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Abstract—In this paper we revisit a detector first derived by Reed
and Yu [1], generalized by Bliss and Parker [2], and recently
studied by Hiltunen, Loubaton, and Chevalier [3], [4]. The
problem is to detect a known signal transmitted over an unknown
MIMO channel of unknown complex gains and unknown additive
noise covariance. The probability distribution of a CFAR detector
for this problem was first derived for the SIMO channel in [1].
We generalize this distribution for the case of a MIMO channel,
and show that the CFAR detector statistic is distributed as the
product of independent scalar beta random variables under the
null. Our results, based on the theory of beta distributed random
matrices, hold for M symbols transmitted from p transmitters
and received at L receivers. The asymptotic results of [3], [4] are
based on large random matrix theory, which assumes L and M
to be unbounded.

I. PROBLEM STATEMENT

Consider a subspace signal-plus-noise model xm = Hsm +
nm, for m = 1, . . . ,M . The signal component lies in an
unknown p dimensional subspace 〈H〉, with unknown basis
H ∈ CL×p. For each time sample, its location in this subspace
is determined by the vector of signals sm ∈ Cp. The noise
snapshots nm are proper and independent for m = 1, . . . ,M ,
and distributed as nm ∼ CNL[0,Σ], with Σ a positive
definite covariance matrix. Thus, the measurements xm are
independent and distributed as xm ∼ CNL[Hsm,Σ], with H
and Σ unknown; the signal sequence {sm,m = 1, 2, . . . ,M}
is known.

This data model corresponds to one channel use of a multiple
input multiple output (MIMO) transmission system with p
transmitting antennas, L receiving antennas, and M symbol
transmissions, when the transmitting and receiving antennas
are perfectly synchronized [2]. We are interested in the fol-
lowing binary hypothesis test:

H0 : sm = 0 versus H1 : sm 6= 0 for m = 1, . . . ,M.
(1)
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Define SH = [s1, . . . , sM ], X = [x1, . . . ,xM ], and N =
[n1, . . . ,nM ]. Then, the data matrix X = HSH + N is
distributed as

f(X,H,S,Σ) =
1

πLM (det Σ)M
×

exp{−tr[(X−HSH)HΣ−1(X−HSH)]}
(2)

In this paper, we assume S is known, but the channel gains H
and the noise covariance Σ are unknown. For p = 1, the Gen-
eralized Likelihood Ratio Test (GLRT) for this measurement
model has been derived in [1], for a problem of optical pattern
detection with unknown spectral distribution. For p ≥ 1 Bliss
and Parker [2] generalized this result for synchronization in a
MIMO channel. The analysis in [1] considers the special case
of a real measurement model for the rank one signal model
p = 1. The analysis in [2] assumes complex measurements and
a rank-p signal model. We follow the approaches of [1], [2] to
identify Maximum Likelihood (ML) estimates of the unknown
parameters, and use these estimates to form the GLRT for
the hypothesis test (1). Then we derive the distribution of the
detector statistic.

II. GENERALIZED LIKELIHOOD RATIO TEST AND ITS
DISTRIBUTION

To find the GLRT for this problem, we need the ML estimate
of Σ under H0 and H1, and the ML estimate of H under H1.
Under H0 the ML estimate of the covariance matrix Σ is

Σ̂0 =
1

M
XXH

(3)

Similarly, under H1, the ML estimates of Σ and H are

Σ̂1 =
1

M
(X− ĤSH)(X− ĤSH)H , (4)

and

Ĥ = XS(SHS)−1. (5)

The GLR ` =
fH0

(X,S,Σ̂0)

fH1
(X,Ĥ,S,Σ̂1)

is then
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`1/M =
det(X(IM −PS)XH)

det(XXH)
. (6)

The distribution of (6) has been derived for finite L and M
in [1] for the case p = 1. This is the original result we
generalize in this paper. Hiltunen, et al. [3] show that in
the case where the number of receiving antennas L and the
number of snapshots M are large and of the same order of
magnitude, but the number of transmitting antennas p remains
fixed, -logdet(`) converges to a normal distribution under H0

and H1. Then, pragmatic approximations for the distribution
are derived for large p. In [4], it is shown that asymptotically
in L, M , and p, logdet(`) is distributed as a normal random
variable (See Theorem 1 of [3]).

We study the exact distribution of (6) under H0 and H1, and
in the non-asymptotic case. The distribution of ` is invariant to
the transformation X→ Σ−1/2X, thus we may assume X to
be proper, and distributed as CNL×M (Σ−1/2HSH , IL⊗IM ).

Let PS = USUH
S , U = [US,US⊥ ], Y1 = XUS, and Y2 =

XUS⊥ , then

`1/M =
det(Y2Y

H
2 )

det(Y1YH
1 + Y2YH

2 )
, (7)

which is the same as Wilks’s statistic [5]. Here, Y1 ∼
CNL×p(M1, IL ⊗ Ip), Y2 ∼ CNL×(M−p)(0, IL ⊗ Ip),
are independent, M1 = Σ−1/2HSHUS, and Y2Y

H
2 ∼

CW(L,M − p, IL). The statistic in (7) may be written as

`1/M =
det(Y2Y

H
2 )

det(Y1YH
1 + Y2YH

2 )

= det
[(

IL + (Y2Y
H
2 )−1/2Y1Y

H
1 (Y2Y

H
2 )−H/2

)−1]
= det

[(
Ip + YH

1 (Y2Y
H
2 )−1Y1

)−1]
= det

[
(I + F)−1

]
= det(B). (8)

The distribution of F = YH
1 (Y2Y

H
2 )−1Y1 is given in [6] as

e−tr(MH
1 M1)

1F̃1(M ;L; MH
1 M1(I + F−1)−1)×

Γ̃p(M)

Γ̃p(M − L)Γ̃p(L)

det(F)L−p

det(I + F)M
(9)

which is a noncentral matrix F distribution. Using the trans-
formation B = (Ip + F)−1, the pdf of B may be written
as

e−tr(MH
1 M1)

1F̃1(M ;L; MH
1 M1(I−B))

Γ̃p(M)

Γ̃p(M − L)Γ̃p(L)
×

det(B)M−L−pdet(I−B)L−p, (10)

which may be considered a complex noncentral matrix variate
Beta distribution CBp(M − L,L,M1M

H
1 ). Under H0 (S =

0), det(B) is distributed as the product of independent beta
random variables. That is,

`1/M = det(B) ∼
p∏

i=1

bi; bi ∼ β(M − L− i+ 1, L). (11)

The probability density function of the product of independent
Beta random variables has been studied in [7].

Under H1, we derive the MGF of logW for W = det(B).
Using the pdf of B in (10), MlogW (h) = E(Wh) can be
derived as

MlogW (h) =
Γ̃p(M)Γ̃p(M − L+ h)

Γ̃p(M + h)Γ̃p(M − L)
e−tr(MH

1 M1)×

1F̃1(M ;M + h; MH
1 M1) (12)

We may now use the inverse Mellin transform to determine
the density of W .

With these results, the likelihood ratio statistic `1/M may be
simulated for the setting of detection thresholds to control false
alarms, or the characteristic function of the product of betas
may be used with saddlepoint integration [8] to accurately
approximate false alarm probability.
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