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Abstract—In this paper, we study the geometry of quadratic
covariance bounds on the estimation error covariance, in a
properly defined Hilbert space of random variables. We show
that a lower bound on the error covariance may be represented
by the Grammian of the error score after projection onto the
subspace spanned by the measurement scores. The Grammian
is defined with respect to inner products in a Hilbert space
of second order random variables. This geometric result holds
for a large class of quadratic covariance bounds including the
Barankin, Cramér-Rao, and Bhattacharyya bounds, where each
bound is characterized by its corresponding measurement scores.
When parameters consist of essential parameters and nuisance
parameters, the Cramér-Rao covariance bound is the inverse
of the Grammian of essential scores after projection onto the
subspace orthogonal to the subspace spanned by the nuisance
scores. In two examples, we show that for complex multivariate
normal measurements with parameterized mean or covariance,
there exist well-known Euclidean space geometries for the general
Hilbert space geometry derived in this paper.

I. INTRODUCTION

In [1] the authors showed that the Cramér Rao bound (CRB)
[2], [3] on the variance of an unbiased estimator of a parameter
6; in the measurement model y ~ N, (x(8),c%I), x € R",
0 € RP, p <n could be written as

E[(6; — 6,)% > 1

> 1

o? g/ Pg.8i’

_ ox(8) . L.
where g; = ~5;= characterizes the sensitivity of the mean
to the i'" parameter, G = [gi,...,8,], G; consists of

all columns of G except g;, Péi = 1I- Pg,, and Pg,
is the orthogonal projection onto the subspace (G;). The
denominator in (1) is the Euclidean inner product (g;, Péigi),
and the geometry is shown in Fig. 1.

This result raises the question of whether there exists a more
general version of the geometry illustrated in Fig. 1. In fact, we
were motivated to find a similar geometry for the case where
6 parameterizes the covariance matrix in the multivariate
normal model. With this motivation, our ambition in this paper
is to illuminate the geometry of the Cramér-Rao bound in
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Fig. 1: Illustration of the Euclidean space geometry of the
CRB in a multivariate Normal measurement model.

a properly defined Hilbert space of random variables, and
then to work two examples which show how Hilbert space
inner products reduce to inner products in a properly defined
Euclidean space.

We start with a two channel linear estimation problem and
derive the geometry of a lower bound on the Grammian of
the estimation error. Then, we exploit this estimation result
to discuss the geometry of quadratic covariance bounds. The
quadratic covariance bounds can be derived as bounds on the
minimum error covariance when linearly estimating the cen-
tered error scores from centered measurement scores. Different
classes of quadratic covariance bounds are characterized by
their associated measurement scores. The conceptual frame-
work is the Hilbert space of second order random variables, but
when specialized to the Cramér-Rao bound in a multivariate
normal model, the Hilbert space inner products reduce to
Euclidean inner products.

II. PRELIMINARIES

Let H be a Hilbert space, with the inner product (,-)
H x H — C, and the associated norm || - ||. For any positive
integer ¢ denote the direct sum of ¢ copies of H by H9. H?
is a Hilbert space with an appropriate choice of inner product.
For any ordered set of vectors u = (u1,...,u,) € HY, the
Gram matrix, or Grammian K(u) € C?%9 is defined to have
elements

K(u),ij = (ui,uj). (2)
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Now, given another v = (vi,...,v,) € HP, we define the
cross Gram matrix K(u;v) between the two sets as the ¢ X p
matrix with elements

K(u;v)i; = (uq,vj). (3)
The standard inner product on H? is Tr(K(u;v)).

With any matrix T € C™*¥ we can associate a linear operator
Ly : H? — H™ given by

P
CTV = (Z t]jvj,

i=1 J

P
tﬂjvj:---aztmjvj): (€]

P
=1 7j=1

where {t;;} are the elements of T.

The Gram matrix K(u) and the cross Gram matrix K(u;v)
have the following properties:

1) K(u) =0.
2) K(u;v) = K# (v;u).

3) For c1,e2 € C, K(e1ur + couz;vi) = aK(ur;vi) +
coK(ug; vq).

4) For arbitrary T, Ty € C™*9 and T3 € C"*P, we have

- 'C'(T1 +T)U = ‘CTI u+ ‘CT'zu!
- K(,CTIU) = TlK(U)T{J.
e K(Lp,u; Lyp,v) = T1K(u,v)TL.

III. THE TWO-CHANNEL LINEAR ESTIMATION
EXPERIMENT

Consider a two channel estimation problem where the ele-
ments of u = (uy,...,uy) are to be estimated from the
elements of v = (v1,...,vp). For simplicity, let K,y =
K(u), Kyv = K(u;v), and K,y = K(v). Consider the
(g + p) % (g + p) Gram matrix K:

K K
I:KEV KW
. -1
Let A = [I[‘; K“IVKW] Then K may be diagonalized as
P
AKAY — [Kou — Ka KK, 0 , (©
0 K

where I, is the identity matrix of size g. Therefore, defining
e=u— ’CK.NK“} v, from (6) we have

K(e) = Kuu — KI-WK\_n}KEv: )

K(e;v)=0. (8)

Thus, CKWK 1v is the best linear estimator of the elements
of u = (uy,...,u,) from the elements of v = (vi,...,vp).

That is, defining the estimation error { = u — LgVv for any
Q € C7°P, we have

K(¢) = K(u— Lqv),
=K(e+ Ly, x,1v—LqV)
=K(e+ ﬁ(KuvaJ—Q)V)
— K(e) + (KuvKyd — QKyy (KuyKyd — Q)"
1 Re{ (Kuv Ky — QK (v;e))
= K(e), ®

where the last inequality comes from the facts that K(v;e) =
0, and (KKl —Q)Kyy (Kuy Kl —Q)# = 0. This means
Ly, x>V is the orthogonal projection of u onto the subspace
spanned by the elements of v, which we write as Pyu =
SKWK“}V. Furthermore,

K(Pyu) =K(Lyk_ k,:V)
= Km,K;‘}KW(KWK;‘} "

= KoK KH | (10)

where the second equality comes from property 4 in Section
II, and

K(Pfu) = K(u — Pyu)
=K{(e)

= Kuu - KuvK;}K‘EV' (1 1)
Therefore, we can decompose the Grammian K, as
Kuu = K(Pyu) + K(Piu)
= K(Pyu)
= KKK (12)
Now, consider the special case where Kyy = [I; Ogx(p—q)]
for some p > g. From (12) we have
Kuu = KoK KT,
-1
= (K, (13)

where (K;‘}) v is the northwest g x q block of K} Defining
vi = (Vi,...,7), V2 = (Vg41,--.,p). Kypv, = K(v1),
Ky, = K(v2), and Ky,v, = K(v1;va), we can decompose
Kyv as

Koo = [ Kongom]
| P i
% Kv1v1 - KVIV‘I!K\TQIVQ K'{;IIVQ 0
0 KV':;V':;
I 0]
% L . (14)
_Kv-gl\’:; K{’Jl Va IP_
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Therefore, from (13) and (14), we have
Kuu = (Kid),,

-1
_ -1 H
- (KV1V1 - KVlv'sz-;v;;Kvva)

n -1
— (K(P,v) 1)
where P‘J,;vl = vy — Py,vi, and Py, vy = ﬁKvngv:}vg\rQ
is the orthogonal projection of vi = (vy,...,v,) onto the
subspace spanned by the elements of vo = (vgy1,...,7p).

Equation (15) is our main result. The elements of K are Hilbert
space inner products.

IV. QUADRATIC COVARIANCE BOUNDS

Consider the complex measurement vector y € C™, whose
distribution f(y;8) is parameterized by the deterministic
parameter vector § € RP. Let g(y) € R? be an estimator
of a function of parameters g(6) € RY. Define the proper'
estimator error as eg(y) = g(y) — g(@), and the proper
centered error score as

eq(y) = €a(y) — Eolea(y)]
=g(y) — Bslg(y)]-

Let o9(y) = [01(¥),- .., 0m(y)]T be an m-dimensional vec-
tor of proper score functions, and sg(y) = o¢(y)—Eg[oa(y)]
be the centered measurement score, where the expected value
is taken with respect to the probability density function

f(y; 0).

Consider the Hilbert space of random variables H, with inner
product defined as

(16)

(v1,v9) = Eglvivs] for w1,va € H. an

The composite covariance matrix for [el (y),s? (y)]” is

Ee{[e"(”)] (e (v) s ()1} = |COo B0 TH“")J

7

18)
where T(0) = K(sg(y); eo(y)) is the sensitivity matrix, and
J(8) = K(sg(y)) is the information matrix, both defined with
respect to the inner product in (17). Based on the result in (12),
we have

se(y) T(8) J(6)

Cove{g(y)} = TH(0)I~1(8)T(6)

= K(Psoyr6(y)) 19
where Py, () is the orthogonal projection onto the sub-
space (S1,...5.m,).> This formula is general. A large class of

quadratic bounds on error covariance Covg{g(y)}, including
the Barankin [4], Cramér-Rao [2], [3], and Bhattacharyya
bounds [5] can be represented by (19), as shown in [6]. Each
bound is characterized by its score function og(y). Equation

!"Throughout this paper, we only consider proper error and score functions.
The extension of the results to the improper case is straightforward.

2For simplicity of notation, we show the score function as sg(y) =
[51,---,8m]" -

(19) is derived also in [7], where it is demonstrated that score
functions with zero mean which are functions of sufficient
statistics for the parameters provide tighter bounds on the error
covariance matrix than scores that are not zero mean, or are
not functions of sufficient statistics for the parameters.

Efficiency: An efficient estimator is an estimator whose error
covariance meets the lower bound in (19). That is,

Covg{g(y)} = K(ea(y))
= K(psa (y)€8 (Y)):

which implies that the elements of eg(y) belong to the
subspace (s1,...,Sm).

(20)

V. FISHER SCORE AND THE CRAMER-RAO BOUND

As a special example of the geometrical interpretation in (19),
we consider the Cramér-Rao bound on the error covariance of
an unbiased estimator of the parameters 8 = [0y,...,8,]T €
R9. The Fisher score is defined as
a H
=|=1
a6(y) = [55 108 fo(y)]

7] 7]
=|—1 ey =1
[g; 108 Jo ), 510 fov)]
which has zero mean [8]. Thus, the centered Fisher score is
s(y, @) = og(y), and the Fisher information matrix is J(8) =
E[s(y, 8)s" (y, 8)]. From the properties of the score function
in (21), the sensitivity matrix is T(8) = [I; Ogx(p—q)]-
Therefore, the general result of (19) specializes to
Cove{O(y)} = T"(6)J~"(6)T(6)
_ (-1
- (J (9))qq1
where (J_l(B))qq is the g x g northwest block of inverse of
the Fisher information matrix J~1(8). But from (15), this may
be written as

T
, @1

(22)

Cove{d(y)} = (171(0)),,
= (K(PSJ;S].)) _11

where s; = (s1,...,54), S2 = (Sq+1,...,5p) and 'PSJ;sl =
s1 — Ps,s1, and Pg,s; is the orthogonal projection of the
elements of s; onto the subspace spanned by the elements of
so. The matrix K(Pzs;) is the Grammian of essential scores
s, after projection onto the subspace spanned by nuisance
scores sp. The elements of K are Hilbert space inner products
defined by (17). The Cramér-Rao bound on the error variance
of an unbiased estimator of the parameter 6, is

varg {01(y)} > (I7(9)) 1y
1
__ 1
[Pl

(23)

(24)
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where sy = (o, ..., sp). Importantly, the denominator in (24)
is a Hilbert space inner product defined by (17).

We demonstrate two examples for which there exists a Eu-
clidean space geometry counterpart for the Hilbert space
geometry of the Cramér-Rao bound.

Example 1: Complex multivariate normal measurements
with parameterized mean.

Assume the measurement y is a proper random vector dis-
tributed as CN,,(x(0),C), x € C", and 8 € RP. Let
q = Cfl/Qag—éfo) and define g; = (qF,q)T. The (i, ;)"
element of the the Fisher information matrix is the Euclidean
inner product of the g; and g; [1], [8]. That is

(J(0))i; = (i, 8;)

=gl'g;. (25)

Define G1 = [g1,...,84), G2 = [8¢+1,---,8p)- From (23),
the Cramér;Rao bound on the error covariance of an unbiased
estimator O(y) of 6 = [0y, ...,0,] may be written as

COVG{é(Y)} = (J_l(e))qq

- (K(Péqc;.l)f1

=[G (I-Pg,)G1] ", (26)

where Pg, = Go(GL Gy)tGE is the orthogonal projection
matrix onto the subspace spanned by the columns of Gs. In
this case the Hilbert space inner products of (23) are computed
as Buclidean inner products in C?".

Example 2: Complex multivariate normal measurements
with parameterized covariance.

Assume the measurement y is a proper random vector dis-
tributed as CN,,(m,R(0)), m € C", and 6 € RP. Let
D, = R_1/2(0)61;—‘;‘9)R_1/2(6). The (4, §)?" element of the
the Fisher information matrix may be written as an inner
product of D; and D; [8]. That is

(J(6))i; = (D, Dy)

= r(D;D}). 27)

Define D; = (Dy,...,Dy), D2 = (Dgy1,...,Dp). Again,
from (23), the Cramér:Rao bound on the error covariance of
an unbiased estimator 8(y) of @ = [61, ..., 6,] may be written
as

Cove{(y)}

1Y

(J*1(9))qq
(k(ps0)

(28)

where the orthogonal projection Pé‘le, and K('P&Dl) in
(28) are defined with respect to the inner product in (27).
Again, the Hilbert space inner products of (23) are replaced
by the Euclidean inner products in C™"*™ defined in (27).

VI. CONCLUSION

A general class of quadratic covariance bounds on estimation
error covariance may be represented as the Grammian of the
error score after projection onto the space orthogonal to the
subspace spanned by the measurement scores. This is the
Hilbert space picture, as the Grammian is defined with respect
to inner products in a Hilbert space of second order random
variables. This geometric result may be applied to a large class
of quadratic covariance bounds such as Barankin, Cramér-Rao,
and Bhattacharyya bounds, by considering their corresponding
measurement scores. In the case of Fisher score, the bound
is determined by the inverse of the Grammian of essential
scores after projection onto the subspace orthogonal to the
subspace spanned by the nuisance scores, a result that clarifies
the influence of nuisance parameters on parameter estimation.
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