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Abstract—In this paper, we study the geometry of quadratic
covariance bounds on the estimation error covariance, in a
properly defined Hilbert space of random variables. We show
that a lower bound on the error covariance may be represented
by the Grammian of the error score after projection onto the
subspace spanned by the measurement scores. The Grammian
is defined with respect to inner products in a Hilbert space
of second order random variables. This geometric result holds
for a large class of quadratic covariance bounds including the
Barankin, Cramér-Rao, and Bhattacharyya bounds, where each
bound is characterized by its corresponding measurement scores.
When parameters consist of essential parameters and nuisance
parameters, the Cramér-Rao covariance bound is the inverse
of the Grammian of essential scores after projection onto the
subspace orthogonal to the subspace spanned by the nuisance
scores. In two examples, we show that for complex multivariate
normal measurements with parameterized mean or covariance,
there exist well-known Euclidean space geometries for the general
Hilbert space geometry derived in this paper.

I. INTRODUCTION

In [1] the authors showed that the Cramér Rao bound (CRB)
[2], [3] on the variance of an unbiased estimator of a parameter
θi in the measurement model y ∼ Nn(x(θ), σ2I), x ∈ Rn,
θ ∈ Rp, p ≤ n could be written as

E[(θ̂i − θi)2]
σ2

≥ 1

gTi P⊥Gi
gi
, (1)

where gi = ∂x(θ)
∂θi

characterizes the sensitivity of the mean
to the ith parameter, G = [g1, . . . ,gp], Gi consists of
all columns of G except gi, P⊥Gi

= I − PGi
, and PGi

is the orthogonal projection onto the subspace 〈Gi〉. The
denominator in (1) is the Euclidean inner product 〈gi,P⊥Gi

gi〉,
and the geometry is shown in Fig. 1.

This result raises the question of whether there exists a more
general version of the geometry illustrated in Fig. 1. In fact, we
were motivated to find a similar geometry for the case where
θ parameterizes the covariance matrix in the multivariate
normal model. With this motivation, our ambition in this paper
is to illuminate the geometry of the Cramér-Rao bound in
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Fig. 1: Illustration of the Euclidean space geometry of the
CRB in a multivariate Normal measurement model.

a properly defined Hilbert space of random variables, and
then to work two examples which show how Hilbert space
inner products reduce to inner products in a properly defined
Euclidean space.

We start with a two channel linear estimation problem and
derive the geometry of a lower bound on the Grammian of
the estimation error. Then, we exploit this estimation result
to discuss the geometry of quadratic covariance bounds. The
quadratic covariance bounds can be derived as bounds on the
minimum error covariance when linearly estimating the cen-
tered error scores from centered measurement scores. Different
classes of quadratic covariance bounds are characterized by
their associated measurement scores. The conceptual frame-
work is the Hilbert space of second order random variables, but
when specialized to the Cramér-Rao bound in a multivariate
normal model, the Hilbert space inner products reduce to
Euclidean inner products.

II. PRELIMINARIES

Let H be a Hilbert space, with the inner product 〈·, ·〉 :
H ×H → C, and the associated norm ‖ · ‖. For any positive
integer q denote the direct sum of q copies of H by Hq . Hq

is a Hilbert space with an appropriate choice of inner product.
For any ordered set of vectors u = (u1, . . . , uq) ∈ Hq , the
Gram matrix, or Grammian K(u) ∈ Cq×q is defined to have
elements

K(u)ij = 〈ui, uj〉. (2)
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Now,givenanotherv=(v1,...,vp)∈H
p,wedefinethe

crossGrammatrixK(u;v)betweenthetwosetsastheq×p
matrixwithelements

K(u;v)ij= ui,vj. (3)

ThestandardinnerproductonHqisTr(K(u;v)).

WithanymatrixT∈Cm×Pwecanassociatealinearoperator
LT:H

p→Hm givenby

LTv=

p

j=1

t1jvj,

p

j=1

t2jvj,...,

p

j=1

tmjvj, (4)

where{tij}aretheelementsofT.

TheGrammatrixK(u)andthecrossGrammatrixK(u;v)
havethefollowingproperties:

1)K(u) 0.

2)K(u;v)=KH(v;u).

3)Forc1,c2∈C,K(c1u1+c2u2;v1)=c1K(u1;v1)+
c2K(u2;v1).

4)ForarbitraryT1,T2∈C
m×qandT3∈C

n×p,wehave

• L(T1+T2)u=LT1u+LT2u,
• K(LT1u)=T1K(u)T

H
1.

• K(LT1u;LT3v)=T1K(u,v)T
H
3.

III. THETWO-CHANNELLINEARESTIMATION
EXPERIMENT

Consideratwochannelestimationproblemwheretheele-
mentsof u=(u1,...,uq)aretobeestimatedfromthe
elementsofv=(v1,...,vp).Forsimplicity,letKuu =
K(u),Kuv = K(u;v),andKvv = K(v).Considerthe
(q+p)×(q+p)GrammatrixK:

K=
Kuu Kuv
KHuv Kvv

. (5)

LetΛ=
Iq −KuvK

−1
vv

0 Ip
.ThenKmaybediagonalizedas

ΛKΛH =
Kuu−KuvK

−1
vvK

H
uv 0

0 Kvv
, (6)

whereIqistheidentitymatrixofsizeq.Therefore,defining
e=u−LKuvK 1

vv
v,from(6)wehave

K(e)=Kuu−KuvK
−1
vvK

H
uv, (7)

K(e;v)=0. (8)

Thus,LKuvK 1
vv
visthebestlinearestimatoroftheelements

ofu=(u1,...,uq)fromtheelementsofv=(v1,...,vp).

Thatis,definingtheestimationerrorζ=u−LQvforany
Q∈Cq×p,wehave

K(ζ)=K(u−LQv),

=K(e+LKuvK 1
vv
v−LQv)

=K(e+L(KuvK 1
vv−Q)

v)

=K(e)+(KuvK
−1
vv−Q)Kvv(KuvK

−1
vv−Q)

H

+2Re{(KuvK
−1
vv−Q)K(v;e)}

K(e), (9)

wherethelastinequalitycomesfromthefactsthatK(v;e)=
0,and(KuvK

−1
vv−Q)Kvv(KuvK

−1
vv−Q)

H 0.Thismeans
LKuvK 1

vv
vistheorthogonalprojectionofuontothesubspace

spannedbytheelementsofv,whichwewriteasPvu=
LKuvK 1

vv
v.Furthermore,

K(Pvu)=K(LKuvK 1
vv
v)

=KuvK
−1
vvKvv(KuvK

−1
vv)

H

=KuvK
−1
vvK

H
uv, (10)

wherethesecondequalitycomesfromproperty4inSection
II,and

K(P⊥vu)=K(u−Pvu)

=K(e)

=Kuu−KuvK
−1
vvK

H
uv. (11)

Therefore,wecandecomposetheGrammianKuuas

Kuu=K(Pvu)+K(P
⊥
vu)

K(Pvu)

=KuvK
−1
vvK

H
uv (12)

Now,considerthespecialcasewhereKuv=[Iq0q×(p−q)]
forsomep>q.From(12)wehave

Kuu KuvK
−1
vvK

H
uv

= K−1vv qq
, (13)

where K−1vv qq
isthenorthwestq×qblockofK−1vv.Defining

v1=(v1,...,vq),v2=(vq+1,...,vp),Kv1v1 =K(v1),
Kv2=K(v2),andKv1v2=K(v1;v2),wecandecompose
Kvvas

Kvv=
Iq Kv1v2K

−1
v2v2

0 Ip

×
Kv1v1−Kv1v2K

−1
v2v2K

H
v1v2 0

0 Kv2v2

×
Iq 0

K−1v2v2K
H
v1v2 Ip

. (14)
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Therefore,from(13)and(14),wehave

Kuu K−1
vv qq

= Kv1v1 −Kv1v2K−1
v2v2

KH
v1v2

−1

= K(P⊥
v2

v1)
−1

, (15)

whereP⊥
v2

v1=v1−Pv2v1,andPv2v1=LKv1v2
K 1

v2v2
v2

istheorthogonalprojectionofv1 =(v1,...,vq)ontothe
subspacespannedbytheelementsofv2 =(vq+1,...,vp).
Equation(15)isourmainresult.TheelementsofKareHilbert
spaceinnerproducts.

IV. QUADRATICCOVARIANCEBOUNDS

Considerthecomplex measurementvectory∈ Cn, whose
distributionf(y;θ)isparameterizedbythedeterministic
parametervectorθ∈ Rp.Let̂g(y)∈ Rq beanestimator
ofafunctionofparametersg(θ)∈Rq. Definetheproper1

estimatorerroras θ(y) =ĝ(y)−g(θ),andtheproper
centerederrorscoreas

eθ(y)= θ(y)−Eθ[θ(y)]

=ĝ(y)−Eθ[̂g(y)]. (16)

Letσθ(y)=[σ1(y),...,σm(y)]T beanm-dimensionalvec-
torofproperscorefunctions,andsθ(y)=σθ(y)−Eθ[σθ(y)]
bethecenteredmeasurementscore,wheretheexpectedvalue
istaken withrespecttotheprobabilitydensityfunction
f(y;θ).

ConsidertheHilbertspaceofrandomvariablesH,withinner
productdefinedas

v1,v2 =Eθ[v1v∗
2] for v1,v2∈H. (17)

Thecompositecovariancematrixfor[eT
θ(y),sT

θ(y)]T is

Eθ{
eθ(y)
sθ(y)

[eH
θ(y)sH

θ(y)]}=
Covθ{̂g(y)} TH(θ)

T(θ) J(θ)
,

(18)
whereT(θ)=K(sθ(y);eθ(y))isthesensitivitymatrix,and
J(θ)=K(sθ(y))istheinformationmatrix,bothdefinedwith
respecttotheinnerproductin(17).Basedontheresultin(12),
wehave

Covθ{̂g(y)} TH(θ)J−1(θ)T(θ)

=K(Psθ(y)eθ(y)) (19)

where Psθ(y) istheorthogonalprojectionontothesub-
spaces1,...sm .2Thisformulaisgeneral.Alargeclassof
quadraticboundsonerrorcovarianceCovθ{̂g(y)},including
the Barankin[4], Craḿer-Rao[2],[3],and Bhattacharyya
bounds[5]canberepresentedby(19),asshownin[6].Each
boundischaracterizedbyitsscorefunctionσθ(y).Equation

1Throughoutthispaper,weonlyconsiderpropererrorandscorefunctions.
Theextensionoftheresultstotheimpropercaseisstraightforward.

2Forsimplicityofnotation, weshowthescorefunctionassθ(y) =
[s1,...,sm ]T.

(19)isderivedalsoin[7],whereitisdemonstratedthatscore
functions withzero mean whicharefunctionsofsufficient
statisticsfortheparametersprovidetighterboundsontheerror
covariance matrixthanscoresthatarenotzero mean,orare
notfunctionsofsufficientstatisticsfortheparameters.

Efficiency:Anefficientestimatorisanestimatorwhoseerror
covariancemeetsthelowerboundin(19).Thatis,

Covθ{̂g(y)}=K(eθ(y))

=K(Psθ(y)eθ(y)), (20)

whichimpliesthattheelementsof eθ(y)belongtothe
subspaces1,...,sm .

V.FISHERSCOREANDTHECRAḾER-RAOBOUND

Asaspecialexampleofthegeometricalinterpretationin(19),
weconsidertheCraḿer-Raoboundontheerrorcovarianceof
anunbiasedestimatoroftheparametersθ=[θ1,...,θq]T ∈
Rq.TheFisherscoreisdefinedas

σθ(y)=
∂

∂θ
logfθ(y)

H

=
∂

∂θ1
logfθ(y),...,

∂

∂θp
logfθ(y)

T

, (21)

whichhaszero mean[8].Thus,thecenteredFisherscoreis
s(y,θ)=σθ(y),andtheFisherinformationmatrixisJ(θ)=
E[s(y,θ)sH(y,θ)].Fromthepropertiesofthescorefunction
in(21),thesensitivity matrixisT(θ) =[Iq 0q×(p−q)].
Therefore,thegeneralresultof(19)specializesto

Covθ{̂θ(y)} TH(θ)J−1(θ)T(θ)

= J−1(θ)
qq

, (22)

where J−1(θ)
qq

istheq×qnorthwestblockofinverseof

theFisherinformationmatrixJ−1(θ).Butfrom(15),thismay
bewrittenas

Covθ{̂g(y)} J−1(θ)
qq

= K(P⊥
s2

s1)
−1

, (23)

where s1 =(s1,...,sq),s2 =(sq+1,...,sp)andP⊥
s2

s1 =
s1−Ps2s1,andPs2s1 istheorthogonalprojectionofthe
elementsofs1ontothesubspacespannedbytheelementsof
s2.ThematrixK(P⊥

s2
s1)istheGrammianofessentialscores

s1,afterprojectionontothesubspacespannedbynuisance
scoress2.TheelementsofK areHilbertspaceinnerproducts
definedby(17).TheCraḿer-Raoboundontheerrorvariance
ofanunbiasedestimatoroftheparameterθ1is

varθ{̂θ1(y)}≥ J−1(θ)
11

=
1

P⊥
s2

s1,P⊥
s2

s1

=
1

P⊥
s2

s1
2
, (24)
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where s2 = (s2, . . . , sp). Importantly, the denominator in (24)
is a Hilbert space inner product defined by (17).

We demonstrate two examples for which there exists a Eu-
clidean space geometry counterpart for the Hilbert space
geometry of the Cramér-Rao bound.

Example 1: Complex multivariate normal measurements
with parameterized mean.
Assume the measurement y is a proper random vector dis-
tributed as CNn(x(θ),C), x ∈ Cn, and θ ∈ Rp. Let
qi = C−1/2 ∂x(θ)∂θi

and define gi = (qTi ,q
H
i )T . The (i, j)th

element of the the Fisher information matrix is the Euclidean
inner product of the gi and gj [1], [8]. That is

(J(θ))ij = 〈gi,gj〉
= gHi gj . (25)

Define G1 = [g1, . . . ,gq], G2 = [gq+1, . . . ,gp]. From (23),
the Cramér-Rao bound on the error covariance of an unbiased
estimator θ̂(y) of θ = [θ1, . . . , θq] may be written as

Covθ{θ̂(y)} �
(
J−1(θ)

)
qq

=
(
K(P⊥G2

G1)
)−1

= [GH
1 (I−PG2

)G1]
−1, (26)

where PG2
= G2(G

H
2 G2)

−1GH
2 is the orthogonal projection

matrix onto the subspace spanned by the columns of G2. In
this case the Hilbert space inner products of (23) are computed
as Euclidean inner products in C2n.

Example 2: Complex multivariate normal measurements
with parameterized covariance.
Assume the measurement y is a proper random vector dis-
tributed as CNn(m,R(θ)), m ∈ Cn, and θ ∈ Rp. Let
Di = R−1/2(θ)∂R(θ)

∂θi
R−1/2(θ). The (i, j)th element of the

the Fisher information matrix may be written as an inner
product of Di and Dj [8]. That is

(J(θ))ij = 〈Di,Dj〉
= tr(DiD

H
j ). (27)

Define D1 = (D1, . . . ,Dq), D2 = (Dq+1, . . . ,Dp). Again,
from (23), the Cramér-Rao bound on the error covariance of
an unbiased estimator θ̂(y) of θ = [θ1, . . . , θq] may be written
as

Covθ{θ̂(y)} �
(
J−1(θ)

)
qq

=
(
K(P⊥D2

D1)
)−1

,

(28)

where the orthogonal projection P⊥D2
D1, and K(P⊥D2

D1) in
(28) are defined with respect to the inner product in (27).
Again, the Hilbert space inner products of (23) are replaced
by the Euclidean inner products in Cn×n defined in (27).

VI. CONCLUSION

A general class of quadratic covariance bounds on estimation
error covariance may be represented as the Grammian of the
error score after projection onto the space orthogonal to the
subspace spanned by the measurement scores. This is the
Hilbert space picture, as the Grammian is defined with respect
to inner products in a Hilbert space of second order random
variables. This geometric result may be applied to a large class
of quadratic covariance bounds such as Barankin, Cramér-Rao,
and Bhattacharyya bounds, by considering their corresponding
measurement scores. In the case of Fisher score, the bound
is determined by the inverse of the Grammian of essential
scores after projection onto the subspace orthogonal to the
subspace spanned by the nuisance scores, a result that clarifies
the influence of nuisance parameters on parameter estimation.
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