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ABSTRACT. We consider mirror symmetry for (essentially arbitrary) hypersurfaces
in (possibly noncompact) toric varieties from the perspective of the Strominger-Yau-
Zaslow (SYZ) conjecture. Given a hypersurface H in a toric variety V' we construct
a Landau-Ginzburg model which is SYZ mirror to the blowup of V x C along H x 0,
under a positivity assumption. This construction also yields SYZ mirrors to affine
conic bundles, as well as a Landau-Ginzburg model which can be naturally viewed
as a mirror to H. The main applications concern affine hypersurfaces of general
type, for which our results provide a geometric basis for various mirror symmetry
statements that appear in the recent literature. We also obtain analogous results
for complete intersections.

1. INTRODUCTION

A number of recent results [32, 47, 17, 3, 25] suggest that the phenomenon of mirror
symmetry is not restricted to Calabi-Yau or Fano manifolds. Indeed, while mirror
symmetry was initially formulated as a duality between Calabi-Yau manifolds, it was
already suggested in the early works of Givental and Batyrev that Fano manifolds
also exhibit mirror symmetry. The counterpart to the presence of a nontrivial first
Chern class is that the mirror of a compact Fano manifold is not a compact manifold,
but rather a Landau-Ginzburg model, i.e. a (non-compact) Kéhler manifold equipped
with a holomorphic function called superpotential. A physical explanation of this
phenomenon and a number of examples have been given by Hori and Vafa [29]. From
a mathematical point of view, Hori and Vafa’s construction amounts to a toric duality,
and can also be applied to varieties of general type [16, 33, 32, 25].

The Strominger-Yau-Zaslow (SYZ) conjecture [51] provides a geometric interpre-
tation of mirror symmetry for Calabi-Yau manifolds as a duality between (special)
Lagrangian torus fibrations. In the language of Kontsevich’s homological mirror sym-
metry [34], the SYZ conjecture reflects the expectation that the mirror can be realized
as a moduli space of certain objects in the Fukaya category of the given manifold,
namely, a family of Lagrangian tori equipped with rank 1 local systems. Note that
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this homological perspective eliminates the requirement of finding special Lagrangian
fibrations, at the cost of privileging one side of mirror symmetry: in the Calabi-Yau
case, the framework we follow produces a degenerating family Y° of complex man-
ifolds (B-side) starting with a Lagrangian torus fibration on a symplectic manifold
X0 (A-side).

Outside of the Calabi-Yau situation, homological mirror symmetry is still expected
to hold [35], but the Lagrangian tori bound holomorphic discs, which causes their
Floer theory to be obstructed; the mirror superpotential can be interpreted as a
weighted count of these holomorphic discs [28, 6, 7, 21]. We call such a mirror a
B-side Landau-Ginzburg model.

In the Calabi-Yau case, mirror symmetry is expected to be involutive; i.e when
the symplectic form on X° is in fact a Kéhler form for some degenerating family of
complex structures then the mirror Y should be equipped with its own Kahler form
which is mirror to these complex structures. Involutivity should hold beyond the
Calabi-Yau situation, but requires making sense of a class of potential functions on
symplectic manifolds, called A-side Landau-Ginzburg models, which have well defined
Fukaya categories. The idea for such a definition goes back to Kontsevich [35], and
was studied in great depth by Seidel in [46] in the special case of Lefschetz fibrations.

Remark 1.1. The general theory of Fukaya categories F (X, W") of A-side Landau-
Ginzburg models is still under development in different contexts [5, 2, 4]; we shall
specifically point out where it is being used in this paper. In fact, we will also need
to consider twisted versions of A-side Landau-Ginzburg models, where objects of the
Fukaya category carry relatively spin structures with respect to a background class in
H?(X,7Z/2) (rather than spin structures); see Section 7.

On manifolds of general type (or more generally, whose first Chern class cannot
be represented by an effective divisor), the SYZ approach to mirror symmetry seems
to fail at first glance due to the lack of a suitable Lagrangian torus fibration. The
idea that allows one to overcome this obstacle is to replace the given manifold with
another closely related space which does carry an appropriate SYZ fibration. Thus,
we make the following definition:

Definition 1.2. We say that a B-side Landau-Ginzburg model (Y, W) is SYZ mirror
to a Kdahler manifold X (resp. an A-side Landau-Ginzburg model (X, W")) if there
exists an open dense subset X° of X, and a Lagrangian torus fibration = : X° — B,
such that the following properties hold:

(1) Y is a completion of a moduli space of unobstructed torus-like objects of the
Fukaya category F(X°) (resp. F(X°, WV)) containing those objects which are
supported on the fibers of m;

(2) the function W restricts to the superpotential induced by the deformation of
F(X°) to F(X) (resp. F(X°,WY) to F(X,WY)) for these objects.
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We say that (Y, W) is a generalized SYZ mirror of X if (after shifting W by a suitable
additive constant) it is an SYZ mirror of a (suitably twisted) A-side Landau-Ginzburg
model with Morse-Bott superpotential, whose critical locus is tsomorphic to X.

The last part of the definition is motivated by the expectation that the Fukaya cat-
egory of a Morse-Bott superpotential, twisted by a background class which accounts
for the non-triviality of the normal bundle to the critical locus, is equivalent (up to an
additive constant shift in the curvature term, which accounts for exceptional curves
through the critical locus) to the Fukaya category of the critical locus; see Corollary
7.8 and Proposition 7.10.

Definition 1.2 and the construction of moduli spaces of objects of the Fukaya cat-
egory are clarified in Section 2 and Appendix A. To understand the first condition
in the case of an A-side Landau-Ginzburg model, it is useful to note that every ob-
ject of the Fukaya category F(X°) of compact Lagrangians also defines an object
of F(X° WV) since the objects of the latter are Lagrangians satisfying admissibility
properties outside a compact set and such properties trivially hold for compact La-
grangians. Hence the fibers of 7 automatically define objects of F(X° WV); we shall
enlarge this space by considering certain non-compact Lagrangians in X° which can
be seen as limits of compact Lagrangians.

Remark 1.3. It is important to note that, even in the absence of superpotentials,
the assertion that Y is SYZ mirror to X° may not imply that the Fukaya category
of XY is equivalent to the derived category of Y?; at a basic level, the example of the
Kodaira surface mentioned in [1] shows that there may in general be an analytic gerbe
on Y? so that the Fukaya category of XU is in fact mirror to sheaves twisted by this
gerbe. Beyond the Calabi-Yau situation, a complete statement of homological mirror
symmetry for SYZ mirrors would have to consider further deformations of the derived
category of sheaves by (holomorphic) polyvector fields on Y. The superpotential W
should be thought of as the leading order term of this deformation corresponding to
discs of Maslov index 2.

More fundamentally, our construction of the analytic completion relies on choices,
and it is expected that different choices will given rise to different mirrors. Indeed,
this phenomenon would provide a mirror symmetry explanation for the existence of
derived equivalent varieties which are birational. Nonetheless, as completely arbitrary
choices of completions give rise to varieties which are not derived equivalent (e.g. a
blowup), the task of passing from our SYZ miror statement to homological mirror
symmetry would require a more careful understanding of the completions that we have
introduced. This paper begins this task by explaining how some of the points that
we add should correspond to objects of the Fukaya category supported by immersed
or non-compact Lagrangians (see Remark A.12).

In this paper we use this perspective to study mirror symmetry for hypersurfaces
(and complete intersections) in toric varieties. If H is a smooth hypersurface in a toric
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variety V', then one simple way to construct a closely related Kahler manifold with
effective first Chern class is to blow up the product V' x C along the codimension 2
submanifold H x 0. By a result of Bondal and Orlov [9], the derived category of
coherent sheaves of the resulting manifold X admits a semi-orthogonal decomposition
into subcategories equivalent to D*Coh(H) and D*Coh(V x C); and ideas similar to
those of [50] can be used to study the Fukaya category of X, as we explain in Section 7
(cf. Corollary 7.8). Thus, finding a mirror to X is, for many purposes, as good as
finding a mirror to H. Accordingly, our main results concern SYZ mirror symmetry
for X and, by a slight modification of the construction, for H. Along the way we also
obtain descriptions of SYZ mirrors to various related spaces. These results provide
a geometric foundation for mirror constructions that have appeared in the recent
literature [16, 33, 32, 47, 49, 3, 25].

We focus primarily on the case where V' is affine, and other cases which can be
handled with the same techniques. The general case requires more subtle arguments
in enumerative geometry, which should be the subject of further investigation.

1.1. Statement of the results. Our main result can be formulated as follows (see
§3 for the details of the notations).

Let H = f71(0) be a smooth nearly tropical hypersurface (cf. §3.1) in a (possibly
noncompact) toric variety V' of dimension n, and let X be the blow-up of V x C
along H x 0, equipped with an S'-invariant Kéhler form w, for which the fibers of
the exceptional divisor have sufficiently small area e > 0 (cf. §3.2).

Let Y be the toric variety defined by the polytope {(£,n) € R™ x R|n > ¢(&)},
where ¢ is the tropicalization of f. Let wy = =T+ T vy € O(Y), where T is the
Novikov parameter and vy is the toric monomial with weight (0,...,0,1), and set
VO =Y\ wy'(0). Finally, let Wy = wo + wy + - -+ +w, € O(Y) be the leading-order
superpotential of Definition 3.10, namely the sum of wy and one toric monomial w;
(1 <i <r) for each irreducible toric divisor of V' (see Definition 3.10). We assume:

Assumption 1.4. ¢;(V) - C > max(0, H - C) for every rational curve C ~ P! in V.

This includes the case where V' is an affine toric variety as an important special case.
Under this assumption, our main result is the following:

Theorem 1.5. Under Assumption 1.4, the B-side Landau-Ginzburg model (Y°, W)
1s SYZ marror to X.

In the general case, the mirror of X differs from (Y° 7)) by a correction term
which is of higher order with respect to the Novikov parameter (see Remark 6.3).

Equipping X with an appropriate superpotential, given by the affine coordinate
of the C factor, yields an A-side Landau-Ginzburg model whose singularities are
of Morse-Bott type. Up to twisting by a class in H%*(X,Z/2), this A-side Landau-
Ginzburg model can be viewed as a stabilization of the sigma model with target H.



BLOWUPS AND MIRROR SYMMETRY FOR HYPERSURFACES 5

Theorem 1.6. Assume V is affine, and let WOH = —v+w + - +w € OFY)
(see Definition 3.10). Then the B-side Landau-Ginzburg model (Y, WH) is a gener-
alized SYZ mirror of H.

Unlike the other results stated in this introduction, this theorem strictly speaking
relies on the assumption that Fukaya categories of Landau-Ginzburg models satisfy
certain properties for which we do not provide complete proofs. In Section 7, we give
sketches of the proofs of these results, and indicate the steps which are missing from
our argument.

A result similar to Theorem 1.6 can also be obtained from the perspective of mirror
duality between toric Landau-Ginzburg models [29, 16, 32, 25]. However, the toric
approach is much less illuminating, because geometrically it works at the level of the
open toric strata in the relevant toric varieties (the total space of O(—H) — V on
one hand, and Y on the other hand), whereas the interesting geometric features of
these spaces lie entirely within the toric divisors.

Theorem 1.5 relies on a mirror symmetry statement for open Calabi-Yau manifolds
which is of independent interest. Consider the conic bundle

X0 ={(x,9,2) € V' x C?|yz = f(x)}

over the open stratum V° ~ (C*)" of V, where f is again the defining equation of
the hypersurface H. The conic bundle X sits as an open dense subset inside X, see
Remark 3.5. Then we have:

Theorem 1.7. The open Calabi- Yau manifold Y° is SYZ mirror to X°.

In the above statements, and in most of this paper, we view X or X° as a symplectic
manifold, and construct the SYZ mirror Y (with a superpotential) as an algebraic
moduli space of objects in the Fukaya category of X or X°. This is the same direction
considered e.g. in [47, 17, 3]. However, one can also work in the opposite direction,
starting from the symplectic geometry of Y and showing that it admits X° (now
viewed as a complex manifold) as an SYZ mirror. For completeness we describe this
converse construction in Section 8 (see Theorem 8.4); similar results have also been
obtained independently by Chan, Lau and Leung [12].

The methods we use apply in more general settings as well. In particular, the
assumption that V' be a toric variety is not strictly necessary — it is enough that
SYZ mirror symmetry for V' be sufficiently well understood. As an illustration, in
Section 11 we derive analogues of Theorems 1.5-1.7 for complete intersections.

1.2. A reader’s guide. The rest of this paper is organized as follows.

First we briefly review (in Section 2) the SYZ approach to mirror symmetry, fol-
lowing [6, 7]. Then in Section 3 we introduce notation and describe the protagonists
of our main results, namely the spaces X and Y and the superpotential Wj,.
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In Section 4 we construct a Lagrangian torus fibration on X, similar to those
previously considered by Gross [23, 24] and by Castano-Bernard and Matessi [10, 11].
In Section 5 we study the Lagrangian Floer theory of the torus fibers, which we use
to prove Theorem 1.7. In Section 6 we consider the partial compactification of X° to
X, and prove Theorem 1.5. Theorem 1.6 is then proved in Section 7.

In Section 8 we briefly consider the converse construction, namely we start from a
Lagrangian torus fibration on Y and recover X° as its SYZ mirror.

Finally, some examples illustrating the main results are given in Section 9, while
Sections 10 and 11 discusses various generalizations, including to hypersurfaces in
abelian varieties (Theorem 10.4) and complete intersections in toric varieties (Theo-
rem 11.1).
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2. REVIEW OF SYZ MIRROR SYMMETRY

In this section, we briefly review SYZ mirror symmetry for Kahler manifolds with
effective anticanonical class; the reader is referred to [6, 7] for basic ideas about SYZ,
and to Appendix A for technical details.

2.1. Lagrangian torus fibrations and SYZ mirrors. In first approximation, the
Strominger-Yau-Zaslow conjecture [51] states that mirror pairs of Calabi-Yau mani-
folds carry mutually dual Lagrangian torus fibrations (up to “instanton corrections”).
A reformulation of this statement in the language of homological mirror symmetry
[34] is that a mirror of a Calabi-Yau manifold can be constructed as a moduli space
of suitable objects in its Fukaya category (namely, the fibers of an SYZ fibration,
equipped with rank 1 local systems); and vice versa. In Appendix A, we explain how
ideas of Fukaya [19] yield a precise construction of such a mirror space from local
rigid analytic charts glued via the equivalence relation which identifies objects that
are quasi-isomorphic in the Fukaya category.

We consider an open Calabi-Yau manifold of the form X° = X'\ D, where (X, w, J)
is a Kahler manifold of complex dimension n and D C X is an anticanonical divisor
(reduced, with normal crossing singularities). X can be equipped with a holomorphic
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n-form Q (with simple poles along D), namely the inverse of the defining section
of D. The restriction of Q to an oriented Lagrangian submanifold L C X° is a
nowhere vanishing complex-valued n-form on L; the complex argument of this n-
form determines the phase function arg(€;) : L — S'. Recall that L is said to
be special Lagrangian if arg(€,) is constant; a weaker condition is to require the
vanishing of the Maslov class of L in X°, i.e. we require the existence of a lift of
arg(§2;) to a real-valued function. (The choice of such a real lift then makes L a
graded Lagrangian, and yields Z-gradings on Floer complexes.)

The main input of the construction of the SYZ mirror of the open Calabi-Yau
manifold X° is a Lagrangian torus fibration 7 : X° — B (with appropriate singulari-
ties) whose fibers have trivial Maslov class. (Physical considerations suggest that one
should expect the fibers of m to be special Lagrangian, but such fibrations are hard
to produce.)

The base B of the Lagrangian torus fibration m carries a natural real affine structure
(with singularities along the locus B*™ of singular fibers), i.e. B\ B*" can be covered
by a set of coordinate charts with transition functions in GL(n,Z) x R". A smooth
fiber Ly = 7 '(by) and a collection of loops 71, ...,7, forming a basis of H;(Ly,Z)
determine an affine chart centered at by in the following manner: given b € B\ B*™9
close enough to by, we can isotope Ly to L = 7~1(b) among fibers of 7. Under such
an isotopy, each loop ~; traces a cylinder I'; with boundary in Lo U L; the affine
coordinates associated to b are then the symplectic areas ( frl W,y an w).

In the examples we will consider, “most” fibers of @ do not bound nonconstant
holomorphic discs in X; we call such Lagrangians tautologically unobstructed. Recall
that a (graded, spin) Lagrangian submanifold L of X° together with a unitary rank
one local system V determines an object (L, V) of the Fukaya category F(X°) [20]
whenever certain counts of holomorphic discs cancel; this condition evidently holds if
there are no non-constant discs. Thus, given an open subset U C B\ B*™ such that
all the fibers in 7=1(U) are tautologically unobstructed, the moduli space of objects
(L, V) where L C 7=1(U) is a fiber of 7 and V is a unitary rank 1 local system on L
yields an open subset UV C Y of the SYZ mirror of X°.

A word is in order about the choice of coefficient field. A careful definition of Floer
homology involves working over the Nowvikov field (here over complex numbers),

oo
(2.1) A= {Zcﬂw ¢ €C, \ €R, )\i—>+oo}.
i=0
Recall that the valuation of a non-zero element of A is the smallest exponent \; that
appears with a non-zero coefficient; the above-mentioned local systems are required
to have holonomy in the multiplicative subgroup

Urn={co+ > T € Ao #0 and ); > 0}
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of unitary elements (or units) of the Novikov field, i.e. elements whose valuation
is zero. The local system V € hom(m (L),U,) enters into the definition of Floer-
theoretic operations by contributing holonomy terms to the weights of holomorphic
discs: a rigid holomorphic disc v with boundary on Lagrangians (L;, V;) is counted
with a weight

(2.2) T““hol(du),

where w(u) is the symplectic area of the disc u, and hol(Ou) € Uy is the total holonomy
of the local systems V,; along its boundary. (Thus, local systems are conceptually
an exponentiated variant of the “bounding cochains” used by Fukaya et al [20, 21]).
Gromov compactness ensures that all structure constants of Floer-theoretic operations
are well-defined elements of A.

Thus, in general the SYZ mirror of X is naturally an analytic space defined over A.
However, it is often possible to obtain a complex mirror by treating the Novikov pa-
rameter 1" as a numerical parameter 7' = e 2™ with ¢t > 0 sufficiently large; of course
it is necessary to assume the convergence of all the power series encountered. The
local systems are then taken to be unitary in the usual sense, i.e. V € hom(m; (L), S'),
and the weight of a rigid holomorphic disc, still given by (2.2), becomes a complex
number. The complex manifolds obtained by varying the parameter ¢ are then un-
derstood to be mirrors to the family of Kéhler manifolds (X°, tw).

To provide a unified treatment, we denote by K the coefficient field (A or C), by Uk
the subgroup of unitary elements (either Uy or S'), and by val : K — R the valuation
1

(in the case of complex numbers, val(z) = —5- log |2]).

Consider as above a contractible open subset U C B\ B*" above which all fibers
of 7 are tautologically unobstructed, a reference fiber Ly = 77!(by) C 7 *(U), and
a basis v1,...,v, of Hi(Lo,Z). A fiber L = 771(b) C 771(U) and a local system
V € hom(m; (L), Uk) determine a point of the mirror, (L, V) € UV C Y°. Identifying
implicitly H; (L, Z) with Hy(Lg, Z), the local system V is determined by its holonomies
along the loops 71, ..., 7., while the fiber L is determined by the symplectic areas of
the cylinders I'y,...,T",. This yields natural coordinates on UY C Y?, identifying it
with an open subset of (K*)” via

(2.3) (L,V) 5 (21, 2) = (TfFl“’ V(n),..., Thae V(%)> .

One feature of Floer theory that is conveniently captured by this formula is the fact
that, in the absence of instanton corrections, the non-Hamiltonian isotopy from Lg
to L is formally equivalent to equipping Ly with a non-unitary local system for which
val(V(7:)) = [, w-

The various regions of B over which the fibers are tautologically unobstructed are
separated by walls (real hypersurfaces in B, or thickenings of real hypersurfaces) of
potentially obstructed fibers (i.e. which bound non-constant holomorphic discs), across
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which the local charts of the mirror (as given by (2.3)) need to be glued together in
an appropriate manner to account for “instanton corrections”.

The discussion preceding Equation (A.4) makes precise the idea that we can embed
the moduli space of Lagrangians equipped with unitary local systems in an analytic
space obtained by gluing coordinate charts coming from non-unitary systems. This
will be the first step in the construction of the mirror manifold as a completion of the
moduli space of Lagrangians.

Consider a potentially obstructed fiber L = 771(b) of mr, where b € B\ B*™ lies in
a wall that separates two tautologically unobstructed chambers. By deforming this
fiber to a nearby chamber, we obtain a bounding cochain (with respect to the Floer
differential) for the moduli space of holomorphic discs with boundary on L. While
local systems on L define objects of F(X?), the quasi-isomorphism type of such
objects depends on the choice of bounding cochain, which in our case amounts to a
choice of this isotopy. In the special situation we are considering, we use this argument
to prove in Lemma A.13 that any unitary local system on L can be represented by a
non-unitary local system on a fiber lying in a tautologically unobstructed chamber.
This implies that the space obtained by gluing the mirrors of the chambers contains
the analytic space corresponding to all unitary local systems on smooth fibers of 7.

The gluing maps for the mirrors of nearby chambers are given by wall-crossing
formulae, with instanton corrections accounting for the disc bubbling phenomena that
occur as a Lagrangian submanifold is isotoped across a wall of potentially obstructed
Lagrangians (see [6] for an informal discussion, and Appendix A.1 for the relation with
the invariance proof of Floer cohomology in this setting [20, 19]). Specifically, consider
a Lagrangian isotopy { L }+cjo,1] Whose end points are tautologically unobstructed and
lie in adjacent chambers. Assume that all nonconstant holomorphic discs bounded by
the Lagrangians L; in X represent a single relative homotopy class 3 € my (X, Ly)
(we implicitly identify these groups with each other by means of the isotopy), or its
multiples (for non-simple discs). The weight associated to the class /3 defines a regular
function

25 = TOIV(0B) € O(U),

in fact a monomial in the coordinates (z1,. .., z,) of (2.3). In this situation, assuming
its transversality, the moduli space M;({L;}, B) of all holomorphic discs in the class
£ bounded by L, as t varies from 0 to 1, with one boundary marked point, is a closed
(n — 1)-dimensional manifold, oriented if we fix a spin structure on L;. Thus, evalua-
tion at the boundary marked point (combined with identification of the submanifolds
L, via the isotopy) yields a cycle Cs = ev, [M;({L:}, B)] € Hn—1(L:). The instanton
corrections to the gluing of the local coordinate charts (2.3) are then of the form

(2.4) 2z > (h(25))cﬁ'%2:i,

where h(z3) = 1+ 25 + - -+ € Q[[25]] is a power series recording the (virtual) contri-
butions of multiple covers of the discs in the class 5. In practice, we shall only use
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the weaker property that these transformations are of the form
(25) Z; > hi(Zﬁ)Zi,
where h;(z5) € 1+ 25Q[[25]].

In the examples we consider in this paper, there are only finitely many walls in B,
and the above considerations are sufficient to construct the SYZ mirror of X° out
of instanton-corrected gluings of local charts. In general, intersections between walls
lead, via a “scattering” phenomenon, to an infinite number of higher-order instanton
corrections; it is conjectured that these Floer-theoretic corrections can be determined

using the machinery developed by Kontsevich-Soibelman [36, 37] and Gross-Siebert
26, 27].

Remark 2.1. We have discussed how to construct the analytic space Y (“B-model”)
from the symplectic geometry of X° (“A-model”). When Y makes sense as a complex
manifold (i.e., assuming convergence), one also expects it to carry a natural Kéhler
structure for which the A-model of Y? is equivalent to the B-model of X°. We will
however not emphasize this feature of mirror symmetry.

2.2. The superpotential. In the previous section we explained the construction of
the SYZ mirror Y of an open Calabi-Yau manifold X° = X \ D, where D is an
anticanonical divisor in a K&hler manifold (X,w,J), equipped with a Lagrangian
torus fibration 7 : X — B. We now turn to mirror symmetry for X itself.

The Fukaya category of X is a deformation of that of X°: the Floer cohomology
of Lagrangian submanifolds of X°, when viewed as objects of F(X), is deformed by
the presence of additional holomorphic discs that intersect the divisor D. Let L be a
Lagrangian fiber of the SYZ fibration 7 : X° — B: since the Maslov class of L in X°
vanishes, the Maslov index of a holomorphic disc bounded by L in X is equal to twice
its algebraic intersection number with D. Following Fukaya, Oh, Ohta, and Ono [20]
we associate to L and a rank 1 local system V over it the obstruction

(2.6) mo(L, V)= Y z(L V) eviMi(L, )] € C(L:K),
pems(X.L)\{0)

where z5(L, V) = T*¥)V(9p) is the weight associated to the class 8, and M, (L, 3)
is the moduli space of holomorphic discs with one boundary marked point in (X, L)
representing the class 5. In the absence of bubbling, one can achieve regularity,
and [M;(L, 3)] can be defined as the fundamental class of the manifold M, (L, 3).
To consider a more general situation, we appeal to the work of Fukaya, Oh, Ohta,
and Ono who define such a potential for Lagrangian fibers in toric manifolds in
[21]. While the examples we consider are not toric, their construction applies more
generally whenever the moduli spaces of stable holomorphic discs with non-positive
Maslov index contribute trivially to the Floer differential. The situation is therefore

simplest when the divisor D is nef, or more generally when the following condition
holds:
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Assumption 2.2. Every rational curve C ~ P! in X has non-negative intersection
number D - C > 0.

Consider first the case of a Lagrangian submanifold L which is tautologically un-
obstructed in X°. By positivity of intersections, the minimal Maslov index of a
non-constant holomorphic disc with boundary on L is 2 (when - D = 1). Gromov
compactness implies that the chain ev,[M;(L, )] is actually a cycle, of dimension
n — 2+ u(B) = n, ie. a scalar multiple n(L, 5)[L] of the fundamental class of L;
whereas the evaluation chains for u(f) > 2 have dimension greater than n and we
discard them. Thus (L, V) is weakly unobstructed, i.e.

mo(L, V) = W(L, V) ey

is a multiple of the unit in H°(L,K), which is Poincaré dual to the fundamental
class of L. More generally, Assumption 2.2 excludes discs of negative Maslov index,
while the vanishing of the contribution of discs of Maslov index 0 is explained in
Appendix A.2.

Given an open subset U C B\ B*™ over which the fibers of 7 are tautologically
unobstructed in X, the coordinate chart UV C Y considered in the previous section
now parametrizes weakly unobstructed objects (L = 771(b), V) of F(X), and the
superpotential

(2.7) WL, V)= Y n(Lp)z(L,V)
Bem(X,L)
3-D=1

is a regular function on U". The superpotential represents a curvature term in Floer
theory: the differential on the Floer complex of a pair of weakly unobstructed objects
(L,V) and (L', V') squares to (W(L',V') — W(L,V))id. In particular, the family
Floer cohomology [18] of an unobstructed Lagrangian submanifold of X with the
fibers of the SYZ fibration over U is expected to yield no longer an object of the
derived category of coherent sheaves over U but rather a matriz factorization of the
superpotential W.

In order to construct the mirror of X globally, we again have to account for instan-
ton corrections across the walls of potentially obstructed fibers of w. As before, these
corrections are needed in order to account for the bubbling of holomorphic discs of
Maslov index 0 as one crosses a wall, and encode weighted counts of such discs. Under
Assumption 2.2, positivity of intersection implies that all the holomorphic discs of
Maslov index 0 are contained in XY; therefore the instanton corrections are exactly
the same for X as for X°) i.e. the moduli space of objects of F(X) that we construct
out of the fibers of 7 is again Y (the SYZ mirror of X0).

A key feature of the instanton corrections is that the superpotential defined by

(2.7) naturally glues to a regular function on Y?; this is because, by construction, the
gluing via wall-crossing transformations identifies quasi-isomorphic objects of F(X),
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for which the obstructions my have to match, as explained in Corollary A.11. Thus,
the mirror of X is the B-side Landau-Ginzburg model (Y°, W), where Y is the SYZ
mirror of X and W € O(Y?) is given by (2.7). (However, see Remark 1.3).

Remark 2.3. The regularity of the superpotential W is a useful feature for the
construction of the SYZ mirror of X%. Namely, rather than directly computing the
instanton corrections by studying the enumerative geometry of holomorphic discs
in X°, it is often easier to determine them indirectly, by considering either X or
some other partial compactification of X° (satisfying Assumption 2.2), computing
the mirror superpotential in each chamber of B\ B*™ and matching the expressions
on either side of a wall via a coordinate change of the form (2.4).

When Assumption 2.2 fails, the instanton corrections to the SYZ mirror of X might
differ from those for X° (hence the difference between the mirrors might be more
subtle than simply equipping Y° with a superpotential). However, this only happens if
the (virtual) counts of Maslov index 0 discs bounded by potentially obstructed fibers of
7 in X differ from the corresponding counts in X°. Fukaya-Oh-Ohta-Ono have shown
that this issue never arises for toric varieties [21, Corollary 11.5]. In that case, the
deformation of the Fukaya category which occurs upon (partially) compactifying X°
to X (due to the presence of additional holomorphic discs) is accurately reflected by
the deformation of the mirror B-model given by the superpotential W (i.e., considering
matrix factorizations rather than the usual derived category).

Unfortunately, the argument of [21] does not adapt immediately to our setting;
thus for the time being we only consider settings in which Assumption 2.2 holds.
This will be the subject of further investigation.

The situation is in fact symmetric: just as partially compactifying X° to X is mirror
to equipping Y with a superpotential, equipping X° or X with a superpotential is
mirror to partially compactifying Y°. One way to justify this claim would be to switch
to the other direction of mirror symmetry, reconstructing X° as an SYZ mirror of Y°
equipped with a suitable Kéahler structure (cf. Remark 2.1). However, in simple cases
this statement can also be understood directly. The following example will be nearly
sufficient for our purposes (in Section 7 we will revisit and generalize it):

Example 2.4. Let X° = C*, whose mirror Y? ~ K* parametrizes objects (L, V)
of F(XY), where L is a simple closed curve enclosing the origin (up to Hamiltonian
isotopy) and V is a unitary rank 1 local system on L. The natural coordinate on
Y, as given by (2.3), tends to zero as the area enclosed by L tends to infinity.
Equipping X with the superpotential W (x) = x, the Fukaya category F (X W) also
contains “admissible” non-compact Lagrangian submanifolds, i.e. properly embedded
Lagrangians whose image under W is only allowed to tend to infinity in the direction
of the positive real axis. Denote by L., a properly embedded arc which connects +oo
to itself by passing around the origin (and encloses an infinite amount of area). An
easy calculation in F(X° W) shows that HF* (Lo, Loo) =~ H*(S';K); so Ly behaves
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Floer cohomologically like a torus. In particular, L., admits a one-parameter family
of deformations in F(X°, W); these are represented by equipping L, with a bounding
cochain in HF'(L, Ls) = K of sufficiently large valuation (with our conventions,
the valuation of 0 is +00). Given a point ¢TI € K, the Floer differential on the Floer
complex of (L., ¢T™) with another Lagrangian counts, in addition to the usual strips,
triangles with one boundary puncture converging to a time 1 chord of an appropriate
Hamiltonian (equal to a positive multiple of Re(x) near +00) with ends on L, (this
is the implementation of the Fukaya category F(X° W) appearing in [48]); these
triangles are counted with Novikov weights equal to their topological energy.

Except for the case ¢ = 0, these additional objects of the Fukaya category turn
out to be isomorphic to simple closed curves (enclosing the origin) with rank 1 local
systems. More precisely, let L, be the fiber enclosing an additional amount of area
A € R compared to a suitable reference Lagrangian Lj, and V. the local system with
holonomy ¢. (Fixing a Liouville 1-form 6, we choose Ly so that || Lo 6 is equal to the
action A of the Hamiltonian chord from L to itself; so [ Ly 0 = A+ X.) Then an easy

computation shows that the pairs (Ls, ¢T?) and (Ly, V) represent quasi-isomorphic
objects of F(C*,W). Thus, in F(C*, W) the previously considered moduli space
of objects contains an additional point L.,; this naturally extends the mirror from
Y0 ~ K*toY ~ K, and the coordinate coming from identifying bounding cochains on
L, with local systems on closed curves defines an analytic structure near this point.

Alternatively, one can geometrically recover the Lagrangians Ly (together with a
trivial noncompact component which is quasi-isomorphic to zero) as self-surgeries
of the immersed Lagrangian obtained by deforming L., to a curve with one self-
intersection, enclosing the same amount of area as L. This self-intersection cor-
responds to a generator in HFEF'(Ly, Ls), giving rise to a bounding cochain. The
Floer-theoretic isomorphisms between bounding cochains on admissible Lagrangians
and embedded Lagrangians then become an instance of the surgery formula of [22].

3. NOTATIONS AND CONSTRUCTIONS

3.1. Hypersurfaces near the tropical limit. Let V' be a (possibly non-compact)
toric variety of complex dimension n, defined by a fan ¥y C R"™. We denote by
o1,...,0, the primitive integer generators of the rays of ¥y,. We consider a family
of smooth algebraic hypersurfaces H, C V (where 7 — 0), transverse to the toric
divisors in V, and degenerating to the “tropical” limit. Namely, in affine coordinates
x = (x1,...,x,) over the open stratum V° ~ (C*)" C V, H, is defined by an equation
of the form

(3.1) fr= Z o ¥x* =0,
acA

where A is a finite subset of the lattice Z" of characters of the torus V°, ¢, € C* are
arbitrary constants, and p : A — R satisfies a certain convexity property.
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More precisely, f. is a section of a certain line bundle £ over V', determined by a
convex piecewise linear function A : ¥y, — R with integer linear slopes. (Note that
L need not be ample; however the convexity assumption forces it to be nef.) The
polytope P associated to L is the set of all v € R™ such that (v, -)+ A takes everywhere
non-negative values; more concretely, P = {v € R" | (0;,v) + A(0;) > 0V1 < i < r}.
It is a classical fact that the integer points of P give a basis of the space of sections of
L. The condition that H, be transverse to each toric stratum of V' is then equivalent
to the requirement that A C P NZ" intersects nontrivially the closure of each face of
P (i.e., in the compact case, A should contain every vertex of P).

Consider a polyhedral decomposition P of the convex hull Conv(A) C R"™, whose
set of vertices is exactly P(® = A. We will mostly consider the case where the
decomposition P is regular, i.e. every cell of P is congruent under the action of
GL(n,Z) to a standard simplex. We say that p: A — R is adapted to the polyhedral
decomposition P if it is the restriction to A of a convex piecewise linear function
p: Conv(A) — R whose maximal domains of linearity are exactly the cells of P.

Definition 3.1. The family of hypersurfaces H, C V has a maximal degeneration
for T — 0 if it is given by equations of the form (3.1) where p is adapted to a reqular
polyhedral decomposition P of Conv(A).

The logarithm map Log, : x = (x1,...,2,) — m(log |z1], ..., log |z,|) maps H.
to its amoeba 11, = Log, (H, N'V?); it is known [41, 44] that, for 7 — 0, the amoeba
I, € R™ converges to the tropical hypersurface 1l C R™ defined by the tropical
polynomial

(3.2) p(€) = max {{o, &) — p(a) | € A}

(namely, IIj is the set of points where the maximum is achieved more than once).
Combinatorially, IIj is the dual cell complex of P; in particular the connected com-
ponents of R” \ Iy can be naturally labelled by the elements of P(®) = A, according
to which term achieves the maximum in (3.2).

Example 3.2. The toric variety V = P! x P! is defined by the fan ¥ C R? whose
rays are generated by o1 = (1,0), 0o = (0,1), 03 = (=1,0), 04 = (0,—1). The
piecewise linear function A : ¥ — R with A(oy) = A(o2) = 0, Moz) = 3, and
A(o4) = 2 defines the line bundle £ = Opi,p1(3,2), whose associated polytope is
P={(v,1) e R?: 0< v, <3, 0< v <2} Let A= PNZ>. The regular
decomposition of P shown in Figure 1 (left) is induced by the function p : A — R
whose values are given in the figure. The corresponding tropical hypersurface II, C R?
is shown in Figure 1 (right); Il is the limit of the amoebas of a maximally degenerating
family of smooth genus 2 curves H, C V as 7 — 0.

When the toric variety V' is non-compact, P is unbounded, and the convex hull of
A is only a proper subset of P. For instance, Figure 1 also represents a maximally
degenerating family of smooth genus 2 curves in VY ~ (C*)? (where now P = R?).
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FIGURE 1. A regular decomposition of the polytope for Opiypi(3,2),
and the corresponding tropical hypersurface.

We now turn to the symplectic geometry of the situation we just considered. As-
sume that V is equipped with a complete toric Kéhler metric, with Kahler form wy .
The torus 7" = (S')" acts on (V,wy) by Hamiltonian diffeomorphisms; we denote by
py V. — R™ the corresponding moment map. It is well-known that the image of uy
is a convex polytope Ay C R”, dual to the fan ¥y,. The preimage of the interior of
Ay is the open stratum V° C V; over V? the logarithm map Log. and the moment
map py are related by some diffeomorphism g, : R™ = int(Ay).

For a fixed Kahler form wy, the diffeomorphism g, gets rescaled by a factor of
|log 7| as 7 varies; in particular, the moment map images puy (H,) = ¢,-(IL;) C Ay of
a degenerating family of hypersurfaces collapse towards the boundary of Ay as 7 — 0.
This can be avoided by considering a varying family of Kahler forms wy,,, obtained
from the given wy by symplectic inflation along all the toric divisors of V', followed
by a rescaling so that [wy,,] = [wy] is independent of 7. (To be more concrete, one
could e.g. consider a family of toric Kéhler forms which are multiples of the standard

complete Kéhler metric of (C*)™ over increasingly large open subsets of V°.)

Throughout this paper, we will consider smooth hypersurfaces that are close enough
to the tropical limit, namely hypersurfaces of the form considered above with 7 suffi-
ciently close to 0. The key requirement we have for “closeness” to the tropical limit is
that the amoeba should lie in a sufficiently small neighborhood of the tropical hyper-
surface Iy, so that the complements have the same combinatorics. Since we consider
a single hypersurface rather than the whole family, we will omit 7 from the notation.

Definition 3.3. A smooth hypersurface H = f~1(0) in a toric variety V is nearly
tropical if it is a member of a maximally degenerating family of hypersurfaces as
above, with the property that the amoeba I1 = Log(H) C R™ is entirely contained
inside a neighborhood of the tropical hypersurface 11y which retracts onto Ilj.

In particular, each element o € A determines a non-empty open component of
R™\ II; we will (abusively) refer to it as the component over which the monomial of
f with weight a dominates.

We equip V' with a toric Kahler form wy of the form discussed above, and denote
by puy and Ay the moment map and its image. Let 6 > 0 be a constant such that a
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standard symplectic tubular neighborhood Uy of H of size § embeds into V' and the
complement of the moment map image py (Ug) has a non-empty component for each
element of A (i.e. for each monomial in f).

Remark 3.4. The assumption that the degeneration is maximal is made purely for
convenience, and to ensure that the toric variety Y constructed in §3.3 below is
smooth. However, all of our arguments work equally well in the case of non-maximal
degenerations.

3.2. Blowing up. Our main goal is to study SYZ mirror symmetry for the blow-up
X of V x C along H x 0, equipped with a suitable Kahler form.

Recalling that the defining equation f of H is a section of a line bundle £L — V,
the normal bundle to H x 0 in V' x C is the restriction of £L® O, and we can construct
explicitly X as a hypersurface in the total space of the P!-bundle P(LH O) — V x C.
Namely, the defining section of H x 0 projectivizes to a section s(x,y) = (f(x) : y)
of P(L ® O) over the complement of H x 0; and X is the closure of the graph of s.
In other terms,

(3.3) X ={(x,y,(u:v) e P(LDO)| f(x)v =yu}.
In this description it is clear that the projection p : X — V x C is a biholomorphism
outside of the exceptional divisor E = p~*(H x 0).

The S'-action on V x C by rotation of the C factor preserves H x 0 and hence lifts
to an Sl-action on X. This action preserves the exceptional divisor F, and acts by
rotation in the standard manner on each fiber of the P'-bundle pjs : E — H x 0. In
coordinates, we can write this action in the form:

(3.4) e (x,y, (u:v) = (x,e%, (u:ev)).

Thus, the fixed point set of the S'-action on X consists of two disjoint strata: the
proper transform V of V x 0 (corresponding to y = 0, v = 0 in the above description),
and the section H of p over H x 0 given by the line subbundle @ of the normal bundle
(i.e., the point (0 : 1) in each fiber of pyg).

The open stratum V? x C* of the toric variety V x C carries a holomorphic (n+1)-
form Qy ¢ = "t Hj dlogx; A dlogy, which has simple poles along the toric divisor
Dyyc = (V x 0) U (Dy x C) (where Dy = V \ V? is the union of the toric divisors
in V). The pullback Q = p*(Qy«c) has simple poles along the proper transform of
Dy ¢, namely the anticanonical divisor D = V U p Y (Dy x C). The complement
X% = X\ D, equipped with the S'-invariant holomorphic (n + 1)-form 2, is an open
Calabi-Yau manifold.

Remark 3.5. X \ V corresponds to v # 0 in (3.3), so it is isomorphic to an affine
conic bundle over V', namely the hypersurface in the total space of O & L given by

(3.5) {(x,y,2) e O L] f(x) =yz}.
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Further removing the fibers over Dy, we conclude that X is a conic bundle over the
open stratum VY ~ (C*)", given again by the equation {f(x) = yz}.

We equip X with an S'-invariant Kahler form w, for which the fibers of the ex-
ceptional divisor have a sufficiently small area ¢ > 0. Specifically, we require that
e € (0,0/2), where ¢ is the size of the standard tubular neighborhood of H that em-
beds in (V,wy ). The most natural way to construct such a Kéhler form would be to
equip £ with a Hermitian metric, which determines a Kéhler form on P(£ & O) and,
by restriction, on X; on the complement of F the resulting Kahler form is given by

. 1€ =
(3.6) pwyxc + 5-00log(|f (X)I* + [y[*),

where wy «c is the product Kéahler form on V' x C induced by the toric Kahler form
wy on V and the standard area form of C.

However, from a symplectic perspective the blowup operation amounts to deleting
from V' x C a standard symplectic tubular neighborhood of H x 0 and collapsing its
boundary (an S3-bundle over H) onto E by the Hopf map. Thus, X and V x C are
symplectomorphic away from neighborhoods of E and H x 0; to take full advantage
of this, we will choose w, in such a way that the projection p : X — V x C is a
symplectomorphism away from a neighborhood of the exceptional divisor. Namely,
we set

(37) e = P + 500 (x(x ) o8 G + o).

where Y is a suitably chosen S'-invariant smooth cut-off function supported in a
tubular neighborhood of H x 0, with x = 1 near H x 0. It is clear that (3.7) defines a
Kéhler form provided € is small enough; specifically, € needs to be such that a standard
symplectic neighborhood of size € of H x 0 can be embedded (S'-equivariantly) into
the support of y. For simplicity, we assume that y is chosen so that the following
property holds:

Property 3.6. The support of x is contained inside p~*(Ug x Bjs), where Uy C V
1s a standard symplectic 0-neighborhood of H and Bs C C is the disc of radius 9.

Remark 3.7. w, lies in the same cohomology class |[w.] = p*[wyxc] — €[F] as the
Kahler form defined by (3.6), and is equivariantly symplectomorphic to it.

3.3. The mirror B-side Landau-Ginzburg model. Using the same notations as
in the previous section, we now describe a B-side Landau-Ginzburg model which we
claim is SYZ mirror to X (with the Kéhler form w,, and relatively to the anticanonical
divisor D).

Recall that the hypersurface H C X has a defining equation of the form (3.1),
involving toric monomials whose weights range over a finite subset A C Z", forming
the vertices of a polyhedral complex P (cf. Definition 3.1).
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We denote by Y the (noncompact) (n+ 1)-dimensional toric variety defined by the
fan Xy = R5g- (P x {1}) C R*"" = R"®R. Namely, the integer generators of the rays
of Xy are the vectors of the form (—«, 1), @ € A, and the vectors (—ay, 1),..., (—ag, 1)
span a cone of Xy if and only if a4, ..., a, span a cell of P.

Dually, Y can be described by a (noncompact) polytope Ay C R"™! defined in
terms of the tropical polynomial ¢ : R™ — R associated to H (cf. (3.2)) by

(3.8) Ay ={(&n) eR"@R[n > ¢(£)}.

Remark 3.8. The polytope Ay also determines a Kéhler class [wy] on Y. While in
this paper we focus on the A-model of X and the B-model of Y, it can be shown
that the family of complex structures on X obtained by blowing up V' x C along the
maximally degenerating family H, x 0 (cf. §3.1) corresponds to a family of Ké&hler
forms asymptotic to |log 7|[wy] as 7 — 0.

Remark 3.9. Even though deforming the hypersurface H inside V' does not modify
the symplectic geometry of X, the topology of Y depends on the chosen polyhedral
decomposition P (i.e., on the combinatorial type of the tropical hypersurface defined
by ¢). However, the various possibilities for Y are related to each other by crepant
birational transformations, and hence are expected to yield equivalent B-models. (The
A-model of Y, on the other hand, is affected by these birational transformations and
does depend on the tropical polynomial ¢, as explained in the previous remark.)

The facets of Ay correspond to the maximal domains of linearity of . Thus the
irreducible toric divisors of Y are in one-to-one correspondence with the connected
components of R \ TIy, and the combinatorics of the toric strata of ¥ can be imme-
diately read off the tropical hypersurface Iy (see Example 3.12 below).

It is advantageous for our purposes to introduce a collection of affine charts on Y
indexed by the elements of A (i.e., the facets of Ay, or equivalently, the connected
components of R" \ IIj).

For each o € A, let Y,, = (K*)" x K, with coordinates v, = (U1, - -, Van) € (K*)"
and v, € K (as before, K is either A or C). Whenever «a, 5 € A are connected by an
edge in the polyhedral decomposition P (i.e., whenever the corresponding components
of R™\ TIy share a top-dimensional facet, with primitive normal vector 5 — «), we
glue Y, to Y3 by the coordinate transformations

{%JzﬁgWWJ (1<i<n),

Ua’(] = Ug’().

(3.9)

These charts cover the complement in Y of the codimension 2 strata (as Y, covers
the open stratum of Y and the open stratum of the toric divisor corresponding to «).
In terms of the standard basis of toric monomials indexed by weights in Z" ™, v, is
the monomial with weight (0,...,0,1), and for i > 1 v,; is the monomial with weight
(0,...,—1,...,0,—q;) (the i-th entry is —1).
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Denoting by T' the Novikov parameter (treated as an actual complex parameter
when K = C), and by vy the common coordinate v, for all charts, we set
(3.10) wo = =T+ T .
With this notation, the above coordinate transformations can be rewritten as
) g, 1<i<n.
More generally, for m = (my,...,m,) € Z" we set v = v ... vgn. Then
(3.11) vl =(1+ T_Ewo)w_a’m)V?f.

We shall see that wy and the transformations (3.11) have a natural interpretation in
terms of the enumerative geometry of holomorphic discs in X.

Vai = (1 + T76w0

Next, recall from §3.1 that the inward normal vectors to the facets of the moment
polytope Ay associated to (V,wy) are the primitive integer generators oy, ..., 0, of
the rays of ¥y,. Thus, there exist constants wy,...,w, € R such that

(3.12) Ay ={u e R"|{o;,u) +w; >0 V1 <i<r}.

Then for i =1,...,r we set

(3.13) w; = TV

where a; € A is chosen to lie on the facet of P defined by o, i.e. so that (o;, ;)
is minimal. Hence, by the conditions imposed in §3.1, {(0;, ;) + A(0;) = 0, where

A 1 Xy — R is the piecewise linear function defining £ = O(H). By (3.11), the
choice of «; satisfying the required condition is irrelevant: in all cases v is simply

the toric monomial with weight (—o;, A(0;)) € Z"™ & Z. Moreover, this weight pairs
non-negatively with all the rays of the fan ¥y, therefore w; defines a regular function
onY.

With all the notation in place, we can at last make the following definition, which

clarifies the statements of Theorems 1.5 and 1.6:

Definition 3.10. We denote by Y° the complement of the hypersurface Dy = w;*(0)
in the toric (n + 1)-fold Y, and define the leading-order superpotential

(3.14) Wo = wo +w;y + -+ +w, = =T+ Ty + ZTwivgj_ e OY).
=1

We also define

(3.15) W' = —vg+wi 4+ w, = —vg + YTV € OY).
=1

Remark 3.11. Since there are no convergence issues, we can think of (Y ;) and
(Y, W}) either as B-side Landau-Ginzburg models defined over the Novikov field or
as one-parameter families of complex B-side Landau-Ginzburg models defined over C.
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Example 3.12. When H is the genus 2 curve of Example 3.2, the polytope Ay has
12 facets (2 of them compact and the 10 others non-compact), corresponding to the
12 components of R™\ Iy, and intersecting exactly as pictured on Figure 1 right. The
edges of the figure correspond to the configuration of P'’s and A'’s along which the
toric divisors of the 3-fold Y intersect.

Label the irreducible toric divisors by D, (0 < a < 3, 0 < b < 2), corresponding
to the elements (a,b) € A. Then the leading-order superpotential Wy consists of five
terms: wy = —T° 4+ T vy, where vy is the toric monomial of weight (0,0, 1), which
vanishes with multiplicity 1 on each of the 12 toric divisors; and up to constant factors,
wy is the toric monomial with weight (—1,0,0), which vanishes with multiplicity a
on D,p; we is the toric monomial with weight (0, —1,0), vanishing with multiplicity
bon D,yp; ws is the monomial with weight (1,0, 3), with multiplicity (3 —a) on D ;
and wy is the monomial with weight (0, 1,2), with multiplicity (2 —b) on Dgj. In
particular, the compact divisors D;; and D,; are components of the singular fiber
{Wy = =T} C Y° (which also has a third, non-compact component); and similarly
for (WF =0} CY.

(In general the order of vanishing of w; on a given divisor is equal to the intersection
number with Il of a semi-infinite ray in the direction of —o; starting from a generic
point in the relevant component of R" \ TI,.)

This example does not satisfy Assumption 1.4, and in this case the actual mirror
of X differs from (Y° W) by higher-order correction terms. On the other hand, if
we consider the genus 2 curve with 10 punctures H N V? in the open toric variety
VY ~ (C*)?, which does fall within the scope of Theorem 1.5, the construction yields
the same toric 3-fold Y, but now we simply have Wy = wy (resp. W = —uvy).

4. LAGRANGIAN TORUS FIBRATIONS ON BLOWUPS OF TORIC VARIETIES

As in §3.2, we consider a smooth nearly tropical hypersurface H = f~1(0) in a toric
variety V' of dimension n, and the blow-up X of V' x C along H x 0, equipped with the
Sl-invariant Kéhler form w, given by (3.7). Our goal in this section is to construct an
Sl-invariant Lagrangian torus fibration 7 : X° — B (with appropriate singularities)
on the open Calabi-Yau manifold X° = X \ D, where D is the proper transform
of the toric anticanonical divisor of V' x C. (Similar fibrations have been previously
considered by Gross [23, 24] and by Castano-Bernard and Matessi [10, 11].) The key
observation is that S'-invariance forces the fibers of 7 to be contained in the level
sets of the moment map of the S'-action. Thus, we begin by studying the geometry
of the reduced spaces.

4.1. The reduced spaces. The S'-action (3.4) on X is Hamiltonian with respect
to the Kéhler form w, given by (3.7), and its moment map puyxy : X — R can be
determined explicitly. Outside of the exceptional divisor, we identify X with V x C
via the projection p, and observe that px(x,y) = fD(xw we, where D(x,y) is a disc
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bounded by the orbit of (x, ), namely the total transform of {x} x D*(Jy|) C V x C.
(We normalize px so that it takes the constant value 0 over the proper transform of
V' % 0; also, our convention differs from the usual one by a factor of 27.)

Hence, for given x the quantity px(x,y) is a strictly increasing function of |y|.
Moreover, applying Stokes’ theorem we find that

€ 0
(4.1) px (x,y) =yl + 51l (x(x.0) log(|f () + [y*)) -
In the regions where y is constant this simplifies to:
2 ly? _
m|y|* + € ———=———= where x =1 (near F),
@2 axen)={ T TG P near &)
mly|? where x =0 (away from E).

(Note that the first expression extends naturally to a smooth function over E.)

The critical points of sy are the fixed points of the S'-action. Besides V = 1y (0),
the fixed points occur along H, which lies in the level set py (€); in particular, all
the other level sets of ux are smooth. Since for any given x the moment map pux
is a strictly increasing function of |y|, each level set of uyx intersects p~t({x} x C)
along a single S'-orbit. Hence, for A > 0, the natural projection to V' (obtained by
composing p with projection to the first factor) yields a natural identification of the
reduced space X,eqx = py (\)/St with V.

For A > ¢, ux' () is disjoint from the support of the cut-off function y, and the
reduced Kahler form wyeq on X,eqxn = V coincides with the toric Kahler form wy .
As X becomes closer to €, wyeqy differs from wy near H but remains cohomologous
to it. At the critical level A = ¢, the reduced form wy..q . is singular along H (but its
singularities are fairly mild, see Lemma B.1). Finally, for A < e the Kéahler form w4
differs from wy in a tubular neighborhood of H, inside which the normal direction to
H has been symplectically deflated. In particular, one easily checks that

(4.3) [Wrean] = [wy] — max(0,e — \)[H].

Our goal is to exploit the toric structure of V' to construct families of Lagrangian
tori in X,eq . The Kahler form wyegy on X,eqn = V is not T™-invariant near H;
in fact it isn’t even smooth along H for A = e. However, there exist (smooth) toric
Kéhler forms wy,,, depending piecewise smoothly on A, with [wy,] = [wrean]; see
(B.5) for an explicit construction. The following result will be proved in Appendix B.

Lemma 4.1. There exists a family of homeomorphisms (¢x)rer, of V such that:

(1) ¢x preserves the toric divisor Dy C V;

(2) the restriction of ¢y to VO is a diffeomorphism for X\ # €, and a diffeomorphism
outside of H for A = ¢;

(3) ¢ intertwines the reduced Kdhler form wyeax and the toric Kihler form wy ,;

(4) ¢x =1id at every point whose T™-orbit is disjoint from the support of x;
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(5) ¢x depends on X in a continuous manner, and smoothly except at X = €.

The diffeomorphism (singular along H for A = €) ¢, given by Lemma 4.1 yields a
preferred Lagrangian torus fibration on the open stratum X2, , = (ux'(A) N X°)/S"
of X,eq (naturally identified with VV° under the canonical identification X,.q4\ = V),
namely the preimage by ¢, of the standard fibration of (V?, w{/’)\) by T"-orbits:

Definition 4.2. We denote by 7y : X}, — R™ the composition 7 = Logody, where

Log : V% = (C*)™ — R™ is the logarithm map (z1, . .., x,) “0;7‘ (log |z1], - .., log|z,]),

and ¢x : (Xred s Wredn) = (V,wyy) is as in Lemma 4.1.

Remark 4.3. By construction, the natural affine structure (see §2.1) on the base
of the Lagrangian torus fibration 7, identifies it with the interior of the moment
polytope Ay, associated to the cohomology class [wi;] = [wrea,n] € H*(V,R).

4.2. A Lagrangian torus fibration on X°. We now assemble the Lagrangian torus
fibrations 7y on the reduced spaces into a (singular) Lagrangian torus fibration on X°:

Definition 4.4. We denote by 7 : X° — B = R" x R, the map which sends the
point © € pxr(\) N X to (x) = (mx(Z), \), where T € X . 15 the S'-orbit of x.

TE

The map 7 is continuous, and smooth away from A = e. The fiber of © above
(£, ) € B is obtained by lifting the Lagrangian torus 7 '(£) C X,eqn to py' () and
“spinning” it by the S!-action.

Away from the fixed points of the S'-action, ,u)_(l()\) is a coisotropic manifold with
isotropic foliation given by the S'-orbits. Moreover, the S'-bundle py ' (A) = X,eqn
is topologically trivial for A\ > € (setting y € R, gives a global section), trivial
over the complement of H for A = ¢, and the circle bundle associated to the line
bundle O(—H) for A < €; in any case, its restriction to a fiber of 7 is topologically
trivial. The fibers of ) are smooth Lagrangian tori (outside of H when A = ¢, which
corresponds precisely to the S'-fixed points); therefore, we conclude that the fibers
of m are smooth Lagrangian tori unless they contain fixed points of the S'-action.

The only fixed points occur for A = €, when ' (A) contains the stratum of fixed
points H. The identification of the reduced space with V maps H to the hypersurface
H, so the singular fibers map to

(4.4) B¥" =1I' x {¢} C B,

where IT"' = 7 (H N VY) C R" is essentially the amoeba of the hypersurface H (up to
the fact that m, differs from the logarithm map by ¢.). The fibers above the points of
B#*™ differ from the regular fibers in that, where a smooth fiber 771(&, \) ~ T"*! is

a trivial S'-bundle over 7y '(£) =~ T™ C VO, for A = € some of the S fibers (namely
those which lie over points of H) are collapsed to points.
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Because the fibration 7 has non-trivial monodromy around B*™9, the only globally
defined affine coordinate on B is the last coordinate A (the moment map of the S'-
action); other affine coordinates are only defined over subsets of B\ B*"_ i.e. in the
complement of certain cuts. Our preferred choice for such a description relates the
affine structure on B to the moment polytope Ay x R, of V' x C. Namely, away from
a tubular neighborhood of IT" x (0, €) the Lagrangian torus fibration 7 coincides with
the standard toric fibration on V' x C:

Proposition 4.5. Outside of the support of x (a tubular neighborhood of the excep-
tional divisor E), the Kdhler form w. is equal to p*wy«c, and the moment map of
the S*-action is the standard one ux(x,y) = wly|>. Moreover, outside of 7(supp x),
the fibers of the Lagrangian fibration m are standard product tori, i.e. they are the
preimages by p of the orbits of the T ' -action in V x C.

Proof. The first statement follows immediately from formulas (3.7) and (4.1). The
second one is then a direct consequence of the manner in which 7= was constructed
and condition (3) in Lemma 4.1. O

Recall that the support of x is constrained by Property 3.6. Thus, the fibration 7
is standard (coincides with the standard toric fibration on V' x C) over a large subset
B = (R" x Ry) \ (Log(Uy) x (0,0)) of B. Since w, = p*wyxc over 7 }(B%), we
conclude that over B*!® the affine structure of B agrees with that for the standard
toric fibration of V x C, i.e. as an affine manifold B*? can be naturally identified with
the complement of uy (Uy) X (0,0) inside int(Ay) x R,

This description of the affine structure on B\ B*™ can be extended from B to the
complement of a set of codimension 1 cuts. Recall from §2.1 that the affine coordinates
of b € B\ B*™ relative to some reference point by are given by the symplectic areas of
certain relative 2-cycles (T'y,...,[,11) with boundary on 7= (b) Un~!(by); the above
identification of B**¢ with a subset of Ay x R, arises from taking the boundaries of
I'; to be (homologous to) orbits of the various S! factors of the 7" !-action on V x C.

When b and by have the same last coordinate A > ¢, we can choose I'y,..., ", to
be contained in ' (A), and obtained as the lifts of relative 2-cycles T peq in Xyeqn
with boundary on fibers of my; we can fix such lifts by requiring that y € R, on T'.
Since fFi W, = fFi _ Wredx, the affine structure on the level set R™ x {\} C B is the
same as that on the base of the fibration 7y on the reduced space X4, which can
be identified via the diffeomorphism ¢, with the standard toric fibration on (V,wy,,).
For A > e we have [wyea] = [wy\] = [wy], so the base is naturally identified with
the interior of the moment polytope Ay ; moreover, this identification is consistent
with our previous description of the affine structure over B*'¢, since in that region
the various Kéhler forms agree pointwise.
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In other terms, over R" X (¢,00) C B, the affine structure is globally a product
int(Ay) x (€,00) of the affine structure on the moment polytope of (V,wy) and the
interval (e, 00), in a manner that extends the previous description over B*,

For A < ¢, the affine structure on R™ x {A} C B can be described similarly, by
choosing relative 2-cycles I'; ;¢q in X,¢q.» With boundary on fibers of my and lifting them
to relative 2-cycles T} in ux'()\). Since the lifts may intersect the exceptional divisor
E, we cannot require y € R, as in the case A > €. Instead, we use the monomial x*°
for some ag € A to fix a trivialization of £ = O(H) over V° and choose the lifts so
that x 0z = x 0 f(x)/y € Ry on I';. Since fr; We = [p,  Wrea,, the affine structure

on the level set R” x {\} C B is again identical to that on the base of the fibration 7,
on Xyedn, or equivalently via ¢y, the standard toric fibration on (V,wy,,). Thus, the
affine structure identifies R" x {\} C B with the interior of the moment polytope Ay,
associated to the Kahler class [wy,,\] = [wrean] = [wy] — max(0,e — A)[H]. However,
this description is no longer consistent with that previously given for B**¢, because
the boundary of I"} does not represent the expected homology class in 7=1(b).

Specifically, assume by and b € (R™\Log(Upg)) x{A} lie in the connected components
corresponding to ag and a € A respectively. Then the boundary of I'; in 7 (by) does
represent the homology class of the orbit of the i-th S'-factor, while the boundary in
7 1(b) differs from it by o; — a; times the orbit of the last S'-factor. Moreover,

[ v [ = e N )= (e o 000
Fi,red 1—‘i,'red

This formula also gives the difference between the w-areas of the relative cycles I,
and the relative cycles I'; C 7~ 1(B*™) previously used to determine affine coordinates
over B, Hence, the affine coordinates determined by the relative cycles I", differ
from those constructed previously over B! by a shear

(45) (Cla R ,Cn, )\) — (Cl + (6 — >\)(C¥1 — 040,1), ey Cn + (E — )\)(Oén — Oéo’n), )\)
or more succinctly, (¢, A) — ({4 (e — A)(a — ap), A).

More globally, over R™ x (0,€) C B the affine structure can be identified (using the
relative cycles I'; to define coordinates) with a piece of the moment polytope for the
total space of the line bundle O(—H) over V' (equipped with a toric Kéahler form in

the class [wy] — €[H]), consistent with the fact that the normal bundle to V inside X
is O(—H); but this description is not consistent with the one we have given over B*!.

On the other hand, the shears (4.5) map the complement of the amoeba of H in
Ay, to the complement of a standard (e — A\)-neighborhood of the amoeba of H in
Ay. Thus, making cuts along the projection of the exceptional divisor, we can extend
the affine coordinates previously described over B**?, and identify the affine structure
on B\ (I" x (0,€]) with an open subset of int(Ay) x Ry, obtained by deleting an
(e — A)-neighborhood of the amoeba of H from int(Ay) x {A} for all A € (0, €.
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FIGURE 2. The base of the Lagrangian torus fibration 7 : X° — B.
Left: H = {point} C CP'. Right: H = {z; + z, = 1} C C2.

This is the picture of B that we choose to emphasize, depicting it as the complement
of a set of “triangular” cuts inside Ay x R ; see Figure 2.

Remark 4.6. While the fibration we construct is merely Lagrangian, it is very reason-
able to conjecture that in fact X carries an S'-invariant special Lagrangian fibration
over B. The holomorphic (n + 1)-form Q = p*Qy»c on X is Sl-invariant, and in-
duces a holomorphic n-form on the reduced space X}, ,, which turns out to coincide
with the standard toric form Qy =" [] ;dlogx;. Modifying the construction of the
fibration 7y : X,y — R" so that its fibers are special Lagrangian with respect to
Qv would then be sufficient to ensure that the fibers of m are special Lagrangian
with respect to €2. In dimension 1 this is easy to accomplish by elementary methods.
In higher dimensions, making 7, special Lagrangian requires the use of analysis, as
the deformation of product tori in V° (which are special Lagrangian with respect to
wy,, and Qy) to tori which are special Lagrangian for w4 and Qy is governed by a
first-order elliptic PDE [40] (see also [30, §9] or [6, Prop. 2.5]). If one were to argue
as in the proof of Lemma 4.1 (cf. Appendix B), the 1-forms used to construct ¢,
should be chosen not only to satisfy the usual condition for Moser’s trick, but also to
be co-closed with respect to a suitable rescaling of the Kahler metric induced by w; .
When V' = (C*)" this does not seem to pose any major difficulties, but in general it
is not obvious that one can ensure the appropriate behavior along the toric divisors.

5. SYZ MIRROR SYMMETRY FOR XY

In this section we apply the procedure described in §2 to the Lagrangian torus
fibration 7 : X° — B of §4 in order to construct the SYZ mirror to the open Calabi-
Yau manifold X° and prove Theorem 1.7. The key observation is that, by Proposition
4.5, most fibers of m are mapped under the projection p to standard product tori in
the toric variety V' x C; therefore, the holomorphic discs bounded by these fibers can
be understood by reducing to the toric case, which is well understood (see e.g. [15]).

Proposition 5.1. The fibers of m : X* — B which bound holomorphic discs in X°
are those which intersect the subset p~'(H x C).
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Moreover, the simple holomorphic discs in X° bounded by such a fiber contained in
tx(A) have Maslov index 0 and symplectic area |\—e¢|, and their boundary represents
the homology class of an S'-orbit if X\ > € and its negative otherwise.

Proof. Let L C X° be a smooth fiber of 7, contained in u}l(k) for some A € R,
and let u : (D?, 0D?) — (X L) be a holomorphic disc with boundary in L. Denote
by L' the projection of L to V' (i.e., the image of L by the composition py of p and
the projection to the first factor). The restriction of py to uy'()\) coincides with
the quotient map to the reduced space X,.qx =~ V; thus, L’ is in fact a fiber of =),
i.e. a Lagrangian torus in (V° wy.q), smoothly isotopic to a product torus inside
VO~ (C)™.

Since the relative homotopy group mo(V?, L) ~ m5((C*)", (S1)™) vanishes, the holo-
morphic disc py o u : (D? dD?*) — (V°, L') is necessarily constant. Hence the image
of the disc u is contained inside a fiber py,'(x) for some x € V°.

If x ¢ H, then p;'(x) N X° = p~1({x} x C*) ~ C*, inside which p;;'(x) N L is a
circle centered at the origin (an orbit of the S'-action). The maximum principle then
implies that the map w is necessarily constant.

On the other hand, when x € H, py'(x) N X° is the union of two affine lines
intersecting transversely at one point: the proper transform of {x} x C, and the fiber
of E above x (minus the point where it intersects V). Now, p;'(x) N L is again
an Sl-orbit, i.e. a circle inside one of these two components (depending on whether
A > e or A < ¢); either way, p;;'(x) N L bounds exactly one non-constant embedded
holomorphic disc in X° (and all of its multiple covers). The result follows. O

Denote by B™9 C B the set of those fibers of  which do not intersect p~!(Ug x C).
From Property 3.6 and Propositions 4.5 and 5.1, we deduce:

Corollary 5.2. The fibers of ™ above the points of B™9 are tautologically unobstructed
in X°, and project under p to standard product tori in VO x C.

With respect to the affine structure, B"Y = (R™ \ Log(Uy)) x Ry is naturally
isomorphic to (Ay \ uy (Ug)) x Ry.

Definition 5.3. The chamber U, is the connected component of B"®9 over which the
monomial of weight o dominates all other monomials in the defining equation of H.

Remark 5.4. By construction, the complement of Log(Upy) is a deformation retract
of the complement of the amoeba of H inside R"; so the set of tautologically unob-
structed fibers of 7 retracts onto B™Y = | |U,.

As explained in §2.1, U, determines an affine coordinate chart UY for the SYZ
mirror of X° with coordinates of the form (2.3).

Specifically, fix a reference point b° € U,, and observe that, since L® = 7=1(°) is
the lift of an orbit of the T""-action on V' x C, its first homology carries a preferred
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basis (71, .. .,7m,Y0) consisting of orbits of the various S! factors. Consider b € U,,
with coordinates ((i,...,(y, A) (here we identify U, C B" with a subset of the
moment polytope Ay x R, € R™™! for the 7" !-action on V' x C), and denote by

(€% ..., ¢Y% A% the coordinates of b°. Then the valuations of the coordinates given by
(2.3), i.e., the areas of the cylinders I'y,..., T,y bounded by L° and L = n~1(b),
are (; — (2, ..., ¢ —¢% and XA — A respectively. In order to eliminate the dependence

on the choice of L% we rescale each coordinate by a suitable power of T', and equip
U with the coordinate system

(5.1) (L, V) = Vas-- - Vams Wap) = (TV(11), oo, TV (70), TV (70)) -
(Compare with (2.3), noting that ¢; = ¢? + fFi we and A = \0 + fro We.)

3 N n 3 m __ mi m
As in §3.3, we set Vo = (Va1 - - -, Va,n), and for m € Z" we write v = v’} ... o0,

Moreover, we write wg for wq o; this is a priori ambiguous, but we shall see shortly
that the gluings between the charts preserve the last coordinate.

The “naive” gluings between these coordinate charts (i.e., those which describe the
geometry of the space of (L,V) up to Hamiltonian isotopy without accounting for
instanton corrections) are governed by the global affine structure of B\ B*"9. Their
description is instructive, even though it is not necessary for our argument.

For A > € the affine structure is globally that of Ay X (¢,00). Therefore, (5.1)
makes sense and is consistent with (2.3) even when b does not lie in U,; thus, for
A > € the naive gluing is the identity map (v, = v, and wa o = wgay).

On the other hand, for A € (0,¢) we argue as in §4.2 (cf. equation (4.5) and the
preceding discussion). When b = ((i, ...,y A) lies in a different chamber Uy from
that containing the reference point 8° (i.e., U,), the intersection number of a cylinder
I, constructed as previously with the exceptional divisor E' is equal to 8; — a;, and
its symplectic area differs from ¢; — ¢ by (8; — a;)(e — A\). Moreover, due to the
monodromy of the fibration, the bases of first homology used in U, and Uj differ by
i = v + (Bi — i)y for i = 1,...,n. Thus, for A < e the naive gluing between the
charts U, and Uy corresponds to setting

Vi = T~ P0G () fimiyg s = (T~ wp) =g, 1<i<n.

The naive gluing formulas for the two cases (A > € and A < €) are inconsistent. As
seen in §2.1, this is not unexpected: the actual gluing between the coordinate charts
{U)}aea differs from these formulas by instanton corrections which account for the

bubbling of holomorphic discs as L is isotoped across a wall of potentially obstructed
fibers.

Given a potentially obstructed fiber L C ,u;(l()\), the simple holomorphic discs
bounded by L are classified by Proposition 5.1. For A > ¢, the symplectic area of
these discs is A — €, and their boundary loop represents the class vy € Hy(L) (the
orbit of the S!'-action), so the corresponding weight is T2~V (vy) (= T “wyp); while
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for A < € the symplectic area is ¢ — A\ and the boundary loop represents —vq, so
the weight is T *V(70) ™" (= T wy'). As explained in §2.1, we therefore expect the
instanton corrections to the gluings to be given by power series in (T~ ¢wg)*!.

While the direct calculation of the multiple cover contributions to the instanton
corrections would require sophisticated machinery, Remark 2.3 provides a way to do
so by purely elementary techniques. Namely, we study the manner in which counts
of Maslov index 2 discs in partial compactifications of X° vary between chambers.
The reader is referred to Example 3.1.2 of [7] for a simple motivating example (cor-
responding to the case where H = {point} in V = C).

Recall that a point of UY corresponds to a pair (L, V), where L = 7!(b) is the fiber
of m above some point b € U,, and V is a unitary rank 1 local system on L. Given
a partial compactification X’ of X (satisfying Assumption 2.2), (L, V) is a weakly
unobstructed object of F(X'), i.e. mg(L,V) = Wx/(L,V) ey, where Wx/(L,V) is a
weighted count of Maslov index 2 holomorphic discs bounded by L in X’. Varying
(L,V), these weighted counts define regular functions on each chart U, and by
Corollary A.11, they glue into a global regular function on the SYZ mirror of X°.

We first use this idea to verify that the coordinate wy = w, is preserved by the
gluing maps, by interpreting it as a weighted count of discs in the partial compacti-
fication X9 of X° obtained by adding the open stratum V° of the divisor V.

Lemma 5.5. Let X0 = p~ (VO x C) = X°UV® € X. Then any point (L, V) of UY
defines a weakly unobstructed object of F(XY), with

(5.2) Wyo (L, V) = wag.

Proof. Let u: (D?,0D?) — (X2, L) be a holomorphic disc in X? with boundary on L
whose Maslov index is 2. The image of u by the projection p is a holomorphic disc in
V9% C ~ (C*)" x C with boundary on the product torus p(L) = S1(r) x -+ - x St(r).
Thus, the first n components of p o u are constant by the maximum principle, and
we can write p o u(z) = (z1,...,%,,r07Y(2)), where |xi| = ry, ..., |x,| = rn, and
v : D* — C maps the unit circle to itself. Moreover, the Maslov index of u is twice
its intersection number with V. Therefore v is a degree 1 map of the unit disc to
itself, i.e. a biholomorphism; so the choice of (z1,...,x,) determines u uniquely up
to reparametrization.

We conclude that each point of L lies on the boundary of a unique Maslov index 2
holomorphic disc in X?, namely the preimage by p of a disc {x} x D?*(ry). These
discs are easily seen to be regular, by reduction to the toric case [15]; their symplectic
area is A (by definition of the moment map px, see the beginning of §4.1), and their
boundary represents the homology class vo € H;(L) (the orbit of the S'-action on X).
Thus, their weight is T7“"V (9u) = T*V () = Wa,0, which completes the proof. [
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Lemma 5.5 implies that the local coordinates wqo € O(U)) glue to a globally
defined regular function wq on the mirror of X° (hence we drop « from the notation).

Next, we consider monomials in the remaining coordinates v,. First, let o € Z™ be
a primitive generator of a ray of the fan ¥y, and denote by DY the open stratum of
the corresponding toric divisor in V. We will presently see that the monomial v is
related to a weighted count of discs in the partial compactification X/ of X obtained
by adding p~(D? x C):

(5.3) X =p 1 ((V°UDY) xC)\V C X.

Let w € R be the constant such that the corresponding facet of Ay has equation
(o,u) +w =0, and let ayp;, € A be such that (o, ) is minimal.

Lemma 5.6. Any point (L, V) of U} (a € A) defines a weakly unobstructed object
of F(X!), with

(5.4) WX[’, (L’ V) = (1 + T_5w0)<a—a7nin7U>Tng‘

Proof. After performing dual monomial changes of coordinates on V° and on U
(i.e., replacing the coordinates (z1,...,z,) by (x™,...,x™) where (o, 7;) = 0;1, and
(Vats---sVan) by (VZ,...)), we can reduce to the case where o = (1,0,...,0), and

VOUD? ~C x (C)" L.

With this understood, let u : (D? dD?) — (X!, L) be a Maslov index 2 holomorphic
disc with boundary on L. The composition of u with the projection p is a holomorphic
disc in (VOU D?) x C ~ C x (C*)"! x C with boundary on the product torus
p(L) = S*(r1) x -+ x St(rg). Thus, all the components of p o u except for the first
and last ones are constant by the maximum principle. Moreover, since the Maslov
index of u is twice its intersection number with D?, the first component of pow has a
single zero, i.e. it is a biholomorphism from D? to the disc of radius r,. Therefore, up
to reparametrization we have pou(z) = (112, xa, ..., Ty, r0y(2)), where |z3] =19, .. .,
|z,| = rpn, and v : D?* — C maps the unit circle to itself.

A further constraint is given by the requirement that the image of v be disjoint
from V' (the proper transform of V' x 0). Thus, the last component v(z) is allowed
to vanish only when (ryz,x9,...,x,) € H, and its vanishing order at such points is
constrained as well. We claim that the intersection number & of the disc D = D?(ry) x
{(zg,...,z,)} with H is equal to (& — aypin, o). Indeed, with respect to the chosen
trivialization of O(H) over V' near py (L) the dominating term in the defining section
of H is the monomial x*, whose values over the circle S*(r;) x {(z2,...,z,)} wind
a1 = {a,0) times around the origin; whereas near DY (i.e., in the chambers which
are unbounded in the direction of —o) the dominating terms have winding number
(Cmin, 0). Comparing these winding numbers we obtain that k = (@ — Qunin, 0).

Assume first that (zo,...,x,) are generic, in the sense that D intersects H trans-
versely at k distinct points (ria;, zo,...,2,), i@ = 1,...,k (with a; € D?). The
condition that u avoids V implies that v is allowed to have at most simple zeroes at
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ai,...,ag. Denote by I C{1,...,k} the set of those a; at which v does have a zero,

and let .
1
7[(2) 111 1-— C_ZZ'Z ’
Then ~; maps the unit circle to itself, and its zeroes in the disc are the same as those
of 7, so that 777 is a holomorphic function on the unit disc, without zeroes, and
mapping the unit circle to itself, i.e. a constant map. Thus v(z) = €¥7;(z), and

(5.5) pou(z) = (riz,xa, ..., T, TOGZQ’YI(Z))

for some I C {1,...,k} and ¢ € S'. We conclude that there are 2¥ holomorphic
discs of Maslov index 2 in (X!, L) whose boundary passes through a given generic
point of L. It is not hard to check that these discs are all regular, using e.g. the same
argument as in the proof of Lemma 7 in [8]. Succinctly: observing that u does not
intersect H, projection to V decomposes (via a short exact sequence) the Cauchy-
Riemann operator for u into a 0 operator on the trivial holomorphic line bundle with
trivial real boundary condition (along the fibers of the projection), and the d operator
for the “standard” disc D in C x (C*)"~! (which itself splits into a direct sum of line
bundles and is easily checked to be surjective); this implies surjectivity.

When the disc D is not transverse to H, we can argue in exactly the same manner,
except that a,...,a, € D? are no longer distinct; and v may have a multiple zero at
a; as long as its order of vanishing does not exceed the multiplicity of (r1a;, s, . . ., z,)
as an intersection of D with H. We still conclude that pow is of the form (5.5). These
discs are not all distinct (or regular), but we can argue by continuity as follows. There
are diffeomorphisms arbitrarily C'*°-close to identity which fix a neighborhood of H
and map S*(ry) X {(x2,...,2,)} to a nearby circle S*(r}) x {(z},...,2!)} contained
in a generic fiber. The moduli space of holomorphic discs with respect to the pullback
of the standard complex structure by such a diffeomorphism is canonically identified
with the moduli space of holomorphic discs for the standard complex structure with
boundary on the nearby generic fiber. This provides an explicit regularization of the
moduli space, and we conclude that the enumeration of holomorphic discs is as in the
transverse case (i.e., discs which can be written in the form (5.5) in more than one
way should be counted with a multiplicity equal to the number of such expressions.)

All that remains is to calculate the weights (2.2) associated to the holomorphic
discs we have identified. Denote by ((i, ..., (,, A) the affine coordinates of (L) € U,
introduced above, and consider a disc given by (5.5) with |I| = ¢ € {0,...,k}. Then
the relative homology class represented by p o u(D?) in C x (C*)" ! x C Cc V x C
is equal to [D?(ry) x {pt}] + £[{pt} x D?*(ry)]. By elementary toric geometry, the
symplectic area of the disc D?(ry) x {pt} with respect to the toric Kéhler form wy ¢
is equal to (o, uy) + @ = (; + @, while that of {pt} x D?(rq) is equal to A\. Thus,
the symplectic area of the disc p o u(D?) with respect to wyxc is ¢ + @ + ¢\. The
disc we are interested in, u(D?) C X! is the proper transform of p ou(D?) under the
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blowup map; since its intersection number with the exceptional divisor E' is equal to
|I| = ¢, we conclude that

(5.6) S wwe = (IDQ(p o U)*w\/x<c> —le=C +w+LlN—e¢).

On the other hand, the degree of vy : ST — S' is equal to |I| = ¢, so in Hy(L,Z)
we have [u(S')] = 71 + €. Thus the weight of u is

TV (9u) = TSIV (1) V (70)" = (T wo) T vg1.
Summing over the (’;) families of discs with |I| = ¢ for each £ =0, ..., k, we find that

k
W, (L, V) = ()T wo) T%van = (1 + T~ wo)* T va,1.
=0 O

Next we extend Lemma 5.6 to the case of general monomials in the coordinates v,,.
Let o be any primitive element of Z", and denote again by «,,,;, an element of A such
that (@nin, o) is minimal. Denote by V! = VU DY the toric partial compactification
of V? obtained by adding a single toric divisor DY in the direction of the ray —o.
The hypersurface H° admits a natural partial compactification H inside V.

We claim that H! is smooth for 7 sufficiently small in (3.1). Indeed, rescaling
fr by a factor of x~*min if necessary, we can assume without loss of generality that
(min,o0) = 0. Then f. extends to a regular function on V!, whose restriction to
DY is again a maximally degenerating family of Laurent polynomials, associated to
the regular polyhedral decomposition P N o+ of the convex hull of A N ot. This
implies that for sufficiently small 7 the restriction of f, to D? vanishes transversely;

the smoothness of H. follows.

By blowing up V! x C along H! x 0 and removing the proper transform of V! x 0,
we obtain a partial compactification X/ of X°. While X/ does not necessarily embed
into X, we can equip V! (resp. X/ ) with a toric (resp. S'-invariant) Kéhler form which
agrees with wy (resp. w,) everywhere outside of an arbitrarily small neighborhood of
the compactification divisor.

Denote by L € X° a smooth fiber of m which lies in the region where the Kahler
forms agree (so that L is Lagrangian in X! as well).

Lemma 5.7. The Maslov index 0 holomorphic discs bounded by L inside X! are all
contained in X° and described by Proposition 5.1.

Moreover, if L is tautologically unobstructed in X° and lies over the chamber U,,
then the points (L,V) € U) define weakly unobstructed objects of F(X), with

(57) WX{,(L; V) = (1 T T*ew0)<afamm,o>TwVa

«

for some w € R.
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Proof. The Maslov index of a disc in X with boundary on L is twice its intersection
number with the compactification divisor, and Assumption 2.2 is satisfied (in fact
X! is affine). Thus all Maslov index 0 holomorphic discs are contained in the open
stratum X, and Proposition 5.1 holds. (Since L lies away from the compactification
divisor, the symplectic area of these discs remains the same as for w.)

Thus, whenever L lies over a chamber U, it does not bound any holomorphic discs
of Maslov index zero or less in X!, and the Maslov index 2 discs can be classified
exactly as in the proof of Lemma 5.6. The only difference is that, since we evaluate
the symplectic areas of these discs with respect to the Kéhler form on X! rather than
X, the constant term w in the area formula (5.6) now depends on the choice of the
toric Kéahler form on V near the compactification divisor. U

By Remark 2.3 (see also Corollary A.11), the expressions (5.7) determine globally
defined regular functions on the mirror of X% Thus, we can use Lemma 5.7 to
determine the wall-crossing transformations between the affine charts of the mirror.

Consider two adjacent chambers U, and Ug separated by a wall of potentially
obstructed fibers of 7, i.e. assume that a, € A are connected by an edge in the
polyhedral decomposition P. Then we have:

Proposition 5.8. The instanton-corrected gluing between the coordinate charts U
and Ug preserves the coordinate wqy, and matches the remaining coordinates via

(5.8) ve = (1+ T_Ew0)<ﬂ_a’°>vg for all o € Z".

Proof. Let {L;}+co,1) be a path among smooth fibers of 7, with Ly and L; tautologi-
cally unobstructed and lying over the chambers U, and Up respectively. We consider
the partial compactifications X9 and X of X? introduced in Lemmas 5.5-5.7; in the
case of X/ we choose the Kéhler form to agree with w, over a large open subset which
contains the path L;, so as to be able to apply Lemma 5.7.

Since these partial compactifications satisfy Assumption 2.2, the moduli spaces of
Maslov index 0 holomorphic discs bounded by the Lagrangians L, in X9, X/, and X°
are the same, and the corresponding wall-crossing transformations are identical (see
Appendix A). Noting that the expressions (5.2) and (5.7) are manifestly convergent
over the whole completions (K*)"* of UY and Uy, we appeal to Lemma A.10, and
conclude that these expressions for the superpotentials WX?r and Wx over the cham-
bers U, and Uy match under the wall-crossing transformation. Thus wy is preserved,
and for primitive o € Z" the monomials v¢ and v§ are related by (5.8). (The case of
non-primitive o follows obviously from the primitive case.) OJ

This completes the proof of Theorem 1.7. Indeed, the instanton-corrected gluing
maps (5.8) coincide with the coordinate change formulas (3.11) between the affine
charts for the toric variety Y introduced in §3.3. Therefore, the SYZ mirror of X°
embeds inside Y, by identifying the completion of the local chart U with the subset
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of Y, where wy is non-zero. It follows that the SYZ mirror of X° is the subset of Y
where wj is non-zero, namely Y.

6. PROOF OF THEOREM 1.5

We now turn to the proof of Theorem 1.5. We begin with an elementary observation:

Lemma 6.1. If Assumption 1.4 holds, then every rational curve C ~ P! in X satisfies
D-C=c¢(X)-C>0; s0in particular Assumption 2.2 holds.

Proof. ¢1(X) = piye1(V) — [E], where py is the projection to V and E = p~!(H x 0)
is the exceptional divisor. Consider a rational curve C' in X (i.e., the image of a
nonconstant holomorphic map from P! to X), and denote by C’ = py(C) the rational
curve in V obtained by projecting C' to V. Applying the maximum principle to the
projection to the last coordinate y € C, we conclude that C is contained either in
p YV x0)=VUE, orin p~'(V x {y}) for some nonzero value of .

When C' C p~1(V x {y}) for y # 0, the curve C is disjoint from F and its projection
(" is nonconstant, so ¢;(X) - [C] = ¢, (V) - [C'] > 0 by Assumption 1.4.

When C is contained in V, the curve € is again nonconstant, and since the normal
bundle of V in X is O(—H), we have ¢,(X) - [C] = ¢1(V) - [C"] — [H] - [C"], which is
positive by Assumption 1.4.

Finally, we consider the case where C is contained in E but not in V. Then

a(X)-[C]=[D]-[C) = [V]- [C] + [p~H(Dv)] - [C] = V] - [C] + e (V) - [C).

The first term is non-negative by positivity of intersection; and by Assumption 1.4
the second one is positive unless C” is a constant curve, and non-negative in any
case. However C” is constant only when C' is (a cover of) a fiber of the P'-bundle
pig: B — H x 0; in that case [V] - [C] > 0, 50 ¢,(X) - [C] > 0 in all cases. O

As explained in §2.2; this implies that the tautologically unobstructed fibers of
7 : X° — B remain weakly unobstructed in X, and that the SYZ mirror of X is
just Y (the SYZ mirror of X°) equipped with a superpotential W, which counts
Maslov index 2 holomorphic discs bounded by the fibers of 7. Indeed, the conclusion
of Lemma 6.1 implies that any component which is a sphere contributes at least 2
to the Maslov index of a stable genus 0 holomorphic curve bounded by a fiber of .
Thus, Maslov index 0 configurations are just discs contained in X°, and Maslov index
2 configurations are discs intersecting D transversely in a single point.

Observe that each Maslov index 2 holomorphic disc intersects exactly one of the
components of the divisor D. Thus, the superpotential W, can be expressed as a sum
over the components of D = V U p~1(Dy x C), in which each term counts those discs
which intersect a particular component. It turns out that the necessary calculations
have been carried out in the preceding section: Lemma 5.5 describes the contribution
from discs which only hit V', and Lemma 5.6 describes the contributions from discs



34 MOHAMMED ABOUZAID, DENIS AUROUX, AND LUDMIL KATZARKOV

which hit the various components of p~!(Dy x C). Summing these, and using the
notations of §3.3, we obtain that, for any point (L, V) of UY (a € A),

Wo(L,V) = wao + Z(l + T~ )OO T iy T = g + Z w;.
i=1 i=1
Hence Wy is precisely the leading-order superpotential (3.14). This completes the
proof of Theorem 1.5.

Remark 6.2. In the proofs of Lemmas 5.5 and 5.6 we have not discussed in any
detail the orientations of moduli spaces of discs, which determine the signs of the
various terms appearing in the superpotential. The fact that those are all positive
follows from two ingredients.

The first is that, for a standard product torus in a toric variety, equipped with the
standard spin structure, the contributions of the various families of Maslov index 2
holomorphic discs to the superpotential are all positive. See [13] for a detailed cal-
culation in the case of the Clifford torus. The fact that all the signs are the same
is not surprising, since a monomial change of variables can be used to reduce to a
single example, namely the family of discs D? x {pt} bounded by a product torus
in C x (C*)™ equipped with the standard spin structure. The same argument also
applies to the discs in Lemma 5.5 since those can also be reduced to the toric case.

The second ingredient is a comparison of the orientations of moduli spaces of discs
in V and their lifts to X (as in Lemma 5.6). A short calculation shows that, for
the standard spin structure, the orientation of the moduli space of lifted discs in X
agrees with that induced by the orientation of the moduli space of discs in V' and the
natural orientation of the orbits of the S'-action. See the proof of Corollary 8 in [8]
for a similar argument. The positivity of the signs in Lemma 5.6 follows.

Remark 6.3. When Assumption 1.4 does not hold, the SYZ mirror of X differs
from (Y° W), since the enumerative geometry of discs is modified by the presence
of stable genus 0 configurations of total Maslov index 0 or 2. A borderline case that
remains fairly easy is when the strict inequality in Assumption 1.4 is relaxed to

(V) -C >max(0,H - C).
(This includes the situation where H is a Calabi-Yau hypersurface in a toric Fano
variety as an important special case.)

In this case, Assumption 2.2 still holds, so the mirror of X remains Y°; the only
modification is that the superpotential should also count the contributions of config-
urations consisting of a Maslov index 2 disc together with one or more rational curves
satisfying ¢1(X) - C' = 0. Thus, we now have

W= (1+co)wo+ (1+c)wy + -+ (1 +¢)w,,

where ¢y, ..., ¢, € A are constants (determined by the genus 0 Gromov-Witten theory
of X)), with val(¢;) > 0.
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7. FROM THE BLOWUP X TO THE HYPERSURFACE H

The goal of this section is to prove Theorem 1.6. As a first step, we establish:

Theorem 7.1. Under Assumption 1.4, the B-side Landau-Ginzburg model (Y, Wj)
is SYZ mirror to the A-side Landau-Ginzburg model (X, WY = y) (with the Kdihler
form w,).

(Recall that y is the coordinate on the second factor of V' x C.)

Sketch of proof. This result follows from Theorem 1.5 by the same considerations as
in Example 2.4. Specifically, equipping X with the superpotential WV = y enlarges
its Fukaya category by adding admissible non-compact Lagrangian submanifolds, i.e.,
properly embedded Lagrangian submanifolds of X whose image under WV is only
allowed to tend to infinity in the direction of the positive real axis; in other terms,
the y coordinate is allowed to be unbounded, but only in the positive real direction.

Let ag C C be a properly embedded arc which connects +oo to itself by passing
around the origin, encloses an infinite amount of area, and stays away from the
projection to C of the support of the cut-off function y used to construct w.. Then we
can supplement the family of Lagrangian tori in X constructed in §4 by considering
product Lagrangians of the form L = p~!(L’' x ag), where L' is an orbit of the T"-
action on V. Indeed, by Proposition 4.5, away from the exceptional divisor the fibers
of m: X® — B are lifts to X of product tori L' x S*(r) € V x C. For large enough
r, the circles S'(r) can be deformed by Hamiltonian isotopies in C to simple closed
curves that approximate ay as r — oo; moreover, the induced isotopies preserve
the tautological unobstructedness in X of the fibers of = which do not intersect
p~Y(H x C). In this sense, p~ (L’ X ag) is naturally a limit of the tori p=*(L' x S*(r))
as r — 0o. The analytic structure near this point is obtained by equation (2.3), which
naturally extends as in Example 2.4.

To be more specific, let L' = uy,' (C1, ..., ¢) for (i, ..., () a point in the compo-
nent of Ay \ uy (Ug) corresponding to the weight a € A, and equip L = p~ (L' X ag)
with a local system V € hom(w;(L),Ux). The maximum principle implies that any
holomorphic disc bounded by L in X° must be contained inside a fiber of the projec-
tion to V' (see the proof of Proposition 5.1). Thus L is tautologically unobstructed in
X0 and (L, V) defines an object of the Fukaya category F (X% WV), and a point in
some partial compactification of the coordinate chart U) considered in §5. Denoting
by 71, - - - ,Vn the standard basis of Hy(L) ~ H;(L') given by the various S! factors,
in the coordinate chart (5.1) the object (L, V) corresponds to

(Vats - s Vo, Wao) = (T<1V(’yl), TV (), O) )

Thus, equipping X° with the superpotential WV extends the moduli space of objects
under consideration from Y =Y \ w;'(0) to Y.
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Under Assumption 1.4, (L, V) remains a weakly unobstructed object of the Fukaya
category F (X, W"). We now study the families of Maslov index 2 holomorphic discs
bounded by L in X, in order to determine the corresponding value of the superpo-
tential and show that it agrees with (3.14). Under projection to the y coordinate,
any holomorphic disc u : (D* dD?*) — (X,L) maps to a holomorphic disc in C
with boundary on the arc agy, which is necessarily constant; hence the image of w is
contained inside p~1(V x {y}) for some y € ag. Moreover, inside the toric variety
p YV x {y}) = V the holomorphic disc v has boundary on the product torus L'.

Thus, the holomorphic discs bounded by L in X can be determined by reduction
to the toric case of (V,L'). For each toric divisor of V' there is a family of Maslov
index 2 discs which intersect it transversely at a single point and are disjoint from
all the other toric divisors; these discs are all regular, and exactly one of them passes
through each point of L [15]. The discs which intersect the toric divisor corresponding
to a facet of Ay with equation (o, ) +w = 0 have area (o, () + w and weight T%vJ.
Summing over all facets of Ay, we conclude that

(7.1) Wo(L, V) => T=vg.

i=1
Moreover, because wy = 0 at the point (L, V), the coordinate transformations (3.11)
simplify to v = vZi. Thus the expression (7.1) agrees with (3.14). O

(67

Remark 7.2. In order to fill the details of this sketch, we would need a sufficient
development of Fukaya categories of A-side Landau-Ginzburg models in order to verify
the existence of the analytic charts at infnity. The most straightforward way to do this
is to introduce non-compact Lagrangians which are mirror to the powers of an ample
line bundle on Y, and check that (i) these Lagrangians generate the Fukaya category
and (ii) when r is sufficiently large, the product Lagrangian L' x S'(r) C V x C
defines a module over the Floer cochains of this generating family which is equivalent
to the one associated to the product of L’ with an admissible arc in C equipped
with a bounding cochain which is a multiple of a degree 1 generator coming from a
self-intersection at infinity.

Our next observation is that WY : X — C has a particularly simple structure. The
following statement is a direct consequence of the construction:

Proposition 7.3. WY =y : X — C is a Morse-Bolt fibration, with 0 as its only
critical value; in fact the singular fiber WY~ H0) = VUE C X has normal crossing
singularities along crit(WY) =V NE ~ H.

Remark 7.4. However, the Kahler form on crit(W") ~ H is not that induced by
wy, but rather that induced by the restriction of w., which represents the cohomology
class [wy|—€[H]. To compensate for this, in the proof of Theorem 1.6 we will actually
replace [wy] by [wy] + €[H].
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Proposition 7.3 allows us to relate the Fukaya category of (X, WV) to that of H, using
the ideas developed by Seidel in [46], adapted to the Morse-Bott case (see [53]).

Remark 7.5. Strictly speaking, the literature does not include any definition of the
Fukaya category of a superpotential without assuming that it is a Lefschetz fibration.
The difficulty resides not in defining the morphisms and the compositions, but in
defining the higher order products in a coherent way. These technical problems were
resolved by Seidel in [48], by introducing a method of defining Fukaya categories of
Lefschetz fibration that generalizes in a straightforward way to the Morse-Bott case
we are considering. This construction will be revisited in [5]. As the reader will see,
in the only example where we shall study such a Fukaya category, the precise nature
of the construction of higher products will not enter.

Outside of its critical locus, the Morse-Bott fibration WV carries a natural hori-
zontal distribution given by the w.-orthogonal to the fiber. Parallel transport with
respect to this distribution induces symplectomorphisms between the smooth fibers;
in fact, parallel transport along the real direction is given by (a rescaling of) the
Hamiltonian flow generated by Im WV, or equivalently, the gradient flow of Re WV
(for the Kéhler metric).

Given a Lagrangian submanifold ¢ C crit(W"Y) ~ H, parallel transport by the
positive gradient flow of Re WV yields an admissible Lagrangian thimble L, C X
(topologically a disc bundle over ¢). Moreover, any local system V on ¢ induces
by pullback a local system V on L,. However, there is a subtlety related to the
nontriviality of the normal bundle to H inside X:

Lemma 7.6. The thimble L, is naturally diffeomorphic to the restriction of the com-
plex line bundle L= O(H) to ¢ C H.

Proof. First note that, for the Lefschetz fibration f(z,y) = xy on C? equipped with
its standard Kéhler form, the thimble associated to the critical point at the origin is
{(x,7), x € C} C C2. Indeed, parallel transport preserves the quantity |z|* — |y|?, so
that the thimble consists of the points (z,y) where |z| = |y| and zy € Rx, i.e. y = Z.
In particular, the thimble projects diffeomorphically onto either of the two C factors
(the two projections induce opposite orientations).

Now we consider the Morse-Bott fibration W : X — C. The normal bundle to the
critical locus crit WY = VN E ~ H is isomorphic to £ ® L' (where £ is the normal
bundle to H inside V, while £~ is its normal bundle inside E). Moreover, W is
locally given by the product of the fiber coordinates on the two line subbundles. The
local calculation then shows that, by projecting to either subbundle, a neighborhood

of £ in L, can be identified diffeomorphically with a neighborhood of the zero section
in either £y, or /jlz,l. [l
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Lemma 7.6 implies that, even when ¢ C H is spin, L, C X need not be spin; indeed,
wo(T'Le) = wo(Tl) + wy(Lye). Rather, Ly, is relatively spin, i.e. its second Stiefel-
Whitney class is the restriction of the background class s € H*(X,7/2) Poincaré dual
to [‘7] (or equivalently to [E]). Hence, applying the thimble construction to an object
of the Fukaya category F(H) does not determine an object of F(X, W"), but rather
an object of the s-twisted Fukaya category Fy(X, W) (we shall verify in Proposition

7.10 that thimbles are indeed weakly unobstructed objects of this category).

Remark 7.7. While it has not appeared in the literature, the notion of weak unob-
structedness of an admissible Lagrangian L is a straightforward generalization of the
case of closed Lagrangians. There is a Floer-theoretic A.-structure on the ordinary
cohomology of L, and a natural A,,-homomorphism from the ordinary cohomology
of L equipped with this A,-structure to the endomorphisms of L as an object of
the Fukaya category of the potential. This homomorphism is not necessarily an iso-
morphism, but it is always unital and preserves the curvature my. We say that L is
weakly unobstructed if the curvature is a multiple of the unit in H°(L). In the case
of thimbles, radial parallel transport allows one to lift Maurer-Cartan elements and
bounding cochains from an arbitrarily small neighborhood of the critical fiber to the
total space. This implies that an admissible thimble which bounds no holomorphic
disc of Maslov index less than 2 in a neighborhood of the critical fiber is weakly
unobstructed; and the curvature is then the product of the unit with the count of
Maslov index 2 discs passing through a generic point near the critical fiber.

Corollary 7.8. Under Assumption 1.4, there is a fully faithful A -functor from the
Fukaya category F(H) to Fs(X, W), which at the level of objects maps (£, V) to the
thimble (Ly, V).

Sketch of proof. Let {1, {5 be two Lagrangian submanifolds of crit(W") ~ H, assumed
to intersect transversely (otherwise transversality is achieved by Hamiltonian pertur-
bations, which may be needed to achieve regularity of holomorphic discs in any case),
and denote by Ly, Ly C X the corresponding thimbles. (For simplicity we drop the
local systems from the notations; we also postpone the discussion of relatively spin
structures until further below).

Recall that homg xwv)(L1, Le) is defined by perturbing L;, L, to Lagrangians
Ly, L whose images under WV are half-lines which intersect transversely and such
that the first one lies above the second one near infinity; so for example, fixing a small
angle 6 > 0, we can take Ly (resp. Ly) to be the Lagrangian obtained from 1 (resp. £5)
by the gradient flow of Re(e™® W) (resp. Re(e? W")). (A more general approach
would be to perturb the holomorphic curve equation by a Hamiltonian vector field
generated by a suitable rescaling of the real part of WV, instead of perturbing the
Lagrangian boundary conditions; in our case the two approaches are equivalent.)

We now observe that L; and L, intersect transversely, with all intersections lying
in the singular fiber WV_l(O), and in fact Ly N Ly = ¢4 N €y, Thus, hom gy (41, £2)
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and homz,(x wv)(L1, Ly) are naturally isomorphic. Moreover, the maximum principle
applied to the projection WV implies that all holomorphic discs bounded by the
(perturbed) thimbles in X are contained in (WY)~'(0) = V U E (and hence their
boundary lies on ¢; Uly C H C VU E).

After quotienting by a suitable reference section, we can view the defining section of
H as a meromorphic function on V, with f~1(0) = H. Since f = 0 at the boundary,
and since a meromorphic function on the disc which vanishes at the boundary is
everywhere zero, any holomorphic disc in V with boundary in ¢; U ¢, must lie entirely
inside f~1(0) = H. By the same argument, any holomorphic disc in E with boundary
in /1 U /5 must stay inside H as well. Finally, Lemma 6.1 implies that stable curves
with both disc and sphere components cannot contribute to the Floer differential
(since each sphere component contributes at least 2 to the total Maslov index).

This implies that the Floer differentials on hom gz (41, o) and homz, (x wvy (L1, L2)
count the same holomorphic discs. The same argument applies to Floer products and
higher structure maps.

To complete the proof it only remains to check that the orientations of the relevant
moduli spaces of discs agree. Recall that a relatively spin structure on a Lagrangian
submanifold L with background class s is the same thing as a stable trivialization
of the tangent bundle of L over its 2-skeleton, i.e. a trivialization of TL‘L@) &b E|L(2),
where F is a vector bundle over the ambient manifold with wy(E) = s; such a stable
trivialization in turn determines orientations of the moduli spaces of holomorphic
discs with boundary on L (see [20, Chapter 8], noting that the definition of spin
structures in terms of stable trivializations goes back to Milnor [42]).

In our case, we are considering discs in H with boundary on Lagrangian submani-
folds ¢; C H, and the given spin structures on ¢; determine orientations of the moduli
spaces for the structure maps in F(H). If we consider the same holomorphic discs in
the context of the thimbles L; C X, the spin structure of ¢; does not induce a spin
structure on T'L; ~ Tl; ® Ly, (what would be needed instead is a relatively spin struc-
ture on /; with background class wy(L)). On the other hand, the normal bundle to
H inside X, namely £ @® £, is an SU(2)-bundle and hence has a canonical isotopy
class of trivialization over the 2-skeleton. Thus, the spin structure on /¢; induces a
trivialization of T'L; @ £~ over the 2-skeleton of L;, i.e. a relative spin structure on
L; with background class w2(£|_L1i) = s)1,. Furthermore, because wy(L & L7') = 0,
stabilizing by this rank 2 bundle does not affect the orientation of the moduli space
of discs [20, Proposition 8.1.16]. Hence the structure maps of F(H) and F (X, WV)
involve the same moduli spaces of holomorphic discs, oriented in the same manner,
which completes the proof. O

Remark 7.9. The reason the above is only a sketch of proof is that the construction of
the two Fukaya categories requires choices of perturbations, and we have not discussed
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how to arrange for these choices to yield the same answer. A model for such arguments
in a related situation is provided by Seidel in [46, Section (14c)].

Implicit in the statement of Corollary 7.8 is the fact that, if (¢, V) is weakly unob-
structed in F(H), then (Ly, V) is weakly unobstructed in F,(X,WV). In our setting,
the values of the superpotentials for objects of F(H) and their images in Fs(X, W)
differ by an additive constant . This constant is easiest to determine if we assume

that V is affine:

Proposition 7.10. Under the assumption that V is affine, the functor of Corol-
lary 7.8 increases the value of the superpotential by 6 = T*¢.

Sketch of proof. Consider a weakly unobstructed object (¢, V) of F(H) and the cor-
responding thimble L, C X. Holomorphic discs bounded by L, in X are contained in
the level sets of WY =y (by the maximum principle). By Remark 7.7, we only need
to study the moduli spaces of such discs for small values of .

For y > 0, the intersection LY of L, with (WY)™(y) ~ V is a circle bundle over
¢, lying in the boundary of a standard symplectic tubular neighborhood of size € of
H in (WY)7!(y) equipped with the restriction of w.. Indeed, as y — 0, the fibers of
WY degenerate to the normal crossing divisor V U E. Symplectic parallel transport
identifies the standard disc bundle E\ (V N E) ~ H x D?(¢) inside (W")~'(0) with a
standard symplectic neighborhood UY of H inside (W)~ (y) for y > 0. The boundary
of UY (a trivial S'-bundle over H) consists of all points in (W")™!(y) whose parallel
transport converges to VNE~H as y — 0, and in particular it contains L.

However, while the restriction of w. to (W")~!(y) ~ V is cohomologous to wy for
all y > 0 and agrees with it pointwise for y sufficiently large, the actual forms differ
near H for small y. Under the identification (W")~!(y) ~ V, the neighborhoods UY
are small tubular neighborhoods of H, increasing in size along a suitably normalized
gradient flow of | f| as y increases, and agreeing with a standard wy-neighborhood of
H of size € for y > €'/2.

Using that V' is affine, H is the vanishing locus of the globally defined holomorphic
function f, and the maximum principle applied to f implies that, for small enough y
(or for all y if € is small enough), all holomorphic discs bounded by LY in V' lie in a
neighborhood U of H (possibly larger than UY).

The complex structure on the neighborhood U of H in V' is not biholomorphic to
the standard product complex structure on a domain in H x C, but agrees with it along
H. Thus, for small enough y, an arbitrarily C'*°-small perturbation of the almost-
complex structure on V' (preserving the holomorphicity of f) ensures the existence of
a holomorphic projection map 7y : U"Y — H, without affecting counts of holomorphic
discs; without loss of generality, we can further assume that 7y maps Lj to ¢ as an
S'-bundle, with |f| constant in the S* fiber over each point of /.
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Holomorphic discs with boundary on LY can then be classified by using the pro-
jection to H. The Maslov index of a disc u : D* — (V, LY) (with image contained in
U") is the sum of the Maslov index of 7y o u and twice the intersection number of
w with H. Thus, the weak unobstructedness of ¢ in H implies that of L}, and there
are two types of Maslov index 2 discs to consider:

e my owu is a Maslov index 2 disc in H, and u avoids H;
e 1y o is constant, and u intersects H transversely once.

In the first case, we observe that, given a point p € LY, each holomorphic disc
v : D* — (H,/) through p = 7wg(p) has a unique lift u through p that avoids
H. Indeed, v determines the value of log|f| along the boundary of the disc u; the
(unique) harmonic extension of this function to the entire disc can be expressed as
the real part of some holomorphic function g, unique up to a pure imaginary additive
constant. We then find that necessarily f ou = exp(g) up to some constant factor
which is determined by requiring that the marked point map to p. This, together
with 7 ou = v, determines u. Recalling that LY lives on the boundary of a standard
symplectic neighborhood of H, and using that « is disjoint from H, we further observe
that the symplectic area of u in (W")~!(y) is equal to that of v in H, and the holonomy
of V along the boundary of u equals that of V along the boundary of v. Moreover,
the same argument as in the proof of Corollary 7.8 shows that the orientations of
the moduli spaces match. Thus, the total contribution of all these discs corresponds
exactly to the superpotential in F(H).

In the second case, denoting 7y o u = p € ¢, by construction L} intersects 7@1 (p)
in a circle which bounds a disc of symplectic area e, and u necessarily maps D?
biholomorphically onto this disc. These small discs of size € in the normal slices to H
are regular, and contribute positively to the superpotential: indeed, their deformation
theory splits into that of constant discs in H and that of the standard disc in the
complex plane with boundary on a circle with the trivial spin structure (the triviality
of the spin structure is due to the twist by the background class s). Thus, these discs
are responsible for the additional term 7 in the superpotential for L,.

For the sake of completeness, we also consider the case y = 0, where the intersection
of Ly with (WVY)~1(0) = V U E is simply ¢. The argument in the proof of Corollary
7.8 then shows that holomorphic discs bounded by ¢ in V U E lie entirely within H;
however, there is a nontrivial contribution of Maslov index 2 configurations consisting
of a constant disc together with a rational curve contained in E, namely the P! fiber
of the exceptional divisor over a point of ¢ C H. (These exceptional spheres are
actually the limits of the area e discs discussed above as y — 0). U

Remark 7.11. The assumption that V is affine can be weakened somewhat: for
Proposition 7.10 to hold it is sufficient to assume that the minimal Chern number of
a rational curve contained in V' is at least 2. When this assumption does not hold,
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the discrepancy § between the two superpotentials includes additional contributions
from the enumerative geometry of rational curves of Chern number 1 in V.

Remark 7.12. The A -functor from F(H) to Fs(X, W) is induced by a Lagrangian
correspondence in the product H x X, namely the set of all (p,q) € H x X such that
parallel transport of ¢ by the gradient flow of —Re WY converges to p € crit W".
This Lagrangian correspondence is admissible with respect to prsWW", and weakly
unobstructed with mg = 6. While the Ma’u-Wehrheim-Woodward construction of
A-functors from Lagrangian correspondences [39] has not yet been developed in
the setting considered here, it is certainly the right conceptual framework in which
Corollary 7.8 should be understood.

By analogy with the case of Lefschetz fibrations [46], it is expected that the Fukaya
category of a Morse-Bott fibration is generated by thimbles, at least under the as-
sumption that the Fukaya category of the critical locus admits a resolution of the
diagonal. The argument is expected to be similar to that in [46], except in the Morse-
Bott case the key ingredient becomes the long exact sequence for fibered Dehn twists
[53]. Thus, it is reasonable to expect that the A,-functor of Corollary 7.8 is in fact
a quasi-equivalence.

Similar statements are also expected to hold for the wrapped Fukaya category of H
and the partially wrapped Fukaya category of (X, WY) (twisted by s); however, this
remains speculative, as the latter category has not been suitably constructed yet.

In any case, Corollary 7.8 and Proposition 7.10 motivate the terminology introduced
in Definition 1.2.

Proof of Theorem 1.6. While Theorem 7.1 provides an SYZ mirror to the Landau-
Ginzburg model (X, W), in light of the above discussion several adjustments are
necessary in order to arrive at a generalized SYZ mirror to H.

(1) As noted in Remark 7.4, the restriction of w, to crit(W") does not agree with
the restriction of wy to H. To remedy this, in our main construction V' should
be equipped with a Kahler form in the class [wy ]|+ ¢[H] rather than [wy]. This
ensures that the critical locus of WV is indeed isomorphic to H equipped with
the restriction of the Kahler form wy .

(2) In light of Corollary 7.8, the A-side Landau-Ginzburg model (X, W") should
be twisted by the background class s = PD([V]) € H?*(X,Z/2). Namely,
the tori we consider in our main argument should be viewed as objects of
Fs(X,WY) rather than F(X,W"). This modifies the sign conventions for
counting discs and hence the mirror superpotential.

(3) By Proposition 7.10, the additive constant § = T should be subtracted from
the superpotential, since the natural A-functor from F(H) to Fs(X, W)
increases mg by that amount.
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Thus, the mirror space remains the toric variety Y, but the superpotential is no longer

(7.2) Wy = wo + Z TV
i=1
we now make explicit how each of the above changes affects the potential.
Replacing [wy] by [wy]| + €[H] amounts to changing the equations of the facets of
the moment polytope Ay from (oy,-) + w; = 0 to (oy,-) + w; + eA(0;) = 0 (where
A Xy — R is the piecewise linear function defining £ = O(H)). Accordingly, each
exponent w; in (7.2) should be changed to w; + eA(0;).

Next, we twist by the background class s = PD([V]), and view the tori studied in
Section 5 as objects of Fs(X, W) rather than F (X, W"). Specifically, s lifts to a class
in H*(X, L; Z/2) (dual to [V] € Hy, (X \ L)), and twisting the standard spin structure
by this lift of s yields a relatively spin structure on L. By [20, Proposition 8.1.16],
this twist affects the signed count of holomorphic discs in a given class 5 € m(X, L)
by a factor of (—1)* where k = £ - [V]. Recall from §6 that, of the various families of
holomorphic discs that contribute to the superpotential, the only ones that intersect
V are those described by Lemma 5.5; thus the only effect of the twisting by the

background class s is to change the first term of Wy from wy to —wy.

Finally, we subtract 6 = T from the superpotential, and find that the appropriate
superpotential to consider on Y is given by

Wi= T —wo+ »_ T=HNIyT = Ty 4y " T= TN
i=1 =1
Finally, recall from §3.3 that the weights of the toric monomials vy and vgi are
respectively (0,1) and (—o;, A(0;)) € Z™ @ Z. Therefore, a rescaling of the last
coordinate by a factor of T changes vy to Tvy and v to TEA(‘”)ng. This change of
variables eliminates the dependence on € (as one would expect for the mirror to H)
and replaces W by the simpler expression

r
—Ug + E Twivgj,,
i=1

which is exactly W{ (see Definition 3.10). O

Remark 7.13. Another way to produce an A..-functor from the Fukaya category of
H to that of X (more specifically, the idempotent closure of F4(X)) is the following
construction considered by Ivan Smith in [50, Section 4.5].

Given a Lagrangian submanifold ¢ C H, first lift it to the boundary of the e-tubular
neighborhood of H inside V', to obtain a Lagrangian submanifold Cy, C V' which is a
circle bundle over ¢; then, identifying V' with the reduced space X,cqe = ,u)_(l(e) /St
lift C to ,u)_{l(e) and “spin” it by the S'-action, to obtain a Lagrangian submanifold
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T, € X which is a T%bundle over ¢. Then T, formally splits into a direct sum
T} & T, ; the Ay-functor is constructed by mapping ¢ to either summand.

The two constructions are equivalent: in JF,(X, W) the summands T} are iso-
morphic to the thimble L, (up to a shift). One benefit of Smith’s construction is
that, unlike L,, the Lagrangian submanifold 7} is entirely contained inside X°, which
makes its further study amenable to T-duality arguments involving X° and Y°.

8. THE CONVERSE CONSTRUCTION

As a consequence of Theorem 1.7, the mirror Y? of X° can be defined as a variety
not only over the Novikov field, but also over the complex numbers. In this section, we
impose the maximal degeneration condition (cf. Definition 3.1) which implies that Y
is smooth. We then reverse our viewpoint from the preceding discussion: treating 7T’
as a numerical parameter and equipping Y with a Kéhler form, we shall reconstruct
X (as an analytic space that also happens to be defined over complex numbers) as an
SYZ mirror. Along the way, we also obtain another perspective on how compactifying
Y? to the toric variety Y amounts to equipping X with a superpotential. We omit
any discussion of Y or Y equipped with A-side Landau-Ginzburg models, which
would require a deeper understanding of the corresponding Fukaya categories.

(Note: many of the results in this section were also independently obtained by
Chan, Lau and Leung [12].)

To begin our construction, observe that Y = Y'\w;'(0) carries a natural 7™-action,
given in the coordinates introduced in §3.3 by

(€0 €Y (Wads - - Vaims Vao) = (€700 1, . . ., €% Vg 0, Va0)-
This torus is a subgroup of the (n + 1)-dimensional torus which acts on the toric
variety Y, namely the stabilizer of the regular function wg = =71 + T*vy.

We equip Y with a T"-invariant Kahler form wy. To make things concrete, take
wy to be the restriction of a complete toric Kéhler form on Y, with moment polytope

Ay ={(&mn) € R"®R[n 2 ¢(§) = max({a, §) — p(a))}

(cf. (3.8)). We denote by jiy : Y — R™"! the moment map for the 7" -action on Y,
and by py : Y? — R” the moment map for the T™-action on Y°. Observing that py
is obtained from fiy by restricting to Y° and projecting to the first n components, the
critical locus of py is the union of all codimension 2 toric strata, and the set of critical
values of uy is precisely the tropical hypersurface IIy C R™ defined by ¢. Finally, we
also equip Y with the T"-invariant holomorphic (n + 1)-form given in each chart by

Qy =dlogvai A+ Adlogv,, A dlogwy.

Note that this holomorphic volume form scales with e.



BLOWUPS AND MIRROR SYMMETRY FOR HYPERSURFACES 45

Lemma 8.1. The map my = (uy, |wo|) : Y — By = R" xR, defines a T"-invariant
special Lagrangian torus fibration on Y°. Moreover, my(&,7) is singular if and only
if (&,r) € Ty x {T¢}, and obstructed if and only if r = T¢.

This fibration is analogous to some of the examples considered in [23, 24, 10, 11];
see also Example 3.3.1 in [7].

The statement that m;.'(¢,7) is special Lagrangian follows immediately from the
observation that {2y descends to the holomorphic 1-form dlog wg on the reduced space
pyt (€)/T™ =~ C*; thus the circle |wy| = 7 is special Lagrangian in the reduced space,
and its lift to py'(€) is special Lagrangian in Y.

A useful way to think of these tori is to consider the projection of Y to the
coordinate wy, whose fibers are all isomorphic to (C*)" except for wy ' (—T¢) = vy ' (0)
which is the union of all toric strata in Y. In this projection, 7r{,1(£ ,7) fibers over the
circle of radius r centered at the origin, and intersects each of the fibers wy ' (re)
in a standard product torus (corresponding to the level ¢ of the moment map). In
particular, 7y (€, 7) is singular precisely when r = T and & € Ilj.

By the maximum principle, any holomorphic disc in Y bounded by 7' (€, 7) must
lie entirely within a fiber of the projection to wy. Since the regular fibers of wy
are isomorphic to (C*)", inside which product tori do not bound any nonconstant
holomorphic discs, 7r;1(§ ,7) is tautologically unobstructed for r # 7. When r = T,
Ty (&, 7) intersects one of the components of wy ' (—7°) (i.e. one of the toric divisors
of Y) in a product torus, which bounds various families of holomorphic discs as well as
configurations consisting of holomorphic discs and rational curves in the toric strata.
This completes the proof of Lemma 8.1.

The maximum principle applied to wq also implies that every rational curve in Y
is contained in wy *(—7°) (i.e. the union of all toric strata), hence disjoint from the
anticanonical divisor wy'(0), and thus satisfies ¢;(Y) - C = 0; in fact Y is a toric
Calabi-Yau variety. So Assumption 2.2 holds, and partially compactifying Y° to YV’
does not modify the enumerative geometry of Maslov index 0 discs bounded by the
fibers of my. Hence the SYZ mirror of Y is just the mirror of Y° equipped with an
appropriate superpotential, and we determine both at the same time.

The wall » = T divides the fibration 7y : Y — By into two chambers; accordingly,
the SYZ mirror of Y° (and Y)) is constructed by gluing together two coordinate charts
U’ and U"” via a transformation which accounts for the enumerative geometry of discs
bounded by the potentially obstructed fibers of my. We now define coordinate systems
for both charts and determine the superpotential (for the mirror of Y) in terms of
those coordinates. For notational consistency and to avoid confusion, we now denote
by 7 (rather than 7') the Novikov parameter recording areas with respect to wy-.

We start with the chamber r» > T, over which the fibers of my can be deformed
into product tori in Y (i.e., orbits of the T"!-action) by a Hamiltonian isotopy that
does not intersect w, 1(—T*¢) (from the perspective of the projection to wy, the isotopy
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amounts simply to deforming the circle of radius r centered at 0 to a circle of the
appropriate radius centered at —7°).

Fix a reference fiber L° = 7,1 (€9,7°), where £° € R™ and 7 > T¢, and choose a
basis (Y1, -, Vn,75) of Hi(L° Z), where —v, ..., —, correspond to the factors of
the T™-action on LY, and —v{ corresponds to an orbit of the last S! factor of 77!
acting on a product torus fiy' (€°,7°) which is Hamiltonian isotopic to L° in Y. (The
signs are motivated by consistency with the notations used for X°.)

A point of the chart U’ mirror to the chamber {r > T} corresponds to a pair
(L,V), where L = 7, (¢, 7) is a fiber of 7y (with r > T°), Hamiltonian isotopic to a
product torus jiy' (&,m) in Y, and V € hom(m (L), Ux). We rescale the coordinates
given by (2.3) to eliminate the dependence on the base point (£°,7%), i.e. we identify
U’ with a domain in (K*)"*! via

(8.1) (L, V) = (2),...,2,2) = (7"51V(’yl), TV (), T V('yé)) )
(Compare with (2.3), noting that —&§ = —&) + [ wy and —n = —n" + f% wy.)

Lemma 8.2. In the chart U’, the superpotential for the mirror to'Y is given by

(8.2) WY(2, ... .20, 2) = Z(l F ko) TP @ gl o

7 n?
a€cA

where ko € K are constants with val(k,) > 0.

Proof. Consider a point (L,V) € U’, where L = m'(¢,r) is Hamiltonian isotopic
to the product torus L' = fi3'(£,m) in Y. As explained above, the isotopy can
be performed without intersecting the toric divisors of Y, i.e. without wall-crossing;
therefore, the isotopy provides a cobordism between the moduli spaces of Maslov
index 2 holomorphic discs bounded by L and L' in Y.

It is well-known that the families of Maslov index 2 holomorphic discs bounded by
the standard product torus L’ in the toric manifold Y are in one-to-one correspondence
with the codimension 1 toric strata of Y. Namely, for each codimension 1 stratum,
there is a unique family of holomorphic discs which intersect this stratum transversely
at a single point and do not intersect any of the other strata. Moreover, every point
of L’ lies on the boundary of exactly one disc of each family, and these discs are all
regular [15] (see also [6, §4]).

The toric divisors of Y, or equivalently the facets of Ay, are in one-to-one corre-
spondence with the elements of A. The symplectic area of a Maslov index 2 holomor-
phic disc in (Y, L) which intersects the divisor corresponding to a € A (and whose
class we denote by f,) is equal to the distance from the point (£, 7) to that facet of
Ay, namely 7 — («, &) + p(a), whilst the boundary of the disc represents the class
0Ba =D aiyi — 7 € Hi(L',Z). The weight associated to such a disc is therefore

25, (L', V) = 717 @8OFP@OF ()01 | Y (,)2 V(7)) 7t = 7P @l L
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Using the isotopy between L and L/, we conclude that the contributions of Maslov
index 2 holomorphic discs in (Y, L) to the superpotential W add up to

Z 25, (L, V) = Z pPlgh @ gl AL

acA a€cA

However, the superpotential WV also includes contributions from (virtual) counts
of stable genus 0 configurations of discs and rational curves of total Maslov index 2.
These configurations consist of a single Maslov index 2 disc (in one of the above
families) together with one or more rational curves contained in the toric divisors of
Y (representing a total class C' € Hy(Y,Z)). The enumerative invariant n(L, 8, + C)
giving the (virtual) count of such configurations whose boundary passes through a
generic point of L can be understood in terms of genus 0 Gromov-Witten invariants
of suitable partial compactifications of Y (see e.g. [12]). However, all that matters
to us is the general form of the corresponding terms of the superpotential. Since
the rational components contribute a multiplicative factor 7&v)C to the weight, we
obtain that

WY = Z (1 + Z n(L, B+ C) T[”Y]'C) TPl gl At

acA CeH,(Y,Z)
wy]-C>0
which is of the expected form (8.2). O

Next we look at the other chart U”, which corresponds to the chamber r < T of the
fibration 7y. Fix again a reference fiber L° = 7;.*(£9,7°), where £° € R™ and 7° < T*,
and choose a basis (71,...,7n,7y) of Hi(L°,Z), where —vi, ..., —, correspond to
the factors of the T"-action on L°, and 7 can be represented by a loop in LY over
which w, runs counterclockwise around the circle of radius r* while Vals- -+ Vam € Ry
(for some arbitrary choice of a)). Note that the fibration wy : Y — C is trivial over
the disc of radius r% in fact the coordinates (wg, Va1, --,Van) (for any a) give a
biholomorphism from the subset {|wy| < 7°} of Y to D?*(r%) x (C*)™. Then ~{ can
be characterized as the unique element of H;(L° Z) which arises as the boundary
of a section of wy : Y — C over the disc of radius 7°; we denote by 3, the relative
homotopy class of this section. A point of U” corresponds to a pair (L,V) where
L =y (&) is a fiber of 7y (with r < T¢), and V € hom(m; (L), Ux). As before, we
rescale the coordinates given by (2.3) to eliminate the dependence on the base point
(€9, r9), i.e. we identify U” with a domain in (K*)"! via

(83)  (L,V) = (af,vamy") = (T79V (), 70V (), TV (57))
Lemma 8.3. In the chart U”, the superpotential for the mirror to'Y is given by
(8.4) WY, ... 2y ="

Proof. By the maximum principle applied to the projection to wq, any holomorphic
disc bounded by L = 7y, (¢,7) in Y must be contained in the subset {|wo| <7} C Y,
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which is diffeomorphic to D? x (C*)*. Thus, for topological reasons, any holomorphic
disc bounded by L must represent a multiple of the class ;. Since the Maslov
index is equal to twice the intersection number with wy ' (0), Maslov index 2 discs are
holomorphic sections of wy : Y — C over the disc of radius r, representing .

The formula (8.4) now follows from the claim that the number of such sections pass-
ing through a given point of L is n(L, 5y) = 1. This can be viewed as an enumerative
problem for holomorphic sections of a trivial Lefschetz fibration with a Lagrangian
boundary condition, easily answered by applying the powerful methods of [45, §2].
An alternative, more elementary approach is to deform wy among toric Kahler forms
in its cohomology class to ensure that, for some £° € R, uy'(€°) is given in one of
the coordinate charts Y, of §3.3 by equations of the form |v, 1| = p1, ..., [Van| = pn.
(In fact, many natural choices for wy cause this property to hold immediately.) When
this property holds, the maximum principle applied to v, 1, ..., Vs, implies that the
holomorphic Maslov index 2 discs bounded by L° = 7;;'(£°,70) are given by letting
wo vary in the disc of radius r° while the other coordinates Va1 ---,Van are held
constant. All these discs are regular, and there is precisely one disc passing through
each point of LY. It follows that n(L° 8y) = 1. This completes the proof, since the
invariant n(L°, fy) is not affected by the deformation of wy to the special case we
have considered, and the value of n(L, 5y) is the same for all the fibers of 7y over the
chamber r < T. O

We can now formulate and prove the main result of this section:

Theorem 8.4. The rigid analytic manifold
(8.5) X0 ={(z1,...,2p,y,2) € (K)" x K?|yz = f(z1,...,2)},

where f(z1,...,00) = 3 (14 k)T D28 2% is SYZ mirror to (YO, wy).
acA

Moreover, the B-side Landau-Ginzburg model (X°, WY = y) is SYZ mirror to
(Y, (,L)y).

Proof. The two charts U’ and U” are glued to each other by a coordinate transfor-
mation which accounts for the Maslov index 0 holomorphic discs bounded by the
potentially obstructed fibers of my. There are many families of such discs, all con-
tained in wy ' (—7°) = vy *(0). However we claim that the first n coordinates of the
charts (8.1) and (8.3) are not affected by these instanton corrections, so that the
gluing satisfies o} = x),... 20 =2/ .

One way to argue is based on the observation that all Maslov index 0 configurations
are contained in wy'(—7¢). Consider as in §2.1 a Lagrangian isotopy {Lit}iecp,) be-
tween fibers of 7y in the two chambers (with Ly, the only potentially obstructed fiber),
and the cycles C, = ev, [ Mi({Ly},a)] € H,—1(Ly,) corresponding to the various
classes a € ma(Y, L) that may contain Maslov index 0 configurations. The fact that
each C, is supported on L;,Nwy ' (—T°¢) implies readily that Cy-yy = - -+ = Cp-yp, = 0.
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Since the overall gluing transformation is given by a composition of elementary trans-
formations of the type (2.4), the first n coordinates are not affected.

By Corollary A.11, a more down-to-earth way to see that the gluing preserves
!

! =a} (i =1,...,n) is to consider the partial compactification Y; of Y given by
the moment polytope Ay N{& < K} for some constant K > 0 (still removing wy *(0)
from the resulting toric variety). From the perspective of the projection wg : Y — C*,
this simply amounts to a toric partial compactification of each fiber, where the generic
fiber (C*)" is partially compactified along the i-th factor to (C*)"~! x C. The Maslov
index 2 holomorphic discs bounded by L = 7y (¢, 7) inside Y/ are contained in the
fibers of wy by the maximum principle; requiring that the boundary of the disc pass
through a given point p € L (where we assume wg # —T1), we are reduced to the fiber
of wy containing p, which L intersects in a standard product torus (S')" C (C*)"~!xC
(where the radii of the various S* factors depend on ¢). Thus, there is exactly one
Maslov index 2 holomorphic disc in (Y;, L) through a generic point p € L (namely a
disc over which all coordinates except the i-th one are constant). The superpotential
is equal to the weight of this disc, i.e. 7575 V(v;), which can be rewritten as 75z if
r>T¢ and 78z if r < T°. Comparing these two expressions, we see that the gluing
between U’ and U” identifies z} = z.

The gluing transformation between the coordinates y” and 2z’ is more complicated,
but is now determined entirely by a comparison between (8.2) and (8.4): since the
two formulas for WY must glue to a regular function on the mirror, 3” must equal

the right-hand side of (8.2), hence

Y2 = Z(l + Ko ) TP O = (a2,
a€cA
This completes the proof of the theorem. 0

The first part of Theorem 8.4 is a statement of SYZ mirror symmetry in the oppo-
site direction from Theorem 1.7; the two results taken together relate the symplectic
topology and algebraic geometry of the spaces X? and Y to each other. More pre-
cisely, we would like to treat 7 as a fixed complex number and view the mirror of
(Y% wy) as a complex manifold. The convergence of the function f depends only
on that of the constants k., which is unknown in general but holds in practice for
a number of examples (see [12] and other work by the same authors). Even when
convergence is not an issue, the result reveals the need for care in constructing the
mirror map: while our main construction is essentially independent of the coefficients
Co appearing in (3.1) (which do not affect the symplectic geometry of X?), the direc-
tion considered here requires the complex structure of X° to be chosen carefully to
match with the Kéhler class [wy], specifically we have to take ¢, = 1 + Kq.

The second part of Theorem 8.4 gives a mirror symmetric interpretation of the
partial compactification of Y to Y, in terms of equipping X° with the superpotential
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WV = y. From the perspective of our main construction (viewing X° as a symplectic
manifold and Y as its SYZ mirror), we saw the same phenomenon in Section 7.

9. EXAMPLES

9.1. Hyperplanes and pairs of pants. We consider as our first example the (higher
dimensional) pair of pants H defined by the equation

(9.1) T+t r,+1=0
in V = (C*)". (The case n = 2 corresponds to the ordinary pair of pants; in general
H is the complement of n + 1 hyperplanes in general position in CP"'.)

The tropical polynomial corresponding to (9.1) is ¢(&) = max(&y,...,&,,0); the
polytope Ay defined by (3.8) is equivalent via (&1,...,&,,n) — (=&, ... ,n =&, 1)
to the orthant (Rs)"™ < R™™'. Thus Y ~ C"*'. In terms of the coordinates
(21, -+, 2ps1) of C"™! the monomial vy is given by vy = z;...z,41. Thus, in this
example our main results are:

(1) the open Calabi-Yau manifold Y° = C"™\ {2 ... 2,,; = 1} is SYZ mirror to
the conic bundle X® = {(x1,...,2,,y,2) € (C*)"xC?|yz = 21+ -+, +1};
(2) the B-side Landau-Ginzburg model (Y°, Wy = =T+ T2 ...2,41) is SYZ
mirror to the blowup X of (C*)" x C along H x 0, where
H={(x1,...,2,) € (C)" |21+ -+ 2, +1=0};
(3) the B-side Landau-Ginzburg model (C"™ Wi = —z; ... 2,,,) is a generalized
SYZ mirror of H.
The last statement in particular has been verified in the sense of homological mirror

symmetry by Sheridan [49]; see also [3] for a more detailed result in the case n = 2
(the usual pair of pants).

If instead we consider the same equation (9.1) to define (in an affine chart) a
hyperplane H ~ CP"! inside V = CP", with a Kéhler form such that fwl wy = A,
then our main result becomes that the B-side Landau-Ginzburg model consisting of
YO0 =C"!\ {2 ...2,41 = 1} equipped with the superpotential

Wo=-T4T%...200m 42+ +2n+T %01
is SYZ mirror to the blowup X of CP" x C along H x 0 ~ CP"! x 0.

Even though CP" ! is not affine, Theorem 1.6 still holds for this example if we
assume that n > 2, by Remark 7.11. In this case, the mirror we obtain for CP"*
(viewed as a hyperplane in CP") is the B-side Landau-Ginzburg model

C W =21z 2+ 2+ T 2000).
Rewriting the superpotential as

WOH:zl+-~~+zn+zn+1(TA—zl...zn):W(zl,...,zn)+zn+1g(zl,...,zn)
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makes it apparent that this B-side Landau-Ginzburg model is equivalent (e.g. in the
sense of Orlov’s generalized Knorrer periodicity [43]) to the B-side Landau-Ginzburg
model consisting of g71(0) = {(z1,...,2,) € C"|21...2, = T4} equipped with the
superpotential W = z; + - - - + z,, which is the classical toric mirror of CP"!.

9.2. ALE spaces. Let V = C, and let H = {21,...,2341} C C* consist of k + 1
points, £ > 0, with |z;| < -+ < |zk41| (so that the defining polynomial of H,
fir1(z) = (z —x1) ... (¥ — p41) € C[z], is near the tropical limit).

The conic bundle X° = {(z,y,2) € C* x C?|yz = fy11(x)} is the complement of
the regular conic z = 0 in the Aj-Milnor fiber

X'={(z,y,2) € C’lyz = frsa(2)}.
In fact, X’ is the main space of interest here, rather than its open subset X° or
its partial compactification X (note that X' = X \ ‘7) However the mirror of X’
differs from that of X simply by excluding the term wq (which accounts for those
holomorphic discs that intersect ‘7) from the mirror superpotential.

The tropical polynomial ¢ : R — R corresponding to fri1 is a piecewise linear
function whose slope takes the successive integer values 0,1, ..., k+ 1. Thus the toric
variety Y determined by the polytope Ay = {(&,n) € R*|n > p(£)} is the resolution
of the Ay, singularity {st = u**'} C C3. The k + 2 edges of Ay correspond to the
toric strata of Y, namely the proper transforms of the coordinate axes s = 0 and
t = 0 and the k rational (—2)-curves created by the resolution. Specifically, Y is
covered by k+1 affine coordinate charts U, with coordinates (sq = Va,1,ta = Upaiq1),
0 < a < k; denoting the toric coordinate v, by u, equation (3.9) becomes s,t, = u,
and the regular functions s = sg,t = t3,u € O(Y) satisfy the relation st = u**?,

Since wg = —T°¢ + Ty = —T° + T¢u, the space Y is the complement of the curve
u = 1 inside Y. With this understood, our main results become:

(1) the complement Y of the curve u = 1 in the resolution Y of the Ay, singularity
{st = uFt1} C C?® is SYZ mirror to the complement X° of the curve z = 0 in
the Milnor fiber X’ = {(z,y,2) € C*|yz = fry1(2)} of the Ay, singularity;

(2) the B-side Landau-Ginzburg model (Y° Wy = s) is SYZ mirror to X';

(3) the Landau-Ginzburg models (Y, W, = s) and (X', WY = y) are SYZ mirror
to each other.

These results show that the oft-stated mirror symmetry relation between the smooth-
ing and the resolution of the A, singularity (or, specializing to the case k = 1, between
the affine quadric 7*S? and the total space of the line bundle O(—2) — P') needs to
be corrected either by removing smooth curves from each side, or by equipping both
sides with superpotentials.

One final comment that may be of interest to symplectic geometers is that Wy = s
vanishes to order k£ + 1 along the t coordinate axis, and to orders 1,2, ..., k along the
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exceptional curves of the resolution. The higher derivatives of the superpotential en-
code information about the A,-products on the Floer cohomology of the Lagrangian
torus fiber of the SYZ fibration, and the high-order vanishing of W, along the toric
divisors of Y indicates that the A; Milnor fiber contains Lagrangian tori whose Floer
cohomology is isomorphic to the usual cohomology of T? as an algebra, but carries
non-trivial A-operations. (See also [38] for related considerations.)

Corollary 9.1. For a € {2,... k+1}, letr € Ry be such that exactly « of the points
X1, ..., Ty Satisfy |x;| < r. Then the Floer cohomology of the Lagrangian torus
T, ={(x,y,2) € X'| |[z| =, |y| = |2|} in the A Milnor fiber X', equipped with a
suitable spin structure, is HF*(T,, T,) ~ H*(T?% A), equipped with an A, -structure for
which the generators a,b of HF'(T,,T,) satisfy the relations my(a, b) + mgy(b,a) = 0;
m;(a,...,a) =0 for all i; my(b,...,0) =0 fori < a—1; and my(b,...,b) #0.

Proof. The condition |z| = r implies that the torus 7, yields a point in the chamber
U,, while the condition that |y| = |z| implies that it lies on the critical locus of Wj:
this shows that T, is a critical point of W} of order o + 1.

By a construction which is standard in the toric case (see [14]), the restriction of
Wy to a chart of Y modeled after a domain in H'(T,, A*) (identified with (A*)? by
choosing the basis (a, b)) agrees with the map

(9.2) (exp(Aa). exp(M)) = > my(Naa + Mb, ., Aga + Mib).
k

Choosing a to correspond to the generator which vanishes on loops whose projection
to C is constant, the result follows immediately. O

9.3. Plane curves. For p,q > 2, consider a smooth Riemann surface H of genus
g= (p—1)(g—1) embedded in V = P! x P!, defined as the zero set of a suitably
chosen polynomial of bidegree (p,q). (The case of a genus 2 curve of bidegree (3,2)
was used in §3 to illustrate the general construction, see Examples 3.2 and 3.12.)

Namely, in affine coordinates f is given by

(a,b)
flzy,x0) = E Ecapr x:vQ,

a=0 b=0
where ¢, € C* are arbitrary, p(a,b) € R satisfy a suitable convexity condition, and
7 < 1. The corresponding tropical polynomial
93)  pl66) =max{ag + b6~ plah) [0S a<p 0<b<q)

defines a tropical curve Iy C R?; see Figure 1. We also denote by H’, resp. H°, the
genus g curves with p + ¢ (resp. 2(p + ¢)) punctures obtained by intersecting H with
the affine subset V' = C? C V, resp. V" = (C*)*.

The polytope Ay = {(&1,&2,1) |n > ¢(&,&)} has (p+1)(¢+1) facets, correspond-
ing to the regions where a particular term in (9.3) realizes the maximum. Thus the



BLOWUPS AND MIRROR SYMMETRY FOR HYPERSURFACES 53

3-fold Y has (p + 1)(¢ + 1) irreducible toric divisors D, (0 <a <p, 0 <b < q) (we
label each divisor by the weight of the dominant monomial). The moment polytopes
for these divisors are exactly the components of R? \ Iy, and the tropical curve II,
depicts the moment map images of the codimension 2 strata where they intersect (a
configuration of P’s and Al’s); see Figure 3 left (and compare with Figure 1 right).

The leading-order superpotential Wy of Definition 3.10 consists of five terms: wg =
—T° + T€vy, where vg is the toric monomial of weight (0,0, 1), which vanishes with
multiplicity 1 on each of the toric divisors D,;; and four terms w,...,ws corre-
sponding to the facets of Ay. Up to constant factors, w; is the toric monomial with
weight (—1,0,0), which vanishes with multiplicity @ on D, p; w, is the toric monomial
with weight (0, —1,0), vanishing with multiplicity b on D, ;; ws is the monomial with
weight (1,0, p), with multiplicity (p—a) on D,p; and wy is the monomial with weight
(0,1, ¢q), with multiplicity (¢ — b) on D, (compare Example 3.12).

Our main results for the open curve H® C V? = (C*)? are the following:

(1) the complement Y of wy'(0) =~ (C*)? in the toric 3-fold Y is SYZ mirror to
the conic bundle X° = {(z1, x2,y, 2) € (C*)? x C?|yz = f(z1,72)};

(2) the B-side Landau-Ginzburg model (Y, w) is SYZ mirror to the blowup of
(C*)? x C along HY x 0;

(3) the B-side Landau-Ginzburg model (Y, —vp) is a generalized SYZ mirror to
the open genus g curve H°.

The B-side Landau-Ginzburg models (Y wg) and (Y, —v,) have regular fibers iso-
morphic to (C*)?, while the singular fiber wy ' (—7¢) = v;'(0) is the union of all the
toric divisors D,;. In particular, the singular fiber consists of (p + 1)(¢ + 1) toric
surfaces intersecting pairwise along a configuration of P!’s and A'’s (the 1-dimensional
strata of V), themselves intersecting at triple points (the 0-dimensional strata of Y);
the combinatorial structure of the trivalent configuration of P!’s and Al’s is exactly
given by the tropical curve Ilj. (See Figure 3 left).

If we partially compactify to V' = C2, then we get:

(2’) the B-side Landau-Ginzburg model (Y, wg 4+ w; + ws) is SYZ mirror to the
blowup of C? along H' x 0;
(3’) the B-side Landau-Ginzburg model (Y, —vg + w; + ws) is mirror to H'.

Adding w; + wy to the superpotential results in a partial smoothing of the singular
fiber; namely, the singular fiber is now the union of the toric surfaces D,; where
a > 0 and b > 0 (over which w; + wy vanishes identically) and a single noncompact
surface S" C Y, which can be thought of as a smoothing (or partial smoothing) of
56 = (Ua Dao) U (U, Dog)-

By an easy calculation in the toric affine charts of Y, the critical locus of Wy, =
—vg + w; + wy (i.e. the pairwise intersections of components of W' (0) and the
possible self-intersections of S’) is again a union of P!’s and A’s meeting at triple
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Dyo | P10

FIGURE 3. The singular fibers of the mirrors to HY = H N (C*)? (left)
and H' = HNC? (middle), and of the leading-order terms of the mirror
to H (right). Here H is a genus 2 curve of bidegree (3,2) in P! x P'.

points; the combinatorics of this configuration is obtained from the planar graph
Iy (which describes the critical locus of Wyo = —vg) by deleting all the unbounded
edges in the directions of (—1,0) and (0, —1), then inductively collapsing the bounded
edges that connect to univalent vertices and merging the edges that meet at bivalent
vertices (see Figure 3 middle); this construction can be understood as a sequence of
“tropical modifications” applied to the tropical curve II.

The closed genus g curve H does not satisfy Assumption 1.4, so our main results
do not apply to it. However, it is instructive to consider the leading-order mirrors
(Y, Wp) to the blowup X of P! x P! x C along H x 0 and (Y, W{?) to the curve H
itself. Indeed, in this case the additional instanton corrections (i.e., virtual counts
of configurations that include exceptional rational curves in f/) are expected to only
have a mild effect on the mirror: specifically, they should not affect the topology of the
critical locus, but merely deform it in a way that can be accounted for by corrections
to the mirror map. We will return to this question in a forthcoming paper.

The zero set of the leading-order superpotential WOH = —Vg + Wy + wy + w3 + wy
is the union of the compact toric surfaces D,;, 0 < a < p, 0 < b < ¢, with a single
noncompact surface S C Y, which can be thought of as a smoothing (or partial
smoothing) of the union Sy of the noncompact toric divisors of Y. (There may also
be new critical points which do not lie over 0; we shall not discuss them.)

Here again, an easy calculation in the toric affine charts shows that the singular
locus of (WH)~1(0) (i.e., the pairwise intersections of components and the possible
self-intersections of S) forms a configuration of 3g — 3 P!’s meeting at triple points.
Combinatorially, this configuration is obtained from the planar graph Il by deleting
all the unbounded edges, then inductively collapsing the bounded edges that connect
to univalent vertices and merging the edges that meet at bivalent vertices (see Figure 3
right); this can be understood as a sequence of tropical modifications turning Il into
a closed genus g tropical curve (i.e., a trivalent graph without unbounded edges).

(The situation is slightly different when p = ¢ = 2 and ¢ = 1: in this case
(WE)~1(0) = Dy; U S, and the critical locus Dy NS is a smooth elliptic curve.
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In this case, the higher instanton corrections are easy to analyze, and simply amount
to rescaling the first term —vy of the superpotential by a multiplicative factor which
encodes certain genus 0 Gromov-Witten invariants of P! x P'.)

10. GENERALIZATIONS

In this section we mention (without details) a couple of straightforward generaliza-
tions of our construction.

10.1. Non-maximal degenerations. In our main construction we have assumed
that the hypersurface H C V is part of a maximally degenerating family (H, ),
(see Definition 3.1). This was used for two purposes: (1) to ensure that, for each
weight o € A, there exists a connected component of R™ \ Log(H) over which the
corresponding monomial in the defining equation (3.1) dominates all other terms, and
(2) to ensure that the toric variety Y associated to the polytope (3.8) is smooth.

(Note that the regularity of P also ensures the smoothness of H throughout, and of
H! in the discussion before Lemma 5.7; without the regularity assumption, smooth-
ness can still be achieved by making generic choices of the coefficients ¢, in (3.1).)

In general, removing the assumption of maximal degeneration, some of the terms
in the tropical polynomial

p(§) = max {{a, &) — p(a) [a € A}

may not achieve the maximum under any circumstances; denote by A,.; the set of
those weights which do achieve the maximum for some value of . Equivalently, those
are exactly the vertices of the polyhedral decomposition P of Conv(A) induced by
the function p : A — R. Then the elements of A\ A,.;4 do not give rise to connected
components of the complement of the tropical curve, nor to facets of Ay, and should
be discarded altogether. Thus, the main difference with the maximal degeneration
case is that the rays of the fan 3y are the vectors (—a, 1) for a € A,.4, and the toric
variety Y is usually singular.

Indeed, the construction of the Lagrangian torus fibration 7 : X — B proceeds
as in §4, and the arguments in Sections 4 to 6 remain valid, the only difference being
that only the weights o € A,..q give rise to chambers U, of tautologically unobstructed
fibers of 7, and hence to affine coordinate charts UY for the SYZ mirror Y° of X°.
Replacing A by A,.q throughout the arguments addresses this issue.

The smooth mirrors obtained from maximal degenerations are crepant resolutions
of the singular mirrors obtained from non-maximal ones. Starting from a non-maximal
polyhedral decomposition P, the various ways in which it can be refined to a regular
decomposition correspond to different choices of resolution. We give a few examples.

Example 10.1. Revisiting the example of the Aj-Milnor fiber considered in §9.2, we
now consider the case where the roots of the polynomial fy.y satisfy |z1] = --- =
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|z41|, for example frii(z) =2 1, which gives

X' ={(2,y,2) € C*|yz = 2" — 1}.

Then the tropical polynomial ¢ : R — R is ¢(£) = max(0, (k+1)¢), and the polytope
Ay ={(&,n) € R?|n > ¢(&)} determines the singular toric variety {st = u*™'} C K3,
i.e. the Ay singularity, rather than its resolution as previously.

Geometrically, the Lagrangian torus fibration 7= normally consists of k+2 chambers,
depending on how many of the roots of fr,; lie inside the projection of the fiber to
the x coordinate plane. In the case considered here, all the walls lie at |z| = 1, and
the fibration 7 only consists of two chambers (Jz| < 1 and |z| > 1).

In fact, Z/(k + 1) acts freely on X? = {(x,y,2) € C* x C?| yz = 2" — 1}, making
it an unramified cover of X{ = {(Z,y,2) € C*xC?|yz =2 —1} ~ C?\ {yz = —1} via
the map (z,v, 2) = (21,4, z). The Lagrangian tori we consider on X} are simply the
preimages of the SYZ fibration on X{, which results in the mirror being the quotient
of the mirror of X (namely, {(5,,u) € K*|5t = u, u # 1}) by a Z/(k + 1)-action
(namely ¢ - (8,%,u) = (¢35, ,u)). As expected, the quotient is nothing other than
V0 ={(s,t,u) € K3|st = uF*! wu # 1} (via the map (8, %, u) — (8571, {51 u)).

Example 10.2. The higher-dimensional analogue of the previous example is that of
Fermat hypersurfaces in (C*)" or in CP". Let H be the Fermat hypersurface in CP"
given by the equation >~ X¢ = 0 in homogeneous coordinates, i.e. z¢+---+x¢+1 =10
in affine coordinates, and let X be the blowup of CP" x C at H x 0. In this case, the
open Calabi-Yau manifold XY is

X0 ={(z1,...,20,9,2) € (C)" x C?|yz :;p‘ll_g_..._’_xi_'_ 1}.
The tropical polynomial corresponding to H is ¢(&1,...,&,) = max(d&y,. .. ,d&,,0),

which is highly degenerate. Thus the toric variety Y associated to the polytope Ay
given by (3.8) is singular, in fact it can be described as

Y ={(z1,. .., 2n1,v) €EK"2 |21 ... 241 = vd},

which can be viewed as the quotient of K" by the diagonal action of (Z/d)™ (mul-
tiplying all coordinates by roots of unity but preserving their product), via the map
(Z1y. vy Zns1) = (B8, 0 280, 21 ... Zo1). As in the previous example, this is consis-
tent with the observation that X is a (Z/d)"-fold cover of the conic bundle considered
in §9.1, where (Z/d)" acts diagonally by multiplication on the coordinates x1, ..., z,.

(As usual, considering a maximally degenerating family of hypersurfaces of degree
d instead of a Fermat hypersurface would yield a crepant resolution of Y".)

By Theorem 1.6, the affine Fermat hypersurface H = H N (C*)" is mirror to
the singular B-side Landau-Ginzburg model (Y, W = —v) or, in other terms, the
quotient of (K™ Wi = —2,...%,,1) by the action of (Z/d)", which is consistent
with [49].
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Furthermore, by Remark 7.11 the theorem also applies to projective Fermat hy-
persurfaces of degree d < n in CP". Setting a = n+r1 f@Pﬂ wcpn, and placing the
barycenter of the moment polytope of CP" at the origin, we find that

(YW = —v+T%21+ - + 2041))

is mirror to H (for d < n; otherwise this is only the leading-order approximation to
the mirror). Equivalently, this can be viewed as the quotient of

(K”“, WH = —5 . G + T+ -+ z,ﬁfﬂ))
by the action of (Z/d)", which is again consistent with Sheridan’s work.

Example 10.3. We now revisit the example considered in §9.3, where we found
the mirrors of nearly tropical plane curves of bidegree (p,q) to be smooth toric 3-
folds (equipped with suitable superpotentials) whose topology is determined by the
combinatorics of the corresponding tropical plane curve Iy (or dually, of the regular
triangulation P of the rectangle [0, p] x [0, q]).

A particularly simple way to modify the combinatorics is to “fip” a pair of adjacent
triangles of P whose union is a unit parallelogram; this affects the toric 3-fold Y
by a flip. This operation can be implemented by a continuous deformation of the
tropical curve Il in which the length of a bounded edge shrinks to zero, creating a
four-valent vertex, which is then resolved by creating a bounded edge in the other
direction and increasing its length. The intermediate situation where 11, has a 4-valent
vertex corresponds to a non-maximal degeneration where P is no longer a maximal
triangulation of [0, p] x [0, ¢], instead containing a single parallelogram of unit area;
the mirror toric variety Y then acquires an ordinary double point singularity. The
two manners in which the four-valent vertex of the tropical curve can be deformed
to a pair of trivalent vertices connected by a bounded edge then amount to the two
small resolutions of the ordinary double point, and differ by a flip.

10.2. Hypersurfaces in abelian varieties. As suggested to us by Paul Seidel,
the methods we use to study hypersurfaces in toric varieties can also be applied
to the case of hypersurfaces in abelian varieties. For simplicity, we only discuss
the case of abelian varieties V' which can be viewed as quotients of (C*)™ (with its
standard Ké&hler form) by the action of a real lattice 'y C R", where v € I'p acts
by (z1,...,2,) — (e"z1,...,e™x,). In other terms, the logarithm map identifies V'
with the product T x T of two real Lagrangian tori, the “base” Tp = R"/I'p and
the “fiber” Tp = iR"/(27x7Z)" (which corresponds to the orbit of a T"-action).

Since the T™-action on V is not Hamiltonian, there is no globally defined R"-
valued moment map. However, there is an analogous map which takes values in a
real torus, namely the quotient of R" by the lattice spanned by the periods of wy
on Hi(Tg) x Hi(Tr); due to our choice of the standard Kéhler form on (C*)", this



58 MOHAMMED ABOUZAID, DENIS AUROUX, AND LUDMIL KATZARKOV

period lattice is simply I'g, and the “moment map” is the logarithm map projecting
from V to the real torus T = R"/T'p.

A tropical hypersurface Iy C T can be thought of as the image of a I'g-periodic
tropical hypersurface Iy C R™ under the natural projection R* — R"/T'p = Tp.
Such a tropical hypersurface occurs naturally as the limit of the amoebas (moment
map images) of a degenerating family of hypersurfaces H, inside the degenerating
family of abelian varieties V. (7 — 0) corresponding to rescaling the lattice ['g by a
factor of |log7|. (We keep the Kéahler class [wy] and its period lattice I'g constant
by rescaling the Kéhler form of (C*)™ by an appropriate factor, so that the moment
map is given by the base 7 logarithm map, py = Log, : V., — Tg.) As in §3 we
call H. C V, “nearly tropical” if its amoeba I, = Log, (H,) C Tp is contained in
a tubular neighborhood of the tropical hypersurface Ily; we place ourselves in the
nearly tropical setting, and elide 7 from the notation.

Concretely, the hypersurface H is defined by a section of a line bundle £ — V
whose pullback to (C*)™ is trivial; £ can be viewed as the quotient of (C*)" x C by
I'p, where v € I'p acts by

(10.1) Yot (T, T, ) = (T My, T, T”(V)X)‘(”v),

where A € hom(I'p,Z") is a homomorphism determined by the Chern class ¢;(£)
(observe that hom(T'p, Z") ~ HY(Tg,Z) @ H(Tr,Z) C H*(V,Z)), and x : T — R
satisfies a cocycle-type condition in order to make (10.1) a group action. A basis of
sections of L is given by the theta functions

(10.2) Jalrr,. ) = Y Y4(x"),  a€Z"/MTp).
v€l'p

(Note: for v € I'g, ¥y and Yoy actually differ by a constant factor.) The defining
section f of H is a finite linear combination of these theta functions; equivalently, its
lift to (C*)™ can be viewed as an infinite Laurent series of the form (3.1), invariant
under the action (10.1) (which forces the set of weights A to be A(I'g)-periodic.) We
note that the corresponding tropical function ¢ : R® — R is also ['g-equivariant, in
the sense that (£ +v) = (&) + (A\(7),&) — k() for all v € T'p.

Let X be the blowup of V' x C along H x 0, equipped with an S!-invariant Kahler
form w, such that the fibers of the exceptional divisor have area ¢ > 0 (chosen
sufficiently small). Denote by V the proper transform of V x 0, and let X0 = X \ V.
Then X carries an S'-invariant Lagrangian torus fibration 7 : X° — B = T x R,
constructed as in §4 by assembling fibrations on the reduced spaces of the S!-action.
This allows us to determine SYZ mirrors to X° and X as in §5 and §6.

The construction can be understood either directly at the level of X and X 0 or by
viewing the whole process as a I'g-equivariant construction on the cover X, namely
the blowup of (C*)" x C along H x 0, where H is the preimage of H under the covering
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map ¢q : (C*)" — (C*)"/T'g = V. The latter viewpoint makes it easier to see that the
enumerative geometry arguments from the toric case extend to this setting.

As in the toric case, each weight @ € A := A/\('p) determines a connected
component of the complement T \ Il of the tropical hypersurface I, and hence a
chamber U; C B™ C B over which the fibers of 7 are tautologically unobstructed.
Each of these determines an affine coordinate chart UY for the SYZ mirror of X°,
and these charts are glued to each other via coordinate transformations of the form
(3.11).

Alternatively, we can think of the mirror as a quotient by I'g of a space built
from an infinite collection of charts UY, a € A, where each chart U has coor-
dinates (Va1, ..., Van, W), glued together by (3.11). Specifically, for each element

v=(,.--,7) € I'p, we identify U) with Uc\x/+>\(7) via the map

(10.3) Vit (Vats -5 Vans wo) € U+ (T 00,1, -, T Vg, wo) € Uiy

where the multiplicative factors 17 account for the amount of symplectic area sepa-
rating the different lifts to X of a given fiber of .

Setting vg = 1 + T w,, we can again view the SYZ mirror Y of X% as the
complement of the hypersurface wy '(0) = v, (1) in a “locally toric” variety Y covered
(outside of codimension 2 strata) by local coordinate charts Y, = (K*)" x K (a € A)
glued together by (3.9) and identified under the action of I'g. Namely, for all a, 8 € A
and v € I'g we make the identifications

(10.4) (U1, ., Un,00) € Yy~ (vg‘l_ﬁlvl, e ,vg"_ﬂnvn,vo) €Ys,
(10.5) (U1, .. Un,00) €Yy ~ (TMwy, ..., T™v,,00) € Yaircy-

Finally, the abelian variety V' is aspherical, and any holomorphic disc bounded by
771(b), b € B™9 must be entirely contained in a fiber of the projection to V', so that
the only contribution to the superpotential is wy (as in the case of hypersurfaces in
(C*)™). With this understood, our main results become:

Theorem 10.4. Let H be a nearly tropical hypersurface in an abelian variety V', let
X be the blowup of V- x C along H x 0, and let Y be as above. Then:

(1) YO =Y \ wy(0) is SYZ mirror to X° = X \ V;
(2) the B-side Landau-Ginzburg model (Y° wy) is SYZ mirror to X ;
(3) the B-side Landau-Ginzburg model (Y, —vy) is generalised SYZ mirror to H.

Note that, unlike Theorems 1.5 and 1.6, this result holds without any restrictions:
when V' is an abelian variety, Assumption 1.4 always holds and there are never any
higher-order instanton corrections. On the other hand, the statement of part (3)
implicitly uses the properties of Fukaya categories of Landau-Ginzburg models whose
proofs are sketched in Section 7 (whereas parts (1) and (2) rely only on familiar
versions of the Fukaya category).
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FIGURE 4. A tropical genus 2 curve on the 2-torus (left); the singular
fiber of the mirror Landau-Ginzburg model is the quotient of the toric
Del Pezzo surface shown (right) by identifying F; ~ E.

The smooth fibers of —vy : Y — K (or equivalently up to a reparametrization,
wp : YO — K*) are all abelian varieties, in fact quotients of (K*)" (with coordinates
v = (vy,...,v,)) by the identification

v o pPOmITmym for all moe Z7 and y € T,

while the singular fiber is a union of toric varieties

v ' (0) = | J Da
acA
glued (to each other or to themselves) along toric strata. The moment polytopes
for the toric varieties D5 are exactly the components of T \ Ily, and the tropical
hypersurface Ily depicts the moment map images of the codimension 2 strata of Y
along which they intersect.

Example 10.5. When H is a set of n points on an elliptic curve V', we find that the
fibers of —vy : Y — K are a family of elliptic curves, all smooth except vy 1(0) which
is a union of n P'’s forming a cycle (in the terminology of elliptic fibrations, this
is known as an [,, fiber). In this case the superpotential —vy has n isolated critical
points, all lying in the fiber over zero, as expected.

Example 10.6. Now consider the case where H is a genus 2 curve embedded in an
abelian surface V' (for example its Jacobian torus). The tropical genus 2 curve Il is a
trivalent graph on the 2-torus T with two vertices and three edges, see Figure 4 left.
Since T \ Iy is connected, the singular fiber v5'(0) of the mirror B-side Landau-
Ginzburg model is irreducible. Specifically, it is obtained from the toric Del Pezzo
surface shown in Figure 4 right, i.e. P? blown up in 3 points, by identifying each
exceptional curve F; with the “opposite” exceptional curve E! (the proper transform
of the line through the two other points). Thus the critical locus of the superpotential
is a configuration of three rational curves F; = E}, Ey = E),, E5 = El intersecting at
two triple points. (Compare with §9.3: the mirrors are very different, but the critical
loci are the same).
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11. COMPLETE INTERSECTIONS

In this section we explain (without details) how to extend our main results to the
case of complete intersections in toric varieties (under a suitable positivity assumption
for rational curves, which always holds in the affine case).

11.1. Notations and statement of the results. Let Hy,..., H; be smooth nearly
tropical hypersurfaces in a toric variety V' of dimension n, in general position. We
denote by f; the defining equation of H;, a section of a line bundle £; which can
be written as a Laurent polynomial (3.1) in affine coordinates x = (z1,...,x,); by
@; : R" — R the corresponding tropical polynomial; and by II; C R"™ the tropical
hypersurface defined by ¢;. (To ensure smoothness of the mirror, it is useful to
assume that the tropical hypersurfaces 11y, ..., Il; intersect transversely, though this
assumption is actually not necessary).

We denote by X the blowup of V x C? along the d codimension 2 subvarieties
H; x C&1) where C¢! = {y; = 0} is the i-th coordinate hyperplane in C¢. (The
blowup is smooth since the subvarieties H; x C?’l intersect transversely). Explicitly,
X can be a described as a smooth submanifold of the total space of the (P*)%-bundle
Hle P(L; ® O) over V x C%,

(11.1) X ={(x,y1,---+Ya, (Ur:01)y. .., (ug:vq)) | fi(X)v; = yu; Vi =1,...,d}.
Outside of the union of the hypersurfaces H;, the fibers of the projection py : X — V
obtained by composing the blowup map p: X — V x C¢ with projection to the first
factor are isomorphic to C%; above a point which belongs to k of the H;, the fiber
consists of 2% components, each of which is a product of C’s and P'’s.

The action of T¢ = (S")% on V' x C¢ by rotation on the last d coordinates lifts to
X: we equip X with a T%invariant Kahler form for which the exceptional P! fibers
of the i-th exceptional divisor have area ¢; (where ¢; > 0 is chosen small enough). As
in §3.2, we arrange for the Kéhler form on X to coincide with that on V x C? away
from the exceptional divisors. We denote by px : X — RY the moment map.

The dense open subset X C X over which we can construct an SYZ fibration is
the complement of the proper transforms of the toric strata of V x C%; it can be
viewed as an iterated conic bundle over the open stratum V? ~ (C*)" C V, namely

(11.2) X = {5, Y1y Yds 215+ -5 2a) € VO X C* | yizs = fix) Vi=1,...,d}.
Consider the polytope Ay C R" defined by
(11.3) Ay ={(&m, ... ,na) ER"ORY [ n; > (&) Vi=1,...,d},

and let Y be the corresponding toric variety. For ¢« = 1,...,d, denote by vy; the
monomial with weight (0,...,0,1,...,0) (the (n + i)-th entry is 1), and set

(114) Wo,; = =T + Tei’UOJ'.
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Denote by A the set of connected components of R™ \ (II; U --- U Il,), and index

each component by the tuple of weights @ = (al,...,a) € Z"*? corresponding to the
dominant monomials of ¢, ..., ¢, in that component. Then for each @ € A we have
a coordinate chart Yz ~ (K*)" x K% with coordinates v = (va1,...,va.) € (K*)"
and (vg1,...,v04) € K¢ where the monomial vl =v2] .. .vgf;; is the toric monomial
with weight (—my, ..., —m,, (at,m),..., {a®, m)) € Z"*4. These charts glue via
: (B'—a’,m)
m —€; Br—at,m m
(11.5) v = (H(1+T wo ;) ) vy,
i=1

Denoting by oy, ..., 0, € Z" the primitive generators of the rays of the fan ¥y, and

writing the moment polytope of V' in the form (3.12), for j = 1,...,r we define
= TWiy%I

(11.6) w; =T NV (o)’

where @in(0;) € Als chosen so that all (o, @’) are minimal. In other terms, VZJW n(05)
is the toric monomial with weight (—o;, A1(0;), ..., Aa(c;)) € Z""9 where Aq,..., \s :
Yy — R are the piecewise linear functions defining £; = O(H,).

Finally, define Y° to be the subset of Y where w1, ...,wpq are all non-zero, and
define the leading-order superpotentials

d r
(11.7) Wy = wo1+- - +woa+wi+- - +w, = Z(_T6i+T€iUO,i) + ZijV‘ij

Amin(0j)’
i=1 i=1

d r
(11.8) WOH = V1 — - — V4t W+ +W =— ZUOJ + Zijvgznm(Uj)'
i=1 i=1

With this understood, the analogue of Theorems 1.5-1.7 is the following

Theorem 11.1. With the above notations:

(1) YV is SYZ mirror to the iterated conic bundle X°;

(2) assuming that all rational curves in X have positive Chern number (e.g. when
V is affine), the B-side Landau-Ginzburg model (Y°, Wy) is SYZ mirror to X ;

(3) assuming that V is affine, the B-side Landau-Ginzburg model (Y,W{T) is a
generalized SYZ mirror to the complete intersection Hy N ---NHy C V.

As in Theorem 10.4, part (3) of this theorem relies on the expected properties of
Fukaya categories of Landau-Ginzburg models.

Remark 11.2. Denoting by X; the blowup of V x C at H; x 0 and by X? the
corresponding conic bundle over V) the space X (resp. X') is the fiber product of
Xi,...,Xq (resp. XV,..., X7) with respect to the natural projections to V. This
perspective explains many of the geometric features of the construction.
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11.2. Sketch of proof. The argument proceeds along the same lines as for the case
of hypersurfaces, of which it is really a straightforward adaptation. We outline the
key steps for the reader’s convenience.

As in §4, a key observation to be made about the T%-action on X is that the reduced
spaces Xyean = fx (A)/T? (A € RY,) are all isomorphic to V via the projection py
(though the Kihler forms may differ near Hy U --- U Hy). This allows us to build a
(singular) Lagrangian torus fibration

7: X% = B=R"x (R;)?
(where the second component is the moment map) by assembling standard Lagrangian

torus fibrations on the reduced spaces. The singular fibers of 7m correspond to the
points of X° where the T%action is not free; therefore

d
Bsmg — U ]___[; X {(}\17, . .,)\d) ‘ )\Z - ei}a
=1

where I, C R™ is essentially the amoeba of H;. The potentially obstructed fibers of
7 : X% — B are precisely those that intersect py,' (Hy U+ -+ U Hy), and for each @ € A
we have an open subset Uz C B of tautologically unobstructed fibers which project
under p to standard product tori in V° x C¢.

Each of the components Uz C B determines an affine coordinate chart UY in the
SYZ mirror to X° Namely, for b € Uy C B, the Lagrangian torus L = 7~1(b) C
XY is the preimage by p of a standard product torus in V x C% Denoting by
(Clyeo ey Gy ALy oo Ag) € Ay X Ri the corresponding value of the moment map of
V x C4 and by (1, -, % Y0.1, - - -, Y0.a) the natural basis of Hy(L,Z), we equip UY
with the coordinate system

(119) (L,V) — (U&,lw'-7U&,n7w0,17---7w0,d)
= (TV()s-- . TV (1), TNV (Y0,1), - -, TV (0.4)) -

For b € Uz, the Maslov index 2 holomorphic discs bounded by L = 771(b) in X can
be determined explicitly as in §5, by projecting to V' x C¢. Specifically, these discs
intersect the proper transform of exactly one of the toric divisors transversely in a
single point, and there are two cases:

Lemma 11.3. For any ¢ = 1,...,d, L bounds a unique family of Maslov index 2
holomorphic discs in X which intersect the proper transform of V x C’;_l = {y; = 0}
transversely in a single point; the images of these discs under p are contained in lines
parallel to the y; coordinate axis, and their contribution to the superpotential is wy ;.

Lemma 11.4. For any j = 1,...,r, denote by D, the toric divisor in V associated
to the ray o; of the fan Yy, and let k; = (o' — ot (0;),0;) (i =1,...,d). Then L
bounds 2F1++ka families of Maslov index 2 holomorphic discs in X which intersect
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the proper transform of Dy, X C? transversely in a single point (all of which have the
same projections to V'), and their total contribution to the superpotential is

d
<H(1 + TEiU)OJ')ki) Twivg.j.

i=1

The proofs are essentially identical to those of Lemmas 5.5 and 5.6, and left to the
reader. As in §5, the first lemma implies that the coordinates wy; agree on all charts
UY, and the second one implies that the coordinates vz, transform according to (11.5).
The first two statements in Theorem 11.1 follow.

The last statement in the theorem follows from equipping X with the superpotential
WY =y1+---+yq : X — C, which has Morse-Bott singularities along the intersection
of the proper transform of V' x 0 with the d exceptional divisors, i.e. crit(W"V) =~
HyN---N Hy. Asin §7, the nontriviality of the normal bundle forces us to twist
the Fukaya category of (X, WV) by a background class s € H*(X,7Z/2), in this case
Poincaré dual to the sum of the exceptional divisors (or equivalently to the sum of
the proper transforms of the toric divisors V' x (Cf-l’l). The thimble construction then
provides a fully faithful A-functor from F(H;N---NHy) to Fs(X, W"). The twisting
affects the superpotential by changing the signs of the terms wy 1, ..., wg 4. Moreover,
the thimble functor modifies the value of the superpotential by an additive constant,
which equals T + - -+ + T when V is affine (the i-th term corresponds to a family
of small discs of area ¢; in the normal direction to H;). Putting everything together,
the result follows by a straightforward adaptation of the arguments in §7.

APPENDIX A. MODULI OF OBJECTS IN THE FUKAYA CATEGORY

A.1. General theory. Let L be an embedded spin Lagrangian of vanishing Maslov
class in the Kahler manifold X° = X \ D, where D is an anticanonical divisor which
satisfies Assumption 2.2. We begin with a brief overview of the results of [19], which
in part implement the constructions of [20] in the setting of de Rham cohomology.

For each positive real number E, Fukaya defines a curved A, structure on the de
Rham cochains with coefficients in Ag/T*, which we denote by

QF(L; Ao /TFNo) = Q(L;R) @r Ao/TE A,.

The operations are obtained from the moduli space of holomorphic discs in X° = X\ D
with boundary on L, whose energy is bounded by E. By induction, one obtains an
unbounded sequence of real numbers E;, together with formal diffeomorphisms on
O*(L; Ao /TFiAy) which pull back the A, structure constructed from discs of energy
bounded by E; to the projection of the A, structure on Q*(L; Ag/TFi+1Ay) modulo
T¥i. After applying such a formal diffeomorphism, we may therefore assume that the
A map
O (L; Ao /TP Ag) — Q" (L; Ao/ T Ao)
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is defined by projection of coefficient rings. Taking the inverse limit over F;, we obtain
an A structure on Q*(L;Ag). By passing to the canonical model (i.e. applying a
filtered version of the homological perturbation lemma [31]), we can reduce this A,
structure to H*(L; Ay).

Fukaya checks that any class b € H'(L;U,) defines a deformed A., structure on
the cohomology. In particular, there is a subset

Vi C HY(L;Uy)
consisting of elements for which this A, structure has vanishing curvature (i.e. solu-
tions to the Maurer-Cartan equation). Gauge transformations [20, Section 4.3] define

an equivalence relation on this set; we call the quotient the moduli space of simple
objects supported on L, which we denote Y.

Remark A.1. The original formalism of Fukaya, Oh, Ohta, and Ono [20] considered
deformation classes corresponding to b € H*(L; A, ), called bounding cochains, which
via exponentiation A, — 14 A, can also be reinterpreted as local systems. As noted
in the discussion following Theorem 1.2 of [19], there are inclusions 1+A; C Uy C A*,
and the original construction of Floer cohomology can be generalised to all unitary
local systems using an idea of Cho.

The invariance statement of Floer cohomology [20, Theorem 14.1-14.3] asserts that
V1. does not depend on the choice of auxiliary data (e.g almost-complex structure) in
the following sense: let y; and yg denote the moduli spaces for different choices of
auxiliary structures. A homotopy between the auxiliary data induces an isomorphism

(A1) L =Vi
which is invariant under homotopies of homotopies.

Assumption A.2. The Ay, structure on H*(L; Ag) is isomorphic to the undeformed
structure.

Remark A.3. For most Lagrangians that we consider, this condition holds automat-
ically because there is a choice of almost complex structure for which the Lagrangian
bounds no holomorphic discs which are not constant.

In this setting, the Maurer-Cartan equation vanishes identically, and the gauge
equivalence relation is trivial. A choice of isomorphism of the Floer-theoretic A..-
structure with the undeformed structure (e.g. a choice of almost complex structure for
which there are no non-constant holomorphic discs) therefore yields an identification
of the moduli space Yy, of simple objects of the Fukaya category supported on L with
its first cohomology with coefficients in Uy:

Vi = HY(L;Uy).

Let L, be a Hamiltonian path of Lagrangians in X° with vanishing Maslov class, and
Ji a family of almost complex structures on X which we assume are fixed at infinity.
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We describe the isomorphism (A.1) in the special situation which we consider in this
paper. We first identify H,(Lo;Z) = H,(L4;Z) via the given path. A basis for this
group yields an identification

(21, 2n) : HI(LO; Up) — Uy.

Assumption A.4. For the family (L, J;), all stable holomorphic discs represent
multiples of a given relative homology class B € Ho(X, Lo; Z).

The wall-crossing map is then of the form
(A.2) zi = hi(zp)2i,

where h; is a power series with Q coefficients and leading order term equal to 1,
and zg denotes the monomial 7% 219, Equation (A.2) can be extracted from the
construction in Section 11 of [19]. For an explicit derivation, see [52, Lemma 4.4]:
for bounding cochains, the transformation corresponds to adding a power series in z3
with vanishing constant term, and Equation (A.2) follows by exponentiation.

By Proposition 5.8, the following assumption holds in the geometric setting of the
main theorem:

Assumption A.5. The power series h; is the expansion of a rational function in zg.

In this case, the transformation in Equation (A.2) converges away from the zeroes
and poles of h;. This is stronger than the general result proved by Fukaya namely that
the transformation converges in an analytic neighbourhood of the unitary elements
in H'(L; A*).

In order to extend this construction to the non-Hamiltonian setting, we use the main
construction of [19] which identifies the moduli space of simple objects supported on
Lagrangians near L (but not necessarily Hamiltonian isotopic to it) with an affinoid
domain in H'(L; A*) in the sense of Tate.

Given a path {Lt}te[m] between Lagrangians Ly and L; in which there is no wall
crossing (e.g. so that no Lagrangian in the family bounds a holomorphic disc), the
natural gluing map between these domains is obtained from the flux homomorphism

O({L:}) € H'(Lo;R)
and the product on cohomology groups
H1<L0, R) X Hl(Lo, A*) — Hl(Lo, A*)
induced by the map on coefficients (\, f) = T*f. In the absence of wall crossing we
identify H'(Ly; A*) with H'(Lg; A*) via this rescaling map.
Given a general path between Lagrangians Ly and L (subject to Assumptions A.4

and A.5), this identification is modified by the wall crossing formula given in Equation
(A.2), yielding a birational map

H'(Lo; A*) -=» H'(Ly; AY),
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defined away from a hypersurface. We glue the moduli spaces of objects supported
near Lo and Ly using this identification.

Remark A.6. The construction of a map for a Lagrangian path can be reduced to
the case of Hamiltonian paths as follows: any path (L, J) can be deformed, with
fixed endpoints, to a path (L}, J;) which is a concatenation of paths for which the
Lagrangian is constant and paths in which there is no wall-crossing. The desired map
is then obtained as a composition of the wall-crossing maps for Hamiltonian paths
and the rescalings given by the flux homomorphism.

The idea for constructing the deformed path follows the main strategy for proving
convergence in [19]. Whenever e is sufficiently small, there is a (compactly supported)
diffeomorphism 1. taking L; to L;.. which preserves the tameness of J. For tauto-
logical reasons, there is a path without wall-crossing from (L, J) to (Lite, Jive) if
Ji+e is the pullback of J by 9. Interpolating between this pullback and (L4, J), via
pullbacks of (L, J), we then reach (L, J) via a path for which the Lagrangian is
constant and Assumption A.4 remains satisfied.

Remark A.7. (1) More generally, given a path from Lg to L; that can be decomposed
into finitely many sub-paths {L;}iep, ,.,], each satisfying Assumption A.4 for some
relative class (3;, and for which the wall-crossing transformations are rational functions
as in Assumption A.5, we again obtain a wall-crossing map

(A.3) H'(Lo; A*) ——» H'(Ly; A¥)
by composing the maps associated to the various sub-paths.

(2) When all the classes §; have the same boundary in H;(L;,Z) and the same
symplectic areas, the monomials zs, are all equal and the birational transformation
(A.3) again takes the form of Equation (A.2) up to rescaling of the coefficients.

If we restrict attention to the smooth fibers of a Lagrangian torus fibration, we
obtain an embedding of the moduli space Y° of all simple objects supported on such
Lagrangians into the rigid analytic space

(A1) [T (LA ~

where the equivalence relation identifies points which correspond to each other under
the birational wall-crossing transformations of Equation (A.3) induced by all paths
among smooth fibres. It does not automatically follow from the above considerations
that this quotient is a well-behaved (e.g. separated) analytic space, but in our case
this will not be an issue. By the invariance of Floer cohomology [20, Theorem 14.1-
14.3], the transformations induced by homotopic paths are equal. The fact that these
transformations should in general depend only on the homotopy class of the path
in the space of all fibres (i.e. allowing fibres which are not necessarily embedded),
is expected to follow as a consequence of forthcoming developments in the study of
family Floer cohomology in the presence of singular fibres. In our main example, this
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independence will be manifest from Proposition 5.8, and the quotient (A.4) can easily
be seen to be a smooth analytic space.

Remark A.8. We can think of (A.4) as the natural (analytic) completion of V.
While the points of this completion do not necessarily correspond to unitary local
systems on Lagrangians in X° with the given Kahler form, in good situations, they
can be interpreted as Lagrangians in X° equipped with a completed Kahler form.
Slightly strengthening Assumption 2.2 by requiring that X° be the complement of a
nef divisor, we can obtain such a completion by inflation along the divisor at infinity.

It shall be convenient for our purposes to consider a completion which is obtained
by gluing only finitely many charts. To this end, assume that {L;};cp01) is a path of
Lagrangians so that the wall-crossing map defines an embedding

(A.5) H'(Lo; Up) = HY(Ly; AY).
In this case, the above construction yields that all elements of ), can be represented
in Equation (A.4) by elements of H'(Ly; A*).

More generally, assume that { L, }aca is a collection of fibers with the property that
for some fixed almost complex structure .J, any smooth fiber L can be connected to

some fiber L, in our collection by a path such that the wall-crossing map defines an
embedding H'(L;Uy) — H*(Lq; A*). We define

(A.6) W=][H (LA ~.
a€cA
Lemma A.9. There is a natural analytic embedding of Y° into )Aig O

Next, we study the moduli spaces of holomorphic discs in X with boundary on a
Lagrangian L C X©° of vanishing Maslov class. Since D is an anticanonical divisor,
stable holomorphic discs whose intersection number with D is 1 have Maslov index
equal to 2. Assumption 2.2 implies that there are no discs of negative Maslov index,
and that those of vanishing Maslov index are disjoint from D. For each unitary local
system V on L, choice of almost complex structure J, and action cutoff £ we obtain
a Ag/T¥Ag-valued de Rham cochain

(A7) > 2L, V) evi[Mi(L, B,J)] € Q°(L; Ao /T Ag)

BGTK'Q(X,L)
B-D=1

which is closed with respect to the Floer differential. Passing to the canonical model
and to the inverse limit over F we obtain a multiple of the unit in the self-Floer
cohomology of (L, V):

(A.8) mo(L, V., J) = W(L,V, J) e € H(L; A).

Since the moduli spaces of discs of vanishing Maslov index in X and in X \ D agree,
the invariance of Floer theory and in particular of the potential function [20, Theorem
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BJ, as extended to non-unitary local systems in [19], implies that W (L, V,J) gives
rise to a well-defined convergent function on ))7?. Because of this, we shall henceforth
drop J from the notation. For non-unitary local systems, W (L, V) may not in general
converge, so we have to impose this as an additional assumption. With this in mind,
the proof of the following result follows from the unitary case by Remark A.6.

Lemma A.10. If for each o € A, the map ¥V + W (L, V) converges on H'(Ly; A*),
then W defines a reqular function on )°. O

We record the following consequence:

Corollary A.11. If(L;,V;) and (L;, V;) are identified by a wall-crossing gluing map,
then W(Lz, VZ> = W(Lj, Vj) 0

Remark A.12. Fukaya has announced that rank 1 unitary local systems on immersed
Lagrangians which are fibers of 7 define a rigid analytic space which includes 32? as an
analytic subset. The general idea is to describe the nearby smooth fibers as the result
of Lagrangian surgery, and understand the behaviour of holomorphic discs under such
surgeries sufficiently explicitly to produce an analytic structure on this neighbourhood
which can be seen to be compatible with the analytic structure on JZ? .

We expect that, in the presence of a potential function, similar ideas can be applied
to associate analytic charts to certain admissible non-compact Lagrangians arising as
limits of smooth fibers. While we do not develop the general theory in this paper,
Example 2.4 explains how one can use equivalences in the Fukaya category (rather
than surgery formulae) to produce the desired charts in the class of examples we
encounter.

A.2. Convergence of the wall-crossing. In this section, we verify that the as-
sumptions of Lemma A.9 hold for the smooth fibers of the map 7 : X° — B intro-
duced in Definition 4.4. Recall that the moment map py of the S'-action descends
to a natural map from B to R,; we write X{ = u3'(A\) N X If € is the blowup
parameter in the definition of X, then all fibers of 7 contained in X9 are smooth
whenever A # ¢; and the smooth fibers in X? are exactly those whose image under
the blowdown map p : X — V? x C is disjoint from H x C.

Assumption A.2 follows immediately from Proposition 5.1 for all fibers of 7 whose
images under p are disjoint from H x C, since these bound no holomorphic discs.
In general, invariance of Floer cohomology shows that Assumption A.2 is indepen-
dent of the choice of almost complex structure. Moreover, the identification of the
A, structure obtained by deforming by an element in H'(L; A,) with the deformed
Floer theory for the associated local system in H'(L; 1+ A ) implies that Assumption
A2 holds for the Floer theory of L equipped with unitary local systems as well, since
an analytic function vanishing on 1+ A, must vanish on all of Uy. The same argu-
ment shows that the A, structure on L equipped with a non-unitary local system is
also undeformed, as long as the valuation is sufficiently small. By Fukaya’s work on
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Family Floer cohomology [19], we conclude that the A, structure on a Lagrangian
fibre L’ sufficiently close to L is undeformed. Here, sufficiently close means that there
is a diffeomorphism preserving the tameness of J and moving L to L'; in compact
subsets of the space of smooth fibres, there are uniform bounds on the size of such
neighbourhoods, so we conclude that the condition of having undeformed A, struc-
ture is open and closed among smooth fibres of m. Therefore, all smooth fibres of =
satisfy Assumption A.2.

We next choose Lagrangians { L, }aca, labelled by the monomials in the equation
defining the hypersurface H. We require that L, be contained in X?, and that its
projection to B lie in the chamber U, C B (see Definition 5.3).

Lemma A.13. Any smooth fiber L of m can be connected to some fiber L, so that
the wall-crossing map defines an embedding

(A.9) HY(L;Up) — H*(Lo; AY).

Proof. There are two cases to consider:

Case 1: Assume that the smooth fiber L lies in X°. Then 7. (L) lies outside
of the amoeba of H (cf. Equation (4.4)) and L is tautologically unobstructed (cf.
Proposition 5.1). By Remark 5.4, the component of the complement of the amoeba
over which L lies determines a chamber U,, and L can be connected to L, by a path
of tautologically unobstructed fibers. The absence of holomorphic discs in this region
implies that there are no non-trivial walls, and hence that the map

(A.10) HY(L; A*) — H'(Lo; A)

is given simply by a rescaling of the coefficients (see the discussion following Equation
(A.2)). This completes the argument in this case.

Case 2: Assume that L lies in X9, with A # e. Choose a smooth fiber L which
is also contained in X and whose projection lies in some chamber U, and consider
the concatenation of a path from L to L) via Lagrangians contained in X9 with a
path from L} to L, over the chamber U,. Since the map associated to the latter
path is a simple rescaling as in the previous case, it suffices to show convergence of
the wall-crossing map for the path from L to L?.

To this end, recall from Proposition 5.1 that the simple holomorphic discs bounded
by the Lagrangian torus fibers along the path all have the same area |\ — €| and their
boundaries all represent the same homology class in H;(L;,Z). Thus, the monomials
2g = T8 98] associated to their homology classes are all equal, and by Remark
A.7 (2) the wall crossing map is of the form

(A.11) zi = hi(zp)zi,

where h; is a power series with coefficients in Q and leading order term equal to 1.
Whenever we evaluate at a point of H'(L; Uy ), the valuation of zs is |[A — €| > 0, and
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so h;(zp) and its inverse both converge and take values in Uj. Thus the leading order
term of (A.11) is identity, and the wall-crossing map defines an embedding

HY(L;Up) — HY(L); A¥).
Composing this map with the rescaling isomorphism induced by the flux homomor-
phism of a path over U,, we arrive at the desired result. U

APPENDIX B. THE GEOMETRY OF THE REDUCED SPACES

In this section we study in more detail the symplectic geometry of the reduced
spaces Xy eqn = tx(A)/St and prove Lemma 4.1.

Recall from §4.1 that the moment map for the S'-action on X is given by (4.1),
and that the only fixed points apart from V = u}l(O) occur along H, which lies in the
level set 115" (€). Also recall that, for all A > 0, the natural projection to V (obtained
by composing p : X — V x C with projection to the first factor) yields a natural
identification of X,¢q with V.

We will exploit the toric structure of V' to construct families of Lagrangian tori in
Xyean equipped with the reduced Kéahler form wyeqx. The two obstacles are (1) the
lack of smoothness along H at A = ¢, and (2) the lack of T"-invariance near H.

We start with the first issue, giving a formula for wy,.q near H and introducing an

explicit family of smoothings. Consider a small neighborhood of H where, without
loss of generality, we may assume that y = 1.

Lemma B.1. Identifying X,eq with V as above, where x =1 we have

(Bl) Wred X = Wy — maX(O, € — )\) Cl(ﬁ) + dOéO,)\,

where ¢1(L) = iF; /2w is the Chern form of the chosen Hermitian metric on L, and
min(\, €) d°(| f(x)|?

B2 (. d*(f (P

2 (VAR FOP + (A — e + Al fGIPP + 7l f) + A = el )

Proof. Recall that away from V we can write X as a conic bundle f (x) = yz. Where
f # 0 and y = 1, the restriction of w, to uy' (A) is equal to

€ |z|2 9
— de(1 i
A1+ |z]2 (log <] ))

Since d°log |y|> 4+ d°log |z|* = d°log | f|?, using (4.2) we can rewrite the 1-form in this
expression as either

* ]‘ C
pywy +d <Z’y|2d (log |y|*) +

\2 A—¢€ 9
—d(1 .
1 (log |y[7)

e |z
A 1+ |22

1 €— A
Z’Z/Pdc(log |f17) + — @(log 2[*) or d(log | f[*) +
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Now ddlog|y|* = 0, whereas dd®log |z|? = —4mp},ci(L), so we find that (still where

f#0and y =1)
(B.3) gt =9 (o + (= 9a()) + o (D)

4fz[?
e d(lf(x)P) >
= pywy +d (— .
v Am |y + [ f(x)?
The first expression makes sense wherever z # 0, in particular for A\ < €; the second

one makes sense wherever y # 0, in particular for A > e. Solving (4.2) for |y|, we
obtain

2yl = VVare| ()2 + (A — e + 7| f(x)2)2 = 7 () * + (A = o),
and  2A[z[* = /Ame|f(x)2 + (A — e + @[ f (%) 2)2 + 7| f(x) P = (A — ).
Substituting into (B.3) gives the desired expression. O

We can smooth the singularity of wy.q\ by considering the modified Kahler forms
given near H by
Wsma = wy — max(0,e — X) ¢1(L) + dog »
where £ > 0 is an arbitrarily small constant, and

min(\, ) d*(1 (x)|?)
2 (VAR FRP + (= e+ AT GIPP + X + alf ()12 + A —e])

where x = X(|f(x)|,A\) is a suitable cut-off function which equals 1 near H and
vanishes outside of the region where y = 1. (We can also assume that y vanishes
whenever A is not close to €.) We set wgmx = Wrean Wherever x # 1. Choosing x
small enough ensures that wy — max(0,e — A) ¢;(£) + day » is non-degenerate for all
t € [0, k]; it is then a Kahler form, because a; ) can be written as d° of some function
of | f(x)].

The Kahler forms wy,, » are all smooth, coincide with w4 away from H for all
A, and everywhere when A is not very close to e. Moreover, [wsmr] = [Wrear] by
construction, and the dependence of ws,, » on A is piecewise smooth.

(B4) O[t,)\ =

Like wyeq.x, the Kahler form wg,, » is not invariant under the given torus action, but
there exist toric Kihler forms in the same cohomology class. Such a Kéhler form wy,
can be constructed by averaging ws,, » with respect to the standard 7™-action on V:

1
B.5 w’ = / g*wsm A dg
( ) VA (27’1’)” geT ,

To see that the T™-orbits are Lagrangian with respect to wy,,, we note that the
pullback of wg,, » to an orbit represents the trivial cohomology class, since the classes
[wy] and [H] are both trivial on a torus fibre. The pullback of wy,, is therefore also
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trivial in cohomology, but since it is invariant, it must vanish pointwise. This in turn
implies that the T"-action not only preserves wy,, but in fact it is Hamiltonian.

We now state again Lemma 4.1 and give its proof:

Lemma B.2. There exists a family of homeomorphisms (¢x)xer, of V such that:

(1) ¢x preserves the toric divisor Dy C V;

(2) the restriction of ¢y to VO is a diffeomorphism for X\ # €, and a diffeomorphism
outside of H for A = ¢;

(3) ¢ intertwines the reduced Kdhler form wyeqx and the toric Kihler form w{,’)\;

(4) o) =1id at every point whose T™-orbit is disjoint from the support of x;

(5) ¢ depends on X in a continuous manner, and smoothly except at A\ = €.

Proof. We proceed in two stages, obtaining ¢, as the composition of two maps ¢z,
taking wregx 10 Wem x, and @gugn taking wem y to w{,j)\, each satisfying all the other
conditions in the statement. The arguments are quite similar in both cases; we start
with the construction of ¢, (Steps 1-2), then proceed with ¢, x (Steps 3-4).

Step 1. Let ) = Wemx — Wy Since wy,y is T -invariant, for € t" ~ R" we have

1
d
exp(0)*wsmr — Wsmx = exp(0)*Bx — by = / pr (exp(t6)*By) dt
0

=d Uolexp(te)* (to,8x) dt| .

Hence, averaging over all elements of T, we see that the 1-form

ay = exp(t0)* (1, PBx) dt d
g (27-‘-)71 [—m,x]™ JO ( ) (9# )\)
satisfies wy, \ — wWem\ = da)\ (i.e., dal = —By).

Let U C V be the orbit of the support of x under the standard T™-action on
Xreax = V. Outside of U, the Kahler forms wgy, » = wreqx are T"-invariant, and wgn,
and wy, , coincide (in fact they both coincide with wy). Therefore, 3y is supported in
U, and consequently so is a).

Let w; \ = twy, + (1 — t)wem (for ¢ € [0, 1] these are Kéhler forms since wy,, and
wsm. are Kahler). Denote by v; the vector field such that ¢,,w; , = —a), and by v
the flow generated by v;. Then by Moser’s trick, 7

/

d * * dw A *
%( twé,/\) = wt <Lvtw1{,,)\ + d; ) - wt (dbvtwg,)\ + dal)\) = Oa

SO ;*ng)\ = Wsm, and the time 1 flow ¢y intertwines wgy, \ and w{é 5 as desired.
Moreover, because a), is supported in U, outside of U we have 1, = id. However, it is
not clear that the flow preserves the toric divisors of V.
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Step 2. To remedy the issue with the flow not preserving the toric divisors, we
modify a@) in a neighborhood of Dy. Let f3; be a family of C ! real-valued functions
(with locally Lipschitz first derivatives), smooth on V? with the following properties:

e the support of f], is contained in the intersection of U with a small tubular
neighborhood of Dy;
e at every point © € Dy, belonging to a toric stratum S C V,

(B.6) the 1-form a), + df}, vanishes on (1,,5)",

where the orthogonal is with respect to wy y;
e f1, depends smoothly on ¢, and piecewise smoothly on A.

We construct fy , by induction over toric strata of increasing dimension, successively
constructing functions f}, -, : V — R which satisfy (B.6) for all strata of dimension
at most k and are smooth outside of strata of dimension < k. We start by setting
fat.<o = 0, which satisfies (B.6) at the fixed points of the torus action since they lie
away from the support of a.

Assume fy, ., constructed, and consider a stratum S of dimension k + 1. At each
point z € S, the restriction of a} + df} , <1 to (TS)* is a real-valued linear form,
vanishing whenever x belongs to a lower-dimensional stratum, and smooth outside of
strata of dimension < k. Let f, ¢ be a C'' function on a neighborhood of S, smooth
outside of the strata of dimension < k, which vanishes on S and whose derivative in the
normal directions at each point of S satisfies (dfy; ¢)\r.)r = —(a) + dfs <p) 1)L
(For instance, identify a neighborhood of S with a subset of its normal bundle in a
manner compatible with the toric structure, and take fﬁ\?m ¢ to be linear in the fibers).

Let xs be a cut-off function with values in [0, 1], defined and smooth outside of the
strata of dimension < k, equal to 1 at all points of a neighborhood of S which are much
closer to S than to any other (k + 1)-dimensional stratum, and with support disjoint
from those of the corresponding cut-off functions for all other (k + 1)-dimensional
strata. Specifically, picking an auxiliary metric, we take yg to be the product of
a standard smooth cut-off function supported in a tubular neighborhood of S with
functions xg/x for all strata ¥ with dim> > £ + 1 and dim(X N S) < k, chosen so
that xs/» equals 1 except near X, where it depends on the ratio between distance to
S and distance to X, equals 1 at all points that lie much closer to S than to ¥, and
vanishes at all points that lie closer to X than to S.

We note that near a lower-dimensional stratum S’, the norm of dygs is bounded
by a constant over distance to S’. We then set f}, ¢ = xsfi;s- By construction,
this function is smooth away from strata of dimension < k. Moreover, near a lower-
dimensional stratum S, fg?tjs is bounded by a constant multiple of distance to S
times distance to S’, so the regularity of f} , ¢ is indeed as desired.
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By construction, f3, <11 = fit<k T 2 dim s—ks1 Srr.s Das the desired properties on
all strata of dimension < k + 1. (Note that, since a) vanishes outside of U, so do the
various functions we construct.) Finally, we let f}, = f1, ., ;.

We now use Moser’s trick again, replacing a) by a; , = a) + df} ;. Namely, denote
by v the vector field such that ¢5, Awg’ y = —a,». This vector field is locally Lipschitz
continuous along Dy, and smooth on V?; moreover, by construction it is supported
in U and, by (B.6), tangent to each stratum of Dy. We thus obtain ¢, » with all the
desired properties by considering the time 1 flow generated by o; . (Note: because
we have assumed that wy defines a complete Kéhler metric on V, it is easy to check
that even when V' is noncompact the time 1 flow is well-defined.)

Step 3. We now turn to the construction of ¢, ». We interpolate between wy.cq x

and wgy, » via the family of Kéhler forms wy y, t € [0, &], defined by
wiy = wy —max(0,e — ) 1 (L) + doy
where xy = 1 (where a4 is given by (B.4)) and w; x = wyeqn Wherever x # 1.

These Kahler forms are smooth whenever ¢ > 0 or A # €. Let a; be the 1-form
with support contained in the region where x = 1, and defined by a; = da;/dt
inside that region. By construction, dw; »/dt = da; x. We use Moser’s trick again, and
denote by vy ) the vector field such that ¢, ,wix = —az . This vector field vanishes
outside of U, and is smooth except for t = 0 and A = ¢, in which case it is singular
along H. We will momentarily check that the flow of v, ) is well-defined even for
A = ¢; the time x flow then intertwines wyeq and ws,, » as desired, except it need not
preserve the toric divisors of V', an issue which we will address in Step 4 below.

Differentiating (B.4) with respect to ¢, we have

t xmin(A, ) d°(|f (%))

B.7 Q) = 3
(B7) * T VBB + Al + A —e])
where

(B.5) & = drel FO2 + (A — € + 7 FOO )2 + 5.

Taking the dual vector field, we find that
_ txmin(\, e V(£ (%))
2B (VB + 7| f(x)2+ A —e])?

where V' is the gradient with respect to the Kéhler metric determined by w; .

(Bg) Ut,)\

We restrict our attention to the neighborhood of H where ¥ = 1, since it is clear that
v is well-defined and smooth everywhere else. To estimate the norm of V(| f(x)/?),
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we differentiate (B.4) to find that, in this region,
2min(A, €) (e + NS+ (A= €2 + 2 + A = V) dlf| A delf
VOB + 7| f[2 + A — )’
B 2rmin(\, €)|f|? c1(£)
(VO +7[f2+|A—¢])

(Here we have used the fact that dd®|f|? = —4x|f|*ci(L) + 4d|f] A d°|f].)

When A —e and | f(x)]? are much smaller than €, we have ® ~ 4me| f|*+ (A —¢)? +12.
Estimating the various terms in (B.10), we find that the second term tends to zero
near H, while the leading-order part of the coefficient of d|f| A d°| f| is bounded from
below by €/+v/® (and from above by 4¢/v/®). Hence:

(B.11) doy 2 L@dlfl/\dc\fl-

(B.10) dayy =

(where 2 means that the inequality holds up to lower-order terms.) In more geometric
terms, the Kahler metrics induced by w; » blow up in the normal direction to I, by an
amount of the order of ¢/4/®, while remaining well-behaved in the other directions.
This implies in turn that the norms of d(|f(x)[?) and V**(|f(x)[?) with respect
to the Kihler metric wy are bounded by 2(v/®/e)'/?|f(x)[; and, more importantly,
the norm of V&*(|f(x)|?) with respect to a suitable fixed auxiliary metric is locally
bounded by a constant multiple of (v/®/€)|f(x)|. Plugging into (B.9), we conclude
that the norm of v, (again with respect to a smooth auxiliary metric) is bounded
by a constant multiple of ¢|f(x)|/® < t|f(x)|/(t* + 4me| f(x)|?), and hence uniformly
bounded. Thus, even though v, , itself is not continuous at (¢, A, | f(x)|) = (0, ¢,0), its
flow is well-defined and continuous even for A = ¢, and depends continuously on .

Geometrically, for A — € sufficiently small, near H the leading-order term in v
points radially away from H, in the same direction as the gradient of |f(x)| with
respect to wy, and the time t flow rescales the radial coordinate r = |f(x)| in a
suitable manner. A complicated explicit formula for the leading-order term of the
rescaling can be obtained by comparing the Kahler areas of small discs in the direction
normal to H; for example, for A = € one finds that the time ¢ flow maps points where
| f(x)| = 7o to points where |f(x)|* & 3ro(ro + (r3 + Lt2)/2).

Step 4. We now modify the flow constructed in Step 3 in order to arrange for
the toric divisors of V' to be preserved. We proceed as in Step 2, i.e. we replace
the 1-forms a, ) used in Step 3 with a; ) + df;\ for carefully constructed real-valued
functions f; 5, smooth on V? except for (¢, \) = (0, €), such that:

e the support of f; ) is contained in the intersection of U with a small tubular
neighborhood of Dy;
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e at every point x € Dy, belonging to a toric stratum S C V,
(B.12) the 1-form a, ) + df; » vanishes on (T,,9)*,

where the orthogonal is with respect to wy y;
e where it is smooth, f; » depends smoothly on ¢, and piecewise smoothly on A.

We construct f; , inductively to satisfy (B.12) on toric strata of increasing dimension,
by exactly the same method as in Step 2. The main new difficulty is that we need to
control the behavior of f; y near H for (¢, A) close to (0, €).

We begin with a geometric digression. Fix a collection of smooth foliations Fg of
neighborhoods of HN.S in V for all toric strata S C V, with the following properties:

e cach leaf of Fg intersects S transversely at a single point;

e |f| is constant on the leaves; in particular the leaves through H N S are con-
tained in H;

e given two strata S’ C .S, the leaves of Fg are unions of leaves of Fg.

e given two strata S and Y which intersect transversely along a stratum S’ =
S N, the leaves of Fg through S’ foliate X.

The existence of Fg with these properties follows from the transversality of H to
all toric strata. Indeed, near a k-dimensional stratum S’ and away from all lower-
dimensional strata, consider a toric chart of the form (C*)* x C"* and modify the
first k& coordinates (in a C'*° manner) so that, near H, |f| only depends on these
coordinates, without changing the remaining n — k coordinates. Each stratum S O S’
is then defined by the vanishing of a certain subset of the last n — k coordinates; we
choose the leaves of Fg to be given by letting these coordinates vary and fixing all
others. (More globally, start from a collection of toric charts identifying neighbor-
hoods of strata with toric vector bundles over them, and modify the bundle structures
compatibly along H so that |f| is constant in the fibers and the strata containing a
given one remain given by distinguished sub-bundles.)

Henceforth, unless stated otherwise, all estimates (on distances, derivatives, etc.)
are with respect to a fixed reference metric (independent of ¢ and \), rather than
the metric ¢; » determined by w; »; and the notation O(...) means that an inequality
holds up to a constant factor which is uniformly bounded independently of ¢ and A
over any compact subset of V.

Recall that w, blows up (by a factor of the order of ¢/v/®, cf. (B.11)) in the
directions transverse to the complex hyperplane field

© = Ker (d|f|) N Ker (d°| f])-

In what follows, we will often have better estimates on derivatives along © than on
arbitrary derivatives. We will call derivatives of order (¢,m), denoted by D™ (.. .),
the derivatives of order ¢ + m along ¢ vector fields tangent to © and m arbitrary
vector fields. Since the hyperplane distribution © is not integrable, estimates on
higher derivatives in the direction of © only make sense up to lower-order derivatives
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along the level sets of | f]; however, the curvature of © is O(|f|?), and the estimates
we will obtain below on derivatives of order (¢4 2, m) will generally be no better than
O(|f]?) times the bounds on derivatives of order (¢, m + 1).

Along a stratum S, denote by 7T£S:)\ :TVig — TS+ the orthogonal projection (with
respect to wy ). Because S is transverse to H, and hence to © near H, the behavior
of wy » in the directions transverse to © implies that, near H NS, the w; y-orthogonal
to S becomes nearly tangent to © for (¢, \) close to (0,€). Specifically, near H NS,
the maximum angle (with respect to a fixed reference metric) between a unit vector
in TS+ and © is O(e~'y/®). Thus, denoting by (my)I and (77',)* the components of

ﬂf , along © and its orthogonal for the reference metric, pointwise we have (Wf N

O(e~'\/®). This in turns implies that
(1) 0 78| = O( | FIVD).

Along the level sets of | f|, the coefficient of d| f| A d°|f] in (B.10) remains constant,
and so the geometric behavior of the w;y-orthogonals T'S* can be controlled uni-
formly. In particular, the derivatives along © of (r7,)* are bounded by O(V/®) to all
orders. On the other hand, the variation of (B.10) in the directions transverse to the
level sets of |f| implies that each derivative in those directions worsens the bounds
by a factor of 1/v/®. We conclude that D™ ((xf,)+) = O(®1~™)/2). Meanwhile,
by a similar reasoning, D™ ((w),)Il) = O(@~/2).

These estimates on 77, (and the inequality |f| < (®/4me)'/?) in turn imply that

DM (do(|fP) o mpy) = O (@B~
Thus, the 1-form @, from Step 3 satisfies

et UL 12 (1)
T VB (VE 4l f2 4 1A - )’ @ Vo

t
and D™ (g5 0 ) = O (W) '

We now return to our main construction. Starting with f\,;<o = 0 as before,
assume that we have already constructed f); <k, supported in a neighborhood of the
intersection of H with the toric strata of dimension < k, in such a way that (B.12)
holds for all strata of dimension < k. We further require that, away from all strata
of dimension < k — 1, resp. near a stratum S’ of dimension < k — 1 (and assuming
S’ is the closest such stratum),

m t t . ,min(0,2—¢—m
B19) D ira) =0 (g ) o0 (gt ),

where distg is the distance to S" with respect to the fixed reference metric.
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Let S be a stratum of dimension £ + 1. The above estimates on the derivatives
of WEA, together with (B.13), imply that at any point of S which lies away from the

strata of dimension < k — 1, resp. near (and closest to) such a stratum ',
(B.14)
t

t . ,min —Ll—m
D™ ((arx + dfip <) 0 i) = O (W) e O (WdlstS' " ))'

(Note that, while the quantity in (B.14) involves an additional derivative of f; ) <,
the extra factor of ®~'/2 when this derivative is taken in a direction transverse to ©
is offset by the factor of /2 in the estimates for the transverse component of 7T£S: \)

Near a stratum S C S with dim S” < k, condition (B.12) for f; ) <4 along S” implies
that (a¢x + dfia<k) © Wf)\ vanishes along S’. Since © is transverse to S’, (B.14) for
(¢,m) = (1,0) in turn implies that, at all points of S which lie near 5,

(B.15) (s + dfir<k) 0 78| = 0(

t dist S’ )

\/6 )
Meanwhile, since the distance to the nearest k-dimensional stratum is no greater than
the distance to the nearest lower-dimensional stratum, the bounds in the second part
of (B.14) also hold when dim S” = k. Hence, at any point of S which lies near (and
closest) to a stratum S’ C S of dimension < &,

m l . A—t—m
(B16) D(E’ ) ((CLL)\ + dft7/\7§k) ©) 7T£S:>\) =0 (Wdlstg/ ¢ )

Define a function f}, ¢ on a neighborhood of the given (k4 1)-dimensional stratum
S, smooth outside of the leaves of Fg through strata of dimension < k — 1 (and H if
(A, t) = (¢,0)), which vanishes on S and whose derivative at each point of S satisfies

(B17> dfius = —(Gt’)\ -+ df)\,t,gk) 0] 7T£S:)\.
Specifically, we identify the leaves of Fg with open subsets in the fibers of the normal

bundle to S, and take f)?,t,s to be linear in the fibers. We then define fy:g = Xng,t,S’
where g is the same cut-off function as in Step 2.

By construction, fyy ¢ = O(t dists/+/®). Moreover, using (B.15), along the leaf of
Fg through a point z € S which lies near a lower-dimensional stratum S’ we have
fo\.s = O(tdistg (z) dists/V®).

The derivative of fV, ¢ along the leaves of Fg is the constant extension of (B.17)
along Fg; whereas its derivative in the directions transverse to Fg is a cross-term
which grows linearly with distance to S and involves the dependence of (B.17) on the
point of S. Moreover, the leaves of Fg are tangent to the level sets of |f| near H,
and hence nearly tangent to ©: the maximum angle between vectors in T Fs and ©
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is O(|f]). It then follows from (B.14) that, away from (k — 1)-dimensional strata,

. t
(B.18) Dt )<f)(\),t,5) =0 ((I)(m+1)/2) '

Meanwhile, along the leaf of Fg through a point = € S which lies near (and closest
to) a stratum S” C S with dim S” < k, (B.16) implies that

m t : em | 1 rem g
D(Z’ )(fg,t,S> =0 <W (dlStS/(ZL')2 ¢ + dlStS/(x)l ¢ dlSts('))) .

The leaf of Fg through x locally stays close to a leaf through S’, which by construction
is contained in some other stratum of Dy . In particular, as soon as the distance to
S is sufficiently large compared to dists/(x), points on the leaf through z lie closer
to some other stratum > of dimension > k& + 1 (and not containing S) than to S,
and so the cut-off function yg vanishes identically. Thus, over the support of yg,
distg/(+) and distg (z) are within bounded factors of each other. Since distg < distg,
we conclude that, at all points of the support of yg which lie near (and closest to) 57,

m t . —L{—m
(B.19) Dt ><f£,t,s>=0(mdlst§f ) -

Now we observe that the derivatives of the cut-off function xg are O(1) away
from strata of dimension < k, and near a stratum S’ C S of dimension < k the
derivatives of order  are O(1/dist,). Thus, (B.18) and (B.19) imply that away from
k-dimensional strata, resp. near (and closest to) S C S with dim 5’ < k,

. t L
(B20> D(Z’ )(f/\’qu) =0 <W> s resp. O (Wdlsté/[ ) .

We now set

firzksr = fir<e+ D firs.
dim S=k+1

By construction, fix<k41 is supported in a neighborhood of the intersection of H
with the strata of dimension at most k + 1, and satisfies (B.12) for all strata of
dimension < k+ 1. Indeed, by (B.20), df; s vanishes along strata of dimension < k,
so (B.12) continues to hold for those; whereas, over the interior of the stratum S,
dfixs = df}y g, and the contributions from other (k + 1)-dimensional strata vanish.

Moreover, f;a <k+1 satisfies the estimate (B.13) (with £+ 1 instead of k), as needed
for the induction to proceed. Indeed, this follows immediately from the estimates
(B.13) for fi <k (note that the second estimate also holds near k-dimensional strata,
since the distance to the nearest k-dimensional stratum is no greater than that to the
nearest lower-dimensional stratum), and (B.20) for f; ) s.

Thus, we can indeed carry out the construction of f; y < with the desired properties
by induction on k. Finally, we let f;x = fix<n—1-
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As a consequence of the estimates (B.20) on individual terms, f; ) is C* with locally
Lipschitz first derivatives, and smooth on V° except along H for (¢, \) = (0,¢). By
construction, it is supported in the intersection of U with a neighborhood of Dy, and
satisfies (B.12) for all toric strata.

By (B'13>7 |dft,)\ - O(t/(D)? while |dft,)\‘@| = O@/@)

Because the Kéhler form wy \ blows up like €/ V@ in the directions transverse to O,
we conclude that the Hamiltonian vector field of f; y with respect to w; ) is bounded by
O(t/v/®) (again with respect to the fixed reference metric), hence locally uniformly
bounded. (Recall that V® > t wherever X = 1, while the other terms are bounded
below wherever x < 1.) Moreover, the regularity of f; , implies that this vector field
is locally Lipschitz continuous, and smooth on V°, except along H for (t, ) = (0, ¢).

Combining this with the outcome of Step 3, we find that the vector field 0, 5 defined
by t5,,w) x = —ayx — dfyx is smooth on V° (and locally Lipschitz continuous along
Dy), except along H for (¢, \) = (0, €), and its norm (again with respect to a smooth
reference metric) is bounded by O(t/+/®), hence locally uniformly bounded. Thus,
even though ¥, ) is not continuous along H for (t,\) = (0,¢), its flow is well-defined
and continuous even for A = e. We then obtain ¢, » with all the desired properties
by considering the time x flow generated by vy ». 0
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