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Maximizing Broadcast Throughput
Under Ultra-Low-Power Constraints

Tingjun Chen, Javad Ghaderi, Dan Rubenstein, and Gil Zussman

Abstract—Wireless object tracking applications are gaining
popularity and will soon utilize emerging ultra-low-power device-
to-device communication. However, severe energy constraints
require much more careful accounting of energy usage than
what prior art provides. In particular, the available energy, the
differing power consumption levels for listening, receiving, and
transmitting, as well as the limited control bandwidth must all be
considered. Therefore, we formulate the problem of maximizing
the throughput among a set of heterogeneous broadcasting nodes
with differing power consumption levels, each subject to a strict
ultra-low-power budget. We obtain the oracle throughput (i.e.,
maximum throughput achieved by an oracle) and use Lagrangian
methods to design EconCast - a simple asynchronous distributed
protocol in which nodes transition between sleep, listen, and
transmit states, and dynamically change the transition rates.
EconCast can operate in groupput or anyput modes to re-
spectively maximize two alternative throughput measures. We
show that EconCast approaches the oracle throughput. The
performance is also evaluated numerically and via extensive
simulations and it is shown that EconCast outperforms prior art
by 6x — 17x under realistic assumptions. Moreover, we evaluate
EconCast’s latency performance and consider design tradeoffs
when operating in groupput and anyput modes. Finally, we
implement EconCast using the TI ¢Z430-RF2500-SEH energy
harvesting nodes and experimentally show that in realistic
environments it obtains 57% — 77% of the achievable throughput.

Index Terms—Internet-of-Things, energy harvesting, ultra-low-
power, wireless communication

I. INTRODUCTION

Object tracking and monitoring applications are gaining
popularity within the realm of Internet-of-Things [2]. One
enabler of such applications is the growing class of ultra-
low-power wireless nodes. An example is active tags that can
be attached to physical objects, harvest energy from ambient
sources, and communicate tag-to-tag toward gateways [3], [4].
Relying on node-to-node communications will require less
infrastructure than traditional (RFID/reader-based) implemen-
tations. Therefore, as discussed in [3]-[6], it is envisioned that
such ultra-low-power nodes will facilitate tracking applications
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in healthcare, smart building, assisted living, manufacturing,
supply chain management, and intelligent transportation.

A fundamental challenge in networks of ultra-low-power
nodes is to schedule the nodes’ sleep, listen/receive, and trans-
mit events without coordination, such that they communicate
effectively while adhering to their strict power budgets. For
example, energy harvesting tags need to rely on the power that
can be harvested from sources such as indoor-light or kinetic
energy, which provide 0.01—0.1 mW [7], [8] (for more details
see the review in [9] and references therein). These power
budgets are much lower than the power consumption levels
of current low-power wireless technologies such as Bluetooth
Low Energy (BLE) [10] and ZigBee/802.15.4 [11] (usually at
the order of 1 —10 mW). On the other hand, BLE and ZigBee
are designed to support data rates (up to a few Mbps) that are
higher than required by the applications our work envisages
supporting (less than a few Kbps).

In this paper, we formulate the problem of maximizing
broadcast throughput among energy-constrained nodes. We
design, analyze, and evaluate EconCast: Energy-constrained
BroadCast. EconCast is an asynchronous distributed protocol
in which nodes transition between sleep, listen/receive, and
transmit states, while maintaining a power budget. The nodes
and network we focus on have the following characteristics:
Broadcast: A transmission can be heard by all listening nodes
in range.

Severe power constraints: The power budget is so limited that
each node needs to spend most of its time in sleep state and
the supported data rates can be of a few Kbps [7]. Traditional
approaches that spend energy in order to improve coordination
(e.g., accurate clocks, slotting, synchronization) or form some
sort of structure (e.g., routing tables and clusters) are too
expensive given limited energy and bandwidth.
Unacquainted: Nodes do not require pre-existing knowledge
of their environment (e.g., properties of neighboring nodes).
This can result from the restricted power budget or from unan-
ticipated environment changes due to altered energy sources
and/or node mobility.

Heterogeneous: The power budgets and the power consump-
tion levels can differ among the nodes.

Efficiently operating such structureless and ultra-low-power
networks requires nodes to make their sleep, listen, or transmit
decisions in a distributed manner. Therefore, we consider
the fundamental problem of maximizing the rate at which
the messages can be delivered (the actual content of the
transmitted messages depends on the application). Namely, we
focus on maximizing the broadcast throughput and consider
two alternative definitions:



o Groupput - the total rate of successful bit transmissions
to all the receivers over time. Groupput directly applies
to tracking applications in which nodes utilize a neigh-
bor discovery protocol to identify neighbors which are
within wireless communication range [12]-[14]. In such
applications, broadcasting information to all other nodes
in the network is important, allowing the nodes to transfer
data more efficiently under the available power budgets.
Groupput can also be applied to data flooding applications
where the data needs to be collected at all the nodes in
a network.

« Anyput — the total rate of successful bit transmissions
to at least one receiver over time. It applies to delay-
tolerant environments that utilize gossip-style methods
to disseminate information. In traditional gossip commu-
nication, a node selects a communication partner in a
deterministic or randomized manner. Then, it determines
the content of the message to be sent based on a naive
store-and-forward, compressive sensing [15], [16], or
decentralized coding [17]. As another example, in delay-
tolerant applications, data transmission may get disrupted
or lost due to the limits of wireless radio range, sparsity
of mobile nodes, or limited energy resources, a node may
wish to send its data to any available receiver.

First, we derive oracle groupput and anyput (i.e., maximum
throughput achieved by an oracle) and provide methods to
efficiently compute their values. Then, we use Lagrangian
methods and a Q-CSMA (Queue-based Carrier Sense Multiple
Access) approach to design EconCast. EconCast can operate
in groupput or anyput modes to respectively maximize the
two alternative throughput measures. Nodes running EconCast
dynamically adapt their transition rates between sleep, listen,
and transmit states based on (i) the energy available at the node
and (ii) the number (or existence) of other active listeners.
To support the latter, a listening node emits a low-cost infor-
mationless “ping” which can be picked up by other listening
nodes, allowing them to estimate the number (or existence)
of active listeners. We briefly discuss how this method helps
increasing the throughput and the implementation aspects. We
analyze the performance of EconCast and prove that, in theory,
it converges to the oracle throughput.

We evaluate the throughput performance of EconCast nu-
merically and via extensive simulations under a wide range
of power budgets and listen/transmit consumption levels, and
for various heterogeneous and homogeneous networks. Specif-
ically, numerical results show that EconCast outperforms prior
art (Panda [14], Birthday [18], and Searchlight [19]) by a
factor of 6x — 17x under realistic assumptions. In addition, we
consider the performance of EconCast in terms of burstiness
and latency. We also consider the design tradeoffs of EconCast
when oprating in groupput and anyput modes.

We implement EconCast using the TI eZ430-RF2500-SEH
energy harvesting nodes and experimentally show that in
practice it obtains 57% — 77% of the achievable throughput.
Moreover, we compare the experimental throughput to analyt-
ical throughput of Panda [14] (where the analytical throughput
is usually better than the experimental performance) and show
that, for example, EconCast outperforms Panda by 8x — 11x.

We note that EconCast is not designed based on specific
assumption, regarding the topology and that nodes do not need
to know the properties of other nodes. Yet, in this paper, we
mainly focus on a clique topology (i.e., all nodes are within
the communication range of each other), since it lends itself to
analysis. We briefly extend the analytical results to non-clique
topologies and also evaluate the performance of EconCast in
such networks.

To summarize, the main contributions of this paper are:
(i) a distributed asynchronous protocol for a heterogeneous
collection of energy-constrained wireless nodes, that can ob-
tain throughput that approaches the maximum possible, (ii)
efficient methods to compute the oracle throughput, and (iii)
extensive performance evaluation of the protocol.

The rest of the paper is organized as follows. We discuss
related work in Section II and formulate the problem in Sec-
tion III. In Section IV, we present methods to efficiently com-
pute the oracle throughput. We present EconCast in Section V
and the proof of the main theoretical result in Section VI.
In Section VII, we evaluate EconCast numerically and via
simulations. We then discuss the experimental implementation
and evaluation of EconCast in Section VIII. We conclude in
Section IX.

II. RELATED WORK

There is vast amount of related literature on sensor net-
working and neighbor discovery that tries to limit energy
consumption. Most of the protocols do not explicitly account
for different listen and transmit power consumption levels of
the nodes, or do not account for different power budgets [12],
[13], [18]-[25]. They mostly use a duty cycle during which
nodes sleep to conserve energy and when nodes are simultane-
ously awake, a pre-determined listen-transmit sequence with
an unalterable power consumption level is used. However, for
ultra-low-power nodes constrained by severe power budgets,
the appropriate amount of time a node sleeps should explicitly
depend on the relative listen and transmit power consumption
levels. These prior approaches achieve throughput levels which
are much below optimal (and hence much below what Econ-
Cast can achieve). Additionally, these protocols often require
some explicit coordination (e.g., slotting [12], [18] or exchange
of parameters [14], [19]), which are not suitable for emerging
ultra-low-power nodes.

From the theoretical point of view, our approach is inspired
by the prior work on network utility maximization (e.g., [26]),
and queue-based CSMA literature (e.g., [27]-[31]). However,
the problem considered in this paper is not a simple extension
of the prior work for two reasons. First, in the past work on
CSMA and network utility maximization, nodes or links make
decisions based on the relative sizes of queues. Often, a queue
is a backlog of data to send or the available energy. Prior work
that considers the latter (e.g., [32]) uses the energy only for
transmission, while listening is “free”, which is a very different
paradigm than the one considered in this paper. Second, in
our setting, the queue “backlogs” energy but there is no clear
mapping as previously assumed from energy to successful
transmission. A node’s listen or transmit events will relieve the



TABLE I: Nomenclature

N Set of nodes, number of nodes

L Node ¢’s listen power consumption (Watt), L = [L;]

X Node i’s transmit power consumption (Watt), X = [X;]
p Node i’s power budget (Watt), p = [p;]
w

o

B

T X2

Energy storage level of node ¢ (Joule)
Network state, the set of collision-free states
Fraction of time node ¢ listens, & = [oy;]
Fraction of time node 4 transmits, B = [53;]
Indicator if existing some nodes listening, its estimated value
Number of nodes listening, its estimated value
Indicator if there is exactly one node transmitting
Fraction of time the network is in w € W, T = [rw]
Throughput of state w € W
Throughput and oracle throughput
Groupput and oracle groupput

o Anyput and oracle anyput
n Lagrange multiplier of node i, 1 = [n;]
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backlog, but do not increase utility (throughput) unless other
nodes are appropriately configured (i.e., transmitting when no
listening nodes exist or listening when no transmitting nodes
exist does not increase the throughput). This coordination of
state among nodes to utilize their energy makes the considered
problem more challenging.

Finally, we note that our approach should be amenable to
emerging physical layer technology such as backscatter [6].

III. MODEL AND PROBLEM FORMULATION

We consider a network of N energy-constrained nodes
whose objective is to distributedly maximize the broadcast
throughput among them. The set of nodes is denoted by N.
Table I summarizes the notations.

A. Basic Node Model

Power consumption: A node i € A can be in one of three
states: sleep (s), listen/receive' (1), and transmit (x), and
the respective power consumption levels are 0, L; (W), and
X; (W).2 These values are based on hardware characteristics.
Power budget: Each node ¢ has a power budget of p; (W).
This budget can be the rate at which energy is harvested by
an energy harvesting node or a limit on the energy spending
rate such that the node can maintain a certain lifetime. In
practice, the power budget may vary with time [7], [8] and
the distributed protocol should be able to adapt. For simplicity,
we assume that the power budget is constant with respect to
time. However, the analysis can be easily extended to the case
with time-varying power budget with the same constant mean.
Each node ¢ also has an energy storage (e.g., a battery or a
capacitor) whose level at time ¢ is denoted by b;(t).

Severe Power Constraints: Intermittently connected energy-
constrained nodes cannot rely on complicated synchronization
or structured routing approaches.

Unacquainted: Low bandwidth implies that each node ¢ must
operate with very limited (i.e., no) knowledge regarding its
neighbors, and hence, does not know or use the information
(pj, Lj, X;) of the other nodes j # i.

'We refer the listen and receive states synonymously as the power con-
sumption in both states is similar.

2The actual power consumption in sleep state, which may be non-zero, can
be incorporated by reducing p;, or increasing both L; and X;, by the sleep
power consumption level.

B. Architecture Assumptions

We assume that there is only one frequency channel and a
single transmission rate is used by all nodes in the transmit
state. Similar to CSMA, nodes perform carrier sensing prior
to attempting transmission to check the availability of the
medium. Energy-constrained nodes can only be awake for
very short periods, and therefore, the likelihood of overlapping
transmissions is negligible. We also assume that a node in the
listen state can send out low-cost, informationless “pings”
which can be picked up by other listening nodes, allowing
them to estimate the number (or existence) of active listeners.
We explain in Section V how this property will help us develop
a distributed protocol and in Section VIII, we provide practical
means by which such estimates can be obtained.

C. Model Simplifications

At any time ¢, the network state can be described as a vector
w(t) = [w;(t)], where w;(t) € {s,l,x} represents the state
of node ¢. While the distributed protocol EconCast (described
in Section V) can operate in general scenarios, for analytical
tractability, we make the following assumptions:

o The network is a clique.’

o Nodes can perform perfect carrier sensing in which the

propagation delay is assumed to be zero.
These assumptions are suitable in the envisioned applications
where the distances between nodes are small. Under these
assumptions, the network states can be restricted to the set
of collision-free states, denoted by W (i.e., states in which
there is at most one node in transmit state). This reduces the
size of the state space from 3"V to (N + 2)2V—1.

Let 7w € {0,1} indicate whether there exists some nodes
listening in state w and let ¢y, be the number of listeners in
state w. We use vy, € {0,1} as an indicator which is equal
to 1 if there is exactly one transmitter in state w and is 0
otherwise. Based on these indicator functions, two measures of
broadcast throughput, groupput and anyput, and the throughput
of a given network state w are defined below.

Definition 1 (Groupput): The groupput, denoted by T,, is
the aggregate throughput of the transmissions received by all
the receivers, where each transmitted bit is counted once per
receiver to which it is delivered, i.e.,

T
Ty = A % /t:O Ve (1) Cw (t) AL (1)

Definition 2 (Anyput): The anyput, denoted by 7T, is the
aggregate throughput of the transmissions that are received by
at least one receiver, i.e.,

1T
To = Tlgrclx) T /t:O Vaw (t) Yw (t)dE- (2)

Definition 3 (Network State Throughput): The throughput

associated with a given network state w € W, denoted by

Tw, is defined as
VwCw, for Groupput,
To = ’P 3)
Vw7w, for Anyput.

Note that without energy constraints, the oracle (maximum)
groupput is (N — 1) and is achieved when some node always

3We also investigate non-clique networks in Section IV-C.



transmits and the remaining (N — 1) nodes always listen
and receive the transmission. Similarly, the oracle (maximum)
anyput without energy constraints is 1 and is achieved when
some node always transmits and some other node always
listens and receives the transmission.

D. Problem Formulation

Define 7, as the fraction of time the network spends in a
given state z € W, i.e.,

1 T
lim — 1 _dt 4
im T/t:O {w(t)=z} dt, “4)

where 1(y (=5 is the indicator function which is 1, if
the network is with state z at time ¢, and is 0 otherwise.
Correspondingly, denote 7t = [my].

Below, we define the energy-constrained throughput max-
imization problem (P1) where the fractions of time each
node spends in sleep, listen, and transmit states are assigned
while the node maintains the power budget. Define variables
a;, B; € [0,1] as the fraction of time node 4 spends in listen
and transmit states, respectively. The fraction of time it spends
in sleep state is simply (1 — a; — 3;). In view of (1) — (4),
(P1) is given by

(P1) max ZWGW Tw Tw (5)
subject to  o; L; + B: X; < p;, Vie N, (6)

G Zwevw s Bi = Zwevw Tw, ()
Zwew Tw =1, Tw >0, YW € W, (8)

where W! and W are the sets of states w € W in which
w; = | and w; = x, respectively. Each node is constrained
by a power budget, as described in (6), and (8) represents
the fact that at any time, the network operates in one of the
collision-free states w € W.

Based on the solution to (P1), the maximum throughput is
achievable by an oracle that can schedule nodes’ sleep, listen,
and transmit periods, in a centralized manner. Therefore, we
define the maximum value obtained by solving (P1) as the
oracle throughput, denoted by T*. Respectively, we define
the oracle groupput and oracle anyput as T and T

To evaluate EconCast, it is essential to compare its perfor-
mance to the oracle throughput. However, (P1) is a Linear
Program (LP) over an exponentially large number of variables
(i.e., |[W] is exponential in N) and is computationally expen-
sive to solve. In Section IV, we show how to convert (P1)
to another optimization problem with only a linear number of
variables. Note that the solution to (P1) only provides the
optimal fraction of time each node should spend in sleep,
listen, and transmit states, but does not indicate how the nodes
can make their individual sleep, listen, and transmit decisions
locally. Therefore, in Section V, we focus on the design of
EconCast that makes these decisions based on (P1).

Ty =

IV. ORACLE THROUGHPUT

In this section, we present an equivalent LP formulation for
(P1) in a clique network which only has a linear number of
variables. We also derive both an upper and a lower bound

for the oracle groupput in non-clique topologies which will
be used later for evaluating the performance of EconCast in
non-clique topologies.

Recall that a; and 3; are the fraction of time node ¢ spends
in listen and transmit states, respectively. We can rewrite the
constraints in (P1) as follows

;L + BiXi < pi, VieN, )
DSl (11

Specifically, (9) is the usual power constraint on each node
i € N, and (10) is due to the fact that a node can only operate
in one state at any time. We remark that energy-constrained
nodes can only be awake for very small fractions of time (i.e.,
a; + B; < 1), and therefore (10) may be redundant. Finally,
collision-free operation in a clique network where at most one
transmitter can be present at any time imposes (11), which
bounds the sum of the transmit fractions by 1.

A. Oracle Groupput in a Clique

To maximize the groupput (1), it suffices that any node only
listens when there is another transmitter, since listening when
no one transmits wastes energy. Namely, the fraction of time
node 7 listens cannot exceed the aggregate fraction of time all
other nodes transmit, i.e.,

(673 S Z]#zﬂj’ VZ GN.
Since a node only listens when there exists exactly one
transmitter, every listen counts as a reception, and the groupput
of a node (i.e., the throughput it receives from all other
nodes) is simply the fraction of time it spends in listen state,
«;. Therefore, the groupput in a clique network simplifies
to Y ;cn @i The oracle groupput, denoted by 7, can be
obtained by solving the following maximization problem

(P2) Ty max Doy

subject to  (9) — (12).

(P2) is an LP consisting of 2N variables and (3N + 1)

constraints (i.e., solving for & and 3 given inputs of N, p,

L, and X). On a conventional laptop running Matlab, this

computation for thousands of nodes takes seconds. Moreover,

we show that the oracle groupput obtained by solving (P2)

is indeed achievable by an oracle which can schedule nodes’

listen and transmit periods. This result is summarized in the
following lemma.

Lemma 1: The (rational-valued) solution (o*, 3*) to (P2)
can be feasibly scheduled by an oracle in a fixed-size slotted
environment via a periodic schedule, (perhaps) after a one-time
energy accumulation interval.

Proof: The proof can be found in Appendix A. [ ]

In homogeneous networks (i.e., p, = p, L; = L, X; =
X, Vi € N) where nodes are sufficiently energy-constrained
(i.e., (9) dominates (10)), the solution to (P2) is given by*

8" = p/(X +(N —1)L), " = (N = 1)8", T, = Na".

(12)

13)

4We show that in the optimal solution, the equalities hold for equations (9)
and (12). The details are Appendix B.



B. Oracle Anyput in a Clique

The oracle anyput is obtained based on the observation that
a transmission only occurs when there is at least one listener.
Define variables x; ; as the fraction of time node j receives a
transmission from node ¢, for the following constraints

Bi < Z#iXi,jy VieN,

O[j = ZWAJ Xi,j? V] € N
The oracle anyput, denoted by 7%, can be obtained by solving
the following maximization problem
(P3) Ty =max > i
(9) — (11), (14),and (15).
First, (14) ensures that when node ¢ transmits, there is always
at least one other node than can receive this transmission.
Then, (15) makes sure that in the optimal schedule, the
fraction of time node j listens is large enough to cover all
the transmissions it receives. Therefore, (P3) maximizes the
anyput by ensuring that every transmission is received by ar
least one node.
In homogeneous networks, the closed-form solution to (P3)
is given by
B =a"=p/(X+L), T =Np*.

(14)

15)

(16)

subject to

C. Oracle Groupput in Non-cliques

The problem formulations (P1) — (P3) so far have assumed
a clique network. Obtaining the exact maximum groupput
for non-cliques (denoted by 7.%) is difficult. This is because
a node may receive simultaneous transmissions from two
nodes which are not within communication range of each
other. As explained before, listen and transmit events are rare
within energy-constrained nodes. Therefore, the likelihood of
simultaneous transmissions is small and it is expected to have
minimal impact on the throughput.

We present both an upper bound 7% and a lower bound
Tk on the maximum groupput in non-clique topologies. In the
scenarios where 7%, and 7.%. are the same, the exact maximum
groupput 7. can be obtained. The lower bound 7% is obtained
by solving (P2) but replace constraint (12) by

a; < ZzeN(z) ﬁj, Vi € N,

where A/ (7) is the set of neighboring nodes of node 4. This
ensures that the fraction of time node ¢ listens cannot exceed
the sum of its neighboring nodes’ fractions of transmissions.
The upper bound 7% is obtained by solving (P2) in which the
constraint (11) is removed. This allows overlapping transmis-
sions which can possibly happen in non-cliques. Numerical
results show that with certain topologies, 7.% = 7. holds, re-
sulting in the exact maximum groupput 7.%. In Section VII-E,
we compute 7% and evaluate the performance of EconCast in
non-clique topologies.

V. DISTRIBUTED PROTOCOL

In this section, we describe EconCast from the perspective
of a single node that transitions between sleep, listen, and
transmit states, under a power budget. Since we focus on a

TABLE II: A simple example in a heterogeneous network.

Node 1 2 3 4

Power Budget: p;(mW) | 0.005 | 0.01 | 0.05 [ 0.1
Awake(%): a; + b7 05 | 1.0 | 5.0 | 10.0
Transmit when Awake(%) | 20.0 22 | 53.6 | 65.7

Fig. 1: The node’s states and transition rates.

single node ¢, in parts of this section, we drop the subscript ¢
of previously defined variables for notational compactness.

A. A Simple Heterogeneous Example

To better understand the challenges faced in designing
EconCast, consider a simple example of 4 nodes, all having
identical listen and transmit power consumption L; = X; =
1mW (i = 1,2,3,4), but different power budgets p;, as
indicated in Table II. Table II also shows the percentage of time
each node spends in listen and transmit states («,S3F) (i =
1,2, 3,4) such that the groupput is maximized by solving (P1).
It also shows the percentage of time each node spends in
transmit state when awake (i.e., i(jOTgl%)

If, instead, all nodes have the same power budget of p; =
0.1 mW, the percentage of time each node spends in transmit
state when awake is 25% (with o = 0.075,5; = 0.025,
i = 1,2,3,4). Note that in the above example, the power
budget of node 4 remains unchanged but changes in other
nodes’ power budgets shift the percentage of time it should
transmit when awake from 25% to 65.7%. This clearly shows
that the partitioning of a node’s power budget among listen and
transmit states is highly dependent on other nodes’ properties.
However, we will show that if a node does not know the
properties of its neighbors, an optimal configuration can be
obtained without explicitly solving (P1).

B. Protocol Description

To clearly present EconCast, we start from a theoretical
framework and slowly build on it to address practicalities. As
mentioned in Section III, a node can be in one of three states:
sleep (s), listen (I), and transmit (z). As depicted in Fig. 1, it
must pass through listen state to transition between sleep and
transmit states. The time duration a node spends in state u
before transitioning to state v is exponentially distributed with
rate Ay, (t). These transition rates can be adjusted over time.
We remark that sending packets with exponentially distributed
length (i.e., a node transitions from transmit state to listen state
with a rate \,;) is impractical. However, it can be shown that
this is equivalent to continuously transmitting back-to-back
unit-length packets with probability (1 — Ay) if Ay € [0,1],
which is indeed the case in EconCast.

To maximize the groupput or anyput, EconCast can operate
in groupput mode or anyput mode, respectively. The through-
put as a function of 7y, (see (5)) is controlled by appropriately



adjusting the transition rates between different states of each
node. EconCast determines in a distributed manner how these
adjustments are performed over time. Roughly speaking, each
node adjusts its transition rates \,,(t) based on limited
information that can be obtained in practice, including

« Its power consumption levels in listen and transmit states,

L and X, and energy storage level b(t).

o A sensing of transmit activity of other nodes over the

channel (CSMA-like carrier sensing).

o A count of other active listeners (in groupput mode), ¢(t),

or an indicator of whether there are any active listeners
(in anyput mode), y(t). In practice, ¢(t) and ~(t) may
not be accurate, and we denote ¢é(t) and 4(¢) as their
estimated values.

Note that in EconCast, unlike in previous work such as
Panda [14], each node does not need to know the number
of nodes in the network, N, and the power budgets and
consumption levels of other nodes. Furthermore, a node does
not need to know its power budget p explicitly (e.g., in the
case of energy harvesting [4]), although this knowledge can
be incorporated, if available.

Under EconCast, a node sets Ag(t) as an increasing func-
tion of the available stored energy, b(t), to more aggressively
exit sleep state. Furthermore, it sets A;,(¢) as an increasing
function of the number of listeners, ¢é(t), to enter transmit
state more frequently when more nodes are listening. We will
describe how these functions are chosen in Section V-E.

C. Estimating Active Listeners: Pings

We now discuss the estimation of ¢&(t) or 4(t). Recall
from Section III that nodes can send out periodic pings that
any other listener can receive. The pings need not carry any
explicit information and are potentially significantly cheaper
and shorter than control packet transmissions (e.g., an ACK).
Therefore, they consume less power and take much less time
than a minimal data transmission.

Consider the case in which all nodes are required to send
pings at a pre-determined rate and the power consumption is
accounted for in the listening power consumption L. In such a
case, a fellow listener detecting such pings (e.g., using a simple
energy detector) can use the count of such pings in a given
period of time, or the inter-arrival times of pings, to estimate
the number of active listeners c(t). Estimating ~(¢) is even
easier by detecting the existence of any ping. In general, the
estimates do not need to be accurate for EconCast to function,
although poor estimates are expected to reduce throughput.

D. Two Variants of EconCast

We now address the incorporation of the estimates ¢(¢) and
4(t) into EconCast. We present two versions of EconCast
which only differ when a node is in transmit state:

« EconCast-C (the capture version): a node may “capture”
the channel and transmit for an exponential amount
of time (i.e., several back-to-back packets). When each
packet transmission is completed, the transmitter listens
for pings for a fixed-length pinging interval. Each suc-
cessful recipient of the transmission initiate one ping at

time chosen uniformly at random on this interval. The
transmitter then estimates ¢é(t) or 4(t) based on the count
of pings received and adjusts A, (t) (as described in Sec-
tion V-E). In Section VIII-C, we discuss the experimental
implementation of this process.

o EconCast-NC (the non-capture version): a node always
releases the channel after one packet transmission. Each
node continuously pings and receives pings from other
nodes when listening, estimates ¢(t) or 4(t), and adjusts
Az (t) (as described in Section V-E).

EconCast-C is significantly easier to implement since the
estimates are only needed for the transmitter right after each
packet transmission. The probability that the same transmitter
will continue transmitting depends on the estimates ¢(t) or
4(t). Therefore, our implementation and experimental evalua-
tions in Section VIII focus on EconCast-C.

E. Setting Transition Rates

Consider a node running EconCast. Time is broken into
intervals of length 7, (k = 1,2,---). The k-th interval is
from time ¢;_; to time ¢; and we let o = 0. EconCast takes
input of two internal variables:

e 7 is a multiplier which is updated at the beginning of
each time interval. Let b[k] (kK = 0,1,---) denote the
energy storage level at the end of the k-th time interval.
Let (-)* denote max(0, -) and n[k| is updated as follows

+

nlk) = (nlk — 1) = /7 - 0k = bk 1)) ", (A7)

in which d; € (0,1) is a step size and b[k] = b(tx). We

use square brackets here to imply that the multiplier 7[k]
remains constant for ¢ € [tx, txy1).

o A(t) is the carrier sensing indicator of a node, which is 1
when the node does not sense any ongoing transmission,
and is O otherwise. Carrier sensing forces a node to
“stick” to its current state. When receiving an ongoing
transmission, a node in listen state will not exit the listen
state until it finishes receiving the full transmission, and
a node in sleep state will not leave the sleep state (i.e.,
it enters the listen state but immediately leaves when it
senses the ongoing transmission).

The transition rates are described as follows (the super-
scripts C' and N denote EconCast-C and EconCast-NC), in
which the two throughput modes only differ in A,;(¢) (for the
capture version) or in Ay, () (for the non-capture version). For
groupput maximization, at any time ¢ in the k-th interval,

Asi(t) = A(t) - exp(—n[k]L /o), (18a)
Ais(t) = A(t), (18b)
ALL(t) = A(t) - exp(n[k)(L — X) /o), (18¢)
A (t) = A(t) - exp(n[k)(L — X) /o + é(t) /o),  (18d)
A (t) = exp(—¢(t) /o), (18¢)
AN(t) = (18f)

For anyput maximization, ¢(t) is replaced with 4(t). Theo-
rem 1 below states the main result of this paper and the proof
is in Section VI.

Theorem 1: Let 0 — 0 and select parameters d, and 7
properly (e.g., o = 1/[(k+1)log (k + 1)] and 7, = k). Under



perfect knowledge of ¢(t) or (¢), the average throughput of
EconCast (7, or 7,) converges to the oracle throughput (7
or 77) given by (P1).

FE. Stability and Choice of o, 6k, and Ty

EconCast is adaptive and, as expected, it must deal with
the tradeoff of “adapting quickly but poorly” to “adapting
optimally but slowly”. This adaptation manifests itself into the
parameters o, 0, and 7. When ¢ is decreased, the through-
put increases, as we will describe in Section VI. However,
the burstiness also increases with respect to decreased o.
The burstiness is a characteristic of communication involving
multiple packets that are successfully received in bursts. In
Section VII, we describe how the burstiness can be analyzed
and measured.

Under a given value of o, each node continuously adjusts
the rates A, (t) based on its multiplier 7 according to (17),
which is a function of the ratio 5, /7. Small d;, /7 ratios make
smaller changes of 7 over time, and lead to longer convergence
time to the “right” multiplier values. In contrast, larger O /7%
ratios make 7 oscillate more wildly near the optimal value,
such that the performance of EconCast is further from the
optimal. Although the guaranteed convergence requires careful
choices of the parameters (as stated in Theorem 1), in practice,
we can choose 6, = d and 7, = 7 for some small constant ¢§
and large constant 7.

VI. PROOF OF THEOREM 1

The proof of Theorem 1 is based on a Markov Chain Monte
Carlo (MCMC) approach [28], [30] from statistical physics
and consists of three parts: (i) we compute the steady state
distribution of the network Markov chain under EconCast with
fixed Lagrange multiplier vector 1 = [r;], (ii) we present
an alternative concave optimization problem whose optimal
value approaches that of (P1) as 0 — 0 and show that the
steady state distribution of EconCast is indeed the optimal
solution to this alternative optimization problem when the
Lagrange multipliers are chosen optimally, and (iii) we show
that under EconCast, nodes update their Lagrange multipliers
locally according to a “noisy” gradient descent which converge
to the optimal Lagrange multipliers with proper choices of step
sizes and interval lengths as given in Theorem 1.

Part (i): Steady State Distribution

The following lemma describes the network state distribu-
tion generated by EconCast when 1 freezes.

Lemma 2: With fixed n, the network Markov chain, resulted
from overall interactions among the nodes according to the
transition rates (18), has the steady state distribution

1 1
= 7 ©XP [U <Tw - Z niLi — Z T]in)] , (19)

iw; =l Lwi=x
where Z" is a normalizing constant so that ) ), 7 = 1.
Proof: The proof can be found in Appendix C. ]

Algorithm 1 Gradient Descent Algorithm

Input parameters: o, p, L, and X

Initialization: «;(0) = 8;(0) = n;(0) =0, Vi e

I: for k=1,2,--- do

2: (k) = 1/k, compute 7t(k) from (19) using n = n(k)

3: for:=1,2,--- ,N do

4: Update n;(k), ai(k), and S3;(k) according to (23), (24)

Part (ii): An Alternative Optimization

We then present an optimization problem (P4) as follows
(P4) max ZWEW Twlw — O ZWEW Twlogmw  (20)

(6), (7),and (8),
where o is the positive constant used in EconCast (the
counterpart in statistical physics is the temperature in sys-
tems of interacting particles). Note that (P4) is a concave
maximization problem and as ¢ — 0, the optimal value
of (P4) approaches that of (P1). To solve (P4), consider
the Lagrangian £(7t,7) formulated by moving the power
constraint (6) into the objective (20) with a Lagrange multiplier
1; > 0 for each node 1, i.e.,
L(mt,m) = ZWGW Twlw — 0 ZWEW Tw 10g Ty

=D ien milaiLi + Bi X — pi)] - (21)
In view of (7) and (8), it can be shown that with fixed 7,
the optimal " = [#]l] that maximizes L£(7t,n) is exactly
given by (19). Therefore, if EconCast knows the optimal
Lagrange multiple vector n*, it can start with n* and the
steady state distribution generated by EconCast will converge
to the optimal solution to (P4).

In order to find n*, consider the dual function D(n) =
L(7", 1) over n = O (here 0 is an N-dimensional zero vector
and = denotes component-wise inequality). Interestingly, it
can be shown that the partial derivative of D(n) with respect
to n; is simply given by

OD/0n; = pi — (i L; + B X;), (22)
which is the difference between the power budget p; and the
average power consumption of node :. Therefore, the dual
can be minimized by using a gradient descent algorithm with
inputs of step size §; > 0, p, L, and X, which generates a state
probability 7t(k) (k = 1,2,---). This algorithm is described
in Algorithm 1 along with the following equations

mi(k) = ik — 1) — 6(pi — ci(k)L; — Bi (k) X)),

=3 O, B8 = 3, 7

Hence, with the right choice of step size 0y (e.g., o = 1/k),
7t(k) converges to the optimal solution to (P4).

To arrive at a distributed solution, instead of computing
the quantities «; and f; directly according to (24) (which is
centralized with high complexity), EconCast approximates the
difference between the power budget and the average power
consumption (22) by observing the dynamics of the energy
storage level of each node. Specifically, each node ¢ can
update its Lagrange multiplier 7);(k) based on the difference
between its energy storage levels at the end and the start
of an interval of length 7, divided by 7, as described by
(17). Therefore, n; is updated according to a “noisy” gradient

subject to

(23)
(24)



descent. However, it follows from stochastic approximation
(with Markov modulated noise) that by choosing step sizes
and interval lengths as given in Theorem 1, these noisy updates
will converge to n* as k — oo (see e.g., Theorem 1 of [33]).
As mentioned in Section V-F, the choice of parameters o, dy,
and 75, will affect the tradeoff between convergence time and
the performance of EconCast.

Part (iii): Convergence Analysis
The detailed proof uses similar techniques as in the proof

of Theorem 1 in [33] with minor modifications and can be
found in Appendix D.

VII. NUMERICAL RESULTS

In this section, we evaluate the throughput and latency
performance of EconCast when operating in groupput and
anyput modes. We use the following notation: (i) 7;7* ThH
is the oracle groupput (anyput) obtained by solving (P1) or,
equivalently, (P2), (ii) Ty (7)) is the achievable groupput
(anyput) of EconCast with a given value of o obtained by
solving (P4), and (iii) 77 (77) is the groupput (anyput) of
EconCast obtained via simulations with a given value of o.
For brevity, we ignore the subscripts of 7% when describing
results that are general for both groupput and anyput.

A. Setup

We consider clique networks® with o € {0.1,0.25,0.5}.
The nodes’ power budgets and consumption levels corre-
spond to the energy harvesting budgets and ultra-low-power
transceivers in [7], [8], [34]. Note that the performance of
EconCast only depends on the ratio between the listen or
transmit power and the power budget. For example, nodes with
p =10pW,L = X = 500 mW behave exactly the same as
nodes with p = 1mW,L = X = 50mW. Therefore, the
oracle throughput applies and EconCast can operate in very
general settings.

In the simulations, each node has a constant power input
at the rate of its power budget, and adjusts the transition
rates based on the dynamics of its energy storage level. Since
nodes perform carrier sensing when waking up, there are no
simultaneous transmissions and collisions. We also assume
that the packet length is 1ms and that nodes have accurate
estimate of the number of listeners or the existence of any
active listeners, i.e., ¢(t) = c(t) or 4(t) = ().

The simulation results show that 77 perfectly matches 77
for 0 € {0.25,0.5}. For ¢ = 0.1, 7° does not converge
to 77 within reasonable time due to the bursty nature of
EconCast, as will be described in Section VII-D. Therefore,
we evaluate the throughput performance of EconCast by
comparing 7 to 7* with varying ¢ in both heterogeneous and
homogeneous networks. Specifically, homogeneous networks
consist of nodes with the same power budget and consumption
levels, ie., p; = p,L; = L, X; = X,Vi € N. The simulation
results also confirm that nodes running EconCast consume
power on average at the rate of their power budgets.

SWe evaluate the throughput performance of EconCast in non-clique
topologies in VII-E.
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Fig. 2: Sensitivity of the achievable throughput normalized to the oracle
throughput, 77 /7*, for: (a) groupput and (b) anyput, to the heterogeneity
of the power budget, p, and power consumption levels, L and X.

B. Heterogeneous Networks — Throughput

One strength of EconCast is its ability to deal with het-
erogeneous networks. Fig. 2 shows the groupput and anyput
achieved by EconCast normalized to the corresponding oracle
groupput and anyput (i.e., 77/T*), for heterogeneous net-
works with N = 5 and o € {0.1,0.25,0.5}. Intuitively, higher
values of 77/T* indicate better performance of EconCast.

Along the z-axis, the network heterogeneity, denoted by h,
is varied from 10 to 250 at discrete points. The relationship
between the network heterogeneity and the values of A is
as follows: (i) for each node ¢, L; and X, are indepen-
dently selected from a uniform distribution on the interval
[510 — h,490 + h] (uW), (ii) for each node i, a variable h’
is first sampled from the interval [— log %, log h] uniformly
at random, and then p; is set to be exp (h'). Therefore, the
energy budget p; varies from 100/h to h (UW). As a result,
for any h, L; and X; have mean values of 500 uW, and p;
has median of 10 uW but its mean increases as h increases.
Note that a homogeneous network is represented by h = 10.

The y-axis indicates for each value of h, the mean and the
95% confidence interval of the ratios 77 /7* averaged over
1000 heterogeneous network samples. Specifically, in each net-
work sample, each node ¢ samples (p;, L;, X;) according to the
processes described above. Figs. 2(a) and 2(b) show that the
network heterogeneity with respect to both the nodes’ power
budgets and consumption levels increases as h increases. Fig. 2
also shows that the throughput ratio 77 /7* increases as o
decreases, and approaches 1 as ¢ — 0. Furthermore, with
increased heterogeneity of the network, the throughput ratio
has little dependency on the network heterogeneity h but heavy
dependency on ¢. In general, the groupput and anyput ratios
are similar except for homogeneous networks (h = 10). In
such networks, the anyput ratio is slightly higher than the
groupput ratio. This is due to the fact that nodes have the same
values of p;, L;, and X;). Therefore, determining the existence
of any active listeners, (t), is easier than determining the
number of active listeners, c(t).

C. Homogeneous Networks — Throughput and Comparison to
Related Work

We now evaluate the throughput of EconCast in homoge-
neous networks with N =5, p = 10uW, L + X = 1mW,
and 0 € {0.1,0.25,0.5}. We also compare the groupput
achieved by EconCast to three protocols in related work:
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Fig. 3: Throughput performance of EconCast when operating in: (a) groupput

mode and (b) anyput mode, with N =5, p = 10uyW, L + X = 1 mW, and

o €{0.1,0.25,0.5}, as a function of X /L.
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Panda [14], Birthday [18], and Searchlight [19], which operate
under stricter assumptions than EconCast. In particular:

o The probabilistic protocols Panda and Birthday both re-
quire a homogeneous set of nodes and a priori knowledge
of N. The throughput of Panda and Birthday is computed
as described in [14] and [18], respectively.

e The deterministic protocol Searchlight is designed for
minimizing the worst case pairwise discovery latency,
which does not directly address multi-party communi-
cation across a shared medium. However, the discovery
latency is closely related to the throughput, since the
inverse of the average latency is the throughput. Hence,
maximizing throughput is equivalent to minimizing the
average discovery latency. We derive an upper bound on
the throughput of Searchlight by multiplying the pairwise
throughput by (N — 1). This is assuming that all other
(N —1) nodes will be receiving when one node transmits.
However, in practice the throughput is likely to be lower
unless all the nodes are synchronized and coordinated.

Figs. 3(a) and 3(b) present, respectively, the groupput and
anyput achieved by EconCast normalized to the oracle group-
put and anyput, as a function of the power consumption ratio
X/L,with N =5, p =10uW, and L+ X = 1 mW. Fig. 3(a)
also presents the throughput achieved by Panda, Birthday,
and Searchlight® protocols. The horizontal dashed lines at
1 represent the oracle groupput and anyput. Note that with
L = X = 500uW, the ratio 7,7 /7, achieved by EconCast
outperforms that of Panda by 6x and 17x with ¢ = 0.5 and
o = 0.25, respectively. In particular, the groupput ratio 7 / T,
significantly outperforms that of prior art for X ~ L. The
simulation results, which will be discussed later, also verify
this throughput improvement.

Fig. 3 shows that for a given value of X /L, T° approaches
T* with decreasing o, as expected (see Section V). Moreover,
for each value of o, the throughput ratio 77/7* increases
as the power consumption ratio X /L is closer to 1. This is
realistic for current commercial low-power radios that have
symmetric power consumption levels in listen and transmit
states. This is due to the fact that (i) with small X/L
values, nodes enter transmit state infrequently, since listening
is expensive and they must pass the listen state to enter
the transmit state, and (i) with large X /L values, nodes
spend energy transmitting even when there are no other nodes
listening (e.g., ¢(t) = 0). In particular, anyput degrades with

SFor Searchlight protocol, we compare its throughput upper bound to Ty
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Fig. 4: Analytical (curves) and simulated (markers) average burst length of
EconCast when operating in: (a) groupput mode and (b) anyput mode, with
N € {5,10}, o € {0.25,0.5}, p = 10pW, and L = X = 500 uW.

large X /L values, since anyput depends on the existence of
any active listeners when some node is transmitting. Therefore,
when listening is expensive, the fact that multiple nodes listen
simultaneously does not improve anyput. We believe that
any distributed protocol will suffer from such performance
degradation since, unlike Panda, Birthday, and Searchlight,
nodes in a fully distributed setting do not have any information
about the properties of other nodes in the network.

D. Burstiness and Latency

The results until now suggest allowing o — 0. While
reducing ¢ improves throughput, it considerably increases the
burstiness of communication, as mentioned in Section V. The
burstiness is measured by the average burst length, which is
defined as the average number of packets that are successfully
received in a burst (i.e., the average number of packets a
node successfully receives before exiting listen state). The
analytical computation of the average burst length can be
found in Appendix E. In general, increased burstiness means
that the long term throughput can be achieved with given
power budgets but the variance of the throughput is more
significant during short term intervals.

Figs. 4(a) and 4(b) show the average burst length of
EconCast (in log scale) when operating in groupput and
anyput modes, respectively, in homogeneous networks with
N € {5,10}, p = 10uW, L = X = 500uW, and varying
0. Values are obtained using the analytical results (34)—(35)
derived in Appendix E (curves) and contrasted with simula-
tions at specific values of o (markers). Aside from showing
that the simulation results and the analytical results are well
matched, Fig. 4 also demonstrates that reducing o dramatically
increases burstiness. For example, with o = 0.25 and N = 10,
a node running EconCast in groupput mode has an average
burst length of 85, and this value is increased to 4 X 105 with
o = 0.1. This explains why 7 does not converge within
reasonable time with o = 0.1 (see Section VII-A). Comparing
Fig. 4(a) with Fig. 4(b), it can be seen that the groupput
average burst length increases more rapidly than the anyput
average burst length as o decreases. Moreover, Fig. 4(b) shows
that the anyput average burst length is independent of N,
which corresponds to the analysis in Appendix E. The reason
is that the burst length of EconCast in anyput mode only
depends on ~y(t), which always equals to 1, if the transmission
is successful. We remark that reducing the burstiness is a
subject of future work.
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A second metric we consider is the communication latency,
which is defined as the time interval between consecutive
bursts received by a node from some other node where the
interval includes at least one sleep period. We focus on this
metric because nodes receiving longer bursts consume more
energy, and therefore, need to sleep for longer periods of time.
Figs. 5(a) and 5(b) present the CDF latency of EconCast
when operating in groupput and anyput modes obtained via
simulations, and indicate both the average and the 99" per-
centile latency values. The homogeneous networks considered
are with N € {5,10}, o € {0.25,0.5}, p = 10uW, and
L = X = 500uW. Fig. 5(a) also shows the pairwise worst
case latency of Searchlight computed from [19] under the same
power budget and consumption levels.”

Fig. 5 shows that the latency increases as o decreases,
since nodes receiving more packets in a short time period
(i.e., increased burstiness) have higher variation in their energy
storage levels, and need to sleep longer to restore energy. Fig. 5
also shows that a larger value of IV results in lower latency,
since every node is more likely to receive when more nodes
exist in the network. Comparing Fig. 5(a) with Fig. 5(b), it is
observed that EconCast operating in anyput mode has slightly
lower average latency than in groupput mode. However, with
a smaller o value (i.e., o = 0.25), the ggth percentile latency
of EconCast when operating in anyput mode is significantly
lower than that in groupput mode. This results from the fact
that the average burst length of EconCast in anyput mode
depends on the existence of any listening nodes, whose value
is always less than or equal to the number of listening nodes
considered in groupput mode.

For all parameters considered, the 99*" percentile groupput
latency is within 120 seconds, outperforming the Searchlight
pairwise worst case latency bound of 125 seconds. Note
that although EconCast has a non-zero probability of having
any latency, its latency is below the worst case latency of
Searchlight in most cases (over 99%).

E. Groupput Evaluation in Non-clique Topologies

We now compute the oracle groupput for non-clique topolo-
gies (derived in Section IV-C) and evaluate the groupput
achieved by EconCast in such scenarios via simulations. Since
simultaneous transmissions can happen in non-clique topolo-

"This is computed with slot length of 50 ms and a beacon (packet) length
of 1 ms as was done in [12].
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Fig. 6: The oracle groupput, 7%, and the throughput of EconCast when
operating in groupput mode obtained via simulations, 7.7, in grid topologies
with varying N, o € {0.25,0.5,0.75}, p = 10uW, and L = X = 500 uW.

gies, none of the transmissions will be counted as throughput
in the simulations.

We use grid topologies with varying number of nodes, IV,
in which each node has at most 4 neighbors. For example,
N = 25 represents a 5 x 5 grid. Fig. 6 presents the oracle
groupput, 7%, for grid topologies, and the throughput achieved
by EconCast in groupput mode obtained via simulations with
with varying ¢ and N. Note that for all the grid topologies con-
sidered, the upper and lower bounds of 7 (see Section IV-C)
are the same, providing the exact oracle groupput.

Fig. 6 shows that EconCast achieves 14% — 22% of the
oracle groupput, 7%, with o = 0.25. Although increasing o
leads to lower groupput, it can be observed that as N increases,
the groupput approaches 10% of 7. with o = 0.5. Despite
the fact that the groupput cannot be obtained for ¢ = 0.1,
achieving 10% — 20% of 7.t is remarkable given the fact that
EconCast operates in a distributed manner.

VIII. EXPERIMENTAL EVALUATION

To experimentally evaluate the performance of EconCast-
C.} we implement it using the Texas Instruments eZ430-
RF2500-SEH node [35].° In this section, we first describe
the energy measurements performed on the nodes running
EconCast-C. Then, we describe the method by which nodes
can estimate the number of listening nodes. Finally, we exper-
imentally evaluate the performance of EconCast-C.

A. Experimental Setup

The TI eZ430-RF2500-SEH node is equipped with: (i)
an ultra-low-power MSP430 microcontroller and a CC2500
wireless transceiver operating at 2.4 GHz at 250 Kbps, (ii) a
solar energy harvester (SEH-01) that converts ambient light
into electrical energy, and (iii) a 1 mF' capacitor to power up
the transceiver board. Despite its drawbacks which will be
discussed below, it can be used for evaluation by extending
the length of the shortest allowable data transmission.

We consider power budgets of p € {1mW,5mW}. From
our measurements, a node spends L = 67.08mW in the
listen state and X = 56.29 mW in the transmit state.'® The
power consumption levels are very similar from node to node.
Recall from Section VII that the performance of EconCast

8See Section V-D the reasons for only implementing EconCast-C.

9A demonstration of the testbed is presented in [36].

10This corresponds to a —16dBm transmission power, at which nodes
within the same room typically have little or no packet loss.



depends on the ratio between the power consumption levels
and budget. Therefore, our experimental results will be similar
to experiments when both the power consumption levels
and budget are scaled down (e.g., a network of nodes with
p € {10uW,50uW}, L = 670 uW, and X = 560 pyW).
Each node is programmed with its p, L, and X as the
input of EconCast-C. The nodes’ main drawbacks include
(i) inaccurate readings of the energy storage level (i.e., the
voltage of the on-board capacitor) which are sensitive to
the environment, and (ii) the fact that the 1 mF capacitor
cannot support multiple packet transmissions. Due to these
drawbacks, we implement (via software) a virtual battery at
each node. The virtual battery emulates the node’s energy
storage level based on its sleep, listen, and transmit activities,
and is used for updating the Lagrange multiplier according
to (17). We show in the following section that in practice, a
node running EconCast-C using this virtual battery is indeed
consuming power at a rate close to its power budget.

B. Energy Consumption Measurements

To accurately measure the power consumption of the nodes,
we disable the on-board solar cell, and attach a large pre-
charged capacitor (Cc,p = 5 F) that stores energy in advance.
The energy consumed is computed by

Econsumed - O~5Ccap . (V2

o= Vi) (25)
where V;, and V;, are the measured power voltage values
of the capacitor at ¢y and ¢;. The empirical average power

consumption, P(mW), is then computed by

P = Econsumed/ (tl - tO) . (26)
Note that even with such a big capacitor, a node with a power
budget of 1mW (5mW) has a lifetime of only 135 (27)
minutes with V3, = 3.6V and V;;, = 3.0V, which represent
its stable working voltage range.

To measure the power consumption of the nodes, we charge
the capacitor to V;, = 3.6V and log the readings of Vi,
after 30 minutes using a multimeter. The empirical average
power consumption is computed from (25) and (26) for
o € {0.25,0.5} and is averaged using 60 runs. Because L
and X do not account for some additional energy usage,'!
the actual power consumption, P, is in fact a small fraction
higher than the rarget power budget, p. Irrespective of o,
the measurement results show that P exceeds p by 11% for
p =1mW, and by 4% for p = 5mW.

Observing the empirical power consumption of the nodes,
we compute the achievable throughput by solving (P4) us-
ing both the actual power consumption, P, and the target
power budget, p, denoted by ’TT;’ and 77, respectively. In
Section VIII-D, we compare the experimental throughput to
both 7'79‘7 and 77. Having verified the power consumption of
the nodes, we replace the capacitor with AAA batteries,'?
allowing the experiments to run for longer times.

"I'The additional energy usage includes the energy consumed in powering
up the regulator circuitry, etc.

12The constant voltage of AAA batteries limits the ability to measure the
power consumption of the nodes.

C. Practical Pinging

To enable practical pinging in EconCast-C, a short, fixed-
length pinging interval is introduced after each packet trans-
mission. During this interval, the transmitter listens for pings
and recipients of the previous packet send a short ping at a
random time uniformly distributed within the interval. The
transmitter then estimates the number of listeners, é(t), by
counting the pings it receives, and adjusts the transition rate,
AS (1), according to (18e).

Ideally, each ping should be much shorter than both the
pinging interval and the packet length in order to reduce
the collisions between pings, as well as for the transmitter
to successfully receive it. Therefore, we use pings of length
0.4 ms, which is the shortest packet that can be sent by a node.
Based on this, we empirically set the pinging interval to 8 ms
and each data packet to 40 ms.

D. Performance Evaluation

We consider homogeneous networks with N € {5,10}, p €

{I1mW,5mW}, 0 € {0.25,0.5}, and nodes are located in
proximity. One additional listening node (a 6*® or 11" node)
is also present but only as an observer and is connected to a
PC via a USB port. Each data packet contains the node ID and
information about the number of packets it has received from
each other node. The observer node reports all received packets
to the PC for storage and post processing. Each experiment is
conducted for up to 24 hours. The experimental throughput is
computed by dividing the duration of successful transmissions
by the experiment duration.
Throughput evaluation: Fig. 7 presents the ratio of the
experimentally obtained throughput, 7;‘7, normalized to the
achievable throughput 77 and Tig" (see Section VIII-B). Sepa-
rate charts represent the results for differing number of nodes,
N, and power budget, p. Points marked “Ideal” show the ex-
perimental throughput normalized to the achievable throughput
computed by solving (P4) with the target power budget p (i.e.,
T7/T7). Points marked “Relaxed” show the experimental
throughput normalized to the achievable throughput computed
by solving (P4) with the actual power consumption P (e,
T7/T7). As expected, 77 is higher than 77, resulting in a
lower throughput ratio.

Fig. 7 shows that despite the practical limitations (e.g.,
packet collisions and inaccurate clocks) faced when running
EconCast-C on real hardware, the ratio 7;" /TT;’ is between
57% — 7T% (7197'/7'9‘7 is between 67% — 81%) for all settings
considered. Moreover, Table III shows the improvement of
EconCast-C over the throughput of Panda computed according
to [14], denoted by Tpanqa, under the same power consumption
levels and budget, with 0 = 0.25. It can be seen that with
power budget of p = 1 mW, the experimental throughput of
EconCast-C outperforms the analytically computed throughput
of Panda by 8x — 11x.

We remark that getting a higher experimental throughput
ratio is limited by the following reasons. First, there is an
8 ms pinging interval (see Section VIII-C) after each packet
transmission which effectively reduces the number of bits
delivered. Second, collisions of pings or failed decodings of
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Fig. 7: Points marked as “Ideal” (“Relaxed”) represent ratio of experimental throughput normalized to the achievable throughput obtained by using the target
power budget (actual power consumption) and points marked as “Battery Variance” present the average, minimum, and maximum ratios of power consumption
normalized to target power budget, with N € {5,10}, p € {1mW,5mW}, and o € {0.25,0.5}.

TABLE III: Experimental throughput of EconCast-C compared to computed
throughput of Panda (all normalized to the achievable throughput 7;7), with
o = 0.25 and varying (N, p).

(N, pmW)) | (5,1) | (10,1) | (5,5) | (10,5)
T2/TS (%) | 66.78 | 77.96 | 74.84 | 80.53
Toanda/ Ty (%) | 624 | 9.64 | 19.35 | 35.63
77 | Toanda 10.76 | 8.09 | 387 | 226

pings result in inaccurate estimates of the number of listeners.
Third, the low-power clock used by a node during its sleep
state drifts and additionally can be affected by its environment.
Power consumption: In Section VIII-B, we show that the
power consumption of the virtual battery is valid for evaluating
the actual power consumption of the node. Fig. 7 also presents
the mean, minimum, and maximum power consumption of
the virtual battery normalized to the target power budget p.
Specifically, a value of 1 means that a node consumes power
on average at the rate of its power budget throughout the
experiment, and a higher value means that a node consumes
power at the rate which is higher than its power budget.

The results show that nodes running EconCast-C consume

power at rates which are within 7% and 3% of the target
power budget with 0 = 0.25 and o = 0.5, respectively. This
is because smaller value of o increases the communication
burstiness (see Section VII-D), resulting in larger variance of
the nodes’ virtual battery levels.
Collection of Pings: An important input to EconCast-C is
the estimates of number of active listeners, ¢(¢), based on
which the transmitter decides the probability to continuously
transmit. Larger values of é(t) lead to longer average burst
length and can potentially significantly increase the through-
put. For example, receiving 1 ping, the transmitter continu-
ously transmits a packet with probability 0.8647 with o = 0.5.
This probability increases to 0.9817 with ¢ = 0.25, which
substantially increases the burstiness. Also, with lower power
budget, a successful transmission happens more rarely and it
becomes harder to collect pings.

Table IV presents the distribution of number of pings (i.e.,
number of active listeners) received by the transmitter after
each packet transmission, during experiments of N 9,
o = 0.25, and p € {1mW,5mW}. It can be shown that
with a higher power budget, the nodes are more active and

TABLE IV: Distribution of number of pings (active listeners) received after
each packet transmission with N = 5, o = 0.25, and varying p.

# of Listeners 0 1 2 3 4
p=1mW(%) | 89.03 | 9.69 1.28 | 0.00 | 0.00
p=5mW (%) | 59.21 | 31.22 | 822 | 1.24 | 0.11

the transmitter has higher probability to receive more pings.
On the other hand, with lower power budget, the transmitter
almost never receives more than 3 pings in a 5 nodes experi-
ment, resulting in lower throughput as illustrated in Fig. 7.

IX. CONCLUSION

In this paper, we considered the problem of maximizing
the broadcast groupput and anyput among a set of energy-
constrained nodes with heterogeneous power budgets and lis-
ten and transmit power consumption levels. We also provided
efficient methods to obtain oracle groupput and oracle anyput
for a given set of heterogeneous nodes.

We developed the EconCast distributed protocols that con-
trol the nodes’ transitions among sleep, listen, and transmit
states. We analytically showed that heterogeneous nodes using
the protocols (without any a priori knowledge regarding the
number of nodes in the network, and power budgets and
consumption levels) can achieve the oracle groupput and
anyput in a limiting sense (when o — 0).

We evaluated the throughput performance of EconCast
numerically and through extensive simulations, and compared
it to the state of the art. We also considered the design tradeoffs
in relation to o and the impact of o on the burstiness and
throughput. Finally, we experimentally evaluated EconCast us-
ing commercial-off-the-shelf energy harvesting nodes, thereby
demonstrating its practicality.

There are several open future research directions. In par-
ticular, future research will focus on extending the analysis
to non-clique toplogies. Moreover, evaluation with custom-
designed ultra-low-power nodes (e.g., [4]), that have improved
energy awareness compared to the TI eZ430-RF2500-SEH
nodes, would enable to better assess the tradeoffs related to
the protocol design. Finally, considering unique application
characteristics and their relation to groupput and anyput is an
open problem.
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APPENDIX A
PROOF OF LEMMA 1

We describe here a schedule that works assuming each
packet transmission has a fixed transmit length of 6, though
the proof can be extended to varying transmission lengths.
Therefore, time can be broken into slots of length 6 (by the
oracle) and nodes sleep, listen, or transmit on a per-slot basis.

Assume that the optimal solution (o*,*) to (P2) yields
rational values for all af and ;. The period size of the
oracle schedule P is set to the least common denominator
over all solution variables in (*,3*). Hence, during each
period, node ¢ listens for o) P slots and transmits for 3P
slots. The slots during the period can be assigned arbitrarily
by the oracle to transmitters (e.g., weighted round-robin or
in-order) and (11) ensures that there will be sufficient slots.
Once the slots for the transmitters are assigned, each listener
can then choose their o P slots in which they listen from the
set of transmit slots assigned to other transmitters, and (12)
ensures these are sufficient as well (note that multiple listeners
are permitted for a single transmitter slot).

If the periodic scheduler is launched immediately, some
nodes may not have the harvested (or budgeted) energy to
perform all listen and transmit tasks within the first period
(e.g., it may be assigned to transmit and listen early on, and
recoup the energy during later slots). If such a case, we simply
delay the initial iteration, allowing all nodes to harvest (or
budget) p; PO amount of energy for that initial period. Then
the nodes have enough energy to repeat all the subsequent
periods since the energy node i spends during the k-th period
is (o;L; PO + 8; X; P), and the energy it accumulates during
this period is p; PA. Hence, it follows from (9) that no more



energy is spent than is accumulated (budgeted). Therefore,
there is sufficient energy to repeat the period. |

APPENDIX B
SOLVING (P2) AND (P3)

The optimization problem (P2) can be solved via two steps.
First, we show that in the optimal solution to (P2), the equal-
ities strictly hold in constraints (9) and (12). Next, we solve
for the optimal solution. Note that in homogeneous networks,
the constraints become aL + X < p and o < (N — 1)p,
and o = o and B = .

We prove the first part by contradiction. Note that if both
inequalities strictly hold, o can always be increased, resulting
in higher throughput. Therefore, if suffices that at least one of
the two inequalities is satisfied with strict equality.

Case 1: If o*L+/*X = p—e for some € > 0 and o* = (N —
1)*, the optimal solution is given by 8* = %, o =
(N — 1)5*. Let a new solution be

X(N—l)E’ [ I E—

+(N-1)L X+ (N-1)L
and it can be verified that (a/, 8') satisfies: (i) o’ L+3'X = p
and o/ = (N — 1), and (i) (T*)' = Na/ > T*.

Case 2: If o* L+ 3*X = p and o* = (N —1)8* —§ for some

o =af +

& > 0, the optimal solution is given by f* = #‘E)L, o =
(N —1)8* — §. Let a new solution be
X oL
"no__ ok -t
S N ) VA ory gyt

and it can be verified that (o, 3”) satisfies: (i) oL+ 3" X =
p and o” = (N — 1)3", (ii)) 8” > 0 still holds, and (iii)
(T*)// — Na// > T*.

Next, given that equalities strictly hold in constraints (9)
and (12), the optimal solution of (a*, 3*) can be obtained by
solving a*L+3*X = p and o* = (N —1)/*, and the solution
is described in Section IV-A. Similarly, (P3) can be solved to
obtain the results described in Section IV-B. |

APPENDIX C
PROOF OF LEMMA 2

For the capture version EconCast-C, we prove that the
transition rates (18a), (18b), (18c), and (18e) will drive the
network Markov chain to a steady state with distribution (19),
by checking that the detailed balanced equations hold. We
assume ¢ = 1 and drop the constant term 1/¢ for brevity. For
network state w, define V;(w), Nj(w), and NV, (w) as the sets
of nodes in sleep, listen, and transmit states, respectively, and
their cardinalities as Ng(w), N;(w), and N, (w), respectively.
Note that Ny (w)+N;(w)+N,(w) = N and N, (w) € {0,1}.
We also use w = (Ns(w), N;(w), N, (w)) to denote network
state w and r(w, w’) to denote the transition rate from state
w to w’. We consider the following cases.

Case 1: If node ¢ is in sleep state (w; = s), the only transition
that can happen is to transition into listen state when the
channel is clear, ie., w = (Ny(w),N;(w), &) — w =
(Ns(w) \ {i}, My(w) U {i}, ). In this case, r(w,w') =
exp(—n;L;) and r(w',w) = 1.

Case 2: If node 7 is in listen state (w; = [), and transitions
to sleep state, ie., w = (Ny(w),N(w), @) — w =

(Ns(w) U {i}, Mi(w) \ {i}, ). In this case, r(w,w’) = 1
and r(w',w) = exp(—n;L;).
Case 3: If node ¢ is in listen state (w; = [) and tran-
sitions to transmit state, i.e., w = (Ny(w),N;(w), &) —
w = (Ns(w),Ni(w) \ {i},{:}). In this case, r(w,w') =
exp(n;(L; — X;)) and r(w', w) = exp(—N;(w')).
Case 4: If node ¢ is in transmit state (w; = x), the only
transition that can happen is to transition to listen state when
its transmission is finished, i.e., w = (Ns(w), N (w), {i}) —
w = (Ns(w){i}, M(w) U {i}, @). In this case, r(w,w’) =
exp(—N;(w)) and r(w’, w) = exp(n;(L; — X;)).

For each case, Ty - (W, w') = 7y - (W', w) holds and
similar detailed balance equations hold for the non-capture
version EconCast-NC. Therefore, we complete the proof. W

APPENDIX D
PROOF OF PART (11I)

We use the same notation described in Appendix C. In
addition, denote W = |[W)| as the number of network states.
Let o = 0 and recall that the length of the k-th interval is
Tk =t —tr—1. At time ¢, the probability of the system being
in state w is denoted by (y (t). Notice that throughout the k-th
interval, the vector of Lagrange multipliers n1(k — 1) remains
unchanged and is updated at time t; according to

ni(k) = [ni(k —1) = o(pi — i(k)|*, Yie N (27)
in which fi;(k) is the empirical energy consumption rate of
node i in the k-th interval.'”> The relationship between the
empirical energy consumption rate and the energy storage level
b;(t) of node i is given by p; — fi; (k) = [b;(tx) —bi(tk—1)]/Tk-

In addition, let w%(k) denote the state of the network
Markov chain at the beginning of the k-th interval (i.e., at
time ¢;_1). Define the random vector U(k — 1) := [[u(k —
1),n(k —1),w%(k — 1)]. For k > 1, let Fj_; be the o-field
generated by U(0),U(1),--- ,U(k —1).

In the k-th interval, define the gradient vector as g(k) =
[g: ()], in which g;(k) = p;(k)—p; (k). Given vector n(k—1),
g(k) is a gradient of £(n) (recall that the dual problem of (P4)
is min, = £(n)). However, EconCast follows (27) and only
has an empirical estimation g(k) = [g;(k)] of g(k), in which
gi(k) = pi — f1;(k). The “error” term is given by g®*(k) =
[65 (k)], in which
95" (k) = E[9: (k)| Fr—1] — gi(k) = pi(k) — E[fis (k)| Fr—1] -

(28)
The “noise” term is given by g"°*¢(k) = [gl®*¢(k)], in which
gpoe (k) = E [fui (k)| Fr—1] — fui (k). (29)
Therefore we can write the empirical gradient as
9i(k) = gi(k) + g5 (k) + gi°™(k), Vi € N.
Notice that since p;(k) and [i;(k) are both bounded, the noise
term is also bounded by some constant, i.e., [giose(k)| <
gnoise i e .

Below, we show that with EconCast, the error term
g°"(k) (28) decreases “fast enough” with time. We fo-
cus on the (k + 1)-th interval and denote the Continuous-
Time Markov chain (CTMC) in the (k + 1)-th interval by

13 Although we assume a constant power budget of p; at each node 4, the
proof can be easily extended to scenarios where p; varies with time.



X(t), Vt € [tr,try1), whose transition rate matrix is denoted
as Q = [Q(w,w’)]. For brevity, we assume ¢ = 1 and
drop the term 1/0. Recall from (19), Z"(®) is a normalizing
constant which can be easily bounded by
Z"E) < W.exp (N) = (2+ N) -2V exp(N),

in whicll we use the fact that 75, < N. On the other hand,
denote C' = max;en {max {L;, X;}}, we also have

k) zn(k) > exp[-N - C' - max{m(k:)}].

From (27), max;{n;(k ;f can be further bounded by
max;en{ni(k)} < C -, _ 0. Therefore, denoting &, :=
C% -y _ 6m, we have the minimum probability in the
stationary distribution lower bounded by

") > exp(—&N) (W - exp(N)) ™" =7
Next, we state the following useful proposition.
Proposition 1: For the Markov chain X (¢) in the (k+ 1)-th

interval, if Q(w, w’) > 0, then there exists Q'7F > Q'\] > 0
such that Q?jr“l < Q(w,w') < Q.
Proof: Given network state w, there is N (w)+2N;(w)+

N, (w) < 2N states w’ other than w that X (¢) can transition
to. For any state w’ # w, we have for each node 1,

n(k)

min °

(30)

exp[—n; (k) L;], w; s =1,
i(B)(L; — X3)], w;:l—x,
Qlw, w') = exp[n; (k) ( )N w T G
1, w; 1 — s,
exp(—Tw), w; T — 1.
It is easy to see that Q}} = min{exp(—N),exp(—&)}

suffices. In particular, given the network size N, for suf-
ﬁciently large k, & > N holds, and therefore we use

min

k+1 = exp(—&x).

On the other hand, if for L; < X;,Vi € N, each one of
the 2N transition rates in (31) is less than or equal to 1,
and lef’l‘ = 2N is sufficient. Second, if there exists some
node 7 such that L; > X, beacause of the costs are always
upper bounded by C, the tran51t10n rate is also upper bounded
by exp(Cmax) < exp (C23F _ 6,,) = exp (&). Therefore

Y = 2N exp (&) is sufficient. |

Following the standard method, we perform uniformization
on X (t) whose transition rate matrix is denoted as Q. If each
element of Q has an absolulte value less that a constant Q}'77,
then we can write X (¢) = Y (M(t)), in which Y (n) is a
discrete time Markov chain with probability transition matrix
P =1+ Q/Q and I is the identity matrix. M (t) is an
independent Poisson process with rate Q.

Then, we estimate how far the empirical power consumption
E [ (k 4+ 1)|Fy] is away from the desired value p;(k + 1)
(under fixed 1(k)). Denote the probability of X (¢) in state w
at time ¢ € [tg, tg+1) by Cw(t) and ¢(t) = [Cw(t)]. Given the
initial state at time t;, is w%(k + 1), We have

E [f1:(k + 1)[F]
_F [ thtr S wew (Lfwimiy Li + L, =0y Xi) dt/m+1}
= ttkk+1 >wew(P {wZ(t) -
= 77 Swemt

=L; a;(k+1) +Xi’ﬂi(k+1)7

in which
~ tr
a;(k+1) = Zwewg t,:“ Cw(t)dt/Ty1,

Bi(k+1) = Zwew;' ::H Cw(t) dt/Thy1,
are the empirical average probabilities that node ¢ spends in
listen and transmit states in the (k + 1)-th interval.
Let 62 be the Second Largest Eigenvalue modulus of the
transition probability matrix P = I + Q/Q}'}}. By Theo-
rem [], this total variation distance can be bounded by

12(t) = By = 5 X e [Gw(t) — mw|
1 - Tr“gk) max
<3 n(k) exp(—Qp (1 — 62)t)
<3 ﬁ exp(— QI (1 — 2)t). (32)

Also, the Second Largest Eigenvalue, 65, can be bounded by
Cheeger’s inequality [37], i.e.,

02 <1—¢%/2 & 1/(1—6y) < 2/¢%,
where ¢ is the “conductance” of P, which satisfies the
following inequality

> mn L P w2 - QU QU
Therefore we obtain
1/(1—62) < 2/¢® < 2QE)?/(miih) - QPi%)%. (33)
Putting everything into the estimation, we have
|E (i (k + 1)|F] — pi(k + 1))
= |Li(a;(k +1) —ai(k +1)) + ( i(k+1) = Bi(k + 1))
< Lildy(k +1) — ag(k + 1)+ X;18;(k + 1) — Bi(k + ).

Furthermore, we have
|6, (k+1) — ai(k + 1)
= | Zwewl tHl( Cw(t) — “(k)) dt/mh1]
< [ e [6w(t) = | dt /7.
Similarly, |ﬁi(k +1) = Bk + 1) < [ Y
wl'v(k)| dt/7k+1. Adding both terms together yields
Lilai(k +1) = ai(k + 1)| + X,[8,(k + 1) = B;(k + 1)
< Cftk“ 7r3,<m| dt/Tr41

wve ‘CW (t) -

2 wew [Gw(t) =

W S exp (—QEE(1 — 02)t) dt/7hs1 (use (32))
t max
\/W Jo' T exp (—QRE (1 = 02)t) dt /it
-1
max /Tk—‘,-l

< \/W [2Qk+1(1*92)]

< CQift FUk)/Ths1, (use (33))

= : DN
T (QT)2 ()57

in which f(k) := m—kth))/z Therefore we have,
B [fi(k + DIFE] = psm(B)] < f(R)/Trt1,

and the error term, defined in (28), satisfies g™ (k + 1)| <

1} Li + P {w;(t) = 2} X;) dt /744 1/ (K)/Tk+1. Therefore, with defined f(k) and proper choice of
t
t)dt+ 3 s [ Gw(t) dt

Tg+1 (€.8., Tk+1 = k + 1), the error term is diminishing.
Based on this result and following similar steps in the proof
of Theorem 1 in [33], it can be shown that n converges to n*



with probability 1. Therefore, we complete the proof. ]

APPENDIX E
BURSTINESS ANALYSIS OF ECONCAST

To derive the average burst length (denoted by B) of
EconCast-C, we use 7, to denote the optimal solution to
(P4) and define W' = {w € W: vy = 1,cw > 1}, iee., the
set of states with successfully received bursts. Recall that for
a given value of o, the optimal value of (P4) is exactly 7.
According to (18e), for a given state w € W', the average
burst length of EconCast-C in groupput mode is exp (¢w /o).
Therefore, during a (long enough) time duration of 7', the
average number of bursts received by all the nodes can be
computed by > 11 %, and the average burst length

of EconCast in groupput mode, By, is given by
B, = (Avg. Total Burst Length)/(Avg. Number of Bursts)

T wew T™w > wew' Tw

T -7}k T

ZWEW’ Www/a) ZWEW’ exp (c‘:,/a')
Similarly, the average burst length of EconCast-C in anyput
mode is computed by replacing c,, with 7y in (34). Since
Yw = 1 always holds for w € W', B, simplifies to

EWEW’ 71':;,
e (7 - exp (1)) P
This shows that the anyput average burst length is independent
of the number of nodes, N, and only depends on o. |

(34)

B, - (35)




