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Abstract. We construct infinitely many families of monotone Lagrangian tori in
R

6, no two of which are related by Hamiltonian isotopies (or symplectomorphisms).
These families are distinguished by the (arbitrarily large) numbers of families of
Maslov index 2 pseudo-holomorphic discs that they bound.

1. Introduction

The study and classification of Lagrangian submanifolds in symplectic manifolds
is a central topic of modern symplectic topology; in spite of spectacular advances in
the last few decades, it remains poorly understood, even in very simple symplectic
manifolds such as the standard symplectic vector space (R2d, ω0).

By a celebrated result of Gromov, there are no closed exact Lagrangian subman-
ifolds in R

2d, and in fact any closed Lagrangian in R
2d must bound some pseudo-

holomorphic discs of non-zero area [10]. (This is in sharp contrast with the situation
for immersed Lagrangians, see e.g. [6].) Thus, the nicest condition that one could
impose on a closed Lagrangian submanifold L ⊂ R

2d is for it to be monotone, i.e.
that the symplectic area of discs with boundary on L is (positively) proportional to
their Maslov index.

The simplest examples of monotone Lagrangians in R
2d are the tori obtained as

products of d circles of equal radius, L = S1(r) × · · · × S1(r). In the early 1990s
Chekanov found the first examples of Lagrangian tori in R

2d that cannot be related
to product tori by Hamiltonian isotopies (or symplectomorphisms) [3] (see also [7]).
Subsequent work of Chekanov and Schlenk has led to more examples, the so-called
monotone twist tori [4]; the number of tori produced by this construction grows
exponentially with the dimension, but remains finite for all d.

More recently, Renato Vianna’s thesis [12] shows that CP
2 contains at least one

new kind of monotone Lagrangian torus besides product and Chekanov tori; this
result was recently improved to show that CP2 contains infinitely many non-isotopic
monotone Lagrangian tori [9, 13].

In this paper, we construct infinitely many families of monotone Lagrangian tori in
R

6, no two of which are related by symplectomorphisms. Specifically, the invariants
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that we use to distinguish these tori are the algebraic counts of Maslov index 2 pseudo-
holomorphic discs whose boundary passes through a given point (see §3.1); these
invariants were already used by Eliashberg-Polterovich to distinguish the Chekanov
torus in R

4 [7] and in much of the subsequent work [4, 12, 13].

Theorem 1. For each integer n ≥ 0, and for any choice of monotonicity constant,

there exists a monotone Lagrangian torus L ⊂ (R6, ω0) such that there are n + 2
distinct Maslov index 2 classes in π2(R

6, L) for which the algebraic count of pseudo-

holomorphic discs passing through a point of L is non-zero (and the sum of these

counts is 2n + 1). Therefore, for different n these tori cannot be related by symplec-

tomorphisms.

Remark.

(1) Taking the product of these tori with circles of the appropriate radius, we also
obtain infinitely many examples in R

2d for all 2d ≥ 6 (similarly distinguished
by counts of Maslov index 2 pseudo-holomorphic discs).

(2) For n = 1 our tori are most likely symplectomorphic to standard product tori.
For n = 0 they can be shown to be symplectomorphic to the product of a
circle in R

2 with the monotone Chekanov torus in R
4.

(3) Vianna’s recent result concerning the existence of infinitely many monotone
Lagrangian tori in CP

2 ([13], see also [9]) should also imply a result similar to
Theorem 1, by considering the preimages of these tori under the natural pro-
jection map from the unit sphere S5 ⊂ R

6 to CP
2. However, the construction

we give here is substantially simpler.

(4) Monotonicity plays a key role in the construction. Indeed, after arbitrarily
small Lagrangian isotopies (not preserving monotonicity), our tori become
Hamiltonian isotopic to standard product tori.

(5) The least elementary part of our argument is the discussion of orientations of
moduli spaces. The reader unwilling to delve into these should be content to
work with mod 2 counts of holomorphic discs; the number of Maslov index 2
classes for which the algebraic count of discs is non-zero mod 2, and the
number of integer points in their convex hull inside π2(R

6, L) ≃ Z
3, are in fact

sufficient to distinguish the monotone tori we construct for different n.
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the key conceptual ideas come from the joint work of the author with Mohammed
Abouzaid and Ludmil Katzarkov [1], and from Renato Vianna’s thesis [12] (see §5).
I thank all three of them for helping shape my thoughts on this subject. I also thank
Felix Schlenk and the anonymous referees for their careful comments.
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2. Kähler reduction and Moser flow on the reduced space

Our main object of study is the manifold

(1) X = {(x, y, z, w) ∈ C
4 | xy = h(z, w)},

where for n ≥ 0,

(2) h(z, w) = czn + c−1w − 1,

for c≫ 1 a constant (e.g., c = 10). As a complex manifold X is isomorphic to C
3 via

projection to the coordinates (x, y, z), as w = c(xy+1)− c2zn. We equip X with the
Kähler form

(3) ωX =
i

2
dz ∧ dz̄ + i

2
dw ∧ dw̄ + κ

(

i

2
dx ∧ dx̄+ i

2
dy ∧ dȳ

)

,

where κ > 0 is a small positive constant to be determined below. We note that up
to a rescaling of the x and y coordinates ωX is simply the restriction to X of the
standard Kähler form of C4.

The action of S1 on X by

(4) eiθ · (x, y, z, w) = (eiθx, e−iθy, z, w)

is Hamiltonian, with moment map

(5) µX =
κ

2
(|x|2 − |y|2).

We will consider the reduced space

(6) Xred = µ−1
X (0)/S1.

As a complex manifold, Xred can be naturally identified with C
2 via projection to

the coordinates (z, w). Indeed, for fixed (z, w) the part of the conic xy = h(z, w)
where |x| = |y| consists of a single S1-orbit; the reduced space is therefore naturally
a smooth complex manifold, even though µ−1

X (0) is singular at the fixed points of the
S1-action, i.e. where h(z, w) = 0 and x = y = 0.

Lemma 1. The reduced Kähler form on Xred ≃ C
2 is given by

(7) ωred =
i

2
dz ∧ dz̄ + i

2
dw ∧ dw̄ +

iκ

4

dh ∧ dh̄
|h| = ω0 +

κ

2
ddc(|h|).

(As expected this form is singular along the complex curve h(z, w) = 0.)

Proof. Given any point of Xred where h(z, w) 6= 0, we choose a local square root of h,
and observe that a local section of the quotient map from µ−1

X (0) to Xred is given by
setting x = y = h(z, w)1/2. By definition, the reduced Kähler form ωred agrees with
the pullback of ωX under this local section map. Setting x = y = h1/2, we find that

dx ∧ dx̄+ dy ∧ dȳ = 2d(h1/2) ∧ d(h̄1/2) = 1

2|h|dh ∧ dh̄.
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The first part of (7) follows immediately by substitution into (3). The second equality
follows from the observation that

ddc(|h|) = 2i∂∂̄(h1/2 · h̄1/2) = i

2|h|dh ∧ dh̄.
�

Next we recall the following explicit form of Moser’s lemma in the Kähler case.

Lemma 2. Let ω0 and ω1 = ω0 + ddcϕ be two Kähler forms on a complex manifold.

Denote by gt = (1 − t)g0 + tg1 the Kähler metric corresponding to the Kähler form

ωt = ω0 + t ddcϕ for t ∈ [0, 1], by ξt = −∇gt(ϕ) the gradient of ϕ with respect to gt,
and by ψt the isotopy generated by ξt wherever it is well-defined. Then ψ∗

t (ωt) = ω0.

Moreover, when ω0 = dθ0 is exact, setting θt = θ0 + tdcϕ, the pullback ψ∗
t (θt) differs

from θ0 by an exact form.

Proof. The result follows from Moser’s trick and the observation that

ωt(ξt, ·) = −gt(ξt, J ·) = dϕ(J ·).
Thus, ιξtωt = −dcϕ, and

d
dt
(ψ∗

tωt) = ψ∗
t (

d
dt
ωt + Lξtωt) = ψ∗

t (dd
cϕ+ dιξtωt) = 0.

Similarly, in the exact case,
d
dt
(ψ∗

t θt) = ψ∗
t (

d
dt
θt + Lξtθt) = ψ∗

t (d
cϕ+ ιξt(dθt) + d(ιξtθt)) = ψ∗

t (dιξtθt)

is exact as claimed. �

Applying this to the case at hand, we obtain:

Lemma 3. Let U be the complement of an arbitrarily small neighborhood of h−1(0)
inside an arbitrarily large ball in C

2. Then there exists a constant κ0 > 0 (depending
on U) and an isotopy (ψκ)κ∈[0,κ0] defined on U , ψ0 = id, such that for all κ ∈ (0, κ0),
ψκ gives an exact symplectomorphism between U ⊂ (C2, ω0) and ψκ(U) ⊂ (Xred, ωred).

Proof. Let Ω be a compact subset of C2 \ h−1(0) whose interior contains the closure
of U . On Ω, the function |h| is smooth and has bounded derivatives, and the Kähler
metric gκ associated to ωred = ω0+

κ
2
ddc(|h|) is bounded between fixed multiples of the

standard metric g0 for all κ ∈ [0, 1]. Thus, the vector field ξκ = −1
2
∇gκ |h| is smooth

and has bounded norm on Ω. Applying Lemma 2, the isotopy ψκ generated by ξκ is
well-defined on U for small enough κ and gives the desired symplectomorphisms. �
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3. Monotone tori in Xred and X

3.1. An enumerative invariant of monotone Lagrangians. Before proceeding
with our construction, we recall some basic facts about holomorphic discs and the
invariant we use to distinguish our tori. (See also [7, 2, 12].)

Let L be a closed oriented spin Lagrangian submanifold in a symplectic manifold
(M2d, ω) equipped with a compatible almost-complex structure J . When M is non-
compact we always assume that ω is convex at infinity (in our case, this follows from
the properness and strict plurisubharmonicity of the Kähler potential).

Given a J-holomorphic map u : (D2, ∂D2) → (M,L), the Maslov index µ([u]) ∈ 2Z
is the homotopy class of the loop of Lagrangian spaces given by TL along the boundary
of u (relative to a trivialization of u∗TM). The deformation of u as a J-holomorphic
map is governed by a Cauchy-Riemann type operator (in the integrable case, an
honest ∂̄ operator) on the space of sections of u∗TM taking values in u∗TL along the
boundary. The index of this operator is ind(∂̄) = d+µ([u]), and when it is surjective
(i.e., u is regular) the space of pseudo-holomorphic maps is locally a smooth manifold
of this dimension.

Assume now that L is monotone, and fix a homotopy class β ∈ π2(M,L) with
µ(β) = 2. We consider the moduli space of J-holomorphic discs with one boundary
marked point 1 ∈ ∂D2, i.e. the quotient

(8) M1(L, β, J) =
{

u : (D2, ∂D2) → (M,L) | ∂̄Ju = 0, u∗[D
2] = β

}

/Aut(D2, 1).

Since µ(β) = 2 takes the smallest possible positive value, and the monotonicity of L
guarantees that the symplectic area of discs is positively proportional to their Maslov
index, discs in the class β have the smallest possible symplectic area. Therefore,
bubbling can be excluded a priori. Moreover, all J-holomorphic discs in the class
β are somewhere injective, and so a generic choice of J ensures their regularity.
M1(L, β, J) is then a smooth compact manifold of dimension d+ µ(β)− 2 = d.

Fix an orientation and a spin structure on L. The spin structure determines an
orientation of M1(L, β, J) (cf. [8, 5]), and the degree of the evaluation map

ev : M1(L, β, J) → L,

[u] 7→ u(1)

is then a well-defined integer – essentially, a signed count of J-holomorphic discs in
the class β whose boundary passes through a given point of L. Moreover, a generic
path between two regular almost-complex structures J0 and J1 determines an oriented
cobordism between M1(L, β, J0) and M1(L, β, J1), which shows that the degree of
the evaluation map is independent of the chosen regular J . We denote its value by
n(L, β) ∈ Z.

Definition. We call n(L, β) ∈ Z the algebraic count of pseudo-holomorphic discs in
the class β passing through a point of L.



6 DENIS AUROUX

By the same cobordism argument, the algebraic counts n(L, β) are invariant under
isotopies of L among monotone Lagrangian submanifolds; and they are also invariant
under simultaneous deformations of the symplectic form on M and of the Lagrangian
submanifold L, as long as convexity at infinity and monotonicity are preserved. An-
other invariance property concerns symplectomorphisms of M : if L′ = φ(L) for some
symplectomorphism φ, then M1(L, β, J) ≃ M1(L

′, φ∗β, φ∗J), and so (with compati-
ble choices of orientations and spin structures) we have n(L, β) = n(L′, φ∗β).

As pointed out in the introduction, the reader unwilling to deal with spin structures
and orientations of moduli spaces should be content to work with n(L, β) mod 2.

3.2. A monotone torus in Xred. Let Tstd = {(z, w), |z| = |w| = 1} be the standard
product torus in (C2, ω0) equipped with the standard Kähler form and the standard
complex structure. The following is well-known (see e.g. [5]; we sketch the proof for
completeness):

Lemma 4. Tstd is a monotone Lagrangian torus in (C2, ω0). There are two families of

holomorphic discs of Maslov index 2 with boundary on Tstd, which can be parametrized

by the maps uα : z 7→ (z, eiα) and vα : z 7→ (eiα, z) for eiα ∈ S1. These discs are all

regular, and for a suitable choice of spin structure on Tstd the algebraic count of discs

passing through a point of Tstd is +1 for each of the two families.

Proof. The maps uα and vα : (D2, ∂D2) → (C2, Tstd) obviously define holomorphic
discs. To calculate their Maslov index, we note that the pullback bundle u∗α(TC

2)
can be identified with the direct sum of two trivial holomorphic line bundles in such
a way that, at a point eiθ ∈ ∂D2, the pullback of TTstd splits into the direct sum of
the real lines ℓ1 = eiθR ⊂ C in the first factor and ℓ0 = R ⊂ C in the second factor.

Thus, the Maslov index of uα is equal to the sum of the Maslov indices of the two
families of lines ℓ1 and ℓ0 in C, namely 2 + 0 = 2. Furthermore, the regularity of
uα follows from the surjectivity of the ∂̄ operator for complex-valued functions on
the disc with boundary conditions in ℓ1 (resp. ℓ0) (as follows e.g. from the reflection
principle). Similarly for vα.

To see that these are the only Maslov index 2 discs, we observe that β1 = [uα] and
β2 = [vα] generate π2(C

2, Tstd) ≃ π1(Tstd) = Z
2, so by linearity the Maslov index of a

disc with boundary on Tstd is equal to twice its algebraic intersection number with the
union of the coordinate axes. For holomorphic discs, positivity of intersection implies
that a Maslov index 2 disc in (C2, Tstd) intersects only one of the two coordinate axes
z = 0 and w = 0, transversely, and at a single point.

If for example the holomorphic disc u : (D2, ∂D2) → (C2, Tstd) is disjoint from
the line w = 0, then applying the maximum principle to the projection to the w
coordinate, we find that w ◦ u : (D2, ∂D2) → (C∗, S1) must take some constant value
eiα. Meanwhile, the projection to the z coordinate has a single zero of order 1, which
means that z ◦ u : (D2, ∂D2) → (C, S1) is a biholomorphism from the unit disc to
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itself, i.e. the identity map up to reparametrization. Thus u is equivalent to uα up to
reparametrization. Similarly for the other case where the disc is disjoint from z = 0
and intersects w = 0 once.

Finally, the moduli space M1(L, β1, J0) consists of reparametrizations of the discs
uα, e.g. the maps z 7→ (eiβz, eiα) for (eiβ, eiα) ∈ S1×S1. ThusM1(L, β1, J0) ≃ T 2, and
the evaluation map to Tstd is a diffeomorphism; choosing the “standard” spin structure
ensures that this diffeomorphism is orientation-preserving [5], hence n(L, β1) = +1.
Similarly for the other class β2. �

Next we observe that Tstd lies away from the complex curve

(9) C = h−1(0) = {(z, w) ∈ C
2 | czn + c−1w − 1 = 0},

and that the disc uα intersects C transversely at n distinct points, where the z coor-
dinate takes the values

zk = e2πik/nc−1/n(1− c−1eiα)1/n,

while vα is disjoint from C.

The regularity of the discs uα and vα implies that they deform smoothly under
small isotopies of Tstd. Thus, for small enough values of the constant κ, denoting by
ψκ the isotopy constructed in Lemma 3, the Lagrangian torus

Tred = ψκ(Tstd)

in (Xred, ωred) again bounds two families of Maslov index 2 holomorphic discs u′α and
v′α, representing the homotopy classes β′

1 = (ψκ)∗(β1) and β
′
2 = (ψκ)∗(β2). We obtain:

Lemma 5. For κ > 0 small enough, (Xred, ωred) contains a monotone Lagrangian

torus Tred, disjoint from C = h−1(0), which bounds exactly two families of Maslov

index 2 holomorphic discs, representing classes β′
1, β

′
2 that span π2(Xred, Tred) ≃ Z

2.

These discs are all regular, and for a suitable spin structure their algebraic counts

are n(Tred, β
′
1) = n(Tred, β

′
2) = +1. Moreover, the discs in the class β′

1 intersect C
transversely in n distinct points, while those in the class β′

2 are disjoint from C.

Remark. While ωred is singular along C, it can still be integrated over a disc that
intersects C transversely, so the notion of monotonicity still makes sense. In fact,
symplectic area can also be defined as the integral of the Liouville form

θred = dc(1
4
|z|2 + 1

4
|w|2 + κ

2
|h|)

along the boundary of a disc. Perhaps even better, we can modify ωred in a neigh-
borhood of C (disjoint from Tred) by a small exact deformation so as to cure its lack
of smoothness; this can be achieved simply by replacing |h| by a smooth function
ρ(|h|) in the expression for the Kähler potential (taking ρ : [0,∞) → [0,∞) to be any
smooth, convex function which agrees with identity outside of [0, ǫ] and has vanishing
odd derivatives at the origin). This modification does not affect the properties of the
isotopy ψκ away from C, nor the symplectic areas of holomorphic discs.
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Proof of Lemma 5. The existence and regularity for small κ of the two families of
holomorphic discs u′α and v′α with boundary on Tred = ψκ(Tstd) representing the
classes β′

1 and β′
2, obtained as smooth deformations of the discs uα and vα under the

isotopy, is a direct consequence of the regularity of the latter discs.

Since the isotopy is exact (ψ∗
κ(θred) agrees with the standard Liouville form θ0

up to an exact term), the symplectic areas of the discs are preserved, which proves
the monotonicity of Tred. Moreover, Gromov compactness implies that Tred does not
bound any other Maslov index 2 holomorphic discs: if such discs existed for arbitrarily
small κ, taking the limit of a subsequence with κ→ 0 would yield a contradiction.

Finally, because the discs uα and vα deform smoothly under the isotopy of Tstd to
Tred, for small κ the discs u′α and v′α continue to intersect C transversely, and the al-
gebraic counts remain unchanged (in fact the evaluation maps ev : M1(Tred, β

′
i, J0) →

Tred remain diffeomorphisms). �

3.3. A monotone torus in X. From now on we fix the value of the constant κ > 0
so that the conclusion of Lemma 5 holds. We then construct a Lagrangian torus T
in (X,ωX) by lifting Tred to µ−1

X (0):

Definition. We denote by T the preimage of Tred under the projection map from
µ−1
X (0) ⊂ X to Xred, i.e.

(10) T = {(x, y, z, w) ∈ X | (z, w) ∈ Tred and |x| = |y|}.

We also denote by π : X → Xred the projection to the (z, w) coordinates,

(11) π(x, y, z, w) = (z, w).

Lemma 6. T is a monotone Lagrangian torus in (X,ωX).

Conceptually, this follows from the observation that T is the image of Tred under
the monotone Lagrangian correspondence between Xred and X induced by µ−1

X (0). A
more elementary argument is as follows.

Proof. Since the restriction of ωX to µ−1
X (0) agrees with the pullback of ωred via

the projection map π, ωX |T is the pullback of ωred|Tred
under the projection from

T ⊂ µ−1
X (0) to Tred ⊂ Xred, i.e. it vanishes, and T is Lagrangian.

Let u : (D2, ∂D2) → (X, T ) be a disc with boundary on T (not necessarily holo-
morphic), and denote by γ : S1 → T its boundary loop. Perturbing u if necessary,
we can assume that it avoids the fixed point set F = {x = y = 0} (which has real
codimension 4). In terms of the Liouville form

(12) θX = dc(1
4
|z|2 + 1

4
|w|2 + κ

4
|x|2 + κ

4
|y|2),

the symplectic area of u is given by the integral of θX along the boundary loop γ.
However, along µ−1

X (0) we have |x|2 = |y|2 = |h|, and |x|2 + |y|2 achieves its fiber-
wise minimum so its derivative vanishes in all directions tangent to the fibers of π.
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Therefore, at every point of µ−1
X (0) the 1-form θX coincides with

π∗θred = dc(1
4
|z|2 + 1

4
|w|2 + κ

2
|h|).

Denoting by ured = π ◦ u : (D2, ∂D2) → (Xred, Tred) and γred = π ◦ γ : S1 → Tred the
projections of u and γ, we conclude that

(13)

∫

D2

u∗ωX =

∫

S1

γ∗θX =

∫

S1

γ∗(π∗θred) =

∫

S1

γ∗red(θred) =

∫

D2

u∗red(ωred),

i.e. the disc u and its projection ured have the same symplectic areas. Meanwhile,
away from the fixed point locus F , denote by

(14) LR = R · (ix,−iy, 0, 0) and L = C · (ix,−iy, 0, 0)
the real and complex spans of the vector field generating the S1-action. Then L is
a trivial holomorphic subbundle of TX, and TX/L ≃ π∗TXred, i.e. away from F we
have a short exact sequence of holomorphic vector bundles

(15) 0 −→ L −→ TX
dπ−→ π∗TXred −→ 0.

Along T , we have a similar short exact sequence of real subbundles,

(16) 0 −→ LR −→ TT
dπ−→ π∗TTred −→ 0.

Since the trivial subbundles (u∗L, γ∗LR) do not contribute to the Maslov index, µ([u])
can be computed by considering the quotient bundles (u∗(TX/L), γ∗(TT/LR)) ≃
(u∗red(TXred), γ

∗
red(TTred)). In other terms,

(17) µ([u]) = µ([ured]).

Comparing (13) and (17), we find that the proportionality between Maslov index and
symplectic area for discs in Xred with boundary on Tred implies the same proportion-
ality for discs in X with boundary on T . �

Lemma 7. The projection ured = π ◦ u : (D2, ∂D2) → (Xred, Tred) of a holomorphic

disc u : (D2, ∂D2) → (X, T ) is a holomorphic disc, and µ([ured]) = µ([u]).

Conversely, let ured : (D
2, ∂D2) → (Xred, Tred) be a holomorphic disc that intersects

C = h−1(0) transversely in k points, and fix a point p0 ∈ T such that π(p0) = ured(1).
Then there are exactly 2k holomorphic discs u : (D2, ∂D2) → (X, T ) such that π ◦u =
ured and u(1) = p0. Moreover, if ured is regular then all these discs are regular.

Proof. The first statement follows immediately from the holomorphicity of π and the
Maslov index calculation in the proof of Lemma 6 (equation (17)).

For the second part, let ured be a holomorphic disc in Xred that intersects C trans-
versely, with u−1

red(C) = {t1, . . . , tk} ⊂ D2, and let u be a lift of ured to a disc in X with
boundary on T . Along the holomorphic disc u, the product xy = h(z, w) has simple
zeroes at t1, . . . , tk, i.e. u intersects π−1(C) = {x = 0} ∪ {y = 0} transversely at the
k points u(t1), . . . , u(tk). The quotient q = x/y then defines a meromorphic function
on the disc, which has either a simple zero or a simple pole at each of t1, . . . , tk, and
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no other zeroes or poles. Moreover, on the boundary we have |x| = |y|, so q maps the
unit circle to itself.

Given any function ε : {1, . . . , k} → {±1}, set

(18) ϑε(z) =
k
∏

j=1

(

z − tj
1− tjz

)ε(j)

,

which is a meromorphic function on the unit disc, mapping the unit circle to itself,
and with simple zeroes (resp. poles) at all tj such that ε(j) = +1 (resp. −1).

Thus, choosing ε(j) = ordtj(q) according to the poles and zeroes of q = x/y along
the disc u, we find that ϑε and q have the same zeroes and poles on the unit disc, and
their ratio defines a nowhere vanishing holomorphic function on the unit disc, taking
values in the unit circle at the boundary. By the maximum principle this function is
constant, i.e. there exists eiθ ∈ S1 such that q = eiθϑε.

By construction the holomorphic functions (h ◦ ured)ϑ±1
ε only have double zeroes,

and so we can choose square roots

ζ± =
(

(h ◦ ured)ϑ±1
ε

)1/2
,

with ζ+/ζ− = ϑε and ζ+ζ− = h◦ured. We obtain that along the disc u the coordinates
x and y are given by

x = eiθ/2ζ+ and y = e−iθ/2ζ−,

for some eiθ/2 ∈ S1. Conversely, these formulas determine holomorphic lifts of ured
for all ε : {1, . . . , k} → {±1} and for all eiθ/2 ∈ S1, and the condition that u(1) = p0
determines the normalization factor eiθ/2 uniquely for given ε. Hence there are 2k

lifts of ured as claimed, determined by the choice of whether x or y vanishes at each
point where ured intersects C.

Finally, we note that none of the lifts u pass through the fixed point locus of the
S1-action (since x and y do not vanish simultaneously). Thus, pulling back the exact
sequences (15) and (16) along u, we find that the holomorphic vector bundle u∗TX
admits a trivial holomorphic line subbundle u∗L, with a trivial real subbundle at
the boundary u∗|S1LR. Since the ∂̄ operator for complex-valued functions on the disc

with the trivial real boundary condition R ⊂ C on the unit circle is surjective, the
surjectivity of the ∂̄ operator on sections of u∗TX with boundary conditions u∗|S1(TT )

is equivalent to that of the ∂̄ operator on the quotient bundle u∗TX/u∗L ≃ u∗redTXred

with boundary conditions u∗|S1(TT )/u∗|S1(LR) ≃ u∗red|S1(TTred). Thus, the regularity

of u is equivalent to that of ured as claimed. �

Corollary 8. There are n+ 2 distinct Maslov index 2 classes in π2(X, T ) for which

the algebraic count of pseudo-holomorphic discs is non-zero, and for a suitable choice

of spin structure the sum of these counts is 2n + 1.
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Proof. By Lemma 7, the holomorphic discs of Maslov index 2 bounded by T are lifts
of those bounded by Tred in Xred, which are determined by Lemma 5.

The discs representing the class β′
2 ∈ π2(Xred, Tred) are disjoint from C, hence they

admit a unique lift up to the S1-action. Denoting by β̂2 ∈ π2(X, T ) the class of these

lifts, the moduli space M1(T, β̂2, J0) is an S1-bundle over M1(Tred, β
′
2, J0), and the

evaluation map to T is equivariant with respect to the S1-action; thus the evaluation
map ev : M1(T, β̂2, J0) → T is again a diffeomorphism, and its degree is ±1.

Meanwhile, the discs representing the class β′
1 ∈ π2(Xred, Tred) intersect C trans-

versely in n points (cf. Lemma 5), so by Lemma 7 they can be lifted in 2n different
ways up to the S1-action. Observe that elements of π2(X, T ) ≃ Z

3 are determined
by their intersection numbers with the three hypersurfaces x = 0, z = 0, and w = 0.
Thus, the lifts live in n + 1 different classes β̂1,ℓ ∈ π2(X, T ), ℓ = 0, . . . , n, depend-
ing on the intersection number of the lifted disc with the hypersurface x = 0; each
value of ℓ is achieved by

(

n
ℓ

)

of the 2n lifts. The moduli space M1(T, β̂1,ℓ, J0) then

projects to M1(Tred, β
′
1, J0) with fiber a union of

(

n
ℓ

)

circles. The evaluation map

ev : M1(T, β̂1,ℓ, J0) → T is thus an unramified
(

n
ℓ

)

-sheeted covering.

To determine the orientations, we briefly recall the construction in [8, Chapter 8]
(see also [5, Prop. 5.2] for a simpler presentation that suffices for the case at hand).
A spin structure on T determines a trivialization of its tangent bundle along the
boundary of a holomorphic disc u. Using this trivialization, the ∂̄ operator can be
deformed to the direct sum of a complex linear operator and a ∂̄ operator for sections
of a trivialized complex vector bundle with trivial real boundary condition (namely,
the tangent bundles to X and T along the boundary of u, with the trivialization
determined by the spin structure). Since the kernel of the latter operator can be
identified with the tangent space to T at the marked point, an orientation of T then
determines an orientation of the tangent space to the moduli space at u.

In our case, we choose the spin structure on T to be standard along the orbits of the
S1-action and consistent under the splitting (16) with that previously chosen on Tred.
Thus, the preferred trivialization of TT along the boundary of a holomorphic disc u
agrees with that induced via (16) by the trivialization of TTred along the boundary of
ured = π◦u and the natural trivialization of the trivial line bundle LR. The orientation
at u of the moduli space of holomorphic discs in (X, T ) then agrees with that induced
by the orientation at ured of the moduli space of holomorphic discs in (Xred, Tred)
and the chosen orientation of the orbits of the S1-action. With this understood, the
orientation-preserving nature of the evaluation maps for discs in (Xred, Tred) implies
that the evaluation maps for discs in (X, T ) are also orientation-preserving, i.e. the
degrees are positive. �

(For the reader working mod 2, we note that the odd values of n(T, β) are achieved

for β̂2 and those β̂1,ℓ for which
(

n
ℓ

)

is odd, including the extremal cases β̂1,0 and β̂1,n.)
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4. Proof of Theorem 1

In light of Corollary 8 and the invariance properties of the algebraic counts n(T, β),
the only thing that remains to be done is to construct an isotopy between the Kähler
form ωX on (a bounded subset of) X ≃ C

3 and the standard Kähler form. We will
again rely on Moser’s trick (Lemma 2). We denote by

(19) Φ1 =
κ
4
|x|2 + κ

4
|y|2 + 1

4
|z|2

the Kähler potential for the standard (up to rescaling) Kähler form on C
3,

ω1 = ddcΦ1 =
i
2
dz ∧ dz̄ + κ( i

2
dx ∧ dx̄+ i

2
dy ∧ dȳ).

The Kähler potential for ωX is

ΦX = Φ1 +
1
4
|w|2,

where we recall that w is determined as a function of the coordinates (x, y, z) by

(20) w = c(xy + 1)− c2zn.

The estimate that ensures the existence of the Moser flow is the following:

Lemma 9. Given any bounded subset B ⊂ C
3, there exist positive constants C and

M such that the real-valued function ϕ = CΦ1 − ΦX is bounded above by M on B,

and the connected component Ω of ϕ−1((−∞,M ]) which contains B is compact.

Proof. We equip C
3 with the Euclidean metric for which the positive definite quadratic

form Φ1 is the square of the distance to the origin (i.e., a rescaling of the usual metric).

Let R > 0 be such that B is contained within the ball B(0, R) of radius R (for
this metric), denote by K the supremum of 1

4
|w|2/Φ1 in B(0, 2R) \ B(0, R), and set

C = 2K + 1. Then in B(0, 2R) \B(0, R) we have

KΦ1 ≤ ϕ = (C − 1)Φ1 − 1
4
|w|2 ≤ 2KΦ1,

and the upper bound continues to hold inside B(0, R).

Then inside B(0, R) we have ϕ ≤ 2KΦ1 ≤ 2KR2, while in B(0, 2R)\B(0,
√
3R) we

have 3KR2 ≤ KΦ1 ≤ ϕ. Thus, setting M = 5
2
KR2, there is a connected component

Ω of ϕ−1((−∞,M ]) for which B(0, R) ⊂ Ω ⊂ B(0,
√
3R). �

Choosing B to be a polydisc in C
3 large enough to contain T , and taking C as in

Lemma 9, we now apply Lemma 2 to the Kähler forms ωX and Cω1, to construct
an exact isotopy ψt such that ψ∗

1(Cω1) = ωX . Because the isotopy is generated by
the negative gradient of ϕ = CΦ1 − ΦX (with respect to a varying family of Kähler
metrics), the values of ϕ decrease along the flow. Thus, the compact subset Ω ⊃ B
constructed in Lemma 9 is preserved, so the isotopy is well-defined everywhere in it,
and in particular in B.

Since the isotopy is exact, ψt(T ) is a monotone Lagrangian torus in C
3 equipped

with the Kähler form ωt = Ctω1 + (1 − t)ωX , and the algebraic counts of Maslov
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index 2 holomorphic discs remain constant along the isotopy. For t = 1 we obtain
a monotone Lagrangian torus in (C3, Cω1) with the desired properties. Rescaling
the coordinate axes by suitable constant factors, we obtain a monotone Lagrangian
torus in C

3 equipped with the standard Kähler form, and by further rescaling we
obtain tori with arbitrary monotonicity constants and the same algebraic counts of
pseudo-holomorphic discs.

5. Comments on the construction

Our construction is inspired by ideas from mirror symmetry, and more precisely
the Strominger-Yau-Zaslow (SYZ) conjecture, whereby the mirror of a given Kähler
manifold is constructed geometrically from a Lagrangian torus fibration on the com-
plement of a complex hypersurface. The numbers of Maslov index 2 discs bounded
by the fibers exhibit discontinuities across a set of walls which separate the fibration
into chambers, each with its own enumerative behavior; each chamber corresponds to
a distinguished coordinate chart on the mirror (cf. [1, §2] and [2]).

In a given Lagrangian fibration, the vast majority of fibers are not monotone, and
the counts of Maslov index 2 discs are not invariant under Hamiltonian isotopies.
However, by deforming the fibration suitably it is often possible to arrange the exis-
tence of a monotone fiber in any given chamber. For example, the complement of a
smooth cubic in CP

2 admits a Lagrangian torus fibration with three singular fibers
and infinitely many chambers; Vianna’s constructions in [12, 13] can be understood
as modifying the fibration to place the monotone fiber in a prescribed chamber.

The construction of Theorem 1 relies on the fact that C
3 can be presented as

a conic bundle {xy = h(z, w)} over C
2 with a discriminant curve h−1(0) ⊂ C

2 of
arbitrarily large degree. SYZ mirror symmetry for conic bundles over toric varieties
has been studied in detail in [1], where it was shown that the chamber structure
is governed by the tropical geometry of h−1(0) (or, in more classical terms, by the
various manners in which product tori in C

2 can be linked with h−1(0)). Thus, by
increasing the degree of h we can exhibit Lagrangian torus fibrations on open dense
subsets of C3 (namely, those points where z and w are nonzero) with arbitrarily many
chambers. Choosing the coefficients of h suitably ensures the existence of monotone
fibers in the “most interesting” chambers. (In fact, choosing h to be analytic rather
than algebraic one could obtain a single fibration with infinitely many chambers, with
monotone representatives corresponding to all the values of n in our main construction
at once.)

Another perspective on the construction comes from singularity theory: projecting
the conic bundle X ≃ C

3 to the coordinate w presents it as an unfolding of the An−1

singularity xy = czn. The An−1 Milnor fiber contains non-displaceable monotone
Lagrangian tori (cf. [1, Corollary 9.1] and [11]). The examples of Theorem 1 can be
obtained by transporting these tori along a circle in the w coordinate; even though
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the unfolding makes the ambient manifold contractible and the tori displaceable, the
distinctive enumerative features of the tori in the fibers persist.
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