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1 Introduction

Let the triple (M", g, ) denote an n-dimensional Riemannian manifold (M, g) with
u a smooth measure on M. In [30] the last two authors introduced a natural connection
V-1 that can be associated to (M", g, ). It is the unique torsion-free connection that
both makes u parallel and has the same geodesics as the Levi—Civita connection up to
re-parameterization. The curvature of the connection gives a (3, 1)-curvature tensor
and aRicci tensor by the standard formula. Since many results in the comparison theory
for Riemannian manifolds are statements about geodesics and measure, it is natural to
expect that V& can be used to give a comparison theory for manifolds with measure.
In [29,30] such a comparison theory for the Ricci curvature was investigated. Despite
the fact that lower bounds on the Ricci curvature of V&# are weaker than the Ricci
curvature bounds for manifolds with measure that have previously been considered,
versions of diameter, volume, and Laplacian comparison theorems are recovered.
Rigidity results such as the de Rham and Cheeger—Gromoll splitting theorems and
Cheng’s maximal diameter theorem are also proven. Some results for Lorentzian
metrics have also been established in [25,26].

In this paper we are interested in the sectional curvature comparison theory coming
from V&#_ The choice of the smooth measure u is equivalent to choosing a smooth den-
sity function. We will normalize the density function ¢ such that u = e~ *+D¢dyol o
where dvol is the Riemannian volume element and n = dim(M). Then the connection
has the formula,

VEHY = VxY — dp(X)Y — dp(Y)X,

where V is the Levi—Civita connection of g. We will write V&8¢ for V&, Since we
will often think of g as being fixed, we also write V¥ = V&¢. We will the call the
triple (M, g, ¢) a manifold with density.

We denote the weighted Riemann curvature tensor by

RY'(X.Y)Z =V{VYZ —VYVYZ — Vi 2.

whose explicit formula is derived in [30, Proposition 3.3]. Given two orthonormal
vectors U and V, we then consider weighted sectional curvature to be the quantity

RV (V,U)U, V) = sec(U, V) 4 Hessp(U, U) + dp(U)* = 5ec,(U, V).

The quantity Sec, has been studied earlier by the first two authors in [15,27]. In fact,
these works inspired the discovery of the connection V¥. The main tool used in [15,27]
is a generalization of the second variation formula. We will see below that using the
connection V¥ we can simplify this formula, and use it to establish general Rauch
comparison theorems for Jacobi fields. We also identify a new notion of weighted
convexity that is related to bounds on sec,. The notion of weighted convexity is
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Weighted Sectional Curvature

somewhat technical but, roughly speaking, we show bounds on weighted curvatures
give bounds on the Hessian of the distance function in a certain conformal metric, see
Sect. 3 for details.

We first consider the applications in the cases of positive and negative weighted
curvatures.

Definition 1.1 Let (M, g) be a Riemannian manifold. We say that (M, g) has pos-
itive weighted sectional curvature (PWSC) if there exists a function ¢ such that
seCy (U, V) > 0 for all orthonormal pairs of vectors U, V. We say that (M, g) has
negative weighted sectional curvature NWSC) if sec, (U, V) < 0 for all orthonormal
pairs of vectors U, V.

In [15] theorems for manifolds of positive curvature with symmetry, e.g., Wein-
stein’s theorem, the Grove—Searle maximal symmetry rank theorem, and Wilking’s
connectedness lemma, are established for PWSC. We use convexity to improve the
rigidity results in this direction to optimal equivariant diffeomorphism classifications.
For example, we obtain the fixed point homogeneous classification of Grove and Searle
[12] (see Sect. 3 for definitions and further remarks):

Theorem 1.2 Let (M, g) be a simply connected, closed Riemannian manifold with
PWSC. If M admits an isometric, fixed point homogeneous action, then this action
is equivariantly diffeomorphic to a linear action on a compact, rank-one symmetric
space.

We also use our notion of weighted convexity to establish results for NWSC. In
[27] it was shown that a space admitting a function ¢ such that sec, < 0 does not
have conjugate points, and thus the universal cover must be diffeomorphic to R"”. We
show in this paper that the theorems of Preissman and Byers for 1 (M) are also true
for NWSC.

Theorem 1.3 If(M, g) is a compact manifold with NWSC, then any solvable subgroup
of w1 (M) is infinite cyclic and 7 (M) does not admit a solvable subgroup of finite
index.

We also define non-zero weighted curvature bounds which are, like the notions of
PWSC and NWSC, invariants of the metric (M, g). From the perspective of V¥ the nat-
ural form of the curvature bound is to consider curvatures of the form RV* (y, U, U, y)
where y is a geodesic for the connection VY. However, since the geodesics of V¥ are
not constant speed, this bound translates into a non-constant curvature bound of the
form sec, < (z)ke_4‘p where k is a constant. See [30, Sects. 2 & 3 and Remark 4.3]
for the details.

We wish to define ?g and k& PR be best upper and lower bounds, respectively, of

the quantity 64“’@@ achieved through varying ¢ over all smooth real-valued func-
tions on (M, g). Rescaling considerations from the e*¢ factor necessitate introducing
normalizations depending on the sign of the bound. See Definition 2.2 for the explicit
details. For the moment we say that there exist explicit invariants Eg and k, of the
Riemannian manifold (M, g) such that fg < secmax(g) and k. ¢ = S€Cmin (g). More-
over, a compact manifold (M, g) has PWSC if and only if k, > 0 and NWSC if and

only if fg < 0.
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For a positive lower bound, we have the following version of Myers’ theorem.

Theorem 1.4 Suppose (M, g) is a complete Riemannian manifold with k ¢ >0 then
M is compact, diam(M) < -Z=, and 7t1(M) is finite.

VEs
Remark 1.5 As should be expected Theorem 1.4 is, in fact, true for Ricci curvature,
as was proven in [30, Theorem 2.2]. Theorem 1.4 can be seen as a direct corollary of
that result, or as a consequence of Lemma 4.10.

Define the weighted pinching constant of a space of positive weighted sectional
curvature as § = K P /K 4. In the next section we will see that, on a compact manifold,

6 <1.Whend > % we also have the homeomorphic sphere theorem.

Theorem 1.6 Ler (M, g) be a simply connected complete manifold of PWSC and
8 > ‘1—‘, then M is homeomorphic to the sphere.

We also obtain generalizations of Cheeger’s finiteness theorems. Our proofs require
a pointwise bound on |dg|. Fora > 0, we define < (a) and fg (a) to be the best lower
bound and upper bound, respectively, among all normalized densities that satisfy
|de| < a.

Define §(a) = «(a)/K (a). For the special case of positive curvature in even dimen-
sions we have the following finiteness result.

Theorem 1.7 For given n,a > 0 and 0 < 89 < 1 the class of Riemannian 2n-
dimensional manifolds with k(a) > 0 and §(a) > &y contain only finitely many
diffeomorphism types.

As in the unweighted setting, in the general case, we also require a lower bound on
volume.

Theorem 1.8 For given n > 2, a,v, D,k > 0 the class of compact Riemannian
manifolds (M, g) with

diam(M, ) < D, vol(M, g) > v, Kg(a) <k, and k,(a)> —k

contains only finitely many diffeomorphism types.

The paper is organized as follows. In the next section we give the complete def-
initions of x p and Eg and summarize how some earlier results are related to these
invariants. We also discuss some basic examples. In Sect. 3 we discuss the notion of
weighted convexity and apply it to prove Theorems 1.2 and 1.3 as well as other results
about positive and negative weighted curvatures. In Sect. 4 we prove the Jacobi field
comparison theorems for the weighted curvature, including versions of the first and
second Rauch theorems (Theorems 4.6 & 4.7) as well as a more general weighted
version of a Jacobi field comparison due to Heintze—Karcher (Lemma 4.20) which
also implies a general comparison for weighted tube volumes (Theorem 4.22) which
may be of independent interest. We also use these comparisons to prove Theorems
1.6, 1.7 and 1.8. We finish the paper by also deriving a weighted version of the Radial
Curvature Equation for general hypersurfaces.
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2 Preliminaries and Examples
2.1 Definition of Weighted Curvature Bounds

In this section we define our weighted generalization of upper and lower curvature
bounds. We consider bounds of the form

ke ™ <sec, < Ke ™, 2.1

where k and K are constants. To see that normalization of ¢ is needed in (2.1) consider
adding a constant to ¢. Let ¥ = ¢ + ¢ for some constant ¢, then

<K€4C) e W — e < 5eCy = secy < Ke ™ < (Ke4c) e, 2.2)
This gives us the following proposition.
Proposition 2.1 Let (M, g) be a compact Riemannian manifold, then
sup {/c :Jg s.t. 5ecy > Ke_4‘p} = 0 or oo.
Moreover, the supremum = oo if and only if (M, g) has PWSC. Similarly,
inf {K : Jg s.t. 5ecy < Ke_4“’} =0or —oco.

Moreover, the infimum = —oo if and only if (M, g) has NWSC.

Proof Let ¢ be a function such that sec, > —ke % for some « > 0. Let
Ye = ¢ + c. Then, from (2.2), sec,, > (—ke*)e V. Letting ¢ — —oo gives us
sup {K : dg s.t. secy, > Ke_4‘p} > 0.

The supremum being greater than zero is equivalent to PWSC by compactness.
Then there is a k > 0 and a ¢ such that sec, > ke % Letting ¥, = ¢ + ¢ and
¢ — 00 in (2.2) gives sup {« : g s.t. 5€C,) > ke~ *} = oo in this case.

The second statement about upper bounds is proved in the completely analogous
way. O

Proposition 2.1 motivates the following definition.

Definition 2.2 Let (M, g) be a Riemannian manifold. If (M, g) has PWSC, define
Ko = sup [/c 239 : M — (—00, 0], 5ec, > Ke_4‘/’},
otherwise, define
Ko = sup {K :3¢ : M — [0, 00), Sec, > Ke*4‘/’} .
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If (M, g) has NWSC, define

K, :inf{K :3p: M — (—00, 0], 56¢, < Ke—4<"},

otherwise, define

K, = inf{K :3p 1 M — [0, 00), 56, < Ke_4‘p}.

Let secinax and secpin be the supremum and infimum of the sectional curvatures of
(M, g). Then by taking ¢ = 0 we obtain that K < secmax and K > seCmin. The bounds
on ¢ ensure that we cannot make the supremums and infimums blow up or shrink to
zero simply by adding a constant to the density as in the proof of Proposition 2.1.

The choice of the bounds ¢ < 0 or ¢ > 0 as opposed to some other constant serves
to fix a scale for the metric. For example, if (M, g) has PWSC and there is a function
¢ which is bounded above such that sec, > ke~ % for some x > 0, and then if we
rescale the metric by g = e~2¥mx g and modify the density by @ = ¢ — @max, then we
have sec 5 = e*¥masec, , > Ke=* . So the rescaled metric will have kg =K.

Define « < (a) and fg (a) in exactly the same way as " and fg with the additional
assumption that the function ¢ must satisfy the derivative bound |d¢|, < a on M.
Then Kq (0) = secmin, fg (0) = secpax, lim Kq (a) = Kgs and lim fg (a) = Eg.

a— o0 a— o0

We also note the following property which shows, in particular, that the pinching

constants é and §(a) mentioned in the introduction are less than or equal to 1.

Proposition 2.3 Let (M, g) be a compact manifold then k g(a@) = fg (a)foralla > 0.

Proof We first claim that there exists a real number k arbitrarily close to k. 2 (@) and a
function ¢; such that sec,, > «. By the definition of k,(a) as a supremum, for any
e > 0, there is ¢ and « such that gg(a) —e <k < gg(a) and secy, > ke Y If
(M, g) has PWSC, then k > 0 and ¢; < 0 so ke~ *! > k. Otherwise, k < 0 and
¢1 > 0 so we also have ke %1 > k. Therefore, in either case we have SeCy, > k. A
similar argument shows that for every ¢ > 0 there exists a real number K such that
fg (a) <K < ?g (a) + € and a function ¢; such that secy, < K.

Now assume that ,(a) > fg (a). By the previous paragraph, we may choose
k > K and functions ¢; and ¢; such that sec,, > k¥ > K > 5ec,,. Subtracting, we
obtain the inequality

Hess(¢1 — ¢2)(U, U) + dg (U)* — dga(U)* > 0 (2.3)

for all unit vectors U. Since M is compact, the function ¢ — ¢, achieves a maximum
at some point p € M. Since dp; = dg, and Hess(¢; — ¢2) < 0 at p, this is a
contradiction. m]

Remark 2.4 A final simple remark about the definitions of « , and Eg that comes from
(2.2) is that we can always assume that our density is normalized so that ¢(p) = 0
for some p € M. This is because if ¢ does not have a zero, then a constant can be
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added to the density to give it one, improve the curvature bound, and preserve ¢ < 0
org > 0.

2.2 Examples

In this section we discuss some basic examples of what our results and the earlier results

of [15,28-30] tell us about PWSC, NWSC, «, K, and §. To organize the exposition
in this section, we ask the following question.

Motivating Question Let (M, g) be a compact Riemannian manifold. If (M, g) has
PSWC (NWSC), is there another metric g on M such that secg > 0(< 0)? Is there a

8
SCmin __ 9
=8,

metric g on M such that secf; = i, sechux = K, or -

All the results of this paper can be seen as progress towards understanding these
questions. When the metric g is locally homogeneous, the answer to these questions
is straight forward.

Proposition 2.5 Let (M, g) be a compact locally homogeneous space. Then k =
S€Cmin and K = seCmax.

Proof Let ¢ be an arbitrary function on (M, g). At a maximum of ¢, sec,(U, V) <
sec(U, V) forall U, V. Similarly, at a minimum of ¢, seéc, (U, V) > sec(U, V). Since
the sectional curvatures do not depend on the point, this implies the proposition. O

Remark 2.6 Spaces of constant curvature and symmetric spaces with their canonical
metrics are locally homogeneous, so satisfy the hypothesis of Proposition 2.5.

Explicit examples of metrics with PWSC but secﬁlin < 0 are constructed in [15,

Propositions 2.11 & 2.16]. These metrics are rotationally symmetric metrics on the
sphere and cohomogeneity one metrics on CP". These examples show that the space
of metrics with PWSC is larger than the space of metrics with positive sectional
curvature, but does not address the question of whether there are topologies which
support PWSC but not positive sectional curvature. On the other hand, in dimensions
2 and 3 a compact manifold has PWSC if and only if there is a metric on M with
positive sectional curvature. This follows from that fact that 771 (M) must be finite
[27, Theorem 1.6], along with the Gauss—Bonnet Theorem and geometrization of
3-manifolds.

In the case of non-positive curvature, there is a weighted Cartan—-Hadamard The-
orem [27, Theorem 1.2] which implies that if there is a function such that sec, < 0
then the metric has no conjugate points and thus M must be a K (7, 1) space. This
combined with Myers’ theorem shows that a given compact manifold M cannot admit
separate metrics with PWSC and K <0.

There is also a Cheeger—Gromoll type splitting theorem for the condition sec, > 0,
[29, Theorem 6.3]. The statement of this result is complicated by a loss of rigidity in
the conclusion to a warped product splitting instead of the traditional direct product
as well as necessary boundedness conditions on the density. However, the classical

@ Springer



L. Kennard et al.

topological obstructions to a compact manifold admitting a metric of non-negative sec-
tional curvature—b1 (M) < n with equality only if it is flat and 71 (M) has an abelian
subgroup of finite index—are also obstructions to non-negative weighted sectional
curvature [29, Theorem 1.5].

Combining these results with a deep result of Burago and Ivanov [2] yields the
following information on the torus.

Example 2.7 Let (T", g) be any Riemannian metric on a torus. Then by the weighted
Myers’ theorem g does nothave PWSC, and by Byers’ theorem it does not have NWSC.
Moreover, by the splitting theorem there is a density with sec, > 0 if and only if g
is a flat metric. On the other hand, by the weighted Cartan—-Hadamard Theorem if
there is a density with sec, < 0O then the metric has no conjugate points. Burago and
Ivanov [2] have proven that a metric on the torus without conjugate points must be
flat. Therefore, there is a density with Sec, < 0 if and only if g is a flat metric

Using Theorem 1.3, we can generalize the torus example to any manifold admitting
a flat metric.

Example 2.8 Let M" be a compact manifold which admits a flat metric. By the first
Bieberbach theorem, 711 (M) contains a free abelian group on n-generators. Therefore,
by Theorem 1.4, the manifold does not admit PWSC and by Theorem 1.3, it does not
admit NWSC.

This example along with the Myers’ and Cartan-Hadamard Theorems shows that
for a compact surface the topologies that admit PWSC, NWSC, sec, > O orsec, < 0
are all equivalent to the standard topologies admitting the corresponding unweighted
curvature conditions.

Another well-known application of Theorem 1.3 is the following.

Example 2.9 Let M1, M> be compact manifolds, then M x M3 does not admit NWSC.
If it did, then by the Weighted Cartan—-Hadamard Theorem, 71 (M) and 71 (M>) must
both be infinite. Then, taking one generator in each factor of 1 (M1 x M) = 71 (M) X
11 (M>) gives an abelian subgroup which is not cyclic, contradicting Theorem 1.3.

On the other hand, the question of whether M| x M» can admit PWSC is a difficult
question, which is a generalization of the famous Hopf conjecture that S x $2 does
not admit a metric of positive sectional curvature.

We also note that totally geodesic submanifolds can obstruct improving the curva-
ture by adding a density.

Proposition 2.10 Let (M, g) be a complete Riemannian manifold. Let (N, h) be a
compact, totally geodesic submanifold. Then (N, h) must contain points with p and
g with secy(p) > k and secy(q) < K. In particular, a metric admitting a totally
geodesic flat torus cannot have PWSC nor NWSC.

Proof Since N is totally geodesic, the Hessian on (N, k) of the restriction of ¢ to N
is equal to the restriction of Hessg¢ to T, N. Since N is compact, the restriction of ¢
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to N has a maximum and minimum. Let p be a local maximum of ¢ restricted to N,
andlet U,V € T,N. Then

e, (U, V) = secy (U, V) + Hessp(U, U) + dp(U)?
<secy(U, V).

Similarly, if we take g to be a local minimum of ¢ restricted to N, we obtain the
opposite inequality. O

There are a number of metrics with non-negative sectional curvature which have
totally geodesic flat tori. For example, in [22] Wilhelm constructs metrics on the
Gromoll-Meyer sphere with sec > 0 and sec > 0 almost everywhere, which contain
flat tori. Proposition 2.10 shows that these metrics do not have PWSC. Furthermore,
in [23] Wilking showed that any normal biquotient that has some flat planes must
have an immersed totally geodesic flat submanifold; usually this is a torus. Also see
[7,19].

2.3 Non-Compact Case

While the main focus of this paper is compact manifolds, and Definition 2.2 is intended
mainly for the compact case, we include a few remarks here in the non-compact case
for completeness.

Note that Theorem 1.4 shows that k, = 0 for any non-compact manifold with
PWSC. On the other hand, there are a number of simple examples of non-compact
metrics with PWSC which do not have positive curvature. First we consider the flat
Euclidean space:

Example 2.11 Consider the R” with the flat metric. Let ¢p(x) = §|x |2 then

sec, (U, V) = Hessp(U, U) + dp(U)*
=k +dp(U)?

> ke .

This shows that R has PWSC; however, the density ¢ is not bounded above. In
fact, in this case it is easy to see directly that k = 0. Let ¢ be a function such that
sec, > 0, then restricting ¢ along a geodesic we have ¢” + (@) > 0.Setu = e?.
Then we have u” > 0. However, if ¢ is bounded above then so is u. This is not possible
if u is defined along the whole line.

Similarly, R" has fg = 0. In fact, there is no density ¢, bounded or not, such that
sec, < 0. To see this suppose ¢ were such a density. Then, restricting ¢ to a geodesic,
we would have a non-constant function of 1-variable defined on the entire real line
such that ¢ + (¢)?> < 0. Then the function u = e¥ satisfies u” < 0 and u > 0, which
is not possible.

Generalizing this example, any Cartan—-Hadamard space of bounded curvature has
PWSC.
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Example 2.12 Let (M, g) be a simply connected manifold with A < sec, < 0. Picka
point p and let ¢ (x) = %rlz, where r), is the distance function to p. Then Hessp > Bg,
soif B > A thensec, > 0. On the other hand, these metrics all have lines, so by [29,
Theorem 6.3] there is no function ¢ bounded above such that sec, > 0.

If we do not assume a bound on ¢, the next example shows that there are topologies
which support PWSC but have no metric of positive sectional curvature.

Example 2.13 [15, Proposition 2.8] gives metrics on R x N with PWSC, where N is a
manifold admitting non-negative sectional curvature. The metrics are simple warped
products of the form

g=dr’+e¥gy ¢ =Ar

Moreover, if N is compact then R x N has two ends, so by [29, Theorem 6.3] they
cannot admit séc, > 0 for any ¢ which is bounded above.

These examples indicate that there should be many examples of non-compact spaces
of PWSC, if one does not make any assumptions about the function ¢. On the other
hand, Theorem [30, Theorem 2.9] shows that if a complete Riemannian manifold
admits a function ¢ such that Sec, > ke~ % for some k > 0 then 7r; (M) is finite.
Thus, while Examples 2.11 and 2.12 admit such densities, the manifolds in Example
2.13 do not in general.

3 Weighted Convexity
3.1 Preliminaries

Sectional curvature bounds give control of the Hessian of the distance function, which
imply convexity properties of the underlying metric space. In order to see what kind of
convexity is implied by weighted sectional curvature bounds we consider the Hessian
under a conformal change. Given (M, g, ¢) let 3 = e~2¢g. Recall that for a smooth
function u, the formula relating the Hessian in g and g is

Hesszu = Hessgu + dg ® du + du ® dp — g(Vo, Vu)g. 3.1

Consider a distance function r for the metric g and take its Hessian with respect to
the conformal metric g. The orthogonal complement of the gradient is well defined in
a conformal class since conformal change preserves angle and modifies the gradient
by a scalar factor. Consider vectors U, V L Vr, then we have

Hessgr(U, V) = Hessgr(U, V) — g(Vo, Vr)g(U, V). 3.2)
Geometrically, up to multiplying by a suitable factor of e#, Hesszr (U, V) represents

the second fundamental form with respect to the conformal metric of the level sets of
r. We will develop the tools which allow us to control this quantity from bounds on
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the curvature Sec,, in an analogous way that the classical sectional curvature control
Hessian of the distance function.

In applying these results, we encounter a technical issue not present in the
unweighted setting. Namely, Vr is a null vector for Hessgr, but we can see from
(3.1) that this is not true for Hessgr as, if U L Vr, then

Hessgr (U, Vr) = de(U)
Hessgr (Vr, Vr) = do(Vr).

Therefore, Vr is an eigenvector for Hesszr if and only if ¢ is a function of r, and
is a null vector if and only if ¢ is constant. We get around this by considering a lower
order perturbation of Hessgzr which is motivated by observing from (3.1) that

(Hessgr —do ® dr —dr ® dg) (U, Vr) =0
(Hessgr — do ® dr —dr ® dg) (Vr, Vr) = —de(Vr).

Therefore, Vr is at least an eigenvector for the modified Hessian Hessgr — dg ®
dr — dr ® dg. Moreover, the modified Hessian has nice convexity properties along
geodesics. Namely, if & is a geodesic for g and u is a smooth function, then

(Hessgu — dp @ du — du ® dp) (6”,6") = u" — 2¢'u’. (3.3)

We will have to keep in mind below that Vr is not a null vector for our modified
conformal Hessian. We will see in the next section that it is not hard to overcome this
problem by using modified distance functions. However it has the effect of making
our modified distance functions an abstract solution to an ODE involving ¢ instead of
the explicit functions used in the unweighted setting.

3.1.1 Modified Hessian and the Weighted Connection

Now we discuss the relationship between the weighted connection V¥ and the Hessian
of the conformal metric g. The Riemannian Hessian can be expressed in terms of the
Levi—Civita connection in the following two ways.

Hessu(U, V) = g(VyVu, V) (3.4)
= (Vydu)(V). (3.5)

On the other hand, if we replace the Levi—Civita connection by the weighted con-
nection V¥ in (3.5) and (3.4), we get two different tensors.

g(VVu, V) = g(VyVu, V) —dp(U)g(Vu, V) — dp(Vu)g(U. V)
= Hessu(U, V) — dp(U)du(V) — dp(Vu)g(U, V). (3.6)
(V{du) (V) = Dydu(V) — du(V§ V)
= Dydu(V) — du(Vy V) + de(U)du(V) + dp(V)du(U)
= Hessu(U, V) + dp(U)du(V) + de(V)du(U). (3.7
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These two Hessians are different exactly because the connection V¥ is not com-
patible with the metric. Note also that (3.6) is not symmetric in U and V, while (3.7)
is. To see the relation to the conformal Hessian, note that combining (3.6) and (3.2)
for U,V L Vu we have

Hesszu(U, V) = g(V{,Vu, V). (3.8)

Moreover, we can see that the modified conformal Hessian we saw in the previous
section is related to (3.7) via the formula

(Vg’_“’du) () = Hessgu — dp @ du — du ® dg, (3.9)

where V8¢ is the weighted connection for the metric g with density —¢.

The conformal change (g, ¢) — (g, —¢) also has natural curvature properties as it
has been observed in [27] that the sign of the curvature S€c, , is the same as the sign
of the curvature secg . Thus the operation (g, ¢) — (g, —¢) is an involution on the
space of metrics with density that preserves the conditions of positive and negative
weighted sectional curvature.

While Egs. (3.8) and (3.9) will not be explicitly used in the proofs of our compar-
ison theorems, abstractly they explain why the curvatures coming from the weighted
connection V¥ should control the conformal Hessian of the distance function.

3.2 Non-positive Curvature

Now we consider Riemannian manifolds (M, g) which admit a density ¢ such that
5eCy < 0. In this case we initially do not need to make any boundedness assumptions
on the density for results. By [27, Theorem 4.2] if Sec, < 0 then the metric does
not have conjugate points. This follows from the following set of formulas, derived
in [27], which we will also find useful. Let o (¢) be a unit speed geodesic and J(¢) a
perpendicular Jacobi field along o. Then we have

d /1
o (Ee*‘mz) = g(J —dp(@")J, J)
! (3.10)

d
38V —de@) I, = 1)~ dp(o")J|* —5ec, (o', DT>

If 5e¢, < 0, we see that if J(0) = 0 then §1e=>*[J|> > 0. If additionally
J(t9) = Othen J(¢) = O for all ¢ € [0, #p]. Therefore, there are no conjugate points.
Recall the standard consequence of the Cartan-Hadamard theorem that in a complete
simply connected manifold with no conjugate points there is a unique geodesic between
any two points and that the function %rz where r is the distance to a fixed point is
differentiable. By the above, these properties also hold for complete simply connected
spaces with sec, < 0.

Given a curve o (t), t € [a, b], let E(o) = fab |a’(t)|2dt denote the energy of o.

foled

Givenavariationo : [a, b]x (—¢, &) — M ofageodesico =o (-, 0),letV = 5= 50

denote the variation vector field along o. The second variation of energy is given by
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& b

9% oo
ds?

352" ot

E(US)ZI(V,V)-Fg( ,
s=0 a

where I (V, V) is the index form of o. The usual formula for the index form is

b
1V, V) =f (|v’|2 — ¢(R(V,0")o", V)) dr.

When V is perpendicular to o, the index form can be re-written as follows (see [27,
Sect. 5]):

b
(V. V) = / (|v’ —dp(a)V > — g(RY* (V, 0")o’, V)) dr
‘ b
+ dw(o/)lvlz‘a. G.11)

Using this formula we obtain positivity of the Hessian in the conformal metric of the
distance function when applied to vectors orthogonal to the gradient.

Lemma 3.1 Suppose that (M, g, ¢) is a simply connected complete manifold with
density, such that sec, < 0. Then for any point p € M,

1
Hessz (Erf,) (U,U)>0 YU L Vr, (3.12)

where 3 = e=2¢g and rp(-) = d8(p, ) is the distance function for the g-distance.

Proof For a vector U based at a point g and perpendicular to Vr,, let o (¢) be the
minimizing g-geodesic from p to ¢ and & (s) be the g-geodesic with 5 (0) = ¢g and
0'(0) = U.Leto : [0,1] x (—&, &) — M be the variation constructed so that the
curve t > o (1, so) is the unique minimizing g-geodesic from p to & (sp). & is an
orthogonal variation of the geodesic o, the variation field is a g-Jacobi field, J, and

S| B =Hessy (3r2) w. ).

e
From (3.11) we have

2

ds?

1
B = [ (1= do(o)IP = gk (.o’ ) at
s=0 0

=1 8% 07|
d ’12‘ 2z
@V el g2 5

t=0

By (3.10) f 1 — dg(a”)J [2dt > 0. So,

~

95 | . 95,
S| T8 Vig 70 () ].

g as as

d2

&7, E(oy) > dg(o7 (1))
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Recall that the formula for the Levi—Civita connection of g is
VxY = VxY —de(X)Y —dp(Y)X + g(X, Y)Vg. (3.13)

Since 7 (s) is a g-geodesic, this implies that

2
=0.
g

~

do 0
g V%’;—“,o—’(l)) +de(a’ (1) | 2=
a5 08 ds

So & L E(0) > 0. o

2
ds? | s—

Now let  be the distance to a closed subset A, r(x) = d(x, A). r is smooth on
an open dense subset of M \ A, and on the set where r is smooth we can write the
metric as g = dr? 4 g, where g, is a family of metric on the level sets of . We will
say a function u is a modified distance function to A if there is a smooth function
h : [0,00) — [0, 00) with h(0) = A’(0) = 0 and #'(r) > O for r > O such that
u = h o r. For example %rz is a modified distance function. We have the following
formula for the modified Hessian of a modified distance function.

Proposition 3.2 Let u be a modified distance function. At points where u is smooth,

Hessgu — dp ® du — du @ dgp = (h” — hﬂ—f) dr ® dr
+n (Hessgr —g(Vr, V(p)gr) .
Proof A standard formula for Hessgu is
Hessgu = h"dr ® dr + h'Hess,r.

Combining this with the formula for the conformal Hessian (3.1) gives

Hesszu — d¢ ® du — du ® do
= Hessgu — g(Vu, Vo)g

ad
= <h” - h’a—w) dr @ dr + 1’ (Hessgr — g(Vr, Vo)gr)
r

Proposition 3.2 combined with Lemma 3.1 gives us the following.

Theorem 3.3 Suppose that (M, g, ¢) is a simply connected complete manifold with
density such that sec, < 0. Then for any point p € M, there is a modified distance
Sunction to p, u,, such that

Hessgu, —dp ® dup — dup, ® dg > 0. (3.14)
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Proof By Lemma 3.1 and Proposition 3.2, Hess,r — g(Vr, Vg)g, > 0 on the orthog-
onal complement to Vr. Let a : [0, 00) — [0, 0o) be a smooth function such that
|dgy| < a(r) for all ¢ € B(p,r). Such a function exists by the precompactness
of B(p,r). Then define u, = h or, where h is the solution to be the solution to
h' —h'a=1,h(0) =0,k (0) =0. Since

0<eJa (h" —h'a) = (h e~ Jay,

h'(r) > Oforr > 0, so h is amodified distance function. Then 1" —h’g—‘f >h"—h'a =
1. So by Proposition 3.2, the theorem follows. O

Recall the result of Cartan that an isometry of finite order of a space with non-
positive curvature must have a fixed point. We generalize this to manifolds with density
under the extra technical assumption that g is complete. Note that this condition is
satisfied for the universal cover of a compact space with sec, < 0.

We will call a function u such that Hesszu — d¢p ® du — du ® dg > 0 a strictly
weighted convex function (with respect to (g, ¢)). For such a function along a g-
geodesic o (1) we have

wod) —2¢ (uoc) > 0. (3.15)

Letting s be the new parameter along & such that ds = ¢**dr we can see that (3.15)
is equivalent to

2
— (uoo)>0.

Thus the restriction of u to g-geodesics is convex in the s parameter. Since s only
depends on the metric g and function ¢, we can apply standard results from the
theory of 1-dimensional convex function to weighted convex functions. For example,
it follows that the maximum of a finite collection of strictly weighted convex functions
is strictly weighted convex and if g is complete then any proper, non-negative, and
strictly weighted convex function has a unique minimum.

Now we can modify the construction in Theorem 3.3 slightly to define a weighted
notion of L center of mass when the metric g is complete. For a finite collection
of points py, ... pg, let a(r) be a smooth function such that |[dg|, < a(r) for all
q € U;‘zl B(p;, r) and let h be the function solving A" —ah’ = 1, h(0) = 0,1’ (0) = 0.
Then by the same argument as in the proof of Theorem 3.3, the function h(r),) is
strictly weighted convex. Define up, .., = max{h(rp,), ..., h(rp,)}. Then we define
the L°° weighted center of mass of {p1, ... px}, cmffo{p], P2, .-, Pk}, as the unique
minimum of u, . .. This notion allows us to generalize the proof of Cartan.
Theorem 3.4 Suppose that (M, g, ¢) is a simply connected complete manifold with
density such that sec, < 0. Suppose in addition that the metric g is complete, then
any isometry of finite order has a fixed point.
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Proof Let F be an isometry of g and let k be the order of F. For any p € M, let
q = cm&{p, F(p), F*(p), ... F*"1(p)}. We claim that ¢ is a fixed point. Since F is
an isometry, we have

Up Fpy,...F=1(p (F(q))
= max {h(d(p, F(9)). h(d(F(p), F(q)). ... h(d(F* " (p), F(q))}
— max |h<d<Fk—1<p>, q). h(d(p.q)).....h(d(F*2(p), q)}
= Up F(p),... 1 (p) (-
Since g is the unique minimum, F(g) = q. O

Recall that manifolds with non-positive sectional curvature not only have no conju-
gate points, but also satisfy the stronger condition of having no focal points, meaning
that any geodesic does not have focal points. We have the following modification of
this property in terms of the conformal change g for sec, < 0.

Lemma 3.5 Suppose that (M, g) is a Riemannian manifold admitting a density such
that sec, < 0. Let H be a totally geodesic submanifold for the metric g, then H has
no focal points with respect to the g-metric. If, in addition, M is simply connected,
then the normal exponential map of H in the metric g, exp™ : v(H) — M, is a
diffeomorphism.

Proof First we show that H does not have focal points. Let o be a g-geodesic with
p=0(0) € Hando'(0) L. H.A Jacobifield J along o is called an H-Jacobi field if it
satisfies J(0) € T, H and J'(0) — Sy(0)(J (0)) € (T, H)*, where Sy (X) = (VxN)T
is the second fundamental form of g with respect to the normal vector N. o () is a
focal point of H if there is an H-Jacobi field along o with J(#9) = 0. The second
fundamental form of H with respect to g is given by

(VEN)T = (VxN — dp(X)N — dp(N)X + g(X, N)Ve)”
= SyX —dp(N)X.

Therefore, if H is g-totally geodesic, an H-Jacobi field satisfies J(0) € T,H and
J'(0)—de(c’(0)J(0) € (T,,H)l. In particular, g(J'(0)—de(c’(0))J(0), J(0)) = 0.
Then from (3.10) we have % (3¢72¢|J1%) = 0 for any H-Jacobi field, which implies
that if J is non-trivial, it does not vanish. Therefore H does not have focal points and
the normal exponential map is a local diffeomorphism.

Now we have to show that exp= is one-to-one when M is simply connected. Suppose
this is not so. Then there is a point p and two minimizing geodesics from p to H that
minimize the distance from p to H. By the weighted Cartan—-Hadamard theorem,
these two geodesics must hit different points on H, call them a and b. Let y be the
g-geodesic connecting a to b which must lie on H. By Theorem 3.3 there is a strictly
weighted convex modified distance function to p. Call this function u, and consider
its restriction to ¥, u = (u, o y). We have
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u —2¢'u > 0.

Thus (e~2¢%")’ > 0 so that

—2fﬂ()/(f))~/(t) -~ e—2fﬂ(y(0))~/(0)

However, i’ = g(Vup,y’) = h’g(Vr, ¥’) which is zero on each endpoint, since the
minimal geodesics from p to @ and b meet H perpendicularly and ¥ is on H. This
gives a contradiction. O

This lemma now tells us that, in a simply connected space with sec, < 0, for any
g-totally geodesic submanifold, H, with g the distance function to H, any modified
distance function uy = h o ry is smooth. We can also show that if |dg| < a then
there is a modified distance function to H which is convex.

Lemma 3.6 Suppose that (M, g) is a simply connected Riemannian manifold admit-
ting a density such that sec, < Owith |de| < a for some constant a. Let H be a totally
geodesic submanifold in g metric, then there is a modified distance functionto H, ug,
which is weighted convex. Moreover, if sec, < 0 then uy is strictly weighted convex.

Proof The proof is completely analogous to the proof of Theorem 3.3. A similar
second variation of energy argument generalizes Lemma 3.1 where the extra term at
¢t = 0 can be seen to vanish from H being g-totally geodesic. In generalizing the proof
of Theorem 3.3 we need the assumption that |d¢| < a, since H may not be compact.

O

With these preliminaries, we can establish Theorem 1.3. The proof follows from
a similar series of geometric and topological lemmas as in the classical case, see [3]
or [5, Chap. 13, Sect. 2]. In fact, there are only two parts of the argument that use
curvature that we need to establish for the weighted curvatures: that any covering
transformation preserves at most one geodesic and that it is not possible for 71 (M) to
be cyclic if M is compact.

We fix some notation. Consider (M, g) to be a compact manifold supporting a
function ¢ withsec, < 0. Let M be the universal cover of M with covering metric g and
letg 't  be the pullback of ¢ under the covering map. Let F be a covering transformation of
(M 2). Since F preserves ¢, Fisalsoan isometry of the conformal metricg = e 29”g
An isometry F' of a Riemannian manifold is called a translation if it leaves invariant
some geodesic which is called an axis of the translation. For the universal cover
of a compact manifold, every covering transformation is a translation [5, Chap. 12,
Proposition 2.6]. Now we can prove the two lemmas needed to prove Theorem 1.3.

Lemma 3.7 Let (M, g) be a compact manifold with NWSC. Let F be a non-identity
covering transformation as above which is a translation along a g-geodesic &. Then
O is the unique F-invariant g-geodesic.

Proof Suppose that there are two g-axes for F. Call them | and 5. Let p € o5.
Then there is a g-geodesic o which minimizes the distance from p to 5. Let a be the
angle made by o and o, at p. Consider the point F(p). Then F o ¢ is a minimizing
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g-geodesic from F(p) to o). Moreover, since F is an isometry of both the g and g
metrics, the angles are preserved under F and so the angle made by F o o and 67 is
also «.

On the other hand, by Lemma 3.6 there is a modified distance function to o7, uz,
which is strictly weighted convex. Since uz, is a modified distance function, we can
write uz, = hor where r = r, is the distance to . To see why this is a contradiction,
let #(t) = uz, (G2(1)). Then by strict weighted convexity (e =2##’)’ > 0 so that

WO (1) > 20207 (), (3.16)

Note, however that ¢(p) = @(F(p)), u' = h'(r)g(Vr,5,) = h'(r)e*a, and r(p) =
r(F(p)) since F preserves 1. Therefore, the two sides of (3.16) must be equal at p
and F(p), a contradiction. O

Lemma 3.8 Let (M, g) be a compact manifold with NWSC, then w1 (M) is not infinite
cyclic.

Proof Suppose 1 (M) were infinite cyclic. Then all elements of 771 (M) leave invariant
asingle g-geodesic, 5. Let p = &(0). Let B be a unit speed g-geodesic with B(0) = p
that is perpendicular to . Let p = 7(p) and consider the projection of B: B=mo E
where 7 is the covering projection.

Since M is compact, the geodesic 8 must eventually stop being minimizing. Con-
sider a point S(#p) such that 8 is not minimizing on [0, 7]. Let & be a minimizing
g-geodesic from ¢ = B(1o) to p. Let @ be the lift of « starting from § = B(fo). Since
all elements of 71 (M) leave & invariant, the endpoint of & is on .

Consider u = ug, a strictly convex modified distance function to q restricted to the
geodesic o. Then, since B and & meet orthogonally, #’(0) = 0. By strict convexity,
1(s) > u(0) for all s # 0. In particular, this implies that & has length at least #y. But
this contradicts the choice of ;. O

Remark 3.9 There are various other results for the fundamental group of compact
manifolds with non-positive curvature. From the work of Croke and Schroeder [4],
Ivanov and Kapovitch [14], and others, most of these results have been generalized to
metrics without conjugate points. Therefore, these results also hold for sec, < 0.

3.3 Fixed Point Homogeneous Spaces with Positive Curvature

In this section we consider spaces with PWSC and symmetry. In [15,29], the first
two authors prove that a number of classical results concerning manifolds with pos-
itive sectional curvature generalize to the case of PWSC. Among these results are
the classification of constant positive curvature, the Synge and Weinstein theorems,
Berger’s theorem on the vanishing of Killing fields, and Frankel’s theorem and its
generalization, Wilking’s connectedness lemma.

In the presence of symmetry, [15] contains further results and shows that much of
the Grove symmetry program carries over to the case of PWSC. For example, for a
compact Riemannian manifold admitting PWSC, the maximal rank of an isometric

@ Springer



Weighted Sectional Curvature

torus action is determined and shown to satisfy the same bound proved in Grove—Searle
[11] in the unweighted setting (see [15, Theorem C]). In the equality case, called the
case of maximal symmetry rank, Grove and Searle also prove a classification up to
equivariant diffeomorphism. In [15, Theorem C], the first two authors partially recover
this statement up to homeomorphism. Here, we fully recover the classification of Grove
and Searle in the weighted setting.

Theorem 3.10 (Maximal symmetry rank) Let (M", g) be a closed Riemannian man-
ifold that admits an effective action by a torus T". If M has PWSC, then r < L%J
Moreover, equality holds only if the action on M is equivariantly diffeomorphic to a
linear action on S", C]P’%, or a lens space.

The maximal symmetry rank classification of Grove and Searle, while significant
on its own, has been applied in a large number of other classifications in the Grove
Symmetry Program. For example, Wilking used the classification up to equivariant
diffeomorphism to derive his homotopy classification under the assumption of torus
symmetry of roughly half-maximal rank. In [15, Theorem D], the first two authors
prove a weak version of Wilking’s theorem that does not rely on Grove and Searle’s
equivariant classification. Equipped with Theorem 3.10, together with the connect-
edness lemma and other results of [15], in the weighted setting, we are able to fully
recover Wilking’s classification (see [6,24]).

Theorem 3.11 (Half-maximal symmetry rank) Let (M", g) be a closed, simply con-
nected Riemannian manifold with n > 11 that admits an effective torus action of rank
r > 5+ L If M admits PWSC, then M is tangentially homotopy equivalent to S",

CP2, or HP4. In the case where M is not simply connected, its fundamental group is
cyclic.

Another application of Grove and Searle’s equivariant diffeomorphism classifica-
tion is due to Fang and Rong [9, Corollary C]. Again we fully recover this result in
the weighted setting.

Theorem 3.12 (Almost maximal symmetry rank) Let (M", g) be a closed, simply
connected Riemannian manifold of dimension n > 8 and symmetry rank r > 5 — 1.

If M admits PWSC, then it is homeomorphic to S", CP2, or HP2.

Equipped with Theorem 3.10, as well as generalizations of results such as Berger’s
theorem and the connectedness lemma in the weighted setting proved in [15], the
proofs of Theorems 3.11 and 3.12 carry over without change are omitted here.

The proof of Theorem 3.10 also follows Grove and Searle’s proof in the unweighted
case, but it requires some slight modifications and a new understanding of how positive
curvature forces convexity in the weighted setting. The main difficulty is to recover
the topological type of the manifold in the presence of an isometric circle action with
fixed point set of codimension two. This situation is an example of what is called a
fixed point homogeneous action (defined below). Grove and Searle also classified such
actions on manifolds with positive sectional curvature (see [12]), and their result also
generalizes to the case of PWSC:
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Theorem 1.2 Let (M, g) be a simply connected, closed Riemannian manifold with
PWSC. If M admits an isometric, fixed point homogeneous action, then this action
is equivariantly diffeomorphic to a linear action on a compact, rank-one symmetric
space.

The proofs of Theorems 3.10 and 1.2 are similar. For this reason, we only prove
Theorem 1.2, as it is more involved.

An isometric action of a connected Lie group G on a Riemannian manifold M
is said to be fixed point homogeneous if it is homogeneous or has the property that
its fixed point set has a component N such that the actions of G on the unit normal
spheres to N are transitive. Equivalently, under the standard convention that the fixed
point set M has dimension —1 when it is empty, an action of G on M is fixed point
homogeneous if and only if dim(M/G) = dim(M©) + 1. Note that in general, if M©
is non-empty, then M/G has dimension at least one more than dim(M%), so fixed
point homogeneity represents an extremal case.

A homogeneous Riemannian manifold (M, g) with PWSC has positive sectional
curvature in the classical sense. This follows from Proposition 2.5 or by averaging
¢ as in [15]. One immediately obtains a generalization to the weighted setting of
the classifications in [1,21,31] of homogeneous Riemannian manifolds with positive
sectional curvature. We restrict attention here to the fixed point homogeneous, but not
homogeneous, case.

Throughout the proof, we consider the triple (M,g = e g, —¢), and refer to
geodesics with respect to g as conformal geodesics. The key point where positive
curvature plays a role is to prove the following:

Lemma 3.13 Let By € M denote a component of the fixed point set that projects to
a boundary component in M/ G. For any horizontal, conformal geodesic & : [0, 1] —
M, the function r — d(By, & (r)) does not achieve its minimum for any r € (0, 1).

Proof of Lemma 3.13 Let & : [0, 1] — M be a horizontal, conformal geodesic, and
assume some point in the interior of & achieves the minimum distance to By. Choose
a horizontal geodesic o from By to that point that realizes this distance. Note that o
and & meet orthogonally by a first variation of energy argument.

We claim that there exists a vector field V along o such that

(1) V is tangent to By and & at the endpoints of o,
(2) V is orthogonal to the G-orbits along o, and
(3) V/ = V,/V is parallel to the G-orbits along o.

Indeed, such a vector field exists as in the proof of [24, Theorem 2.1] since, by the
fixed point homogeneous assumption, the principal orbits have dimension § > n —
dim(Bp) — 1, which implies that the dimensions of By and the image of & sum to at
least dim(M/G).

Consider the variation o,(f) = €xp(re?V) of o. By a direct computation using
(3.11) which is analogous to the argument in Lemma 3.1, the second variation satisfies

2

a2

b
E(o,) = / e (|v/|2 —g(RY"(V, 0"/, V)) dr.
0 a

r=
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Now consider Cheeger deformations g, which shrink direction of the orbit. As was
proven in [15] the weighted sectional curvature only increases under the Cheeger
deformation and, since V' is parallel to the orbits, | V| g — Owith A — 0. Thus for

2 .. .. .
some XA small enough, ci—Q E(o,) < 0. This is a contradiction since o, connects
By to & for all small r and since oy = o is also a minimum length path with respect
to the metric g;. O

Proof of Theorem 1.2 Note by averaging that we may assume ¢ is G-invariant. Large
parts of the proof in [12] carry over to the case of PWSC. For example, the fact that G
acts transitively on the normal spheres places a strong restriction on G, namely, that
is is one of the groups in [12, (2.7)]. As described below [12, (2.7)], the classification
follows from the Structure Theorem [ 12, Theorem 2.2] and the Uniqueness Lemma [12,
Lemma 2.5]. Moreover, the Uniqueness Lemma is a differential topological statement
in which curvature plays no role, so it also carries over to the present case. Hence, for
our purposes, it suffices to show that the Structure Theorem carries over to the present
case.

The setup of the Structure Theorem is as follows (adopting notation from [12]):
(M, g) is a compact Riemannian manifold that admits an almost effective, fixed point
homogeneous, but not homogeneous, G-action. Let By € M G denote a (non-empty)
component of maximal dimension. The Structure Theorem states that all of the fol-
lowing hold under the assumption that (M, g) has positive sectional curvature:

(1) There is a unique “soul orbit” By = G - p; at maximal distance to By.
(i1) All orbits in M \ (Bg U By) are principal and diffeomorphic to Sk ~ G/H, the
normal sphere to By, where H is the principal isotropy group.

(iii) There is a G-equivariant homeomorphism M ~ DBy Ur DBj, where DB;
denotes the normal disc bundle of B;, and where E denotes the common boundary
of the D B; when viewed as tubular neighborhoods.

(iv) All G p,-orbits in the normal sphere S! to By at py are principal and diffeomorphic
to G,/ H. Moreover, By is diffeomorphic to S'/G p, .

We claim that each of these statements holds under the weaker assumption of sec,, >
0. First, (i) holds immediately by Lemma 3.13. To prove the remaining statements, we
need to modify the proof from [12]. The main change is that, instead of considering
minimal geodesics cg and ¢1 from p to By and from p to By, respectively, we consider
g-minimal geodesics ¢g and g-minimal geodesics ¢1. The strategy then is exactly
the same and the proof goes through with minor modifications. We proceed with the
details.

To prove the remaining properties, we require the following angle condition, which
is a slight refinement in this context of the one in [12]:

(v) The angle between ¢, (0) and ¢, (0) is greater than Z for any minimal, horizontal
0 1 2
geodesic ¢g from p to By and any minimal, horizontal, conformal geodesic ¢}
from p to Bj.

To prove this angle condition, let p € M \ (Byp U By) and fix ¢o and ¢ as stated. By
Lemma 3.13, the set {g € M | d(Bo, q) > d(By, p)} is strictly convex with respect
to g. In particular, the conformal geodesic ¢; from p to Bj has initial tangent vector
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pointing into this interior of this set (where the interior is defined in the sense of subsets
of M that are convex with respect to g). It follows that ¢ (s) lies in this set at least for
all small s > 0. Suppose for a moment that the angle between c6 (0) and E’l (0) is less
than 7. Choosing & > 0 appropriately small and replacing ¢ by a broken geodesic
from ¢1(s) to co(e) and then from cg(g) to c¢o(1) = p, an argument using the first
variation of energy formula implies that €] (s) is closer to By than p, a contradiction.
Similarly, if the angle between ¢ and ¢} is exactly 7, then one may apply the same
argument to a small perturbation of ¢; given by a conformal geodesic starting at p with
initial vector given by (cos 8)¢ (0) + (sin 0)c;,(0) for some sufficiently small 6 > 0.
This again leads to a contradiction, so Property (v) follows.

We proceed to the proofs of Conditions (ii)—(iv). For (ii) and (iv), one argues as in
[12]. To prove (iii), a bit more care is required.

The strategy is to construct a vector field on M satisfying the following properties:

e Z is gradient-like for the distance function d go = d&(By, -) away from BoU By, in
the sense that the angle at any p ¢ By U B between Z and ¢((0) is strictly larger
than % for all horizontal, minimal geodesics from p to By (see [10, p. 361]).

e Z isradial near By and Bj (i.e., equal to V& dgo on a neighborhood of By and to

nggl near By).

Given a vector field like this, we can construct a G-equivariant vector field that also
satisfies these properties (since they are preserved under averaging along orbits of the
group action). Hence it follows as in [12] that M is G-equivariantly homeomorphic to
DBy Ug DB as in the statement of Property (iii).

We construct the vector field Z as follows. Fix ¢ > 0 so that By and B; have normal
tubular e-neighborhoods

Bi ={q € M |d®(q. By) < ¢},
B =1{q € M|d%(q, B)) < ¢}.

On M\ (BpU Bf/ 3), let X be a gradient-like vector field for dgo that is radial on Bge/ 3,

This is possible on M \ (By""> U B{/*) by Condition (v), which implies that df is

regular there. In addition, d gn is smooth on Bg \ By, so its gradient is defined and radial
there. One uses a partition of unity to patch these definitions on the overlapping region
B{; \ Bge/ 3. By a similar construction, we obtain a vector field Y on M \ (BS/ U B) that
is gradient-like for d g] and is radial on Blzg/ 3. To construct a global vector field Z, note
the following: If p € B{ \ By, then —Y = ¢/ (0) for the minimal conformal geodesic
¢1 from p to B;. Given any minimal geodesic co from p to By, the initial vector c6 0)
makes angle larger than % with 2”1 (0) by the angle condition above (Property (v)), so it
makes angle larger than 5 with —Y. This shows that —Y is also gradient-like for dl%o
on Blzg/ 3 \ Bj1. Using a partition of unity, construct a smooth vector field Z satisfying
the following properties:

e Z=XonM\ B,
2¢/3 e/3

e Z is a convex linear combination of X and —Y on By~ \ B}"".
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e Z=—YonB.

By the first and last conditions, Z is radial near By and B;. Moreover, since X
and —Y are gradient-like for dgo on M\ (BpU Ble/ 3) and B{ \ By, respectively, Z is
gradient-like for dgo on M \ (Byp U Bj). This completes the construction of a vector
field Z satisfying the two properties above, so the proof of Conditions (i)—(iv), and

hence of the theorem, is complete. O

For the case of fixed point homogeneous circle action, the normal spaces to the
fixed point set must be two-dimensional. In other words, there is a submanifold of
codimension two fixed by the circle action. This situation arises in the presence of a
torus action of rank at least half the dimension of the manifold, so one immediately
obtains diffeomorphism rigidity in the classification of maximal symmetry rank. In
fact, the proof in [11] also shows that one obtains equivariant rigidity for the entire
torus action. Combining the Structure Theorem referenced in the proof of Theorem
1.2 with the arguments in [11], we recover the maximal symmetry rank classification
of Grove and Searle for the case of PWSC.

We close this section with a discussion of isometric reflections in the sense of
Fang—Grove [8]. An isometric reflection is an isometry of order two that fixes a sub-
manifold of codimension one. For a point in this submanifold, the normal sphere
is zero-dimensional, i.e., a pair of points. Assuming the isometry acts non-trivially
(equivalently, effectively), it acts transitively on this normal sphere. Hence the orbit
space has boundary, and this may be viewed as a fixed point homogeneous action by
Z». Note that Z; is the only finite group that can act effectively and fixed point homo-
geneously. In Fang—Grove [8], the authors classify such actions on non-negatively
curved manifolds. In the case of positive curvature, the proof is much simpler and
only the sphere and real projective space arise. The argument in the positively curved
case uses a similar strategy and again carries over to the case of PWSC. Hence we
have the following:

Corollary 3.14 (Reflections in PWSC) Suppose a closed Riemannian manifold
(M, g) admits PWSC. If (M, g) admits an action by a reflection, then M is diffeomor-
phic to S™ or RP",

4 Comparison Estimates
4.1 Preliminaries

Having established convexity results above for positive and negative weighted curva-
ture, we now turn our attention to deriving optimal comparison estimates for non-zero
curvature bounds. While we have not directly used V¥ in the previous section, we
must use the weighted connection for the more quantitative estimates in this section.
Specifically, it turns out in our comparison estimates that the comparison functions
must be parametrized in terms of the re-parametrization of geodesics coming from
the connection V. We discuss this in the next subsection and apply it to the second
variation formulas. We also give some simple examples showing that the use of the
re-parametrization is necessary for Jacobi field estimates.
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4.1.1 Re-Parametrization of Geodesics and Second Variation of Energy

Any connection gives rise to a notion of geodesics, which are the curves with zero
acceleration. We will call the geodesics for the connection V¥ the ¢-geodesics and
call the Riemannian geodesics g-geodesics. Since V¥ is projectively equivalent to
the Levi—Civita connection, the ¢-geodesics are just re-parametrizations of the g-
geodesics. Given a unit speed g-geodesic, o (¢), the parameter s = [ e~ 2@y is
the parameter of the corresponding ¢-geodesic. We will say that a ¢-geodesic, y (s),
has a standard parametrization or is normalized if the parameter s is given by this
formula in terms of the arc-length parameter 7. Below we will denote the 7 derivative of
a g-geodesic by " and the s derivative of a ¢-geodesic by ‘dot’ (e.g., y). We will use o
for g-geodesics and y for ¢-geodesics. Any connection defines a notion of (geodesic)
completeness, which is the condition that all geodesics can be extended for all time.
We say (M, g, ¢) is g-complete if the Levi—Civita connection is complete and we say
it is p-complete if V¥ is complete.
The re-parametrized distance s(p, q) is the globally defined function

s(p,q) =inf{s : y(0) = p,y(s) =q}, 4.1
where the infimum is taken over all normalized ¢-geodesics y. The function s acts
like the distance function in comparison estimates.

We apply this re-parametrization to the second variation formula. Recall equation
(3.11) for the index form which was proven in [27],

b t=b
I(V,V)= / (|v’ —de@ V=RV (V,o', 0, V)) dr + de(a)|V)?| .
a I=a

This formula looks even closer to the standard formula for the second variation if
we write it in terms of ¢-geodesics.

Proposition 4.1 Given a manifold with density (M, g, ) and a ¢-geodesic y :
[a, b] — M with standard parametrization given by s, and V a vector field along y
everywhere orthogonal to y, then

b 2 ¥ zb
1 v.ev) = [ (19 = & V.07, )) ds + doVE|
a

Proof Using formula (3.11) for y : [a, b] — M the standard re-parametrization of o,
we have

T
1V, e?V) =/ (|e? VoV + e?dp(c")V
0
— ?dp(a)V|* — 2RV (V,o")o, V)) dr

t=T
+ ez‘/’dw(a/)|V|2‘t70
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T t=T
Z/O e (|V,,/V|2—g(Rw(V,a’)a', V)) dt+ez‘pd<p(o’)|V|2‘Z:O
T —2¢ 2 % N . 2 =T

= [ e (19 VI = s RV V. 795, V) de - dp GV

b 2 A4 oy . . 2 s=b
Zf (|vy-v| —g(RV(V, y)y,V))ds+d90()/)|V| ‘s=a'
a m}

Remark 4.2 If we combine this formula with the arguments using the conformal
change metric as in Lemmas 3.1 and 3.13, we obtain the following second variation
formula: Given a ¢-geodesic y : [a, b] — M with standard parametrization in terms
of s, and V an orthogonal vector field along y, then the variation y, = éxp(re?V) of
y satisfies

2

O

b
) = [ (1] - e®™ v.pp.v) s,
0 a

r=

Remark 4.3 The curvature term g(RV' (V, y)y, V) explains why is is natural to con-
sider variable curvature bounds of the form sec, > ke % as we have y = o’ 50
that the inequality g(R Vi, y)y, V) > k holds for all standard re-parametrizations
of unit speed g-geodesics o and all V, unit perpendicular vector fields along y, if and
only if sec, > ke 4,

4.1.2 Constant Radial Curvatures

Now we note a fundamental difference between the usual sectional curvature and
weighted sectional curvature. Recall the result of Cartan—Ambrose—Hicks which states
roughly that if we have two points p and ¢ in two different Riemannian manifolds
with the property that all of the corresponding “radial” sectional curvatures that involve
planes containing geodesics emanating from points p and g are the same, then the
metrics are locally isometric. In particular, if a point has constant sectional curvature
for all radial two planes, then a space has constant curvature.

This result underlies many rigidity phenomena in comparison geometry as to show
rigidity one shows that all radial curvatures are constant. The following examples show
that this kind of rigidity is not true in the weighted case.

Let ¢ be any function on the real line. Consider the metric

g =dr? + e*sn?(s)ggnt,

where s(r) = [ e”2*dz and

sin(y/ks) 0
k=
sn,(s) = s k=0. “4.2)
sinh (/=)
—J= K< 0
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Recall that sn, is the solution to sn] = —«sn,, sn, (0) = 0, sn, (0) = 1. The motiva-
tion for defining g is the following.

Proposition 4.4 For the pair, (g, ¢) as above if X is a unit vector perpendicular to
d

= then

ar

b
sec, (—, X) = ke ™.
or
Proof For a metric of the form gy = dr? + h2(r, X)ggn—1,
92h

8 or2
— X )=,
Sec(ar ) h

In our case, i = e?sni(s) where s = f e~2%dr. So

oh 0
o= %e‘/’snk(s) + e sn(s),
32h 32 3p\>
57 = e?sni(s) (B_rf + (%) — ke sni(s),
from which the result follows. |

The Jacobi fields of the metric g are exactly J(r) = e¥sn,(s)E where E is a
perpendicular parallel field. This shows that we cannot expect uniform control on
Jacobi fields that depends on the g-geodesic parametrization r. We will prove an
optimal Rauch comparison theorem depending on the parameter s in the next section.

4.2 Weighted Rauch Theorems

In this section we will prove the analogues of Rauch comparison theorems in the
setting of manifolds with density. Recall that these theorems relate the growth rates of
Jacobi fields on different manifolds, utilizing curvature bounds. Therefore, in order to
prove analogues of the Rauch comparison theorems, we need to be able to compare
the vector fields on two different manifolds with density. In particular, we need to be
able to compare the index forms of two vector fields, provided that they satisfy certain
conditions.

Lemma 4.5 Let (M", g, ¢) and (M", 3, §) be two manifolds with density. Let y, v
be geodesics with standard parametrization defined on [0, S] on M, M, respectively.
Let e;,¢; be g, g-parallel, orthonormal bases along y, 7 with ey || y and €y || 7. Let

V=2 uis)ei(s) and V=3 ui(s)&s)
i=2

i=2
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and assume that RW(V, y,y,V) > R§a(\7, ))/\ ))/\ ‘7) at each corresponding point
y(s) and ¥ (s), then

PO N - s
1V, V) < 167V, 7V) + [do(7(5) — dg )] [T |
Moreover, equality occurs iff RV (V,y,y, V) = R@F(V, V.7, V).

Proof Note that

Vv,V =V, (Z u; (s)e; (s)) = ii(s)ei(s)
i=2 i=2

VoV =V, (Z i () (s)) =Y di(s)er(s).
i=2 i=2

Thus |Vy V|, = [V;V[g. We also clearly have |V |, = V3.
From Proposition 4.1, we know that

§ 2 (4 2 N
1V, e<"V):/O (|vy-v| — g(RV(V, )}))},V)) ds + de(3)| V]| ‘0

§ ’\g’a\’\z ~ BV S AA oS
-/ (\V-v\ - %R (v,y>y,v>)ds+d<o<y>|w N
PRGN R ~ s
= 167V, 7V) + [dp (7 () — dpF )] [T |

The condition for equality follows immediately from the above comparison, since
the one inequality corresponds precisely to the difference of curvatures. O

Theorem 4.6 (First Rauch Comparison Theorem for Manifolds with Density) Let

(M", g, ¢) and (M™, 3, §) be two manifolds with density. Let y, 7 be ¢, ¢-geodesics

with standard parametrization defined on [0, S] on M and M, respectively. Also

assume y has no conjugate points for s € [0, S]. Suppose that RV (V,y,p,V) >

RV’ (‘7, V.7, f/\) for all unit vectors V, V at the corresponding points y (s) and Y (s).
Let J and T be Jacobi fields along v, v, respectively. If

J(0)=TJ©0) =0 [JO) =T JO) Ly©O T©O) LyO),
then

ST~ G ) f(5)] < PTOI-DTEN| T ()],

Proof Let v(s) = |J(s)|2,7(s) = |J(s)|>. For an arbitrary sy € [0, S], define two
new Jacobi fields:

1 —~ 1 ~
U(s):m.l(s) U(s):mJ(s).
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Observe that
. /
060) _ 2000600 Y80 _ 5 200600 (17, 1),
v(so0) v(s0)
Similarly,
V60 _ o 5660 (7 O
— =2 1(U,U).
v(s0)

R Choose parallel orthonormal bases along y,f such tbfit U (sQ)Az fz(so) and
U (sg) = @>(s0). We now apply Lemma 4.5 with V (s) = ¢?V 0= (5) and V
a field along y satisfying the hypotheses of Lemma 4.5, so

PN PN PN o~ S0
[V, e?V) < 1V, V) + [dp(7(s) — dp(¥ (5))] |V<s)|2(0 :
However, we know that \7(0) =0and |\7(s0)| =1, so we get
AV 20076 1 (7. U ; nen
1PV, efV) <e 1(U,U) + [do(y (s0)) — d@(¥(50))] -
We now consider another vector field along y defined by W = ¢~ ¢ ($0) V' then
I(e?W,e?W) = e 2006 [(9V, e?V) and (e W) (s0) = U (s0), so combining the

above with Index Lemma, we get

VDU, U) < 1PV, e?V) < 2PTCN (T, U) + [dp(y7(s0)) — d@(7 (50))]

4.3)
which we re-write as
9(s0) . Us0) s
—2de(y (s0)) < =— — 2de(¥ (s0))- 4.4
v(s0) v(s0)
Since s was arbitrary, we can solve this differential inequality as follows:
g2<ﬂ(7/(0))—2<0(7(s))|J(S)|2 < ezﬁ(?(o))—za(?(s))|f(s)|2
as was claimed. O

We now move on to the second Rauch Comparison Theorem, also called Berger
Comparison Theorem.

Theorem 4.7 (Second Rauch Comparison Theorem for Manifolds with Density) Let
(M", g, ) and (M",3,$) be manifolds with density. Let y : [0,S] — M and
y : [0,8] — M be @p-geodesics with standard parametrization, and y having
no focal points to the geodesic submanifold given by exp,, y(0)X. Suppose that

RV (V,y,y,V) > Rﬁa(\?, V.7, \7) for all unit vectors V, V at the corresponding
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points y (s) and y (s). Furthermore, let J and 7 be Jacobi fields along y,y, respec-

tively, parametrized in terms of s. If

J(©O)=T(©0)=0 [JO)] =T

J(0) Ly(0) J(0) L7(0),

then
e () w(V(S))|J(S)| < e(?(?(o))ﬂ?(?(ﬂ)|f(s)|e%(d$(77(0)) dw(V(O)))T(S)’

where
s —afZ 0
(s) = / %d&.
0 lem®JI%(§)
Remark 4.8 1In the special case where g = 0 and M has sec = K, T is a generalized

tangent:
s K=0

\/L? tan(«/?s) K >0
J+7 tanh(v/—Ks) K <O.

U,U,V,V as in the Proof of Theorem 4.6, then we get

T(s) =

Proof Define v, 7,
1€V, e?V) < 1%V, V) + [dp(y (5) — dGF NIV (s)]

We still have |f/\(so)| = 1; however, this time we have
e ?71(0)

e=?7(s0)

D(0)] = PTC-DTO) | (0)] = P TGN -FFO) 7O _
|T(so)|
As before, define W = e 960DV then using the Index Lemma, we get

XY (U, U) < 1(e¥V, e?V)
< 2T (T, ) + [do(y (s0))
e 71(0) ]2

— do(¥ (so)] + [de(¥(0)) — de(y(0))] [m
4.5)

which can be re-written as
S~ 2
[ le=?J1(0) }
le=%J1(s0)

560 540076500 < 290 _ad5@s0)) 4+ [FE0) —do (7 (O)]
v(s0) v(s0) !
. . D

Since sg was arbitrary, we can solve this and obtain the claimed result
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Proposition 4.9 Equality in Theorems 4.6 and 4.7 occurs when the following condi-
tions are satisfied:

(1) J(s) = |J(s)|ea(s), J(s) = |f(s)|?2(s), where ey, are g, g-parallel unit
vectors orthogonal to y, 7, respectively.
@) R¥(e2(5). 7. 7. e2(s) = RV @:(5). 9. 7. 22(5) forall s € [0, T].

Proof In the proof of Theorem 4.6, the only inequalities we had were the two in (4.3).
In the proof of Theorem 4.7, the only inequalities were the two in (4.5)

The inequality on the left in (4.3) and (4.5) arises from the Index Lemma, and leads
to condition (1) above. Equality in Index Lemma occurs precisely when the vector
field in question equals the Jacobi field, so we can conclude that e?V = e# (0D,
Let U(s) = Y !, ui(s)ei(s) and Us) = Yo, ui(s)ei(s), where e;, ¢; are g and g
parallel orthonormal basis along y and 7, respectively. By construction,

n
V(S) — Z ea(?\(so))—a(l’/\(s))ﬁi ()2 (5)
i=2
n
V(s) = Z PV EN=PTEN T (6)e; (s).
i=2

Therefore,

n
U(s) = Zew(y(-vo))—w(y(S))—W(V(S));;l. (s)e; (s).
i=2

However, the choice of ¢;, ¢; other than i = 2 was completely arbitrary and indepen-
dent of each other. Therefore, the only way this can happen is if u; (s) = 0 for i # 2.
Therefore, U, U are g, g-parallel up to scaling, and so are J, 7 as claimed.

The inequality on right of (4.3) and (4.5) arises from Lemma 4.5 and leads to
condition (2) above by the equality case of Lemma 4.5. O

4.3 The Sphere Theorem

As an application of the Rauch comparison theorem, we will prove the sphere theorem
mentioned in the introduction (Theorem 1.6). In fact, using the Rauch comparison
theorems we get the same conjugate and injectivity radius estimates as are used in the
classical case.

For submanifolds A and B in M, define the path space as

QapM)={y:[0,1] > M,y0)=A,y(1) = B}.
We consider the Energy E : 24 p(M) — R and variation fields tangent to A and B

at the end points. The critical points are then the geodesics perpendicular to A and B
and we say that the index of such a geodesic is greater than or equal to k if there is a
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k-dimensional space of variation fields along the geodesic which have negative second
variation. The first result is the following. We state the results in this subsection in
terms of the invariants  , and K ¢ defined in Definition 2.2.

Lemma 4.10 Suppose that (M, g) is a Riemannian manifold such that k ¢ > 0. Let
o be a unit speed geodesic of length greater than \/Lr’ then the index of o is greater
=8

than or equal to (n — 1).

Proof From the definition of k Kgs

SeCy, = (kg — g)e™%: Let y,(s,) be the standard re-parametrization of o (r) with

respect to ¢.. Since ¢, < 0, s, > r, so for ¢ sufficiently small, y, is defined for

€ [0, Ty], for some Ty > JLT

for each ¢ > 0, we have densities ¢, < 0 such that

Take ¢ sufficiently small that so that Ty > <13 Apply Theorem 4.6 to the
y 0 \/Kg_ pply

geodesic y, in the space with den51ty (M, g, ¢e) and M the sphere with metric of
constant curvature K, — € and ¢, = 0. Then J (s) = sin(,/k, — €s). Since 7 has a
zero at «/ﬁ every orthogonal Jacobi field to y, must have a zero in the interval

[0, ﬁ]. Since o is just a re-parametrization of y, this implies o must have index
-8

greater than or equal to (n — 1). O
Remark 4.11 Lemma 4.10 implies Theorem 1.4.

We can also obtain a lower bound on the conjugate radius from an upper bound on

K,.

Lemma 4.12 Suppose that (M, g) is a Riemmanian manifold with fg > 0. Let 0 be
a unit speed g-geodesic, then any two conjugate points of o are distance at least \/%
8

apart.

Proof Let y,(s) be the standard re-parametrization of o () with respect to densities
e WithSec,, < (Kg+e)e *e and ¢ > 0,5 < r. Apply Theorem 4.6 in the opposite
way than in the previous lemma. O

Now that we have Lemmas 4.10 and 4.12 we have the same control on the index of
long geodesics and the conjugate radius as one has for unweighted curvature bounds.
These facts, along with the resolution of the Poincare conjecture, allow us to prove
Theorem 1.6 using a classical argument of Berger. The key observation is that if
all geodesics in €2, , have index at least (n — 1), then @, , is (n — 2)-connected
and hence M is (n — 1)-connected. If M is compact, this implies the manifold is
a homotopy sphere, and thus homeomorphic to the sphere by the resolution of the
Poincare conjecture, see [17, Theorem 6.5.3] for details.

In order to use this result we must prove the injectivity radius estimate. These now
follow with the classical proofs which we sketch for completeness.

Lemma 4.13 Suppose that (M", g) is an even dimensional orientable manifold with

Ky > Oandfg <1, then inj,, > m.
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Proof Since K < 1,foralle > 0O there are densities @e such thatsec,, < (1 +e)e‘4‘/’é‘.
Suppose thatinj,, < m andlet p, g be two points such thatd(p, g) = inj,,;. Leto be a
unit speed minimizing geodesic from p to g. Let s, be the standard re-parametrization
parameter of o with respect to the density ¢ . Since ¢, > 0, wehaves, < d(p,q) < m,

so for ¢ small enough we have s, < d(p, q) < «/fﬁ By Lemma4.12, o does not have

conjugate points. Then, using a standard argument, there must be a closed geodesic
through p and g which is the shortest closed geodesic in M. But this is impossible with
k > 0 by the Synge argument, which shows under the dimension and orientability
hypothesis that any closed geodesic can be homotoped to have smaller length, see [27,
Theorem 5.4]. O

In the odd-dimensional case we have the following injectivity radius estimate.

I__,emma 4.14 Suppose that (M", g) is a simply connected manifold with k. ¢ > % and
Ky <1, theninj(M, g) > 7.

Proof From Lemma 4.12 we know that every geodesic of length < & does not have
conjugate points. While from Lemma 4.10 we know that there is a positive constant
6 such that every geodesic of length > 27 — § has index > 2. These are the only
two facts about curvature used in Klingerberg’s original proof of the injectivity radius
estimate, so his proof goes through. See, for example, [17, Theorem 6.5.5]. O

This now gives us the sphere theorem.

Theorem 4.15 Let (M, g) be a simply connected smooth complete manifold with
Ky >0ands > JT, then M is homeomorphic to the sphere.

Proof By rescaling the metric (but not the density) we can assume that K = 1 and
K > }‘. By Lemma 4.14 we have inj,, > 7. Thus any geodesic loop, o, in €, ,
must that length > 27. Let ¢ be a density with sec, > }‘e"“/’ and ¢ < 0. Then
s = fé e 2¢@M)ds > length(c) > 2. By Lemma 4.10 any closed geodesic must
then have index at least (n — 1). O

4.4 Hessian Comparison Theorem

In this subsection we link the weighted Rauch comparison theorem to the Hessian of
the distance function in the conformal metric as was discussed in Sect. 2. Consider
a point p and r,(x) = r(x) = d(p, x) the g-distance to p. Let g be a point so that
rp is smooth in a neighborhood of ¢, and let Y € T;M with ¥ L Vr. In Sect. 2 we
considered the quantity

(Hessgr — dp(Vr)g) (Y, Y) = (Hesszr —do ® dr —dr ® dg) (Y, Y),
where 3 = ¢ %¢g.
Recall that for any Jacobi field J which is perpendicular to Vr at a point x where

r is smooth it follows from the second variation of energy formula that

g(J', J) =Hessr(J, J),
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where J' is the derivative of J along the unique unit speed geodesic from p to x. Then
if we consider the Jacobi field J(s)/|J (sg)| we have

J(s) J(s) g, D
2¢ _ 2
e (Hessr <—|J(S0)|7 —IJ(so)|) dsD(Vr)> =e <|J(s0)|2 dﬁo(Vr))

_! (”(SO) —2dg <9>> . (4.6)
2 \v(so) d
where v(s) = |J (s)|2. This is exactly the quantity that we bounded in the proof of
Theorem 4.6.
Putting this together gives us the following comparison. Recall that sn, is the
standard comparison function as defined in Eq. (4.2). Let cs, = sn/, and recall that the
Hessian of the distance function in a simply connected space of constant curvature x

is given by 2.
K

Theorem 4.16 (Hessian Comparison) Suppose that (M, g, ¢) is a Riemannian man-
ifold with density. Fix a point p and let r be the distance to p. Let g be a point such
that the distance function to p is smooth at q and let Y € T, M be a unit length vector
such thatY 1 Vr.

(1) 1f, for all unit vectors Z perpendicular to the minimizing geodesic from p to q,
secy(Z, Vr) > Kke™* then

“20(q) S (5(P, q))

(Hessgr — do(Vr)g) (Y, Y) < e s (s(p, q))

(2) 1f, for all unit vectors Z perpendicular to the minimizing geodesic from p to q,
secy,(Z, Vr) < Ke™, then

o200 S 6(P. 9))

(Hessgr — do(Vr)g) (Y, Y) > sng (s(p,q))’

where s(p, q) is the re-parametrized distance defined in (4.1).

Proof We outline the proof of the first inequality. The second is completely analogous.
Consider Theorem 4.6 with (M, g, ¢) our given manifold with density and (M", 2.0)
the standard model space of constant curvature ¥ and @ = 0. Let J be the unique Jacobi
field with J(0) = 0 and J(s9) = Y where 5o = s(p, q). Let J= |J/(0)|sn, (s)E be
the corresponding Jacobi field in M. Then letting v = |f|2 = |J/(0)|?|sne(s)|? and
combining (4.6) and (4.4) we obtain

20 s
20(0) (Hessgr _ d(o(V")g) Y, Y) = d (v(so) — 2de ( d ))

2 \w(so) ds
19(s0)
< 2500 do(¥ (s0))

cse(s(p, q))
sne(s(p,q))

O
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Remark 4.17 Theorem 4.16 is optimal in general. However, note that the function

cs (1)
sny (1)

is monotonically decreasing in ¢ (when « > 0 this holds for 7 € (0, %)) Thus, if

csk (s(p.q)) cse (r(q)) :
¢ < 0,thens(p, q) > r,(g)and G (gD < SnK(r(q)).Thus.lfweassumegg >k >0

we can replace the s(p, ¢) on the right-hand _side of (1) with the distance r(g). All
these inequalities are reversed if we assume K, < K, for some K > 0, so we can
similarly replace s(p, g) with r(g) in (2) in this case.

We can now prove the Cheeger finiteness theorem for positive curvature and even
dimensions.

Theorem 1.7 For given n,a > 0 and 0 < §y < 1 the class of Riemannian 2n-
dimensional manifolds with x(a) > 0 and §(a) > §p contain only finitely many
diffeomorphism types.

Proof As is standard in convergence theory, we can show there are only finitely many
diffeomorphism types by showing the class is compact in the C* topology. Moreover,
such compactness is true if there is a uniform upper bound on diameter, lower bound
on injectivity radius, and two-sided bound on the Hessian of the distance function
inside balls of a uniform fixed radius. See, for example, [18] for a survey.

Lemma 4.10 gives the upper bound on diameter and Lemma 4.13 gives a lower
bound on injectivity radius. Once we have the upper bound on diameter since, by
Remark 2.4, we can choose ¢ so that there is a point where ¢ (p) = 0, the assumption
|dg| < a implies there is a constant B, depending on a and the diameter bound, such
that |¢| < B. Then Theorem 4.16 provides the required two-sided bounds on the
Hessian of the distance function. O

In order to prove the more general finiteness theorem, Theorem 1.8, the only further
ingredient we require is a lower bound on the length of a closed geodesic that depends
on a two-sided bound on ¢, a lower bound on Secy, an upper bound on diameter,
and lower bound on volume. We establish such an estimate in the next section. In
fact, the bound will follow from a more general set of formulas for volumes of tubes
around submanifolds of arbitrary codimension in a manifold with weighted sectional
curvature lower bounds. In the unweighted setting these estimates are due to Heintze
and Karcher [13].

4.5 Tube Volumes

In this section we prove the weighted Heintze—Karcher theorem [13] which is an
estimate for the volume of tubes around a submanifold which depends on the ambient
sectional curvatures and the second fundamental form of the submanifold. Here we, of
course, must use “weighted” notions of all of these quantities. In the exposition below
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we will highlight how the arguments in [13] need to be modified in the weighted
setting, and refer to the original text for background information.

Let H be a submanifold of Riemannian manifold (M, g). If N is a normal vector
field to H, we will use the convention that the second fundamental form of H with
respect to the metric g and field N is

I3(X,Y)=—g(N,VxY)=g(VxN.,Y),

where X, Y € T, H. Note that, traditionally N is assumed to be a unit normal field, but
it will aid our notation below to allow N to be any normal field. The shape operator with
respect to g is then S§.(X) = (VxN)T so that II§(X,Y) = g(Sn(X), Y). Clearly
the shape operator only depends on the value of N at the point. Our estimates will not
depend on the shape operator of H with respect to g, but with respect to the conformal
metric § = e 2¢g. If N is a normal vector to H with respect to g, then it is also a
normal field in the metric g. Then there is a simple formula for the second fundamental
form and shape operator under conformal change:

(X, Y) = HE(X, Y) —dp(N)g(X, ¥) S%(X) = Sn(X) — dp(N)X.

The estimate for the volume of tubes we are after will depend on a Jacobi field
comparison similar to the Rauch comparison theorem for H-Jacobi fields along focal
point-free geodesics. Let o be a g-geodesic with 0(0) € H and ¢'(0) € (T, H )t
Recall from Lemma 3.5 that an H-Jacobi field along o is a Jacobi field J with J(0) €
T,H and J "(0) — Sg , (0)(1 0)) € (T,,H )J'. Equivalently, the H-Jacobi fields are the
variation fields coming from variations of geodesics normal to H.

For any vector field V along o with V(0) € T5 ) H, the H-index of V is

fo

1" (v, v) =15V (0), V(0) +/ IV'[> — g(R(V,a")a', V)dt.
0

A standard calculation shows that if V (9) = 0 then %ZTJZE

fields describe the derivative of the normal exponential map and are the minimizers of
the H-index. This implies the H-index lemma which states that if V is a vector field
along o with V (0) € T5 oy H and J is an H-Jacobi field such that V (1y) = J(t), then
1%¢7, 1) < 12V, V) with equality if and only if V = J. See [5, Chap. 10, Sect. 4]
for details. From the proof of Proposition 4.1, we have the following formula for the
H-index involving the weighted curvatures.

.= I%(V, V). H-Jacobi

Proposition 4.18 Let H be a submanifold of a manifold with density (M, g, ¢). Let

y (s) be a p-geodesic y : [a, b] — M with standard parametrization which is normal

to H at y (a). Then if V is a vector field along y everywhere orthogonal to y, we have
11V, V) = 1%, (V. V) +dp( D)V ()]

b
+ / (IVs V= 2R (V. i)7, V) ds.

a
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where Il;f(a)(X, Y) is defined to be Ilf(a)(X, Y).

Remark 4.19 Given a ¢ geodesic as in the proposition, we will call II;f(a)(X ,Y)
the weighted second fundamental form with respect to y(a). Similarly we call
S;f (X) = S§ (X) the weighted shape operator with respect to y (a). The weighted
second fundamental form and shape operator are a rescaling of the standard second
fundamental form and shape operator of g with respect to a unit normal field. That is,
N=e —¢(r(@)y is a unit vector in the g metric so that

i’

X, Y) = e‘pW(“))II]%(X, Y) S%,(X) = e‘/’(V("))S]gV(X).

We now can state the weighted version of the Heintze—Karcher comparison which
measures the distortion of the volume form when pulled back via the normal exponen-
tial map by estimating the logarithmic derivative of a wedge product of n — 1 linearly
independent orthogonal Jacobi fields.

Lemma 4.20 Let (M", g, ¢), (M", ¢, ©) be a Riemannian manifold with density and
let H, H be a submanifolds of the same dimension of M and M, respectively. Let
v,y : [0,8] — M, M be @-geodesics with standard re-parametrization meeting
H, ﬁperpendicularly at s = 0 with no focal points on [0, S]. Let Y1, Y2, ..., Y1
be n — 1 linearly independent H-Jacobi fields along y which are all perpendicu-

lar to y and define Y, Y5, ..., Y, 1 similarly. Suppose that R (V, f}; ?X/ ) V)

R? (U , ‘fl:, fjs/ ,U ) for all unit vectors U and V perpendicular y and 7y, respectively.

Suppose also that the eigenvalues of the weighted shape operators A; and '):,- satisfy
Xi < X;i for some ordering of the eigenvalues. Then

d
Tlog (7T i (5) A A Y1 (6)])
ds
d PO ~
< —log (e_(”_l)‘p ‘Y] )N A Y,,,l(s)|) .
ds
In particular,

e—(n—l)(w(S)—w(())) [Y1() A -+ A Yy 1(s)]
< e—("—l)@(é‘)—a(o)) |?1 () A=A ?n—1(5)| )

Remark 4.21 The inequality A; < A; can also be re- phased in terms of the second
fundamental forms of H and H in the conformal metrics e ~2¢g and e —20g g with
respect to unit normal vectors. Call the eigenvalues of the conformal shape operators
v; and 7;, then

A <y = @)y, < PTG,

In particular, we see that the inequality holds if H and H are both totally geodesic
submanifolds with respect to the conformal metrics.
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Proof Fixs = s1, by taking linear combinations of the ¥; we can assume that ¥;, f/\, are
orthonormal at 51 without changing the logarithmic derivative. Then, at s; we obtain

d

ds

log (e—(n—l)ga [YIAY A~ AYyg |>
s=51

n—1

=—(n— 1)d¢( ><s1)+2g( Yz,Y> (s1)
n—1 d

=Y (—d(p (d—’s/(sl)) + X H(y;, Y,-)) (4.7)
i=1

and similarly for the Y;. We can further assume by taking linear combinations that
either ¥;(0) = 0 or Y;(0) is an eigenvector for S;,(O). Following [13, 3.4.7], define

Wi(s) = e ?OV+6Dp 616 P, (e_a(s)?,-(s)) ’

where ¢ is a linear isometry from 7}, )M to Ty(o)M which takes T), ) H to T?(O)H
and such that ¢ (y(0)) is parallel to 77(0), Py is (V)-parallel translation along y, and P
is V- -parallel translation along 3.

Then W; is a variation field along o with W;(0) € T, yH. We also have that
{W; (sl)}?:_ll is an orthogonal basis of the normal space to y(s1) with |W;(sy)| =
e %G1 50 by changing the Y; again via constant coefficients, we can assume that
Yi(s1) = e?SUW;(s1).

By the H-index Lemma and Proposition 4.1 we have

1, v < 1@ @Owi, #Owy)
= 11, 5, (Wi (0), W; (0)) + de () (s1) | Wi *(s1)

S1 2 N
+/ (I Wil = g (RO Wi, )7, W) ) ds.
0

Combing this with (4.7) gives

d

ds

log (e—(n—l)go [YIAY2 A - AYy |>
s=5]
n—
! 2 s
+f0 (!Vy‘Wi! — 8(R*(Wi. y)y, W,»)) ds)
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n—1

e (MW,- O&

i=1
S1 W W
2 2 i . . i
(o (39)53)) )
, Vvl : Wil Wil
On the other hand, applying Proposition 4.1 to V = e"ﬁ“))/’;(s) gives
1Y, ) = e PO UL, (Y1(0), Y;(0) + e 270dg (¥ (s1)
N ]2 ~ ~m o~ s s~
+ / (‘%e‘/’Yi‘ — e HORYYL Y)Y Y») ds.
0
So we have

ds

log (ﬂ”‘”‘f i) A A ?n_l(s)|)

§=51
n—1 =
= Z 2 @ls)—20) 1%, 4, (Yi 0), Y; (0))

i=1
N S1 ~ |2 ~ PSS ~
+ 261 / <‘V?e_“’Yi’ — e PORRY Y, Y)Y, Yi)> ds
0
n—1

— Z 2 @E)=2 07 1Y; (0))?

i=1

2¢(s1) ! 7|7 =206) 1 v. 2~ o /Y\l )\ A 2
+ et ‘V;;(f in‘ —e PN ITg | RY T|,)/ V»ﬁ ds
0
n—1

= 2003 (3w, 0

i=1

+ v, Wi [P — Wiltg (RY [ —%, ,—— ) )ds),
/0 (I yWil” = IWil’g wr? )W

where, in the last line, we have used the hypotheses of the theorem along with the fact
that

e@(sl)—a(s)ﬁ/\i(sﬂ — esﬂ(sl)lwi ()|
POV Ve PITi ()] = €70V Wi (s)]
which comes from the definition of W;. This proves the lemma. O

Now we consider volume comparison. There are two special cases where only a
Ricci curvature assumption is needed to control the tube volume: when H is a point
and when H is a hypersurface. These cases have already appeared in the literature,
see [30, Theorem 4.5] and [16, Theorem 1.3], [20, Theorem 1.4], respectively.
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Otherwise, let H be an isometrically immersed submanifold of M with normal
bundle 7 : v(H) — H.Letexp® : v(H) — M be the normal exponential map of H.
For a full exposition on how the wedge of Jacobi fields controls the volume distortion
of the normal exponential map, see [13, Sects. 2 & 3]. The comparison space for our
volume comparison will be the same as is used in [13], a tube with constant radial
curvatures around H (with no density).

We also require a weighted version of the mean curvature vector to state our most
general results. Recall that the vector-valued second fundamental form is the unique
map T,H x T,H — (T,,H)J- such that g(h(X,Y),N) = lIy(X,Y) forall N €
T,H L. We define the weighted version 4% via the same formula with respect to /¢ .
Then we obtain

gh?(X,Y),N) = II}(X,Y)
=IN(X,Y)—dp(N)g(X,Y)
=g(h(X,Y) —g(X,Y)Vy,N)

so that h?(X,Y) = h(X,Y) — g(X,Y)(Ve)" where L denotes the orthogonal
projection from T, M to (T,H ). Define the weighted mean curvature vector as

¢ = dtirrf]h(g) = n — (Vg)t. Where 7 is the usual mean curvature vector. Follow-
ing the notation of [13], also let AY = |n| and AY(H) = supy A?.

The appearance of the re-parametrized distance parameter s in Lemma 4.20 also
adds some technical considerations. We will have two different versions of the volume
comparison. The first will be for distance tube 7 (H, r) = {x : d(x, H) < r}; we call
this the tube around H with radius r. This comparison will be in terms of the f-
volume e_fdvolg where f = (n — 1)¢. The second volume comparison will be for
the re-parametrized tubes around H. We then define the re-parametrized tube as

T(H, s)={x:3y e H,s(x,y) <s}.

For the re-parametrized tubes we use re-parametrized volume u(A) = | 4 e~ (rtheg
vol,.
We define the comparison function J¢ as

JE(p. 1. 0) = (cs(s(p. 7, 0)) — g?(p). O)snic(s(p, 1, 0)))" snic(s(p.r, 0))" ",
where dim(H) = m, p € H, s(p, r, 0) is the re-parametrized distance between the

point p and the point of distance r from p along a geodesic with initial velocity 6, and
n?(p) is the weighted mean curvature normal vector to H at p. We also define

Je(p,5) = (csic(s) — g% (p), O)sne(s))" snic(s)" ™.

Define z, (p, 0) to be the smallest positive number rq such that J, (p, ro, 8) = 0 and
Ze(p, 0) be the value of s defined similarly for J,(p, s). Our volume comparison
theorem is the following.
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Theorem 4.22 Suppose that H is an m-dimensional isometrically immersed in a
manifold (M", g, ¢) with sec, > ke % then

ey

min{r,z(p,6)}
vol (T (H,r)) < / / d@/ JE(p, r,0)dr e P dvoly
N sn—m—1 0

2

- min{s,Z(p,0)}
w(T (H,s)) 5/ / d@/ Je(p,s)ds | e Pdvoly.
N \Jsr=m-1 Jo

Proof Given a unit normal vector 6 to H, let foc(@) be the supremum of the values
of r such that the unique geodesic with initial velocity 6 has no focal point to H to
distance r. We then have that

min{ foc(6),r}
vol ¢ (T (H, r)):/ / d@/ e~/ | det(dexpy)|dr | dvoly.
N \Jsr-m=1 0

On the other hand, we can estimate | det(d expel)| as

[(dexpg) (1) A --- A (dexpg) ()]

det(dexpt)| =
| det(dexpg )| g A Ay

where u; is any basis of Tpv(H). A natural choice for u; is a basis of H-Jacobi fields
along the geodesic, which is achieved by taking u; to be suitable linear vector fields
along the geodesic. Then (d expé-)(ui) = Y; is a normal Jacobi field. Let (1\7 ,2) be
the “canonical” metric on v(H) as described in [13, 3.1.1], with a constant density.
Then the function J is exactly

[Yi Ao AV

det(dexpl)| = .
| det(d expy)| ]

in M. Since the u; are independent of the manifold chosen, Lemma 4.20 then gives a
comparison between the volume forms in the corresponding spaces.

e | det(dexpp)| < e S P I (p,r,0).

This gives the first part of the theorem. For the second part of the theorem, define

focs(6) be the value of the integral fofoc(e) e~2¢r)ds where y is the geodesic with
y(0) = p and y'(0) = 6. Then we can write
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(T (H.,s))
min{ focs(6),s(p,r,0)} 7(n+
=/ / dQ/ e =1 /| det(dexpy)|dr | dvoly.
N sn—m—1 0

Making the change of variable ds = e#-Tdr, along with using the volume element
comparison as above, gives us

,U,(T(H, s)) 5/ <f d@/ JK(p,S)ds> e~ Pdyoly.
N sn—m—1 0

We note that the advantage of the comparison (1) is that it is in terms of the dis-
tance tubes; however, the comparison integral on the right-hand side is impossible to
compute without more information about f as the functions s(p, r, 6) depend on f.
This comparison is useful, however, if we assume some bounds on the function f.
On the other hand, in comparison (2) it is hard to compute the sets f(H ,s), but the
comparison function on the right-hand side is computable and exactly the tube volume
of the corresponding unweighted model space. Moreover, we note that by Theorem
2.2 of [30], for example, if ¥ > O then supp’qus(p, q) < JLE’ so in this case we can

O

use (2) to get a uniform upper bound on p (M) in terms of the data on H.
Using either (1) or (2) we obtain the following result when we assume ¢ is bounded.

Corollary 4.23 Suppose that (M", g, ¢) is a compact Riemannian manifold with
sec, > ke %, lo| < B, and diam(M) < D. Then for any submanifold H™ of
M there is an explicit positive constant C(n, m, k, B, D, A?(H)) such that

vol(M) < C vol(H).

By applying the theorem to the conformal metric g we obtain the following result
for closed geodesics.

Corollary 4.24 Let (M", g, ¢) be a compact manifold with density such that Sec, >
ke 4, lp| < B, diam(M) < D, and vol(M) > v, then there is a constant L =
L(n, k, B, D, v) such that any closed geodesic o in M has length greater than or
equal to L.

Proof Let o be a closed geodesic in (M, g). Then o has vanishing weighted second
fundamental form in the manifold with density (M, g, —¢). Computing the weighted
curvature of (g, —¢) we have the relation secz _,(X,Y) = z‘pﬁg oY, X) (see
Proposition 2.1 of [27]). Since ¢ is uniformly bounded, this gives a uniform constant
% such that sec SeCz,—p > ke*. We can also trivially estimate diam(M, ), and volz (M)
uniformly in terms of n, B, D, and v. Applying Corollary 4.23 gives a lower bound
on the g-length of o. Since || < B, this also gives the desired bound on the g-length.

O
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This result combined with the results above allows us to establish the most general
finiteness theorem, Theorem 1.8.

Theorem 1.8 For given n > 2, a,v, D,k > 0 the class of compact Riemannian
manifolds with

diam(M) < D, vol(M)>v, K(a) <k, and k(a) > —k

contains only finitely many diffeomorphism types.

Proof Let g be a function so thatsec, > —2ke~*¢ with |dg| < a. Since the diameter is
bounded and, by Remark 2.4, we can choose ¢ so that there is a point where ¢ (p) = 0,
there is a constant B depending on D and a such that |¢| < B. Theorem 4.16 then
provides the required two-sided bounds on the Hessian of the distance function, so we
only require a lower bound on injectivity radius to prove C* compactness. A classical
result of Klingenberg states that the injectivity radius is the smaller of the conjugate
radius and the length of the smallest closed geodesic. Lemma 4.12 gives the lower
bound on the conjugate radius and Corollary 4.24 gives the lower bound on the length
of closed geodesics. O

4.6 Radial Curvature Equation

In the exposition above we have chosen to present the comparison theory for
weighted sectional curvatures in terms of Jacobi field estimates. However, just as
in the unweighted setting, these results can also be interpreted in terms of the vari-
ation of shape operators of hypersurfaces. Although we do not take this approach
in any our applications, we show how it can easily be done once we have the
definition of weighted second fundamental form as described in the previous sec-
tion.

Given a submanifold A and a normal vector field N, the modified shape operator,
8% TpM — T,M, is

S5 (X) = VYN = VxN —dp(X)N — dp(N)X.

The following equation shows how to compute the curvatures normal to a hypersurface
from the modified shape operator.

Proposition 4.25 (Radial curvature equation) Let H be a hypersurface and N a nor-
mal vector to H, then

(VHS%) (X) + (85 0 Sy) (X) = V§ (SK(V)) — RV (X, N)N.
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Proof Consider

R?(X, N)N = VY V{N — VE VYN — Vi N
= V% (Sh(V)) — V& (S5 (X0) + v@an - V%NN

= —(V§S%) ) — (S5 0 S%) (X) + V§ (Sh (V).
O

To see the connection to Jacobi fields and the Hessian of the distance function, we
apply the Radial Curvature Equation to the case where H is a distance tube. Let A be a
closed subset of M, and let d4 (-) be the Riemannian distance to A. In a neighborhood
of a point where d4 is smooth we can let % = ¢2Vr. Then (% is a normal vector for
the distance tubes of A, i.e., T,(A) = {x : d4(x) = r} and is a geodesic field for V¥.
Letting N = % and S = Sy we obtain

(vzg S‘P) (X) + (5% 0 8%) (X) = —RY" (x, %) % 4.8)

since S¥ (d%) = Vﬁi 0.

In this case
S?(X) = V;’} (ez‘er)
0
—Vy (ez‘er) _ ez‘pdgo(X)a— — dp(Vr)X
r

= e? (VxVr +do(X)Vr — dp(Vr)X).

These equations give us the following estimate for the derivative of the weighted
second fundamental form with respect to %.

Proposition 4.26 Let y be a standard re-parametrization of a minimizing geodesic
and let 1% be the second fundamental form of the distance tube to y(0) so that
% = y. Let X and Y be parallel fields along y which are also perpendicular to y,
ie, VyX=V;Y =0, g (L, X)=g(L,Y)=0. Then

d (U(X,Y))=—g((8%05%)(X),Y)—¢g (R“’ (X i) %, Y) . (4.9

ds ds
Proof We have

g(8%(X),Y) = ¢* (Hessr(X,Y) + do(X)dr(Y) —de(Vr)g(X,Y)).
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So,for X, Y L y, g(S?(X),Y) = lI?(X, Y). Then we obtain
4 (gsP 0. 1) = ¢ (Vs (s700).¥)
ds @

d
g (Vﬁ (8%(X)), Y) +dg (5) 2(S¥(X), Y)

ds

ds
+g (S“’ (v“;x) , Y> +dg (i) g(S%(X), Y)
ds ds
ds
d d
—dg (—) g(8%(X),Y) —de(X)g (S“’ (—) , Y)
ds ds

d
+de (£> 8(8%(X), Y)

=g <<v“;s¢> (X), Y) )

Then from the radial curvature equation we have

d%g(S“’(X), Y)=—g((5Y08%)(X).Y)—¢g (R“’ ( , i) i, Y> .

Remark 4.27 Tracing (4.9) over the orthogonal complement of the geodesic gives
Lemma 4.1 on [30]. It is not hard to see that this equation could also be used to derive
Theorem 4.16.
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