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Maximizing Broadcast Throughput

Under Ultra-Low-Power Constraints
Tingjun Chen, Javad Ghaderi, Dan Rubenstein, and Gil Zussman

Abstract—Wireless object tracking applications are gaining
popularity and will soon utilize emerging ultra-low-power device-
to-device communication. However, severe energy constraints
require much more careful accounting of energy usage than
what prior art provides. In particular, the available energy, the
differing power consumption levels for listening, receiving, and
transmitting, as well as the limited control bandwidth must all be
considered. Therefore, we formulate the problem of maximizing
the throughput among a set of heterogeneous broadcasting nodes
with differing power consumption levels, each subject to a strict
ultra-low-power budget. We obtain the oracle throughput (i.e.,
maximum throughput achieved by an oracle) and use Lagrangian
methods to design EconCast – a simple asynchronous distributed
protocol in which nodes transition between sleep, listen, and
transmit states, and dynamically change the transition rates.
EconCast can operate in groupput or anyput modes to re-
spectively maximize two alternative throughput measures. We
show that EconCast approaches the oracle throughput. The
performance is also evaluated numerically and via extensive
simulations and it is shown that EconCast outperforms prior art
by 6x – 17x under realistic assumptions. Moreover, we evaluate
EconCast’s latency performance and consider design tradeoffs
when operating in groupput and anyput modes. Finally, we
implement EconCast using the TI eZ430-RF2500-SEH energy
harvesting nodes and experimentally show that in realistic
environments it obtains 57% – 77% of the achievable throughput.

Index Terms—Internet-of-Things, energy harvesting, ultra-low-
power, wireless communication

I. INTRODUCTION

Object tracking and monitoring applications are gaining

popularity within the realm of Internet-of-Things [2]. One

enabler of such applications is the growing class of ultra-

low-power wireless nodes. An example is active tags that can

be attached to physical objects, harvest energy from ambient

sources, and communicate tag-to-tag toward gateways [3], [4].

Relying on node-to-node communications will require less

infrastructure than traditional (RFID/reader-based) implemen-

tations. Therefore, as discussed in [3]–[6], it is envisioned that

such ultra-low-power nodes will facilitate tracking applications
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in healthcare, smart building, assisted living, manufacturing,

supply chain management, and intelligent transportation.

A fundamental challenge in networks of ultra-low-power

nodes is to schedule the nodes’ sleep, listen/receive, and trans-

mit events without coordination, such that they communicate

effectively while adhering to their strict power budgets. For

example, energy harvesting tags need to rely on the power that

can be harvested from sources such as indoor-light or kinetic

energy, which provide 0.01−0.1mW [7], [8] (for more details

see the review in [9] and references therein). These power

budgets are much lower than the power consumption levels

of current low-power wireless technologies such as Bluetooth

Low Energy (BLE) [10] and ZigBee/802.15.4 [11] (usually at

the order of 1−10mW). On the other hand, BLE and ZigBee

are designed to support data rates (up to a few Mbps) that are

higher than required by the applications our work envisages

supporting (less than a few Kbps).
In this paper, we formulate the problem of maximizing

broadcast throughput among energy-constrained nodes. We

design, analyze, and evaluate EconCast: Energy-constrained

BroadCast. EconCast is an asynchronous distributed protocol

in which nodes transition between sleep, listen/receive, and

transmit states, while maintaining a power budget. The nodes

and network we focus on have the following characteristics:

Broadcast: A transmission can be heard by all listening nodes

in range.

Severe power constraints: The power budget is so limited that

each node needs to spend most of its time in sleep state and

the supported data rates can be of a few Kbps [7]. Traditional

approaches that spend energy in order to improve coordination

(e.g., accurate clocks, slotting, synchronization) or form some

sort of structure (e.g., routing tables and clusters) are too

expensive given limited energy and bandwidth.

Unacquainted: Nodes do not require pre-existing knowledge

of their environment (e.g., properties of neighboring nodes).

This can result from the restricted power budget or from unan-

ticipated environment changes due to altered energy sources

and/or node mobility.

Heterogeneous: The power budgets and the power consump-

tion levels can differ among the nodes.

Efficiently operating such structureless and ultra-low-power

networks requires nodes to make their sleep, listen, or transmit

decisions in a distributed manner. Therefore, we consider

the fundamental problem of maximizing the rate at which

the messages can be delivered (the actual content of the

transmitted messages depends on the application). Namely, we

focus on maximizing the broadcast throughput and consider

two alternative definitions:
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• Groupput – the total rate of successful bit transmissions

to all the receivers over time. Groupput directly applies

to tracking applications in which nodes utilize a neigh-

bor discovery protocol to identify neighbors which are

within wireless communication range [12]–[14]. In such

applications, broadcasting information to all other nodes

in the network is important, allowing the nodes to transfer

data more efficiently under the available power budgets.

Groupput can also be applied to data flooding applications

where the data needs to be collected at all the nodes in

a network.

• Anyput – the total rate of successful bit transmissions

to at least one receiver over time. It applies to delay-

tolerant environments that utilize gossip-style methods

to disseminate information. In traditional gossip commu-

nication, a node selects a communication partner in a

deterministic or randomized manner. Then, it determines

the content of the message to be sent based on a naive

store-and-forward, compressive sensing [15], [16], or

decentralized coding [17]. As another example, in delay-

tolerant applications, data transmission may get disrupted

or lost due to the limits of wireless radio range, sparsity

of mobile nodes, or limited energy resources, a node may

wish to send its data to any available receiver.

First, we derive oracle groupput and anyput (i.e., maximum

throughput achieved by an oracle) and provide methods to

efficiently compute their values. Then, we use Lagrangian

methods and a Q-CSMA (Queue-based Carrier Sense Multiple

Access) approach to design EconCast. EconCast can operate

in groupput or anyput modes to respectively maximize the

two alternative throughput measures. Nodes running EconCast

dynamically adapt their transition rates between sleep, listen,

and transmit states based on (i) the energy available at the node

and (ii) the number (or existence) of other active listeners.

To support the latter, a listening node emits a low-cost infor-

mationless “ping” which can be picked up by other listening

nodes, allowing them to estimate the number (or existence)

of active listeners. We briefly discuss how this method helps

increasing the throughput and the implementation aspects. We

analyze the performance of EconCast and prove that, in theory,

it converges to the oracle throughput.

We evaluate the throughput performance of EconCast nu-

merically and via extensive simulations under a wide range

of power budgets and listen/transmit consumption levels, and

for various heterogeneous and homogeneous networks. Specif-

ically, numerical results show that EconCast outperforms prior

art (Panda [14], Birthday [18], and Searchlight [19]) by a

factor of 6x – 17x under realistic assumptions. In addition, we

consider the performance of EconCast in terms of burstiness

and latency. We also consider the design tradeoffs of EconCast

when oprating in groupput and anyput modes.

We implement EconCast using the TI eZ430-RF2500-SEH

energy harvesting nodes and experimentally show that in

practice it obtains 57% – 77% of the achievable throughput.

Moreover, we compare the experimental throughput to analyt-

ical throughput of Panda [14] (where the analytical throughput

is usually better than the experimental performance) and show

that, for example, EconCast outperforms Panda by 8x – 11x.

We note that EconCast is not designed based on specific

assumption, regarding the topology and that nodes do not need

to know the properties of other nodes. Yet, in this paper, we

mainly focus on a clique topology (i.e., all nodes are within

the communication range of each other), since it lends itself to

analysis. We briefly extend the analytical results to non-clique

topologies and also evaluate the performance of EconCast in

such networks.

To summarize, the main contributions of this paper are:

(i) a distributed asynchronous protocol for a heterogeneous

collection of energy-constrained wireless nodes, that can ob-

tain throughput that approaches the maximum possible, (ii)

efficient methods to compute the oracle throughput, and (iii)

extensive performance evaluation of the protocol.

The rest of the paper is organized as follows. We discuss

related work in Section II and formulate the problem in Sec-

tion III. In Section IV, we present methods to efficiently com-

pute the oracle throughput. We present EconCast in Section V

and the proof of the main theoretical result in Section VI.

In Section VII, we evaluate EconCast numerically and via

simulations. We then discuss the experimental implementation

and evaluation of EconCast in Section VIII. We conclude in

Section IX.

II. RELATED WORK

There is vast amount of related literature on sensor net-

working and neighbor discovery that tries to limit energy

consumption. Most of the protocols do not explicitly account

for different listen and transmit power consumption levels of

the nodes, or do not account for different power budgets [12],

[13], [18]–[25]. They mostly use a duty cycle during which

nodes sleep to conserve energy and when nodes are simultane-

ously awake, a pre-determined listen-transmit sequence with

an unalterable power consumption level is used. However, for

ultra-low-power nodes constrained by severe power budgets,

the appropriate amount of time a node sleeps should explicitly

depend on the relative listen and transmit power consumption

levels. These prior approaches achieve throughput levels which

are much below optimal (and hence much below what Econ-

Cast can achieve). Additionally, these protocols often require

some explicit coordination (e.g., slotting [12], [18] or exchange

of parameters [14], [19]), which are not suitable for emerging

ultra-low-power nodes.

From the theoretical point of view, our approach is inspired

by the prior work on network utility maximization (e.g., [26]),

and queue-based CSMA literature (e.g., [27]–[31]). However,

the problem considered in this paper is not a simple extension

of the prior work for two reasons. First, in the past work on

CSMA and network utility maximization, nodes or links make

decisions based on the relative sizes of queues. Often, a queue

is a backlog of data to send or the available energy. Prior work

that considers the latter (e.g., [32]) uses the energy only for

transmission, while listening is “free”, which is a very different

paradigm than the one considered in this paper. Second, in

our setting, the queue “backlogs” energy but there is no clear

mapping as previously assumed from energy to successful

transmission. A node’s listen or transmit events will relieve the
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TABLE I: Nomenclature

N , N Set of nodes, number of nodes
Li, L Node i’s listen power consumption (Watt), L = [Li]
Xi, X Node i’s transmit power consumption (Watt), X = [Xi]
ρi, ρ Node i’s power budget (Watt), ρ = [ρi]
bi Energy storage level of node i (Joule)
w, W Network state, the set of collision-free states
αi, α Fraction of time node i listens, α = [αi]
βi, β Fraction of time node i transmits, β = [βi]
γ, γ̂ Indicator if existing some nodes listening, its estimated value
c, ĉ Number of nodes listening, its estimated value
ν Indicator if there is exactly one node transmitting
πw , π Fraction of time the network is in w ∈ W , π = [πw]
Tw Throughput of state w ∈ W
T , T ∗ Throughput and oracle throughput
Tg , T ∗

g Groupput and oracle groupput

Ta, T ∗

a Anyput and oracle anyput
ηi, η Lagrange multiplier of node i, η = [ηi]

backlog, but do not increase utility (throughput) unless other

nodes are appropriately configured (i.e., transmitting when no

listening nodes exist or listening when no transmitting nodes

exist does not increase the throughput). This coordination of

state among nodes to utilize their energy makes the considered

problem more challenging.

Finally, we note that our approach should be amenable to

emerging physical layer technology such as backscatter [6].

III. MODEL AND PROBLEM FORMULATION

We consider a network of N energy-constrained nodes

whose objective is to distributedly maximize the broadcast

throughput among them. The set of nodes is denoted by N .

Table I summarizes the notations.

A. Basic Node Model

Power consumption: A node i 2 N can be in one of three

states: sleep (s), listen/receive1 (l), and transmit (x), and

the respective power consumption levels are 0, Li (W), and

Xi (W).2 These values are based on hardware characteristics.

Power budget: Each node i has a power budget of ρi (W).
This budget can be the rate at which energy is harvested by

an energy harvesting node or a limit on the energy spending

rate such that the node can maintain a certain lifetime. In

practice, the power budget may vary with time [7], [8] and

the distributed protocol should be able to adapt. For simplicity,

we assume that the power budget is constant with respect to

time. However, the analysis can be easily extended to the case

with time-varying power budget with the same constant mean.

Each node i also has an energy storage (e.g., a battery or a

capacitor) whose level at time t is denoted by bi(t).
Severe Power Constraints: Intermittently connected energy-

constrained nodes cannot rely on complicated synchronization

or structured routing approaches.

Unacquainted: Low bandwidth implies that each node i must

operate with very limited (i.e., no) knowledge regarding its

neighbors, and hence, does not know or use the information

(ρj , Lj , Xj) of the other nodes j 6= i.

1We refer the listen and receive states synonymously as the power con-
sumption in both states is similar.

2The actual power consumption in sleep state, which may be non-zero, can
be incorporated by reducing ρi, or increasing both Li and Xi, by the sleep
power consumption level.

B. Architecture Assumptions

We assume that there is only one frequency channel and a

single transmission rate is used by all nodes in the transmit

state. Similar to CSMA, nodes perform carrier sensing prior

to attempting transmission to check the availability of the

medium. Energy-constrained nodes can only be awake for

very short periods, and therefore, the likelihood of overlapping

transmissions is negligible. We also assume that a node in the

listen state can send out low-cost, informationless “pings”

which can be picked up by other listening nodes, allowing

them to estimate the number (or existence) of active listeners.

We explain in Section V how this property will help us develop

a distributed protocol and in Section VIII, we provide practical

means by which such estimates can be obtained.

C. Model Simplifications

At any time t, the network state can be described as a vector

w(t) = [wi(t)], where wi(t) 2 {s, l, x} represents the state

of node i. While the distributed protocol EconCast (described

in Section V) can operate in general scenarios, for analytical

tractability, we make the following assumptions:

• The network is a clique.3

• Nodes can perform perfect carrier sensing in which the

propagation delay is assumed to be zero.

These assumptions are suitable in the envisioned applications

where the distances between nodes are small. Under these

assumptions, the network states can be restricted to the set

of collision-free states, denoted by W (i.e., states in which

there is at most one node in transmit state). This reduces the

size of the state space from 3N to (N + 2)2N−1.

Let γw 2 {0, 1} indicate whether there exists some nodes

listening in state w and let cw be the number of listeners in

state w. We use νw 2 {0, 1} as an indicator which is equal

to 1 if there is exactly one transmitter in state w and is 0
otherwise. Based on these indicator functions, two measures of

broadcast throughput, groupput and anyput, and the throughput

of a given network state w are defined below.

Definition 1 (Groupput): The groupput, denoted by Tg , is

the aggregate throughput of the transmissions received by all

the receivers, where each transmitted bit is counted once per

receiver to which it is delivered, i.e.,

Tg = lim
T!1

1

T

Z T

t=0

νw(t)cw(t)dt. (1)

Definition 2 (Anyput): The anyput, denoted by Ta, is the

aggregate throughput of the transmissions that are received by

at least one receiver, i.e.,

Ta = lim
T!1

1

T

Z T

t=0

νw(t)γw(t)dt. (2)

Definition 3 (Network State Throughput): The throughput

associated with a given network state w 2 W , denoted by

Tw, is defined as

Tw =

(
νwcw, for Groupput,

νwγw, for Anyput.
(3)

Note that without energy constraints, the oracle (maximum)

groupput is (N − 1) and is achieved when some node always

3We also investigate non-clique networks in Section IV-C.
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transmits and the remaining (N − 1) nodes always listen

and receive the transmission. Similarly, the oracle (maximum)

anyput without energy constraints is 1 and is achieved when

some node always transmits and some other node always

listens and receives the transmission.

D. Problem Formulation

Define πz as the fraction of time the network spends in a

given state z 2 W , i.e.,

πz = lim
T!1

1

T

Z T

t=0

1{w(t)=z} dt, (4)

where 1{w(t)=z} is the indicator function which is 1, if

the network is with state z at time t, and is 0 otherwise.

Correspondingly, denote π = [πw].
Below, we define the energy-constrained throughput max-

imization problem (P1) where the fractions of time each

node spends in sleep, listen, and transmit states are assigned

while the node maintains the power budget. Define variables

αi, βi 2 [0, 1] as the fraction of time node i spends in listen

and transmit states, respectively. The fraction of time it spends

in sleep state is simply (1 − αi − βi). In view of (1) – (4),

(P1) is given by

(P1) max
π

X
w2W

πwTw (5)

subject to αiLi + βiXi  ρi, 8i 2 N , (6)

αi =
X

w2Wl
i

πw, βi =
X

w2Wx
i

πw, (7)

X
w2W

πw = 1, πw ≥ 0, 8w 2 W, (8)

where W l
i and Wx

i are the sets of states w 2 W in which

wi = l and wi = x, respectively. Each node is constrained

by a power budget, as described in (6), and (8) represents

the fact that at any time, the network operates in one of the

collision-free states w 2 W .

Based on the solution to (P1), the maximum throughput is

achievable by an oracle that can schedule nodes’ sleep, listen,

and transmit periods, in a centralized manner. Therefore, we

define the maximum value obtained by solving (P1) as the

oracle throughput, denoted by T ⇤. Respectively, we define

the oracle groupput and oracle anyput as T ⇤
g and T ⇤

a .

To evaluate EconCast, it is essential to compare its perfor-

mance to the oracle throughput. However, (P1) is a Linear

Program (LP) over an exponentially large number of variables

(i.e., |W| is exponential in N ) and is computationally expen-

sive to solve. In Section IV, we show how to convert (P1)

to another optimization problem with only a linear number of

variables. Note that the solution to (P1) only provides the

optimal fraction of time each node should spend in sleep,

listen, and transmit states, but does not indicate how the nodes

can make their individual sleep, listen, and transmit decisions

locally. Therefore, in Section V, we focus on the design of

EconCast that makes these decisions based on (P1).

IV. ORACLE THROUGHPUT

In this section, we present an equivalent LP formulation for

(P1) in a clique network which only has a linear number of

variables. We also derive both an upper and a lower bound

for the oracle groupput in non-clique topologies which will

be used later for evaluating the performance of EconCast in

non-clique topologies.

Recall that αi and βi are the fraction of time node i spends

in listen and transmit states, respectively. We can rewrite the

constraints in (P1) as follows

αiLi + βiXi  ρi, 8i 2 N , (9)

αi + βi  1, 8i 2 N , (10)
X

i2N
βi  1. (11)

Specifically, (9) is the usual power constraint on each node

i 2 N , and (10) is due to the fact that a node can only operate

in one state at any time. We remark that energy-constrained

nodes can only be awake for very small fractions of time (i.e.,

αi + βi ⌧ 1), and therefore (10) may be redundant. Finally,

collision-free operation in a clique network where at most one

transmitter can be present at any time imposes (11), which

bounds the sum of the transmit fractions by 1.

A. Oracle Groupput in a Clique

To maximize the groupput (1), it suffices that any node only

listens when there is another transmitter, since listening when

no one transmits wastes energy. Namely, the fraction of time

node i listens cannot exceed the aggregate fraction of time all

other nodes transmit, i.e.,

αi 
X

j 6=i
βj , 8i 2 N . (12)

Since a node only listens when there exists exactly one

transmitter, every listen counts as a reception, and the groupput

of a node (i.e., the throughput it receives from all other

nodes) is simply the fraction of time it spends in listen state,

αi. Therefore, the groupput in a clique network simplifies

to
P

i2N αi. The oracle groupput, denoted by T ⇤
g , can be

obtained by solving the following maximization problem

(P2) T ⇤
g := max

α,β

X
i2N

αi (13)

subject to (9)− (12).

(P2) is an LP consisting of 2N variables and (3N + 1)
constraints (i.e., solving for α and β given inputs of N , ρ,

L, and X). On a conventional laptop running Matlab, this

computation for thousands of nodes takes seconds. Moreover,

we show that the oracle groupput obtained by solving (P2)

is indeed achievable by an oracle which can schedule nodes’

listen and transmit periods. This result is summarized in the

following lemma.

Lemma 1: The (rational-valued) solution (α⇤,β⇤) to (P2)

can be feasibly scheduled by an oracle in a fixed-size slotted

environment via a periodic schedule, (perhaps) after a one-time

energy accumulation interval.

Proof: The proof can be found in Appendix A.

In homogeneous networks (i.e., ρi = ρ, Li = L, Xi =
X, 8i 2 N ) where nodes are sufficiently energy-constrained

(i.e., (9) dominates (10)), the solution to (P2) is given by4

β⇤ = ρ/(X + (N − 1)L), α⇤ = (N − 1)β⇤, T ⇤
g = Nα⇤.

4We show that in the optimal solution, the equalities hold for equations (9)
and (12). The details are Appendix B.
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adjusting the transition rates between different states of each

node. EconCast determines in a distributed manner how these

adjustments are performed over time. Roughly speaking, each

node adjusts its transition rates λuv(t) based on limited

information that can be obtained in practice, including

• Its power consumption levels in listen and transmit states,

L and X, and energy storage level b(t).
• A sensing of transmit activity of other nodes over the

channel (CSMA-like carrier sensing).

• A count of other active listeners (in groupput mode), c(t),
or an indicator of whether there are any active listeners

(in anyput mode), γ(t). In practice, c(t) and γ(t) may

not be accurate, and we denote ĉ(t) and γ̂(t) as their

estimated values.

Note that in EconCast, unlike in previous work such as

Panda [14], each node does not need to know the number

of nodes in the network, N , and the power budgets and

consumption levels of other nodes. Furthermore, a node does

not need to know its power budget ρ explicitly (e.g., in the

case of energy harvesting [4]), although this knowledge can

be incorporated, if available.

Under EconCast, a node sets λsl(t) as an increasing func-

tion of the available stored energy, b(t), to more aggressively

exit sleep state. Furthermore, it sets λlx(t) as an increasing

function of the number of listeners, ĉ(t), to enter transmit

state more frequently when more nodes are listening. We will

describe how these functions are chosen in Section V-E.

C. Estimating Active Listeners: Pings

We now discuss the estimation of ĉ(t) or γ̂(t). Recall

from Section III that nodes can send out periodic pings that

any other listener can receive. The pings need not carry any

explicit information and are potentially significantly cheaper

and shorter than control packet transmissions (e.g., an ACK).

Therefore, they consume less power and take much less time

than a minimal data transmission.

Consider the case in which all nodes are required to send

pings at a pre-determined rate and the power consumption is

accounted for in the listening power consumption L. In such a

case, a fellow listener detecting such pings (e.g., using a simple

energy detector) can use the count of such pings in a given

period of time, or the inter-arrival times of pings, to estimate

the number of active listeners c(t). Estimating γ(t) is even

easier by detecting the existence of any ping. In general, the

estimates do not need to be accurate for EconCast to function,

although poor estimates are expected to reduce throughput.

D. Two Variants of EconCast

We now address the incorporation of the estimates ĉ(t) and

γ̂(t) into EconCast. We present two versions of EconCast

which only differ when a node is in transmit state:

• EconCast-C (the capture version): a node may “capture”

the channel and transmit for an exponential amount

of time (i.e., several back-to-back packets). When each

packet transmission is completed, the transmitter listens

for pings for a fixed-length pinging interval. Each suc-

cessful recipient of the transmission initiate one ping at

time chosen uniformly at random on this interval. The

transmitter then estimates ĉ(t) or γ̂(t) based on the count

of pings received and adjusts λxl(t) (as described in Sec-

tion V-E). In Section VIII-C, we discuss the experimental

implementation of this process.

• EconCast-NC (the non-capture version): a node always

releases the channel after one packet transmission. Each

node continuously pings and receives pings from other

nodes when listening, estimates ĉ(t) or γ̂(t), and adjusts

λlx(t) (as described in Section V-E).

EconCast-C is significantly easier to implement since the

estimates are only needed for the transmitter right after each

packet transmission. The probability that the same transmitter

will continue transmitting depends on the estimates ĉ(t) or

γ̂(t). Therefore, our implementation and experimental evalua-

tions in Section VIII focus on EconCast-C.

E. Setting Transition Rates

Consider a node running EconCast. Time is broken into

intervals of length τk (k = 1, 2, · · · ). The k-th interval is

from time tk−1 to time tk and we let t0 = 0. EconCast takes

input of two internal variables:

• η is a multiplier which is updated at the beginning of

each time interval. Let b[k] (k = 0, 1, · · · ) denote the

energy storage level at the end of the k-th time interval.

Let (·)+ denote max(0, ·) and η[k] is updated as follows

η[k] =
⇣
η[k − 1]− δk/τk · (b[k]− b[k − 1])

⌘+
, (17)

in which δk 2 (0, 1) is a step size and b[k] = b(tk). We

use square brackets here to imply that the multiplier η[k]
remains constant for t 2 [tk, tk+1).

• A(t) is the carrier sensing indicator of a node, which is 1
when the node does not sense any ongoing transmission,

and is 0 otherwise. Carrier sensing forces a node to

“stick” to its current state. When receiving an ongoing

transmission, a node in listen state will not exit the listen

state until it finishes receiving the full transmission, and

a node in sleep state will not leave the sleep state (i.e.,

it enters the listen state but immediately leaves when it

senses the ongoing transmission).

The transition rates are described as follows (the super-

scripts C and N denote EconCast-C and EconCast-NC), in

which the two throughput modes only differ in λxl(t) (for the

capture version) or in λlx(t) (for the non-capture version). For

groupput maximization, at any time t in the k-th interval,

λsl(t) = A(t) · exp(−η[k]L/σ), (18a)

λls(t) = A(t), (18b)

λC
lx(t) = A(t) · exp(η[k](L −X)/σ), (18c)

λN
lx(t) = A(t) · exp(η[k](L −X)/σ + ĉ(t)/σ), (18d)

λC
xl(t) = exp(−ĉ(t)/σ), (18e)

λN
xl(t) = 1. (18f)

For anyput maximization, ĉ(t) is replaced with γ̂(t). Theo-

rem 1 below states the main result of this paper and the proof

is in Section VI.

Theorem 1: Let σ ! 0 and select parameters δk and τk
properly (e.g., δk = 1/[(k+1) log (k + 1)] and τk = k). Under
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perfect knowledge of c(t) or γ(t), the average throughput of

EconCast (Tg or Ta) converges to the oracle throughput (T ⇤
g

or T ⇤
a ) given by (P1).

F. Stability and Choice of σ, δk, and τk

EconCast is adaptive and, as expected, it must deal with

the tradeoff of “adapting quickly but poorly” to “adapting

optimally but slowly”. This adaptation manifests itself into the

parameters σ, δk, and τk. When σ is decreased, the through-

put increases, as we will describe in Section VI. However,

the burstiness also increases with respect to decreased σ.

The burstiness is a characteristic of communication involving

multiple packets that are successfully received in bursts. In

Section VII, we describe how the burstiness can be analyzed

and measured.

Under a given value of σ, each node continuously adjusts

the rates λuv(t) based on its multiplier η according to (17),

which is a function of the ratio δk/τk. Small δk/τk ratios make

smaller changes of η over time, and lead to longer convergence

time to the “right” multiplier values. In contrast, larger δk/τk
ratios make η oscillate more wildly near the optimal value,

such that the performance of EconCast is further from the

optimal. Although the guaranteed convergence requires careful

choices of the parameters (as stated in Theorem 1), in practice,

we can choose δk = δ and τk = τ for some small constant δ
and large constant τ .

VI. PROOF OF THEOREM 1

The proof of Theorem 1 is based on a Markov Chain Monte

Carlo (MCMC) approach [28], [30] from statistical physics

and consists of three parts: (i) we compute the steady state

distribution of the network Markov chain under EconCast with

fixed Lagrange multiplier vector η = [ηi], (ii) we present

an alternative concave optimization problem whose optimal

value approaches that of (P1) as σ ! 0 and show that the

steady state distribution of EconCast is indeed the optimal

solution to this alternative optimization problem when the

Lagrange multipliers are chosen optimally, and (iii) we show

that under EconCast, nodes update their Lagrange multipliers

locally according to a “noisy” gradient descent which converge

to the optimal Lagrange multipliers with proper choices of step

sizes and interval lengths as given in Theorem 1.

Part (i): Steady State Distribution

The following lemma describes the network state distribu-

tion generated by EconCast when η freezes.

Lemma 2: With fixed η, the network Markov chain, resulted

from overall interactions among the nodes according to the

transition rates (18), has the steady state distribution

πη
w
=

1

Zη
exp

"
1

σ

 
Tw −

X

i:wi=l

ηiLi −
X

i:wi=x

ηiXi

!#
, (19)

where Zη is a normalizing constant so that
P

w2W πη
w
= 1.

Proof: The proof can be found in Appendix C.

Algorithm 1 Gradient Descent Algorithm

Input parameters: σ, ρ, L, and X

Initialization: αi(0) = βi(0) = ηi(0) = 0, ∀i ∈ N

1: for k = 1, 2, · · · do
2: δ(k) = 1/k, compute π(k) from (19) using η = η(k)
3: for i = 1, 2, · · · , N do
4: Update ηi(k), αi(k), and βi(k) according to (23), (24)

Part (ii): An Alternative Optimization

We then present an optimization problem (P4) as follows

(P4) max
π

X
w2W

πwTw − σ
X

w2W
πw log πw (20)

subject to (6), (7), and (8),

where σ is the positive constant used in EconCast (the

counterpart in statistical physics is the temperature in sys-

tems of interacting particles). Note that (P4) is a concave

maximization problem and as σ ! 0, the optimal value

of (P4) approaches that of (P1). To solve (P4), consider

the Lagrangian L(π,η) formulated by moving the power

constraint (6) into the objective (20) with a Lagrange multiplier

ηi ≥ 0 for each node i, i.e.,

L(π,η) =
P

w2W πwTw − σ
P

w2W πw log πw

−
P

i2N [ηi(αiLi + βiXi − ρi)] . (21)

In view of (7) and (8), it can be shown that with fixed η,

the optimal πη = [πη
w
] that maximizes L(π,η) is exactly

given by (19). Therefore, if EconCast knows the optimal

Lagrange multiple vector η⇤, it can start with η⇤ and the

steady state distribution generated by EconCast will converge

to the optimal solution to (P4).

In order to find η⇤, consider the dual function D(η) =
L(πη,η) over η ⌫ 0 (here 0 is an N -dimensional zero vector

and ⌫ denotes component-wise inequality). Interestingly, it

can be shown that the partial derivative of D(η) with respect

to ηi is simply given by

∂D/∂ηi = ρi − (αiLi + βiXi), (22)

which is the difference between the power budget ρi and the

average power consumption of node i. Therefore, the dual

can be minimized by using a gradient descent algorithm with

inputs of step size δk > 0, ρ, L, and X, which generates a state

probability π(k) (k = 1, 2, · · · ). This algorithm is described

in Algorithm 1 along with the following equations

ηi(k) = [ηi(k − 1)− δk(ρi − αi(k)Li − βi(k)Xi)]
+
, (23)

αi(k) =
X

w2Wl
i

πη(k)
w

, βi(k) =
X

w2Wx
i

πη(k)
w

. (24)

Hence, with the right choice of step size δk (e.g., δk = 1/k),

π(k) converges to the optimal solution to (P4).

To arrive at a distributed solution, instead of computing

the quantities αi and βi directly according to (24) (which is

centralized with high complexity), EconCast approximates the

difference between the power budget and the average power

consumption (22) by observing the dynamics of the energy

storage level of each node. Specifically, each node i can

update its Lagrange multiplier ηi(k) based on the difference

between its energy storage levels at the end and the start

of an interval of length τk, divided by τk, as described by

(17). Therefore, ηi is updated according to a “noisy” gradient
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descent. However, it follows from stochastic approximation

(with Markov modulated noise) that by choosing step sizes

and interval lengths as given in Theorem 1, these noisy updates

will converge to η⇤ as k ! 1 (see e.g., Theorem 1 of [33]).

As mentioned in Section V-F, the choice of parameters σ, δk,

and τk will affect the tradeoff between convergence time and

the performance of EconCast.

Part (iii): Convergence Analysis

The detailed proof uses similar techniques as in the proof

of Theorem 1 in [33] with minor modifications and can be

found in Appendix D.

VII. NUMERICAL RESULTS

In this section, we evaluate the throughput and latency

performance of EconCast when operating in groupput and

anyput modes. We use the following notation: (i) T ⇤
g (T ⇤

a )

is the oracle groupput (anyput) obtained by solving (P1) or,

equivalently, (P2), (ii) T σ
g (T σ

a ) is the achievable groupput

(anyput) of EconCast with a given value of σ obtained by

solving (P4), and (iii) fT σ
g (fT σ

a ) is the groupput (anyput) of

EconCast obtained via simulations with a given value of σ.

For brevity, we ignore the subscripts of T σ when describing

results that are general for both groupput and anyput.

A. Setup

We consider clique networks5 with σ 2 {0.1, 0.25, 0.5}.

The nodes’ power budgets and consumption levels corre-

spond to the energy harvesting budgets and ultra-low-power

transceivers in [7], [8], [34]. Note that the performance of

EconCast only depends on the ratio between the listen or

transmit power and the power budget. For example, nodes with

ρ = 10 µW, L = X = 500mW behave exactly the same as

nodes with ρ = 1mW, L = X = 50mW. Therefore, the

oracle throughput applies and EconCast can operate in very

general settings.

In the simulations, each node has a constant power input

at the rate of its power budget, and adjusts the transition

rates based on the dynamics of its energy storage level. Since

nodes perform carrier sensing when waking up, there are no

simultaneous transmissions and collisions. We also assume

that the packet length is 1ms and that nodes have accurate

estimate of the number of listeners or the existence of any

active listeners, i.e., ĉ(t) = c(t) or γ̂(t) = γ(t).
The simulation results show that fT σ perfectly matches T σ

for σ 2 {0.25, 0.5}. For σ = 0.1, fT σ does not converge

to T σ within reasonable time due to the bursty nature of

EconCast, as will be described in Section VII-D. Therefore,

we evaluate the throughput performance of EconCast by

comparing T σ to T ⇤ with varying σ in both heterogeneous and

homogeneous networks. Specifically, homogeneous networks

consist of nodes with the same power budget and consumption

levels, i.e., ρi = ρ, Li = L,Xi = X, 8i 2 N . The simulation

results also confirm that nodes running EconCast consume

power on average at the rate of their power budgets.

5We evaluate the throughput performance of EconCast in non-clique
topologies in VII-E.
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Fig. 2: Sensitivity of the achievable throughput normalized to the oracle
throughput, T σ/T ∗, for: (a) groupput and (b) anyput, to the heterogeneity
of the power budget, ρ, and power consumption levels, L and X.

B. Heterogeneous Networks – Throughput

One strength of EconCast is its ability to deal with het-

erogeneous networks. Fig. 2 shows the groupput and anyput

achieved by EconCast normalized to the corresponding oracle

groupput and anyput (i.e., T σ/T ⇤), for heterogeneous net-

works with N = 5 and σ 2 {0.1, 0.25, 0.5}. Intuitively, higher

values of T σ/T ⇤ indicate better performance of EconCast.

Along the x-axis, the network heterogeneity, denoted by h,

is varied from 10 to 250 at discrete points. The relationship

between the network heterogeneity and the values of h is

as follows: (i) for each node i, Li and Xi are indepen-

dently selected from a uniform distribution on the interval

[510 − h, 490 + h] (µW), (ii) for each node i, a variable h0

is first sampled from the interval [− log h
100 , log h] uniformly

at random, and then ρi is set to be exp (h0). Therefore, the

energy budget ρi varies from 100/h to h (µW). As a result,

for any h, Li and Xi have mean values of 500 µW, and ρi
has median of 10 µW but its mean increases as h increases.

Note that a homogeneous network is represented by h = 10.

The y-axis indicates for each value of h, the mean and the

95% confidence interval of the ratios T σ/T ⇤ averaged over

1000 heterogeneous network samples. Specifically, in each net-

work sample, each node i samples (ρi, Li, Xi) according to the

processes described above. Figs. 2(a) and 2(b) show that the

network heterogeneity with respect to both the nodes’ power

budgets and consumption levels increases as h increases. Fig. 2

also shows that the throughput ratio T σ/T ⇤ increases as σ
decreases, and approaches 1 as σ ! 0. Furthermore, with

increased heterogeneity of the network, the throughput ratio

has little dependency on the network heterogeneity h but heavy

dependency on σ. In general, the groupput and anyput ratios

are similar except for homogeneous networks (h = 10). In

such networks, the anyput ratio is slightly higher than the

groupput ratio. This is due to the fact that nodes have the same

values of ρi, Li, and Xi). Therefore, determining the existence

of any active listeners, γ(t), is easier than determining the

number of active listeners, c(t).

C. Homogeneous Networks – Throughput and Comparison to

Related Work

We now evaluate the throughput of EconCast in homoge-

neous networks with N = 5, ρ = 10 µW, L + X = 1mW,

and σ 2 {0.1, 0.25, 0.5}. We also compare the groupput

achieved by EconCast to three protocols in related work:
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Fig. 3: Throughput performance of EconCast when operating in: (a) groupput
mode and (b) anyput mode, with N = 5, ρ = 10 µW, L+X = 1mW, and
σ ∈ {0.1, 0.25, 0.5}, as a function of X/L.

Panda [14], Birthday [18], and Searchlight [19], which operate

under stricter assumptions than EconCast. In particular:

• The probabilistic protocols Panda and Birthday both re-

quire a homogeneous set of nodes and a priori knowledge

of N . The throughput of Panda and Birthday is computed

as described in [14] and [18], respectively.

• The deterministic protocol Searchlight is designed for

minimizing the worst case pairwise discovery latency,

which does not directly address multi-party communi-

cation across a shared medium. However, the discovery

latency is closely related to the throughput, since the

inverse of the average latency is the throughput. Hence,

maximizing throughput is equivalent to minimizing the

average discovery latency. We derive an upper bound on

the throughput of Searchlight by multiplying the pairwise

throughput by (N − 1). This is assuming that all other

(N−1) nodes will be receiving when one node transmits.

However, in practice the throughput is likely to be lower

unless all the nodes are synchronized and coordinated.

Figs. 3(a) and 3(b) present, respectively, the groupput and

anyput achieved by EconCast normalized to the oracle group-

put and anyput, as a function of the power consumption ratio

X/L, with N = 5, ρ = 10 µW, and L+X = 1mW. Fig. 3(a)

also presents the throughput achieved by Panda, Birthday,

and Searchlight6 protocols. The horizontal dashed lines at

1 represent the oracle groupput and anyput. Note that with

L = X = 500 µW, the ratio T σ
g /T ⇤

g achieved by EconCast

outperforms that of Panda by 6x and 17x with σ = 0.5 and

σ = 0.25, respectively. In particular, the groupput ratio T σ
g /T ⇤

g

significantly outperforms that of prior art for X ⇡ L. The

simulation results, which will be discussed later, also verify

this throughput improvement.

Fig. 3 shows that for a given value of X/L, T σ approaches

T ⇤ with decreasing σ, as expected (see Section V). Moreover,

for each value of σ, the throughput ratio T σ/T ⇤ increases

as the power consumption ratio X/L is closer to 1. This is

realistic for current commercial low-power radios that have

symmetric power consumption levels in listen and transmit

states. This is due to the fact that (i) with small X/L
values, nodes enter transmit state infrequently, since listening

is expensive and they must pass the listen state to enter

the transmit state, and (ii) with large X/L values, nodes

spend energy transmitting even when there are no other nodes

listening (e.g., c(t) = 0). In particular, anyput degrades with

6For Searchlight protocol, we compare its throughput upper bound to T ∗

g .
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Fig. 4: Analytical (curves) and simulated (markers) average burst length of
EconCast when operating in: (a) groupput mode and (b) anyput mode, with
N ∈ {5, 10}, σ ∈ {0.25, 0.5}, ρ = 10 µW, and L = X = 500 µW.

large X/L values, since anyput depends on the existence of

any active listeners when some node is transmitting. Therefore,

when listening is expensive, the fact that multiple nodes listen

simultaneously does not improve anyput. We believe that

any distributed protocol will suffer from such performance

degradation since, unlike Panda, Birthday, and Searchlight,

nodes in a fully distributed setting do not have any information

about the properties of other nodes in the network.

D. Burstiness and Latency

The results until now suggest allowing σ ! 0. While

reducing σ improves throughput, it considerably increases the

burstiness of communication, as mentioned in Section V. The

burstiness is measured by the average burst length, which is

defined as the average number of packets that are successfully

received in a burst (i.e., the average number of packets a

node successfully receives before exiting listen state). The

analytical computation of the average burst length can be

found in Appendix E. In general, increased burstiness means

that the long term throughput can be achieved with given

power budgets but the variance of the throughput is more

significant during short term intervals.

Figs. 4(a) and 4(b) show the average burst length of

EconCast (in log scale) when operating in groupput and

anyput modes, respectively, in homogeneous networks with

N 2 {5, 10}, ρ = 10 µW, L = X = 500 µW, and varying

σ. Values are obtained using the analytical results (34)–(35)

derived in Appendix E (curves) and contrasted with simula-

tions at specific values of σ (markers). Aside from showing

that the simulation results and the analytical results are well

matched, Fig. 4 also demonstrates that reducing σ dramatically

increases burstiness. For example, with σ = 0.25 and N = 10,

a node running EconCast in groupput mode has an average

burst length of 85, and this value is increased to 4⇥ 105 with

σ = 0.1. This explains why fT σ
g does not converge within

reasonable time with σ = 0.1 (see Section VII-A). Comparing

Fig. 4(a) with Fig. 4(b), it can be seen that the groupput

average burst length increases more rapidly than the anyput

average burst length as σ decreases. Moreover, Fig. 4(b) shows

that the anyput average burst length is independent of N ,

which corresponds to the analysis in Appendix E. The reason

is that the burst length of EconCast in anyput mode only

depends on γ(t), which always equals to 1, if the transmission

is successful. We remark that reducing the burstiness is a

subject of future work.
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Fig. 5: The CDF, mean, and 99th percentile latency of EconCast when
operating in: (a) groupput mode and (b) anyput mode, with N ∈ {5, 10},
σ ∈ {0.25, 0.5}, ρ = 10 µW, and L = X = 500 µW.

A second metric we consider is the communication latency,

which is defined as the time interval between consecutive

bursts received by a node from some other node where the

interval includes at least one sleep period. We focus on this

metric because nodes receiving longer bursts consume more

energy, and therefore, need to sleep for longer periods of time.

Figs. 5(a) and 5(b) present the CDF latency of EconCast

when operating in groupput and anyput modes obtained via

simulations, and indicate both the average and the 99th per-

centile latency values. The homogeneous networks considered

are with N 2 {5, 10}, σ 2 {0.25, 0.5}, ρ = 10 µW, and

L = X = 500 µW. Fig. 5(a) also shows the pairwise worst

case latency of Searchlight computed from [19] under the same

power budget and consumption levels.7

Fig. 5 shows that the latency increases as σ decreases,

since nodes receiving more packets in a short time period

(i.e., increased burstiness) have higher variation in their energy

storage levels, and need to sleep longer to restore energy. Fig. 5

also shows that a larger value of N results in lower latency,

since every node is more likely to receive when more nodes

exist in the network. Comparing Fig. 5(a) with Fig. 5(b), it is

observed that EconCast operating in anyput mode has slightly

lower average latency than in groupput mode. However, with

a smaller σ value (i.e., σ = 0.25), the 99th percentile latency

of EconCast when operating in anyput mode is significantly

lower than that in groupput mode. This results from the fact

that the average burst length of EconCast in anyput mode

depends on the existence of any listening nodes, whose value

is always less than or equal to the number of listening nodes

considered in groupput mode.

For all parameters considered, the 99th percentile groupput

latency is within 120 seconds, outperforming the Searchlight

pairwise worst case latency bound of 125 seconds. Note

that although EconCast has a non-zero probability of having

any latency, its latency is below the worst case latency of

Searchlight in most cases (over 99%).

E. Groupput Evaluation in Non-clique Topologies

We now compute the oracle groupput for non-clique topolo-

gies (derived in Section IV-C) and evaluate the groupput

achieved by EconCast in such scenarios via simulations. Since

simultaneous transmissions can happen in non-clique topolo-

7This is computed with slot length of 50ms and a beacon (packet) length
of 1ms as was done in [12].
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operating in groupput mode obtained via simulations, fT σ
g , in grid topologies

with varying N , σ ∈ {0.25, 0.5, 0.75}, ρ = 10 µW, and L = X = 500 µW.

gies, none of the transmissions will be counted as throughput

in the simulations.

We use grid topologies with varying number of nodes, N ,

in which each node has at most 4 neighbors. For example,

N = 25 represents a 5 ⇥ 5 grid. Fig. 6 presents the oracle

groupput, T ⇤
nc, for grid topologies, and the throughput achieved

by EconCast in groupput mode obtained via simulations with

with varying σ and N . Note that for all the grid topologies con-

sidered, the upper and lower bounds of T ⇤
nc (see Section IV-C)

are the same, providing the exact oracle groupput.

Fig. 6 shows that EconCast achieves 14% − 22% of the

oracle groupput, T ⇤
nc, with σ = 0.25. Although increasing σ

leads to lower groupput, it can be observed that as N increases,

the groupput approaches 10% of T ⇤
nc with σ = 0.5. Despite

the fact that the groupput cannot be obtained for σ = 0.1,

achieving 10%− 20% of T ⇤
nc is remarkable given the fact that

EconCast operates in a distributed manner.

VIII. EXPERIMENTAL EVALUATION

To experimentally evaluate the performance of EconCast-

C,8 we implement it using the Texas Instruments eZ430-

RF2500-SEH node [35].9 In this section, we first describe

the energy measurements performed on the nodes running

EconCast-C. Then, we describe the method by which nodes

can estimate the number of listening nodes. Finally, we exper-

imentally evaluate the performance of EconCast-C.

A. Experimental Setup

The TI eZ430-RF2500-SEH node is equipped with: (i)

an ultra-low-power MSP430 microcontroller and a CC2500

wireless transceiver operating at 2.4GHz at 250Kbps, (ii) a

solar energy harvester (SEH-01) that converts ambient light

into electrical energy, and (iii) a 1mF capacitor to power up

the transceiver board. Despite its drawbacks which will be

discussed below, it can be used for evaluation by extending

the length of the shortest allowable data transmission.

We consider power budgets of ρ 2 {1mW, 5mW}. From

our measurements, a node spends L = 67.08mW in the

listen state and X = 56.29mW in the transmit state.10 The

power consumption levels are very similar from node to node.

Recall from Section VII that the performance of EconCast

8See Section V-D the reasons for only implementing EconCast-C.
9A demonstration of the testbed is presented in [36].
10This corresponds to a −16 dBm transmission power, at which nodes

within the same room typically have little or no packet loss.
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depends on the ratio between the power consumption levels

and budget. Therefore, our experimental results will be similar

to experiments when both the power consumption levels

and budget are scaled down (e.g., a network of nodes with

ρ 2 {10 µW, 50 µW}, L = 670 µW, and X = 560 µW).

Each node is programmed with its ρ, L, and X as the

input of EconCast-C. The nodes’ main drawbacks include

(i) inaccurate readings of the energy storage level (i.e., the

voltage of the on-board capacitor) which are sensitive to

the environment, and (ii) the fact that the 1mF capacitor

cannot support multiple packet transmissions. Due to these

drawbacks, we implement (via software) a virtual battery at

each node. The virtual battery emulates the node’s energy

storage level based on its sleep, listen, and transmit activities,

and is used for updating the Lagrange multiplier according

to (17). We show in the following section that in practice, a

node running EconCast-C using this virtual battery is indeed

consuming power at a rate close to its power budget.

B. Energy Consumption Measurements

To accurately measure the power consumption of the nodes,

we disable the on-board solar cell, and attach a large pre-

charged capacitor (Ccap = 5F) that stores energy in advance.

The energy consumed is computed by

Econsumed = 0.5Ccap ·
(
V 2
t0 − V 2

t1

)
, (25)

where Vt0 and Vt1 are the measured power voltage values

of the capacitor at t0 and t1. The empirical average power

consumption, P (mW), is then computed by

P = Econsumed/ (t1 − t0) . (26)

Note that even with such a big capacitor, a node with a power

budget of 1mW (5mW) has a lifetime of only 135 (27)

minutes with Vt0 = 3.6V and Vt1 = 3.0V, which represent

its stable working voltage range.

To measure the power consumption of the nodes, we charge

the capacitor to Vt0 = 3.6V and log the readings of Vt1

after 30 minutes using a multimeter. The empirical average

power consumption is computed from (25) and (26) for

σ 2 {0.25, 0.5} and is averaged using 60 runs. Because L
and X do not account for some additional energy usage,11

the actual power consumption, P , is in fact a small fraction

higher than the target power budget, ρ. Irrespective of σ,

the measurement results show that P exceeds ρ by 11% for

ρ = 1mW, and by 4% for ρ = 5mW.

Observing the empirical power consumption of the nodes,

we compute the achievable throughput by solving (P4) us-

ing both the actual power consumption, P , and the target

power budget, ρ, denoted by T σ
g and T σ

g , respectively. In

Section VIII-D, we compare the experimental throughput to

both T σ
g and T σ

g . Having verified the power consumption of

the nodes, we replace the capacitor with AAA batteries,12

allowing the experiments to run for longer times.

11The additional energy usage includes the energy consumed in powering
up the regulator circuitry, etc.

12The constant voltage of AAA batteries limits the ability to measure the
power consumption of the nodes.

C. Practical Pinging

To enable practical pinging in EconCast-C, a short, fixed-

length pinging interval is introduced after each packet trans-

mission. During this interval, the transmitter listens for pings

and recipients of the previous packet send a short ping at a

random time uniformly distributed within the interval. The

transmitter then estimates the number of listeners, ĉ(t), by

counting the pings it receives, and adjusts the transition rate,

λC
xl(t), according to (18e).

Ideally, each ping should be much shorter than both the

pinging interval and the packet length in order to reduce

the collisions between pings, as well as for the transmitter

to successfully receive it. Therefore, we use pings of length

0.4ms, which is the shortest packet that can be sent by a node.

Based on this, we empirically set the pinging interval to 8ms
and each data packet to 40ms.

D. Performance Evaluation

We consider homogeneous networks with N 2 {5, 10}, ρ 2
{1mW, 5mW}, σ 2 {0.25, 0.5}, and nodes are located in

proximity. One additional listening node (a 6th or 11th node)

is also present but only as an observer and is connected to a

PC via a USB port. Each data packet contains the node ID and

information about the number of packets it has received from

each other node. The observer node reports all received packets

to the PC for storage and post processing. Each experiment is

conducted for up to 24 hours. The experimental throughput is

computed by dividing the duration of successful transmissions

by the experiment duration.

Throughput evaluation: Fig. 7 presents the ratio of the

experimentally obtained throughput, fT σ
g , normalized to the

achievable throughput T σ
g and T σ

g (see Section VIII-B). Sepa-

rate charts represent the results for differing number of nodes,

N , and power budget, ρ. Points marked “Ideal” show the ex-

perimental throughput normalized to the achievable throughput

computed by solving (P4) with the target power budget ρ (i.e.,
fT σ
g /T σ

g ). Points marked “Relaxed” show the experimental

throughput normalized to the achievable throughput computed

by solving (P4) with the actual power consumption P (i.e.,
fT σ
g /T σ

g ). As expected, T σ
g is higher than T σ

g , resulting in a

lower throughput ratio.

Fig. 7 shows that despite the practical limitations (e.g.,

packet collisions and inaccurate clocks) faced when running

EconCast-C on real hardware, the ratio fT σ
g /T σ

g is between

57%− 77% (fT σ
g /T σ

g is between 67%− 81%) for all settings

considered. Moreover, Table III shows the improvement of

EconCast-C over the throughput of Panda computed according

to [14], denoted by TPanda, under the same power consumption

levels and budget, with σ = 0.25. It can be seen that with

power budget of ρ = 1mW, the experimental throughput of

EconCast-C outperforms the analytically computed throughput

of Panda by 8x – 11x.

We remark that getting a higher experimental throughput

ratio is limited by the following reasons. First, there is an

8ms pinging interval (see Section VIII-C) after each packet

transmission which effectively reduces the number of bits

delivered. Second, collisions of pings or failed decodings of
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Fig. 7: Points marked as “Ideal” (“Relaxed”) represent ratio of experimental throughput normalized to the achievable throughput obtained by using the target
power budget (actual power consumption) and points marked as “Battery Variance” present the average, minimum, and maximum ratios of power consumption
normalized to target power budget, with N ∈ {5, 10}, ρ ∈ {1mW, 5mW}, and σ ∈ {0.25, 0.5}.

TABLE III: Experimental throughput of EconCast-C compared to computed
throughput of Panda (all normalized to the achievable throughput T σ

g ), with

σ = 0.25 and varying (N, ρ).

(N, ρ(mW)) (5, 1) (10, 1) (5, 5) (10, 5)
fT σ
g /T σ

g (%) 66.78 77.96 74.84 80.53
TPanda/T

σ
g (%) 6.24 9.64 19.35 35.63

fT σ
g /TPanda 10.76 8.09 3.87 2.26

pings result in inaccurate estimates of the number of listeners.

Third, the low-power clock used by a node during its sleep

state drifts and additionally can be affected by its environment.

Power consumption: In Section VIII-B, we show that the

power consumption of the virtual battery is valid for evaluating

the actual power consumption of the node. Fig. 7 also presents

the mean, minimum, and maximum power consumption of

the virtual battery normalized to the target power budget ρ.

Specifically, a value of 1 means that a node consumes power

on average at the rate of its power budget throughout the

experiment, and a higher value means that a node consumes

power at the rate which is higher than its power budget.

The results show that nodes running EconCast-C consume

power at rates which are within 7% and 3% of the target

power budget with σ = 0.25 and σ = 0.5, respectively. This

is because smaller value of σ increases the communication

burstiness (see Section VII-D), resulting in larger variance of

the nodes’ virtual battery levels.

Collection of Pings: An important input to EconCast-C is

the estimates of number of active listeners, ĉ(t), based on

which the transmitter decides the probability to continuously

transmit. Larger values of ĉ(t) lead to longer average burst

length and can potentially significantly increase the through-

put. For example, receiving 1 ping, the transmitter continu-

ously transmits a packet with probability 0.8647 with σ = 0.5.

This probability increases to 0.9817 with σ = 0.25, which

substantially increases the burstiness. Also, with lower power

budget, a successful transmission happens more rarely and it

becomes harder to collect pings.

Table IV presents the distribution of number of pings (i.e.,

number of active listeners) received by the transmitter after

each packet transmission, during experiments of N = 5,

σ = 0.25, and ρ 2 {1mW, 5mW}. It can be shown that

with a higher power budget, the nodes are more active and

TABLE IV: Distribution of number of pings (active listeners) received after
each packet transmission with N = 5, σ = 0.25, and varying ρ.

# of Listeners 0 1 2 3 4
ρ = 1mW(%) 89.03 9.69 1.28 0.00 0.00
ρ = 5mW(%) 59.21 31.22 8.22 1.24 0.11

the transmitter has higher probability to receive more pings.

On the other hand, with lower power budget, the transmitter

almost never receives more than 3 pings in a 5 nodes experi-

ment, resulting in lower throughput as illustrated in Fig. 7.

IX. CONCLUSION

In this paper, we considered the problem of maximizing

the broadcast groupput and anyput among a set of energy-

constrained nodes with heterogeneous power budgets and lis-

ten and transmit power consumption levels. We also provided

efficient methods to obtain oracle groupput and oracle anyput

for a given set of heterogeneous nodes.

We developed the EconCast distributed protocols that con-

trol the nodes’ transitions among sleep, listen, and transmit

states. We analytically showed that heterogeneous nodes using

the protocols (without any a priori knowledge regarding the

number of nodes in the network, and power budgets and

consumption levels) can achieve the oracle groupput and

anyput in a limiting sense (when σ ! 0).

We evaluated the throughput performance of EconCast

numerically and through extensive simulations, and compared

it to the state of the art. We also considered the design tradeoffs

in relation to σ and the impact of σ on the burstiness and

throughput. Finally, we experimentally evaluated EconCast us-

ing commercial-off-the-shelf energy harvesting nodes, thereby

demonstrating its practicality.

There are several open future research directions. In par-

ticular, future research will focus on extending the analysis

to non-clique toplogies. Moreover, evaluation with custom-

designed ultra-low-power nodes (e.g., [4]), that have improved

energy awareness compared to the TI eZ430-RF2500-SEH

nodes, would enable to better assess the tradeoffs related to

the protocol design. Finally, considering unique application

characteristics and their relation to groupput and anyput is an

open problem.
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APPENDIX A

PROOF OF LEMMA 1

We describe here a schedule that works assuming each

packet transmission has a fixed transmit length of ✓, though

the proof can be extended to varying transmission lengths.

Therefore, time can be broken into slots of length ✓ (by the

oracle) and nodes sleep, listen, or transmit on a per-slot basis.

Assume that the optimal solution (α⇤,β⇤) to (P2) yields

rational values for all ↵⇤
i and β⇤

i . The period size of the

oracle schedule P is set to the least common denominator

over all solution variables in (α⇤,β⇤). Hence, during each

period, node i listens for ↵⇤
iP slots and transmits for β⇤

i P

slots. The slots during the period can be assigned arbitrarily

by the oracle to transmitters (e.g., weighted round-robin or

in-order) and (11) ensures that there will be sufficient slots.

Once the slots for the transmitters are assigned, each listener

can then choose their ↵⇤
iP slots in which they listen from the

set of transmit slots assigned to other transmitters, and (12)

ensures these are sufficient as well (note that multiple listeners

are permitted for a single transmitter slot).

If the periodic scheduler is launched immediately, some

nodes may not have the harvested (or budgeted) energy to

perform all listen and transmit tasks within the first period

(e.g., it may be assigned to transmit and listen early on, and

recoup the energy during later slots). If such a case, we simply

delay the initial iteration, allowing all nodes to harvest (or

budget) ⇢iP✓ amount of energy for that initial period. Then

the nodes have enough energy to repeat all the subsequent

periods since the energy node i spends during the k-th period

is (↵iLiP✓+ βiXiP✓), and the energy it accumulates during

this period is ⇢iP✓. Hence, it follows from (9) that no more
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energy is spent than is accumulated (budgeted). Therefore,

there is sufficient energy to repeat the period. ⌅

APPENDIX B

SOLVING (P2) AND (P3)

The optimization problem (P2) can be solved via two steps.

First, we show that in the optimal solution to (P2), the equal-

ities strictly hold in constraints (9) and (12). Next, we solve

for the optimal solution. Note that in homogeneous networks,

the constraints become αL + βX  ρ and α  (N − 1)β,

and α⇤
i = α⇤ and β⇤

i = β.

We prove the first part by contradiction. Note that if both

inequalities strictly hold, α can always be increased, resulting

in higher throughput. Therefore, if suffices that at least one of

the two inequalities is satisfied with strict equality.

Case 1: If α⇤L+β⇤X = ρ−✏ for some ✏ > 0 and ↵⇤ = (N−
1)β⇤, the optimal solution is given by β⇤ = ⇢−✏

X+(N−1)L , ↵⇤ =

(N − 1)β⇤. Let a new solution be

↵0 = ↵⇤ +
(N − 1)✏

X + (N − 1)L
, β0 = β⇤ +

✏

X + (N − 1)L
,

and it can be verified that (↵0, β0) satisfies: (i) ↵0L+β0X = ⇢

and ↵0 = (N − 1)β0, and (ii) (T ⇤)0 = N↵0 > T ⇤.

Case 2: If ↵⇤L+β⇤X = ⇢ and ↵⇤ = (N−1)β⇤−δ for some

δ > 0, the optimal solution is given by β⇤ = ⇢+δL
X+(N−1)L , ↵⇤ =

(N − 1)β⇤ − δ. Let a new solution be

↵00 = ↵⇤ +
δX

X + (N − 1)L
, β00 = β⇤ −

δL

X + (N − 1)L
,

and it can be verified that (↵00, β00) satisfies: (i) ↵00L+β00X =
⇢ and ↵00 = (N − 1)β00, (ii) β00 > 0 still holds, and (iii)

(T ⇤)00 = N↵00 > T ⇤.

Next, given that equalities strictly hold in constraints (9)

and (12), the optimal solution of (↵⇤, β⇤) can be obtained by

solving ↵⇤L+β⇤X = ⇢ and ↵⇤ = (N−1)β⇤, and the solution

is described in Section IV-A. Similarly, (P3) can be solved to

obtain the results described in Section IV-B. ⌅

APPENDIX C

PROOF OF LEMMA 2

For the capture version EconCast-C, we prove that the

transition rates (18a), (18b), (18c), and (18e) will drive the

network Markov chain to a steady state with distribution (19),

by checking that the detailed balanced equations hold. We

assume σ = 1 and drop the constant term 1/σ for brevity. For

network state w, define Ns(w), Nl(w), and Nx(w) as the sets

of nodes in sleep, listen, and transmit states, respectively, and

their cardinalities as Ns(w), Nl(w), and Nx(w), respectively.

Note that Ns(w)+Nl(w)+Nx(w) = N and Nx(w) 2 {0, 1}.

We also use w = (Ns(w),Nl(w),Nx(w)) to denote network

state w and r(w,w0) to denote the transition rate from state

w to w0. We consider the following cases.

Case 1: If node i is in sleep state (wi = s), the only transition

that can happen is to transition into listen state when the

channel is clear, i.e., w = (Ns(w),Nl(w),∅) ! w0 =
(Ns(w) \ {i},Nl(w) [ {i},∅). In this case, r(w,w0) =
exp(−ηiLi) and r(w0,w) = 1.

Case 2: If node i is in listen state (wi = l), and transitions

to sleep state, i.e., w = (Ns(w),Nl(w),∅) ! w0 =

(Ns(w) [ {i},Nl(w) \ {i},∅). In this case, r(w,w0) = 1
and r(w0,w) = exp(−ηiLi).
Case 3: If node i is in listen state (wi = l) and tran-

sitions to transmit state, i.e., w = (Ns(w),Nl(w),∅) !
w0 = (Ns(w),Nl(w) \ {i}, {i}). In this case, r(w,w0) =
exp(ηi(Li −Xi)) and r(w0,w) = exp(−Nl(w

0)).
Case 4: If node i is in transmit state (wi = x), the only

transition that can happen is to transition to listen state when

its transmission is finished, i.e., w = (Ns(w),Nl(w), {i}) !
w0 = (Ns(w){i},Nl(w) [ {i},∅). In this case, r(w,w0) =
exp(−Nl(w)) and r(w0,w) = exp(ηi(Li −Xi)).

For each case, πw · r(w,w0) = πw0 · r(w0,w) holds and

similar detailed balance equations hold for the non-capture

version EconCast-NC. Therefore, we complete the proof. ⌅

APPENDIX D

PROOF OF PART (III)

We use the same notation described in Appendix C. In

addition, denote W = |W| as the number of network states.

Let t0 = 0 and recall that the length of the k-th interval is

τk = tk − tk−1. At time t, the probability of the system being

in state w is denoted by ζw(t). Notice that throughout the k-th

interval, the vector of Lagrange multipliers η(k − 1) remains

unchanged and is updated at time tk according to

ηi(k) = [ηi(k − 1)− δk(ρi − µ̂i(k))]
+, 8i 2 N (27)

in which µ̂i(k) is the empirical energy consumption rate of

node i in the k-th interval.13 The relationship between the

empirical energy consumption rate and the energy storage level

bi(t) of node i is given by ρi−µ̂i(k) = [bi(tk)−bi(tk−1)]/τk.

In addition, let w0(k) denote the state of the network

Markov chain at the beginning of the k-th interval (i.e., at

time tk−1). Define the random vector U(k − 1) := [µ̂(k −
1),η(k − 1),w0(k − 1)]. For k ≥ 1, let Fk−1 be the σ-field

generated by U(0),U(1), · · · ,U(k − 1).
In the k-th interval, define the gradient vector as g(k) =

[gi(k)], in which gi(k) = ρi(k)−µi(k). Given vector η(k−1),
g(k) is a gradient of L(η) (recall that the dual problem of (P4)

is minη⌫0 L(η)). However, EconCast follows (27) and only

has an empirical estimation ĝ(k) = [ĝi(k)] of g(k), in which

ĝi(k) = ρi − µ̂i(k). The “error” term is given by gerr(k) =
[gerri (k)], in which

gerri (k) = E [ĝi(k)|Fk−1]− gi(k) = µi(k)− E [µ̂i(k)|Fk−1] .
(28)

The “noise” term is given by gnoise(k) = [gnoisei (k)], in which

gnoisei (k) = E [µ̂i(k)|Fk−1]− µ̂i(k). (29)

Therefore we can write the empirical gradient as

ĝi(k) = gi(k) + gerri (k) + gnoisei (k), 8i 2 N .

Notice that since ρi(k) and µ̂i(k) are both bounded, the noise

term is also bounded by some constant, i.e., |gnoisei (k)| 
gnoisemax , 8i 2 N .

Below, we show that with EconCast, the error term

gerr(k) (28) decreases “fast enough” with time. We fo-

cus on the (k + 1)-th interval and denote the Continuous-

Time Markov chain (CTMC) in the (k + 1)-th interval by

13Although we assume a constant power budget of ρi at each node i, the
proof can be easily extended to scenarios where ρi varies with time.
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X(t), 8t 2 [tk, tk+1), whose transition rate matrix is denoted

as Q = [Q(w,w0)]. For brevity, we assume σ = 1 and

drop the term 1/σ. Recall from (19), Zη(k) is a normalizing

constant which can be easily bounded by

Zη(k)  W · exp (N) = (2 +N) · 2N−1 · exp(N),

in which we use the fact that Tw  N . On the other hand,

denote C̄ = maxi2N {max {Li, Xi}}, we also have

πη(k)
w

· Zη(k) ≥ exp[−N · C̄ ·max
i

{ηi(k)}].

From (27), maxi{ηi(k)} can be further bounded by

maxi2N {ηi(k)}  C̄ ·
Pk

m=1 δm. Therefore, denoting ξk :=

C̄2 ·
Pk

m=1 δm, we have the minimum probability in the

stationary distribution lower bounded by

πη(k)
w

≥ exp(−ξkN) (W · exp(N))
−1

:= π
η(k)
min . (30)

Next, we state the following useful proposition.

Proposition 1: For the Markov chain X(t) in the (k+1)-th
interval, if Q(w,w0) > 0, then there exists Qmax

k+1 ≥ Qmin
k+1 > 0

such that Qmin
k+1  Q(w,w0)  Qmax

k+1.

Proof: Given network state w, there is Ns(w)+2Nl(w)+
Nx(w)  2N states w0 other than w that X(t) can transition

to. For any state w0 6= w, we have for each node i,

Q(w,w0) =

8
>>><
>>>:

exp[−ηi(k)Li], wi : s ! l,

exp[ηi(k)(Li −Xi)], wi : l ! x,

1, wi : l ! s,

exp(−Tw), wi : x ! l.

(31)

It is easy to see that Qmin
k+1 = min{exp(−N), exp(−ξk)}

suffices. In particular, given the network size N , for suf-

ficiently large k, ξk > N holds, and therefore we use

Qmin
k+1 := exp(−ξk).

On the other hand, if for Li  Xi, 8i 2 N , each one of

the 2N transition rates in (31) is less than or equal to 1,

and Qmax
k+1 = 2N is sufficient. Second, if there exists some

node i such that Li > Xi, beacause of the costs are always

upper bounded by C̄, the transition rate is also upper bounded

by exp(C̄ηmax)  exp (C̄2
Pk

m=1 δm) = exp (ξk). Therefore

Qmax
k+1 = 2N exp (ξk) is sufficient.

Following the standard method, we perform uniformization

on X(t) whose transition rate matrix is denoted as Q. If each

element of Q has an absolulte value less that a constant Qmax
k+1,

then we can write X(t) = Y (M(t)), in which Y (n) is a

discrete time Markov chain with probability transition matrix

P = I + Q/Qmax
k+1 and I is the identity matrix. M(t) is an

independent Poisson process with rate Qmax
k+1.

Then, we estimate how far the empirical power consumption

E [µ̂i(k + 1)|Fk] is away from the desired value µi(k + 1)
(under fixed η(k)). Denote the probability of X(t) in state w

at time t 2 [tk, tk+1) by ζw(t) and ζ(t) = [ζw(t)]. Given the

initial state at time tk is w0(k + 1), We have

E [µ̂i(k + 1)|Fk]

= E

hR tk+1

tk

P
w2W

(
1{wi=l}Li + 1{wi=x}Xi

)
dt/τk+1

i

=
R tk+1

tk

P
w2W(P {wi(t) = l}Li + P {wi(t) = x}Xi) dt/τk+1

= Li

⌧k+1

P
w2Wl

i

R tk+1

tk
ζw(t) dt+ Xi

⌧k+1

P
w2Wx

i

R tk+1

tk
ζw(t) dt

= Li · α̂i(k + 1) +Xi · β̂i(k + 1),

in which

α̂i(k + 1) =
P

w2Wl
i

R tk+1

tk
ζw(t) dt/τk+1,

β̂i(k + 1) =
P

w2Wx
i

R tk+1

tk
ζw(t) dt/τk+1,

are the empirical average probabilities that node i spends in

listen and transmit states in the (k + 1)-th interval.

Let ✓2 be the Second Largest Eigenvalue modulus of the

transition probability matrix P = I + Q/Qmax
k+1. By Theo-

rem [], this total variation distance can be bounded by

||ζ(t)− πη(k)||TV = 1
2

P
w2W |⇣w(t)− ⇡

η(k)
w |

 1
2

s
1−⇡

η(k)

w
0

⇡
η(k)

w
0

exp(−Qmax
k+1(1− ✓2)t)

 1
2

1
q

⇡
η(k)
min

exp(−Qmax
k+1(1− ✓2)t). (32)

Also, the Second Largest Eigenvalue, ✓2, can be bounded by

Cheeger’s inequality [37], i.e.,

✓2  1− φ2/2 , 1/(1− ✓2)  2/φ2,

where φ is the “conductance” of P , which satisfies the

following inequality

φ ≥ min
w 6=w0,P (w,w0)>0

{⇡
η(k)
min P (w,w0)} ≥ ⇡

η(k)
min ·Qmin

k+1/Q
max
k+1.

Therefore we obtain

1/(1− ✓2)  2/φ2  2(Qmax
k+1)

2/(⇡
η(k)
min ·Qmin

k+1)
2. (33)

Putting everything into the estimation, we have

|E [µ̂i(k + 1)|Fk]− µi(k + 1)|

= |Li(↵̂i(k + 1)− ↵i(k + 1)) +Xi(β̂i(k + 1)− βi(k + 1))|

 Li|↵̂i(k + 1)− ↵i(k + 1)|+Xi|β̂i(k + 1)− βi(k + 1)|.

Furthermore, we have

|↵̂i(k + 1)− ↵i(k + 1)|

= |
P

w2Wl
i

R tk+1

tk
(⇣w(t)− ⇡

η(k)
w ) dt/⌧k+1|


R tk+1

tk

P
w2Wl

i
|⇣w(t)− ⇡

η(k)
w | dt/⌧k+1.

Similarly, |β̂i(k + 1)− βi(k + 1)| 
R tk+1

tk

P
w2Wx

i
|⇣w(t)−

⇡
η(k)
w | dt/⌧k+1. Adding both terms together yields

Li|↵̂i(k + 1)− ↵i(k + 1)|+Xi|β̂i(k + 1)− βi(k + 1)|

 C̄
R tk+1

tk

P
w2W |⇣w(t)− ⇡

η(k)
w | dt/⌧k+1

 C̄
q

⇡
η(k)
min

R tk+1

tk
exp (−Qmax

k+1(1− ✓2)t) dt/⌧k+1 (use (32))

 C̄
q

⇡
η(k)
min

R tk+1

0
exp (−Qmax

k+1(1− ✓2)t) dt/⌧k+1

 C̄
q

⇡
η(k)
min

·
⇥
2Qmax

k+1(1− ✓2)
⇤−1

/⌧k+1


C̄Qmax

k+1

⌧k+1(Qmin
k+1)

2(⇡
η(k)
min )5/2

:= f(k)/⌧k+1, (use (33))

in which f(k) :=
C̄Qmax

k+1

(Qmin
k+1)

2(⇡
η(k)
min )5/2

. Therefore we have,

|E [µ̂i(k + 1)|Fk]− µi(η(k))|  f(k)/⌧k+1,

and the error term, defined in (28), satisfies |gerri (k + 1)| 
f(k)/⌧k+1. Therefore, with defined f(k) and proper choice of

⌧k+1 (e.g., ⌧k+1 = k + 1), the error term is diminishing.

Based on this result and following similar steps in the proof

of Theorem 1 in [33], it can be shown that η converges to η⇤
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with probability 1. Therefore, we complete the proof. ⌅

APPENDIX E

BURSTINESS ANALYSIS OF ECONCAST

To derive the average burst length (denoted by B) of

EconCast-C, we use π⇤
w

to denote the optimal solution to

(P4) and define W 0 = {w 2 W : νw = 1, cw ≥ 1}, i.e., the

set of states with successfully received bursts. Recall that for

a given value of σ, the optimal value of (P4) is exactly T σ .

According to (18e), for a given state w 2 W 0, the average

burst length of EconCast-C in groupput mode is exp (cw/σ).
Therefore, during a (long enough) time duration of T , the

average number of bursts received by all the nodes can be

computed by
P

w2W0

T ·⇡⇤

w

exp (cw/σ) , and the average burst length

of EconCast in groupput mode, Bg , is given by

Bg = (Avg. Total Burst Length)/(Avg. Number of Bursts)

=
T ·
P

w2W0 π⇤
wP

w2W0

T ·⇡⇤

w

exp (cw/σ)

=

P
w2W0 π⇤

wP
w2W0

⇡⇤

w

exp (cw/σ)

. (34)

Similarly, the average burst length of EconCast-C in anyput

mode is computed by replacing cw with γw in (34). Since

γw = 1 always holds for w 2 W 0, Ba simplifies to

Ba =

P
w2W0 π⇤

wP
w2W0 [π⇤

w
· exp (−1/σ)]

= exp (1/σ). (35)

This shows that the anyput average burst length is independent

of the number of nodes, N , and only depends on σ. ⌅


