulting in an ensemble averaged density
navg
0 = 3.1 µm−1. This yields an ensemble averaged

initial γVdW,avg
0 = 1.5(2). Including the gDDI

1D (θ) term,
γavg
0 (θ) varies from 0.6(1) at 0◦ to 1.9(2) at 90◦.
The gas dephases at a time ∼100 ms after being

diffracted. The dephasing reduces the density in each
tube because the narrow, counterpropagating packets of
atoms spread throughout the entire tube length with
a higher classical turning point due to addition of the
large energy from the momentum kick. Our classi-
cal non-interacting dynamics simulation, discussed in
Sec. III A, shows that the dephased density distribu-
tion is approximately uniform, and we therefore esti-
mate the dephased density to be ni,j

d = Ni,j/(2dm),
where dm = h̄kD/(mωx) = 12 µm is the maximum
distance an atom travels away from the trap center.
The dephased ensemble-averaged γavg

d (θ) is then found

by replacing γi,j
0 in Eq. (D8) with γi,j

d ∝ 1/ni,j
d . For

the aforementioned experimental parameters, we find

γVdW,avg
d = 5.7(7), with an ensemble-averaged dephased

density navg
d = 0.8 µm−1. Including the gDDI

1D (θ) term,
γ(θ) ≡ γavg

d (θ) varies from 2.2(3) at 0◦ to 7.4(9) at 90◦,
as shown in Fig. 1(c).

In its ground state, a system at such values of γ would
be in the crossover to the TG regime, in which the mi-
croscopic bosons exhibit antibunching, as free fermions
would [48, 51]. This antibunching occurs because the
interaction strength dominates the zero-point energy.
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The main limitation of our exact diagonalization re-
sults is, as mentioned before, finite-size effects. Fig-
ure 18(b) shows the evolution of the distance-to-
equilibration δDE(τ) in the single quench protocol as one
changes the system size (L = 16, 18, 20, and 22). The

near-exponential relaxation is apparent in all cases, but
the relaxation rate can be seen to be affected by finite-size
effects. Nevertheless, the trends manifest in the simula-
tions qualitatively match those in the experiment, which
has a far larger system size.
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ichsöllner, V. Melezhik, P. Schmelcher, and H. Nägerl,
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