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Abstract

We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density 
Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector 
due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electro-
magnetic effective action via a chiral anomaly term θFμνF̃μν , with a dynamic axion field θ given by the 
phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic 
field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall 
current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating 
mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as 
possible implications for heavy-ion collisions and neutron stars are all highlighted.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Mapping the QCD phases is a goal intensely sought after by many theoretical and experimen-
tal efforts [1]. Thanks to the asymptotic freedom of the theory the most extreme regions of the 
QCD phase diagram in the temperature-density plane are weakly coupled and hence better un-
derstood; they are the quark–gluon plasma (QGP) in the high-temperature/low-density corner of 

* Corresponding author.
E-mail address: Vivian .Incera @csi .cuny.edu (V. de la Incera).
https://doi.org/10.1016/j.nuclphysb.2018.04.009
0550-3213/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2018.04.009
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:Vivian.Incera@csi.cuny.edu
https://doi.org/10.1016/j.nuclphysb.2018.04.009
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2018.04.009&domain=pdf


E.J. Ferrer, V. de la Incera / Nuclear Physics B 931 (2018) 192–215 193
the phase map and the Color-Flavor-Locked (CFL) superconducting phase on the opposite site. 
At low temperatures and densities quarks are confined inside hadrons, whose interactions can be 
phenomenologically described by conventional nuclear physics.

However, somewhere in the region of intermediate temperatures and densities, one expects a 
phase transition to occur from a confined to a deconfined phase, where gluons and quarks liberate 
from hadrons. On the other hand, confined quarks have a large dynamical mass due to the chiral 
condensate, while in the regions with small coupling the condensate is expected to melt and 
the quark mass becomes small. Clearly, by increasing the temperature or the chemical potential, 
a chiral phase transition should occur from the phase of heavy quarks to that of light quarks. 
Nevertheless, it is not obvious a priori that the confinement and chiral phase transitions have to 
occur at the same phase boundary line [2].

Understanding the fundamental physics involved and the phases that realize in the interme-
diate density region of the QCD phase map is highly nontrivial, as it requires nonperturbative 
methods and effective theories. To begin with, one cannot use lattice QCD because of the sign 
problem at finite chemical potential, then the investigation of this region has been done with the 
help of NJL-like effective models [3], or considering QCD in the large-N limit [4]. To pin-down 
the correct physical description of this region, the theoretical results will have to be eventually 
contrasted with the outcomes of future experiments at various international facilities that plan to 
explore the intermediate-baryon-density and small-temperature region.

The low-temperature, intermediate-density region is particularly challenging due to the pos-
sibility of spatially inhomogeneous phases. Coming from the low density region, the energy 
separation between quarks and antiquarks grows with increasing density up to a point where it 
is not anymore energetically favorable to excite antiquarks all the way from the Dirac sea to 
pair them with the quarks at the Fermi surface. Instead of undergoing a transition to a chirally 
restored phase, it is energetically favorable to pair quarks and holes with parallel momenta close 
to the Fermi surface, giving rise to inhomogeneous chiral condensates. Spatially inhomogeneous 
phases with quark–hole condensates have been found in the large-N limit of QCD [4], in quarky-
onic matter [5], and in NJL models [6–9]. Hence, although most NJL models had predicted a 
first-order chiral transition with increasing density [10], it turned out that the transition is more 
likely to occur via some intermediate state(s) characterized by inhomogeneous chiral conden-
sates.

Inhomogeneous phases become favored also in color superconductivity (CS) [11,12], when 
the intermediate density region is approached from the other side of the QCD phase map, that 
is, from the region of low temperatures and asymptotically high density values. At asymptotic 
densities, the most favored CS phase is the CFL, an homogeneous phase on which all flavors 
pair with each other via the strong attractive quark–quark channel. Homogeneous CS is based 
on BCS-pairing and relies on the assumption that the quarks that pair with equal and opposite 
momenta can each be arbitrarily close to their common Fermi surface. However, with decreasing 
density, the combined effect of the strange quark mass, neutrality constraint and beta equilibrium, 
tends to pull apart the Fermi momenta of different flavors, imposing an extra energy cost on the 
formation of Cooper pairs. BCS-pairing then dominates as long as the energy cost of forcing all 
species to have the same Fermi momentum is compensated by the pairing energy that is released 
by the formation of Cooper pairs.

Eventually, with decreasing density, homogeneous CS phases like the CFL and the 2SC 
become gapless and, most importantly, become unstable [13,14]. The instability, known as chro-
momagnetic instability, manifests itself in the form of imaginary Meissner masses for some of the 
gluons and indicates an instability towards spontaneous breaking of translational invariance [15]. 
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In other words, it indicates the formation of an spatially inhomogeneous phase. Most inhomo-
geneous CS phases are based on the idea of Larkin and Ovchinnikov (LO) [16] and Fulde and 
Ferrell (FF) [17], originally applied to condensed matter. In the CS LOFF phases [18], quarks of 
different flavors pair even though they have different Fermi momenta, because they form Cooper 
pairs with nonzero momentum. CS inhomogeneous phases with gluon condensates that break 
rotational symmetry [19] have also been considered to solve the chromomagnetic instability. 
However, to the best of our knowledge, the question of which CS phase is the most favorable in 
the region of intermediate densities still remains unanswered.

The above discussion suggests that inhomogeneous phases in the low-temperature/inter-
mediate-density region of the QCD phase map might be unavoidable, whether the region is 
approached from low or high densities. In this paper we are interested in the properties of a 
phase with a quark–hole inhomogeneous condensate that can be generated at intermediate den-
sities in the presence of a magnetic field. Such a phase is particularly interesting because it has 
nontrivial topology that favors the spatial modulation of the condensate and leads to anomalous 
(topological) electric charge and current [20]. From the onset, we admit that we cannot claim 
that this phase is the most energetically favorable in the region. To answer that question requires 
an energy comparison of all the possible chiral and CS phases, an insurmountable task out of 
the scope of this work. What we hope instead is to uncover some unique properties of this phase 
that can then be connected with observable signatures to establish or discard its actual realization 
in QCD. Because the conditions for the realization of inhomogeneous phases could be either 
reached at the core of compact objects or artificially produced in heavy-ion collision (HIC) ex-
periments, any probe of these phases will have to occur in these contexts.

So far, the HIC experiments have not yet reached the QCD region of low-temperature and 
intermediate-densities. However, a new set of experiments planned across the globe, such as 
the second phase of the RHIC energy scan (BES-II) at Brookhaven in US [21], the Facility for 
Antiproton and Ion Research (FAIR) [22] at the GSI site in Germany, and the Nuclotron-based 
Ion Collider Facility (NICA) [23] at JINR laboratory in Dubna, Russia, are aimed to extend the 
probe into that region in the near future.

On the other hand, in the situations where inhomogeneous phases could be generated, mag-
netic fields are always present. Neutron stars typically have strong magnetic fields, which become 
extremely large in the case of magnetars, with inner values that have been estimated to range 
from 1018 G for nuclear matter [24] to 1020 G for quark matter [25]. Likewise, off-central HIC 
are known to produce large magnetic fields. Their values have been estimated to be of order 
eB � O(2m2

π ) ∼ 1018G for the top collision in non-central Au–Au impacts at RHIC, and even 
larger, eB � O(15m2

π ) ∼ 1019G, at LHC [26,27]. Even though the magnetic field produced in 
HIC is transient and inhomogeneous; within the characteristic length scale and life time of the 
QGP formed in HIC, it is reliable to consider the magnetic field as approximately constant and 
homogeneous (see discussion in [28] and references therein).

The presence of a magnetic field is relevant because it can significantly enhance the window 
for inhomogeneous phases [29,30]. Moreover, a magnetic field can activate attractive chan-
nels and produce new condensates as a consequence of the explicit breaking of the rotational 
symmetry, as occurs, for instance, in the case of a constant chiral condensate [31], in color su-
perconductivity [32,33] and in quarkyonic matter [34].

In this paper, we study the electromagnetic properties of the so-called Magnetic Dual Chiral 
Density Wave (MDCDW) phase [20] of quarks at high density in the presence of a magnetic 
field. This phase breaks chiral and translational symmetry and is characterized by asymmetric 
fermion energy modes in the lowest Landau level (LLL). We present detailed calculations of the 
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results discussed in a recent letter [20], as well as new derivations that provide deeper insight in 
the physics of the MDCDW phase. We also discuss the magnetoelectricity of this phase and how 
the anomalous Hall current can be found from the effective magnetic current ∇ × M.

Despite marked differences between strongly interacting quarks at high density and con-
densed matter materials, we have uncovered striking similarities in the transport properties of 
the MDCDW phase and those of topological materials like Weyl semimetals (WSM) [35], which 
are conductive materials with a nontrivial electronic structure topology. This is a particularly 
exciting finding, in light of the recent booming of works dedicated to the topic of topological 
materials, and the realization that they are not limited to two-dimensional systems [36]. Thanks 
to their similarity, we can use tabletop experiments with WSM to mimic effects that could happen 
in the MDCDW phase but would be much harder to detect in a HIC experiment or in astrophysi-
cal observations. Equally, we could take advantage of new understandings within these materials 
to infer potentially measurable effects in the MDCDW phase of quark matter, and then use that 
insight to design clever ways to probe the presence of this quark phase in neutron stars and in 
HIC experiments.

Although the origin of the nontrivial topology in both, the MDCDW phase and the WSM, 
comes from the fermion sector, they have very different nature. In the MDCDW the topology is 
connected to the inhomogeneous chiral condensate in the magnetic field, while in the WSM it 
comes from the existence of Weyl nodes with opposite chiralities and separated in momentum 
space. Nevertheless, the two systems share a basic common element, the presence of the chiral 
anomaly κ

4 θFμνF̃
μν (axion term) in the effective action. The chiral anomaly couples the axion 

field θ with the electric and magnetic fields. It appears because of the lack of invariance of 
the fermion measure under a chiral gauge symmetry transformation. In the quark case, ∇θ is 
associated with the condensate modulation, while in the WSM, it is related to the momentum 
separation of the Weyl nodes. In both systems, the electromagnetism is characterized by the 
equations of Axion Electrodynamics, so they exhibit similar electric transport properties [20].

We highlight that in the MDCDW phase, the interplay between the magnetic field and the in-
homogeneous condensate is essential to produce the anomalous properties of the system. Without 
these two elements combined, there will be no LLL spectral asymmetry, a property that is key 
to generate the non-trivial topology that is subsequently reflected in the presence of the chiral 
anomaly.

The paper is organized as follows. In Section 2, the NJL model that leads to the MDCDW 
condensate is reexamined. In Section 3, we take into account that the fermion measure in the 
path integral is not invariant under a chiral gauge transformation and use the Fujikawa’s method 
to regularize it in a gauge invariant way and to find its finite contribution to the electromag-
netic effective action. The equations of axion electrodynamics are derived and the anomalous 
terms discussed in Section 4. In Section 5, we explore the topological origin of the anomalous 
electric charge and current. Section 6 is dedicated to calculate all the ordinary charges and cur-
rent densities in the MDCDW phase and to demonstrate that they do not cancel the anomalous 
contributions. The magnetoelectric properties of the MDCDW phase are discussed in Section 7; 
while Section 8 analyzes the anomalous transport effects of this phase. In Section 9, we give our 
concluding remarks.

2. Model of cold and dense quark matter in a magnetic field

Henceforth, we focus on the cold and dense region of QCD. A growing body of works indi-
cates that with increasing density, the chirally broken phase of quark matter is not necessarily 
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replaced by a chirally restored phase, but instead, at least for the region of intermediate densi-
ties, the system may favor the formation of spatially inhomogeneous phases. To understand this, 
notice that with increasing density the homogeneous chiral condensate becomes disfavored due 
to the high-energy cost of exciting the antiquarks from the Dirac sea to the Fermi surface where 
the pairs form. At the same time, with higher density, co-moving quarks and holes at the Fermi 
surface may pair with minimal energy cost through a mechanism analogous to Overhauser’s [37], 
thereby giving rise to a spatially modulated condensate [4]. Spatially modulated chiral conden-
sates have been discussed in QCD within the context of quarkyonic matter [38], where they 
appear in the form of quarkyonic chiral spirals [5] at zero magnetic field, or double quarkyonic 
chiral spirals [34] in the presence of a magnetic field. Inhomogeneous chiral condensates have 
been also studied in NJL models (for a review see [39]) that share the chiral symmetries of QCD 
and are then useful to investigate the chiral phase transition.

We are interested in the electromagnetic properties of cold and dense quark matter in a back-
ground magnetic field. With that goal in mind, we model QCD+QED with the help of the 
following Lagrangian density that combines electromagnetism with a two-flavor NJL model of 
strongly interacting quarks,

L = −1

4
FμνF

μν + ψ̄[iγ μ(∂μ + iQAμ) + γ0μ]ψ + G[(ψ̄ψ)2 + (ψ̄iτγ5ψ)2]. (1)

Here Q = diag(eu, ed) = diag( 2
3e, − 1

3e), ψT = (u, d); μ is the baryon chemical potential; and 
G is the four-fermion coupling. The electromagnetic potential Aμ is formed by the background 
Āμ = (0, 0, Bx, 0), which corresponds to a constant and uniform magnetic field B pointing in 
the z-direction, with xμ = (t, x, y, z), plus the fluctuation field Ã. We work in the metric gμν =
diag(1, −1). Due to the electromagnetic coupling of the quarks, the flavor symmetry SU(2)L ×
SU(2)R of the original NJL model is reduced to the subgroup U(1)L × U(1)R .

The presence of B favors the formation of a dual chiral density wave (DCDW) condensate

〈ψ̄ψ〉 = 	 cosqμxμ, 〈ψ̄iτ3γ5ψ〉 = 	 sinqμxμ (2)

with magnitude 	 and modulation qμ = (0, 0, 0, q) along the field direction [29,30]. As it will 
become apparent throughout the paper, the two-flavor system with the DCDW condensate in the 
presence of a magnetic field [29,30,20] not only differs in its symmetry from the DCDW phase at 
zero magnetic field [40], but it also exhibits very different transport properties. Hence the special 
name of MDCDW [20] for this new phase.

The mean-field Lagrangian of the MDCDW phase is

LMF = ψ̄[iγ μ(∂μ + iQAμ) + γ0μ]ψ − mψ̄eiτ3γ5qμxμ

ψ − m2

4G
− 1

4
FμνF

μν, (3)

where m = −2G	.
To remove the spatial modulation of the mass, we use a local chiral transformation

ψ → UAψ, ψ̄ → ψ̄ŪA, (4)

with UA = eiτ3γ5θ , ŪA = γ0U
†γ0 = eiτ3γ5θ , and θ(x) = qz/2.

After the chiral transformation (4), the mean-field Lagrangian density (3) becomes

LMF = ψ̄[iγ μ(∂μ + iQAμ + iτ3γ5∂μθ) + γ0μ − m]ψ − m2

− 1
FμνF

μν (5)

4G 4
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Accordingly, the fermion contribution to the mean-field action is given by [29]

� = −i logZ =
∑
f

Nc

i
ln Det(i∂0 + μ − Hf ) −

∫
d4x(

m2

4G
) (6)

where the quark partition function is

Z =
∫

Dψ̄(x)Dψ(x)ei
∫

d4x{ψ̄[iγ μ(∂μ+iQAμ+iτ3γ5∂μθ)+γ0μ−m]ψ− m2
4G

} (7)

and

Hf = −iγ 0γ i(∂i + ief Ai + i
ef

|ef |γ5∂iθ) + γ 0m, (8)

denotes the modified Dirac Hamiltonian of flavor f in the MDCDW phase. Here ef is the flavor 
electric charge.

The single-particle energy spectrum is given by the eigenvalues of Hf [29]. It separates into 
two set of energy modes, the LLL (l = 0) modes

E0 = ε

√
m2 + k2

3 + q/2, ε = ±, (9)

and the higher Landau level (l 	= 0) modes

El = ε

√
(ξ

√
m2 + k2

3 + q/2)2 + 2|ef B|l, ε = ±, ξ = ±, l = 1,2,3, ... (10)

In (10) ξ = ± indicates spin projection and ε = ± particle/antiparticle energies. In contrast, only 
one spin projection (+ for positively charged and − for negatively charged quarks) contributes 
to the LLL spectrum. An important feature of this spectrum is that the LLL energies are not 
symmetric about the zero-energy level. As a consequence, the ± sign in front of the square root 
should not be interpreted as particle/antiparticle in the LLL case.

3. Non-invariance of the measure and modification of the effective action

In this section, we turn our attention to a very important fact: the fermion measure in the 
path-integral is not invariant under the chiral gauge transformation (4),

Dψ̄(x)Dψ(x) → Jψ̄JψDψ̄(x)Dψ(x). (11)

To take this into consideration we need to calculate the Jacobian Jψ = Jψ̄ = (DetUA)−1.

Using the relation 〈x|O|y〉 = δ4(x − y)O(x), valid for ultra-local integral kernels, we can 
show that

(DetUA)−1 = e−Tr ln UA = e− ∫
d4x〈x|tr ln UA|x〉

= e−Nc

∫
d4xδ4(0)iθ(x)tr(γ5τ3), (12)

where Tr indicates functional+matrix trace, while tr indicates just matrix trace. It is easy to 
see that the exponent in (12) is an ill-defined conditionally convergent quantity that needs to be 
properly regularized.

With that goal in mind, we follow the Fujikawa’s approach [41], on which the Jacobian is 
regularized in a gauge-invariant way as described in details below. The essence of the method 
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consists of first expressing the Jacobian in the representation of the eigenfunctions of an Eu-
clidean operator that is gauge-invariant and Hermitian (antiHermitian). Such a representation not 
only preserves the gauge invariance of the theory, but also ensures that the eigenfunctions are or-
thogonal and complete and have real (imaginary) eigenvalues. Additionally, the functional space 
must be chosen so that it diagonalizes the fermion action. Such a diagonalization is essential 
to ensure the unitarity of the transformation from the original fermion fields to the eigenvectors 
of the chosen operator in the presence of regularization. Notice that because of the ill-defined 
Jacobian, a seemingly unitary transformation based on the eigenspace of a gauge invariant oper-
ator that does not diagonalize the action is actually nonunitary [41–43]. Further, to regularize the 
Jacobian one introduces a damping factor in the form of an arbitrary function of the eigenvalues 
of this operator with a regulator M , in such a way that the contributions from the large momenta 
are regularized when M → ∞. Below, we use the heat-kernel regularization [44], which is based 
on an exponential damping function.

In most cases, the gauge-invariant operator whose eigenfunctions satisfy all the above re-
quirements is the Dirac operator of the theory /D [45]. However, in our case, the presence of 
the chemical potential and the chiral term ∼γ5∂μθ in the covariant derivative spoil the Her-
miticity of the Dirac operator in the Euclidean space and the Fujikawa approach has to be 
extended. In preparation for this process we first perform a Wick rotation to Euclidean space 
dx0 → −idx4, ∂0 → i∂4, A0 → iA4, and for the Dirac matrices, γ0 → iγ4, γ 5 ≡ iγ 0γ 1γ 2γ 3 =
γ 5
E = γ 1γ 2γ 3γ 4. The Euclidean γμ are all anti-Hermitian and the Euclidean metric becomes in 

this case gE
μν = diag(−1, −1, −1, −1).

Notice that, since there is no mix between the quark flavors, we can perform, without loss of 
generality, the analysis for one quark flavor and then incorporate the contributions of the two fla-
vors in the final result. In the present system, the Euclidean Dirac operator is /D(μ, θ) = /D+ /D

A, 
with /D = γμ(∂μ + ief Aμ) Hermitian, and /D

A = γμ(iγ 5sgn(ef )∂μθ − μδμ4) anti-Hermitian. 
Since /D(μ, θ) is neither Hermitian nor anti-Hermitian, it cannot be used to apply the Fujikawa 
approach. In this case, we follow instead the method discussed in [43], which extended Fu-
jikawa’s approach to Dirac operators at finite density. Because of the chiral term, we have to 
extend that method even further and consider not just the chemical potential but also the axial 
“gauge field“ ∂μθ in the covariant derivative.

Consider the positive-semidefinite Hermitian operators /D
†
(μ, θ) /D(μ, θ) and /D(μ, θ)

/D
†
(μ, θ) and their respective eigenvalue equations

/D
†
(μ, θ) /D(μ, θ)φn = λ2

nφn /D(μ, θ) /D
†
(μ, θ)φ̃n = ξ2

n φ̃n, (13)

whose eigenfunctions form sets that are complete∑
n

φ†
n(x)φn(y) = δ(x − y)

∑
n

φ̃†
n(x)φ̃n(y) = δ(x − y) (14)

and orthogonal∫
d4
Exφ†

n(x)φm(x) = δnm,

∫
d4
Exφ̃†

n(x)φ̃n(x) = δnm, (15)

and have real eigenvalues λn, ξn, known as the singular values of /D(μ, θ), /D†
(μ, θ) respectively. 

The φn(x), φ̃n(x) are ordinary c-number functions.
It is easy to verify, as in the case studied in [43], that the operators /D

†
(μ, θ) /D(μ, θ) and 

/D(μ, θ) /D
†
(μ, θ) share all the nonzero eigenvalues. To see this, consider a nonzero λn and let us 

act with /D(μ, θ) on the first equation of (13)
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/D(μ, θ) /D
†
(μ, θ) /D(μ, θ)φn = λ2

n
/D(μ, θ)φn (16)

That means that /D(μ, θ)φn is an eigenfunction φ̃n of /D(μ, θ) /D
†
(μ, θ) with eigenvalue λ2

n. 
Similarly, acting with /D

†
(μ, θ) on the second equation of (13) we find

/D
†
(μ, θ) /D(μ, θ) /D

†
(μ, θ)φ̃n = ξ2

n
/D

†
(μ, θ)φ̃n, (17)

we see that /D
†
(μ, θ)φ̃n is an eigenfunction φn of /D

†
(μ, θ) /D(μ, θ) with eigenvalues ξ2

n , so 
λ2

n = ξ2
n . Hence, we define from now on, for nonzero λn, φ̃n = λ−1

n
/D(μ, θ)φn.

It is convenient to expand the fermion fields in the path integral in the bases of the Hermitian 
operators /D

†
(μ, θ) /D(μ, θ) and /D(μ, θ) /D(μ, θ)†,

ψ(x) =
∑
n

anφn(x), ψ̄(x) =
∑
n

b̄nφ̃
†
n(x), (18)

with an, bn, Grassmann numbers. In the representation of these eigenfunctions, the Jacobian of 
flavor f in (11) takes the form

J
(f )
ψ J

(f )

ψ̄
= eiNctr

∫
d4
Exθ(x)

∑
n[φ†

n(x)iγ5φn(x)+φ̃
†
n(x)iγ5φ̃n(x)], (19)

and the fermionic part of the action is diagonalized

SF =
∫

d4
Exψ̄ /D(μ, θ)ψ =

∑
n

λnb̄nan. (20)

We now turn to the standard heat-kernel regularization method [44], and introduce damping 
factors for each term in (19) and a regulator M that will be taken to infinity at the end. The 
regularized Jacobian then becomes

J
(f )
ψ J

(f )

ψ̄
= eiNc(IR+ĨR) (21)

where

IR = lim
M→∞

∫
d4
Exθ(x)tr

∑
n

φ†
n(x)iγ5e

−λ2
n/M2

φn(x)

= lim
M→∞

∫
d4
Exθ(x)tr

∑
n

φ†
n(x)iγ5e

− /D
†
(μ,θ) /D(μ,θ)/M2

φn(x)

≡ lim
M→∞

∫
d4
Exθ(x)I, (22)

and

ĨR = lim
M→∞

∫
d4
Exθ(x)tr

∑
n

φ̃†
n(x)iγ5e

−λ2
n/M2

φ̃n(x)

= lim
M→∞

∫
d4
Exθ(x)tr

∑
n

φ̃†
n(x)iγ5e

− /D(μ,θ) /D
†
(μ,θ)/M2

φ̃n(x)

≡ lim
M→∞

∫
d4
Exθ(x)Ĩ , (23)

with
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/D
†
(μ, θ) /D(μ, θ) = −(Dμ)2 + ief

4
[γμ, γν]Fμν + (∂μθ)2 − isgn(ef )γ5[γμ, γ4]μ∂μθ

+ μ2 + isgn(ef )[γμ, γν]γ5∂μθDν + [γ4, γν]μDν (24)

/D(μ, θ) /D
†
(μ, θ) = −(Dμ)2 + ief

4
[γμ, γν]Fμν + (∂μθ)2 − isgn(ef )γ5[γμ, γ4]μ∂μθ

+ μ2 − isgn(ef )[γμ, γν]γ5∂μθDν − [γ4, γν]μDν (25)

Here Dμ ≡ ∂μ + ief Aμ and we used that [Dμ, Dν] = ief Fμν .
Once the Jacobian is regularized, it is convenient to change the basis to the free-wave eigen-

functions |ζ 〉 , 
(
/∂|ζ 〉 = i/k|ζ 〉), to find

I = tr
∑
n

〈φn|x〉iγ5e
− /D

†
(μ,θ) /D(μ,θ)/M2〈x|φn〉

= tr
∫

d4k

(2π)4

∫
d4k′

(2π)4

∑
n

〈φn|ζ 〉〈ζ |x〉iγ5e
− /D

†
(μ,θ) /D(μ,θ)/M2〈x|ζ ′〉〈ζ ′|φn〉

= tr
∫

d4k

(2π)4

∫
d4k′

(2π)4 〈ζ ′|ζ 〉〈ζ |x〉iγ5e
− /D

†
(μ,θ) /D(μ,θ)/M2〈x|ζ ′〉

= tr
∫

d4k

(2π)4 e−ikxiγ5e
− /D

†
(μ,θ) /D(μ,θ)/M2

eikx

= tr
∫

d4k

(2π)4 iγ5e
− /D

†
(k,μ,θ) /D(k,μ,θ)/M2

, (26)

and similarly for Ĩ

Ĩ = tr
∑
n

〈φ̃n|x〉iγ5e
− /D(μ,θ) /D

†
(μ,θ)/M2〈x|φ̃n〉

= tr
∫

d4k

(2π)4 iγ5e
− /D(k,μ,θ) /D

†
(k,μ,θ)/M2

, (27)

with /D
†
(k, μ, θ) /D(k, μ, θ) and /D(k, μ, θ) /D

†
(k, μ, θ) given respectively by (24) and (25) with 

Dμ replaced by (ikμ + Dμ).
At this point, we make the variable change kμ → Mkμ in (26) and (27), use them back in (22)

and (23), and take the trace and the limit M → ∞. Then, we can readily verify that

IR + ĨR = −2e2
f

32

∫
d4
Exθ(x)

∫
d4k

(2π)4 e−k2
triγ 5[γμ, γν][γα, γβ ]FμνFαβ

= −e2
f

16

∫
d4
Exθ(x)

1

16π2 triγ 5[γμ, γν][γα, γβ ]FμνFαβ

= −i
e2
f

8π2

∫
d4xθ(x)FμνF̃

μν, (28)

where in the last line of (28) we Wick rotated back to Minkowski space and used trγ 5[γ μ, γ ν]
[γ α, γ β ] = −16iεμναβ , with εμναβ the Levi-Civita tensor and F̃ μν = 1

2εμναβFμν the dual elec-
tromagnetic tensor.
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Hence, the one-flavor Jacobian reduces to

J
(f )
ψ J

(f )

ψ̄
= eiNc(IR+ĨR) = e

Nc

e2
f

8π2

∫
d4xθ(x)FμνF̃ μν

(29)

Considering the contribution of the two flavors, we finally find the regularized Jacobian of the 
chiral transformation to be

(detUA)−2 = e
e2

8π2

∫
d4xθ(x)FμνF̃ μν

(30)

In Section 5, we will see the connection between (30) and the chiral anomaly. The presence of 
the chemical potential does not affect the Jacobian or the chiral anomaly in the MDCDW phase, 
in agreement with similar results found in other models discussed in the literature [43],[46].

The result (30) is regularization-independent, as can be seen by replacing the exponential 
e−λ2/M2

in (22) by f ((λ/M)2), with f (t) an arbitrary and smooth function, such that f (0) = 1, 
f (∞) = 0, tf ′(t) = 0 at t = 0 and t = ∞. It is straightforward to demonstrate that in this case 
one arrives exactly at the same result [41,47].

Taking into account (30), the quark partition function can now be written as

Z = ei�matter =
∫

Dψ̄(x)Dψ(x)eiSeff (31)

with

Seff =
∫

d4x{ψ̄[iγ μ(∂μ + iQAμ + iτ3γ5∂μθ) + γ0μ − m]ψ − m2

4G
+ κ

4
θ(x)FμνF̃

μν},
(32)

with κ
4 = 3(e2

u−e2
d )

8π2 = e2

8π2 = α
2π

. Note that the axion term κ
4 θ(x)FμνF̃

μν is of order α. Such a 
term, whose important physical implications will be discussed in the next sections, was over-
looked by other authors who studied the MDCDW phase.

4. Axion electrodynamics in the MDCDW phase

To find the zero temperature electromagnetic effective action �(A), we first start from the 
one-loop effective action for the fermions

� = −i logZ, (33)

with Z given by (31), go to Euclidean variables k0 → ik4 and then employ the finite-temperature 
Matsubara technique

∞∫
−∞

dk0

2π
→ i

∞∫
−∞

dk4

2π
→ i

1

β

∞∑
n=−∞

k4 → ωn = 2π(n + 1
2 )

β
, n = 0,±1,±2, · · ·

with β = 1/T the inverse absolute temperature. We then integrate in the fermions, expand � in 
powers of the fluctuation field Ã, sum in the Matsubara index n, and take the zero-temperature 
limit.
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At this point, we just need to add the Maxwell term to � to obtain

�(A) = −V � +
∫

d4x

[
−1

4
FμνF

μν + κ

4
θ(x)FμνF̃

μν

]
(34)

+
∞∑
i=1

∫
dx1...dxi�

μ1,μ2,...μi (x1, x2, ...xi)Ãμ1(x1)...Ãμi
(xi),

with V the four-volume, � the mean-field thermodynamic potential obtained for this phase in 
Ref. [29] (see Section 6.3 below), and �μ1,μ2,...μi the i-vertex tensors corresponding to the one-
loop polarization operators with internal lines of fermion Green functions in the MDCDW phase 
and i external lines of photons.

We are interested in the linear response of the MCDCW phase to a small electromagnetic 
probe Ã in the background of a magnetic field 
B that does not need to be large either, since there 
is no critical magnetic field for the MDCDW condensate to form. Furthermore, for consistency 
of the approximation, we can neglect all the radiative corrections of order higher than α, as α
is the order of the axion term in (34). These two conditions imply that we shall cut the series in 
(34) at i = 1, which can be shown to provide the medium corrections to the Maxwell equations 
that are linear in the electromagnetic field and of the desired order in α.

Then, �(A) becomes

�(A) = −V � +
∫

d4x

[
−1

4
FμνF

μν − κ

∫
d4xεμανβAα∂νAβ∂μθ

]
−

∫
d4xÃμ(x)Jμ(x), (35)

where we integrated by parts the third term in the r.h.s. of (34). Jμ(x) = (J 0, J) represents the 
contribution of the ordinary (non-anomalous) electric four-current, determined by the one-loop 
tadpole diagrams.

The Euler–Lagrange equations derived from the action (35) give rise to the modified Maxwell 
equations

∇ · E = J 0 + e2

4π2 qB, (36)

∇ × B − ∂E/∂t = J − e2

4π2 q × E, (37)

∇ · B = 0, ∇ × E + ∂B/∂t = 0, (38)

on which we already used that θ = qz/2. These are the equations of axion electrodynamics for 
the MDCDW phase, which are a particular case of those proposed by Wilczek [48] many years 
ago for a general axion field θ .

It can be seen from equations (36)–(37) that the axion term leads to an anomalous electric 
charge density,

J 0
anom = e2

4π2 qB, (39)

as well as to an anomalous Hall current density,

Janom = − e2

q × E (40)

4π2
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The anomalous Hall current is perpendicular to both, the magnetic and the electric field, since q 
is aligned with B. Besides, Janom is dissipationless and as such, it can significantly influence the 
transport properties of the system.

5. Topological and LLL origin of the anomalous electric four-current

5.1. Connection to the chiral anomaly

The topological origin of the anomalous electric four-current can be clearly seen from the 
fact that the term that produces the anomalous electric four-current is also responsible for the 
chiral anomaly, which is topological in nature as explained below. To see this, let us go back 
to the expression (31) and consider ∂μθ as a background axial gauge field. We can derive the 
equation for the axial current by taking the functional derivative of the action with respect to the 
axial gauge field, and then take the divergence of the result to show that the axial four-current Jμ

5
obeys the anomalous continuity equation

∂μJ
μ
5 = κ

8
FμνF̃

μν (41)

The presence of a mass just add a term to this equation, but the anomalous contribution will 
still be present. Going to Euclidean space does not change the form of this equation. Now, notice 
that the r.h.s. of (41) can be written as the total derivative of a Chern–Simons current

κ

8
FμνF̃

μν = ∂μKμ, (42)

with

Kμ = − κ

16
εμνρλAν∂ρAλ, (43)

so if we integrate (41) in the Euclidean four-volume, and use (43), the four-dimensional in-
tegral of κ

8 FμνF̃
μν can be written as the integral of the Chern–Simons current Kμ over the 

three-dimensional surface that bounds the four-volume integral. Such an integral gives an integer 
known as the winding number or topological charge of the gauge field.

n ≡ κ

8

∫
d4xFμνF̃

μν (44)

From the regularization procedure discussed in Section 3 we have

κ

4

∫
d4xFμνF̃

μν = lim
M→∞

∫
d4
Extr

∑
n

φ†
n(x)iγ5e

− /D
†
(μ,θ) /D(μ,θ)/M2

φn(x)

+ lim
M→∞

∫
d4
Extr

∑
n

φ̃†
n(x)iγ5e

− /D(μ,θ) /D
†
(μ,θ)/M2

φ̃n(x)

= 2n (45)

Now, taking into account that γ5 commutes with /D†
(μ, θ) /D(μ, θ) and with /D(μ, θ) /D

†
(μ, θ), 

the eigenfunctions of these operators have defined chirality. If γ5φn = ±φn then γ5φ̃n =
γ5λ

−1
n

/D(μ, θ)φn = −λ−1
n

/D(μ, θ)γ5φn = ∓φ̃n, so for nonzero λn, the eigenfunctions φn and 
φ̃n always have opposite chirality. This implies that all the contributions of the nonzero singular 
modes cancel out in (45).
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For the zero modes, one can use the properties of the eigenfunctions to readily find∫
d4x

κ

8
FμνF̃

μν = n = 1

2
[index(i /D(μ, θ)) + index(i /D

†
(μ, θ))] (46)

where index(i /D(μ, θ)) = nR − nL, index(i /D
†
(μ, θ)) = ñL − ñR are the indexes of these opera-

tors, defined as the difference between the number of zero modes with right (left) and left (right) 
chirality. Here we used that index(i /D(μ, θ)) = index(i /D

†
(μ, θ)).

The above results establish the topological nature of the axion term in the action and its con-
nection to the chiral anomaly. Given that the anomalous electric four-current is obtained from this 
same term, it is also topological. Eq. (46) is an example of the Atiyah–Singer index theorem [44]. 
As pointed out by several authors [41,49], the quantity κ

8 FμνF̃
μν can then be interpreted as an 

index “density”.

5.2. LLL origin of the anomalous contributions

We are now ready to discuss an independent way to establish the topological nature of the 
anomalous quantities in Eqs. (36)–(37), and their connection to the asymmetry of the LLL spec-
trum. For that, we need to consider the Atiyah–Patodi–Singer invariant η [50], a topological 
quantity that measures the amount of spectral asymmetry of a theory. This invariant is defined as 
η = ∑

k sgn(Ek), where Ek are the energy modes of the single-particle Hamiltonian [51] of the 
problem.

We can readily observe two important things about η. First, the sum in the modes is ill-defined 
and needs proper regularization. Second, only the modes asymmetric about zero can contribute 
to η. In the case under study here, the energies Ek are given by Eqs. (9)–(10), and since the only 
asymmetric modes are the LLL ones, η will be purely due to the LLL spectrum.

Using the methods discussed in [51] for topological theories of fermions at finite temperature 
and/or density, the regularized Atiyah–Patodi–Singer index can be found from

η = lim
s→0

∑
k

sgn(Ek)|Ek|−s . (47)

As explicitly shown in [30], the asymmetry of the LLL modes in the MDCDW phase yields 
η 	= 0 and as a consequence, the quark number acquires a topological (anomalous) contribution

Nanom = −η/2 =
∫

d3xρanom =
∫

d3x
∑
f

ρanom
f =

∫
d3x

3|e|
4π2 Bq (48)

ρanom
f = Nc

|ef |
4π2 Bq, (49)

with ρanom
f denoting the anomalous quark number density of each flavor and Nc the color 

number. In the next section, we will see that the same topological contribution can be found 
employing a different regularization procedure, first introduce in Ref. [29], that allows to ex-
tract the anomalous part of the thermodynamic potential and then use it to find the anomalous 
quark number density. The extension of this calculation to the isospin asymmetric case was done 
in [52].

We know that the LLL spectrum is effectively one-dimensional (i.e. independent of the trans-
verse momentum). Since only the LLL contributes to the index η, we could think that the 
nontrivial topology is a consequence of the dimensional reduction of the LLL modes. After 
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all, the regularizations followed in [29] and [30] work because, after the limit of the regulator is 
taken (� → ∞ in [29], s → 0 in [30]), the result is finite and independent of the regularization 
parameter, but such regulator-independence is attained precisely because the integral in momen-
tum is only one-dimensional. However, the dimensional reduction of the LLL is always present 
in a background magnetic field, but in the absence of the DCDW condensate the LLL modes are 
symmetric, so in this case they cannot produce a nonzero η. Is the topology then rather a con-
sequence of the inhomogeneous condensate? The answer is no too. The spectrum of the DCDW 
phase at zero magnetic field is symmetric [40], so η vanishes and no anomalous quark number 
exists in this case either. Only when the DCDW condensate is formed in the presence of a mag-
netic field, the LLL modes become asymmetric and their contribution leads to the nonzero η. 
Therefore, the nontrivial topology emerges in the MDCDW phase as the interplay of the DCDW 
ground state and the dimensional reduction of the LLL modes.

How does this translate into the anomalous electric charge? If we now multiply the topological 
quark number density of each flavor (49) by its electric charge and then sum in flavor, we obtain 
the same anomalous electric charge density

J 0
anom =

∑
f

ef ρanom
f = 3

e2
u − e2

d

4π2 Bq = e2

4π2 Bq, (50)

that is found directly from the axion term in the electromagnetic action: the anomalous contri-
bution to (36). This result underlines not just the topological origin of the anomalous electric 
charge, but as importantly, its connection to the spectral asymmetry of the LLL energies.

Since the anomalous electric charge and the anomalous Hall current come from the same 
chiral anomaly term in the action, it is safe to say that they both originate from the spectral 
asymmetry of the LLL modes.

6. Ordinary charges and currents

We just established the LLL origin of the anomalous electric four-current density Janom =
(J 0

anom, Janom). Could the anomalous four-current be canceled out by the ordinary one? This 
important question is going to be explored in this section. Given that the anomalous four-current 
gets contributions only from the asymmetric modes (LLL modes), we shall only need to be 
concerned with the LLL contribution to the ordinary four-current. In addition, as previously 
stated, the anomalous terms are of one-loop order (as should be since they come from a fermion 
determinant [45]). Therefore, in the following derivations, we will find the LLL contribution to 
the one-loop ordinary four-current. Obviously, in principle there are also higher Landau level 
contributions to the ordinary four-current since we are not assuming here a particular strength of 
the magnetic field, but those contributions are not relevant for the goal of this section.

6.1. LLL quark propagator in the MDCDW phase

The LLL contributions to the ordinary electric charge and currents can be found from the 
one-loop tadpole diagrams with internal lines of LLL fermions. We will also see that the ordinary 
Hall current can be readily found once we have the ordinary charge density.

We first need to obtain the LLL propagator of each quark flavor. From (5), we can easily 
extract the LLL inverse quark propagator in the background magnetic field

G−1
LLL(k) = γ

μ
‖ (k̃‖

μ + sgn
(
ef

) q
δμ3γ

5) − m, (51)

2
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where k̃‖
μ = (k0 − μ, k3), and sgn

(
ef

)
distinguishes the contributions from u and d quarks. The 

LLL propagator GLLL(k) must satisfy

G−1
LLL(k)GLLL(k) = GLLL(k)G−1

LLL(k) = I, (52)

and it can be proposed as

GLLL(k) = AB

detG−1
LLL(k)

(53)

with

A = −γ 5G−1
LLL(k)γ 5

= γ
μ
‖ (k̃‖

μ + sgn
(
ef

) q

2
δμ3γ

5) + m (54)

After multiplying

G−1
LLL(k) · A = (k̃2‖ + q2

4
− m2)I + 2sgn

(
ef

) q

2
k̃0(iγ

1γ 2), (55)

it is easy to check that

B = (k̃2‖ + q2

4
− m2)I − 2sgn

(
ef

) q

2
k̃0(iγ

1γ 2), (56)

substituted in (53) makes GLLL(k) to satisfy (52).
Then, substituting with (54) and (56) in (53) we obtain

GLLL(k) = γ
μ
‖ k̃+

μ + m

(k̃+
0 )2 − ε2

	(+) + γ
μ
‖ k̃−

μ + m

(k̃−
0 )2 − ε2

	(−), (57)

where k̃±
μ = (k0 − μ ± sgn

(
ef

) q
2 , 0, 0, k3), γ

‖
μ = (γ0, 0, 0, γ3) and ε =

√
k2

3 + m2 and the spin 

projectors are given by 	(±) = (I ± iγ 1γ 2)/2.
Keeping in mind that the quarks in the LLL have only one spin projection (parallel/antiparallel 

to the field for positive/negative charged quarks), and that we have taken B in the positive z
direction, we can write the LLL propagator of flavor f as

G
f
LLL(k) = GLLL(k)	(sgn

(
ef

)
), (58)

with the spin projector denoted by 	(sgn
(
ef

)
) = (1 + sgn

(
ef

)
iγ 1γ 2)/2.

6.2. LLL electric charge and currents

At finite temperature, the tadpole diagram contributes to the LLL ordinary four-current density 
of each flavor as

J
μ
LLL(sgn

(
ef

)
) = (ief )

|ef B|NcT

(2π)2

∞∑
n=−∞

∞∫
−∞

dk3tr
[
iγ μGE

LLL(k)
]
, (59)

where all the quantities must be understood to be in the Euclidean space, so that the index μ =
(1, 2, 3, 4), γ μ = γμ are the Euclidean gamma matrices, GE

LLL(k) is the propagator (57) after 
changing to Euclidean variables, and k4 = (2n+1)π .
β
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Taking the trace we have

trγ4[γ4(k4 + i(μ − q/2)) + γ3k3 − m]	(±) = −2[k4 + i(μ − q/2)], (60)

trγ1,2[γ4(k4 + i(μ − q/2)) + γ3k3 − m]	(±) = 0, (61)

trγ3[γ4(k4 + i(μ − q/2)) + γ3k3 − m]	(±) = −2k3. (62)

It is clear that the LLL does not contribute to the ordinary electric current density, since 
J

1,2
LLL = 0, due to the zero trace (61), and J 3

LLL is also zero after integrating in k3.
On the other hand, the LLL ordinary Euclidean electric charge density is

J 4
LLL(sgn

(
ef

)
) = ef |ef B|NcT

2π2

∑
k4

∞∫
−∞

dk3
k4 + i(μ − q/2)

[k4 + i(μ − q/2)]2 + ε2 . (63)

We can now carry out the Matsubara sum in (63) and use J 4 = −iJ 0 to find the LLL ordinary 
electric charge density

J 0
LLL(sgn

(
ef

)
) = −ef |ef B|Nc

2π2

∞∫
−∞

dk3 [nF (ε + μ − q/2)

−nF (ε − μ + q/2)], (64)

where nF (x) = [1 + exp(βx)]−1 is the Fermi-Dirac distribution.
Taking the zero-T limit, integrating, and summing in flavor, we find that the LLL contribution 

to the ordinary electric charge density in the medium is

J 0
LLL =

∑
f

J 0
LLL(sgn

(
ef

)
) (65)

= e2B

2π2

√
(μ − q/2)2 − m2[�(μ − q/2 − m) − �(q/2 − μ − m)]

Notice that this result is not the same as the anomalous electric charge density (39), hence 
it does not cancel the anomalous contribution in the Maxwell equation. Only if we would put 
m = 0 in (65), meaning setting the condensate amplitude to zero, the anomalous electric charge 
density will be canceled by (65) in Eq. (36). In such a situation, the resulting LLL contribution 
to the net electric charge density reduces to e2B

2π2 μ, a non-anomalous term which, as expected, 
is independent of q since no physical quantity should depend on q when there is no MDCDW 
condensate.

Finally, since the Maxwell equation (37) contains an anomalous Hall current, it is important 
to investigate if it can be canceled out by an ordinary Hall current. However, before we tackle 
this problem, it is convenient to establish a simple formula to extract the Hall conductivity from 
the electric charge density, when the last one is linear in the magnetic field.

Consider an electric charge density linear in the magnetic field J 0 = σBz, with B pointing 
along z and σ some function of the condensate parameters and the chemical potential but inde-
pendent of the electromagnetic field. Such an electric charge contributes to the effective action 
with a term 

∫
dtdV A0J

0. We then can write
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∫
dtdV A0J

0 =
∫

dtdV A0σBz =
∫

dtdV A0σ(∂yAx − ∂xAy)

=
∫

dtdV (EyσAx − ExσAy)

=
∫

dtdV (JHall
x Ax + JHall

y Ay) (66)

where JHall
x = σEy , JHall

y = −σEx are Hall currents in the x and y direction respectively with 
Hall conductivity σxy ≡ σ , and we assumed static fields.

One can then obtain the Hall conductivity as

σxy = ∂J 0

∂B
, (67)

which is known as the Strěda formula [53]. Applying this formula to the electric charge density 
(65), the LLL contribution to the ordinary Hall conductivity is

σord
xy = ∂J 0

LLL

∂B
= e2

2π2

√
(μ − q/2)2 − m2[�(μ − q/2 − m) − �(q/2 − μ − m)] (68)

which leads to the LLL ordinary Hall current Jord
LLL = (σ ord

xy Ey, −σord
xy Ex, 0). Clearly, Jord

LLL does 
not cancel out the anomalous current (40).

Likewise, the anomalous Hall conductivity can be found either from the anomalous charge

σanom
xy = ∂J 0

anom

∂B
= e2

4π2 q, (69)

or directly from the anomalous Hall current Janom given in (40). As J 0
anom is due to the LLL, so 

is σanom
xy , thereby underlining once again the LLL origin of Janom.

6.3. LLL quark number density

In this subsection, we would like to find the ordinary quark number density directly from 
the thermodynamic potential, and also use it to obtain the ordinary electric charge density, so to 
check the result (65) with an independent method.

With this goal, we start from the thermodynamic potential of the MDCDW phase in the one-
loop approximation

� = �vac(B) + �anom(B,μ) + �μ(B,μ) + �T (B,μ,T ) + m2

4G
. (70)

Here �vac is the vacuum contribution; �anom is the anomalous contribution, extracted from 
the LLL part of the medium term after proper regularization [29]; �μ is the zero-temperature 
medium contribution and �T the thermal part. For a single quark flavor they are

�
f
vac = 1

4
√

π

Nc|ef B|
(2π)2

∞∫
−∞

dk
∑
lξε

∞∫
1/�2

ds

s3/2 e−s(E)2
(71)

�
f
anom = −Nc|ef B|

2 qμ (72)

(2π)
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�f
μ = −1

2

Nc|ef B|
(2π)2

∞∫
−∞

dk
∑
ξ,l>0

2[(μ − E)�(μ − E)]|ε=+ + �f LLL
μ (73)

�
f
T = −1

2

Nc|ef B|
(2π)2

∞∫
−∞

dk
∑
lξε

ln
(

1 + e−β(|E−μ|) (74)

with E the energy modes (9) and (10), and

�f LLL
μ = −1

2

Nc|ef B|
(2π)2

∞∫
−∞

dk
∑

ε

(|E0 − μ| − |E0|)reg (75)

= −Nc|ef B|
(2π)2

{[
Q(μ) + m2 ln

(
m/R(μ)

)]
�(q/2 − μ − m)�(q/2 − m)

−
[
Q(0) + m2 ln

(
m/R(0)

)]
�(q/2 − m)

+
[
Q(μ) + m2 ln

(
m/R(μ)

)]
�(μ − q/2 − m)

−
[
Q(0) + m2 ln

(
m/R(0)

)]
�(μ − q/2 − m)�(−q/2 − m)

}
,

the LLL contribution to the medium part. Here, we introduced the notation

Q(μ) = |q/2 − μ|
√

(q/2 − μ)2 − m2, Q(0) = |q/2|
√

(q/2)2 − m2

R(μ) = |q/2 − μ| +
√

(q/2 − μ)2 − m2, R(0) = |q/2| +
√

(q/2)2 − m2

Notice that �f
anom favors a nonzero modulation q , as it decreases the free-energy of the sys-

tem. We recall that such a term exists thanks to the asymmetry of the LLL modes.
The quark number density can be found from the derivative of � with respect to the baryon 

chemical potential. At T = 0, the quark number density of each flavor has two contributions, one 
anomalous

ρanom
f = −∂�

f
anom

∂μ
= Nc|ef B|

(2π)2 q, (76)

which arises only from the LLL and coincides with (49), and one ordinary, obtained from

ρord
f = −∂�

f
μ

∂μ
(77)

Since we are interested in the LLL contribution to the ordinary quark number density, we can 
use (75) to show that

ρord
f LLL = −∂�

f LLL
μ

∂μ
(78)

= −Nc|ef B|
2

[
2
√

(q/2 − μ)2 − m2[�(q/2 − μ − m) − �(μ − q/2 − m)]
]

(2π)
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After summing in flavor we find

ρord
LLL = 3|eB|

2π2

√
(μ − q/2)2 − m2[�(μ − q/2 − m) − �(q/2 − μ − m)]. (79)

Just as we did for the anomalous charge, we can similarly obtain the ordinary LLL electric 
charge from

J 0
LLL =

∑
ef

ef ρord
f LLL (80)

= e2B

2π2

√
(μ − q/2)2 − m2[θ(μ − q/2 − m) − θ(q/2 − μ − m)].

As expected, this result reproduces the expression (65) that was calculated directly from the 
tadpole diagrams.

7. Magnetoelectricity in the MDCDW phase

The MDCDW phase exhibits linear magnetoelectricity. This can be seen by defining the D
and H fields as

D = E − κθB, H = B + κθE (81)

and then rewriting the Maxwell equations (36) and (37) in terms of the fields in the MDCDW 
medium,

∇ · D = J 0, ∇ × H − ∂D
∂t

= J (82)

Physically this means that a magnetic field induces an electric polarization P = −κθB and 
an electric field induces a magnetization M = −κθE. This is possible because, as seen from 
(81)–(82), the MDCDW ground state breaks P and T-reversal symmetries. The magnetoelectric-
ity here is different from the one found in the magnetic-CFL phase of color superconductiv-
ity [54], where P was not broken and the effect was a consequence of an anisotropic electric 
susceptibility [55], so it was not linear.

The anomalous Hall current can then be found from an effective, medium-induced, magnetic 
current density ∇ × M due to the space-dependent anomalous magnetization coming from the 
axion term.

8. Anomalous transport in the MDCDW phase

The MDCDW phase exhibits quite interesting properties. The most important is the existence 
of the dissipationless anomalous Hall current (40) perpendicular to E and to the modulation 
vector q, which in turn is parallel to B. We already proved that the anomalous Hall conductivity 
is given by

σanom
xy = e2q/4π2 (83)

Its anomalous character is reflected in the fact that it does not depend on the fermion mass m, 
consistent with the nondissipative character of the anomalous Hall current.

The same expression of the anomalous Hall conductivity has been found in WSM [49], where 
the role of the modulation parameter q is played by the separation in momentum of the Weyl 
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nodes. A similar Hall conductivity can appear also at the boundary between a topological and 
a normal insulator [56] when there is an electric field in the plane of the boundary. However, 
in the topological insulator case, the anomalous Hall conductivity is discrete because the axion 
field θ jumps from 0 to π in the surface of the two insulators. Our results are also connected 
to optical lattices, as 3D topological insulators have been proposed to exist in 3D optical lat-
tices [57].

It is worth to point out the relevance of these results for neutron stars [58]. If the quark density 
in neutron stars is high enough to accommodate MDCDW matter threaded by a poloidal mag-
netic field, then, any electric field present in the medium, whether due to the anomalous electric 
charge or not, and as long as it is not parallel to the magnetic field, will lead to dissipation-
less Hall currents in the plane perpendicular to the magnetic field. The existence of this kind of 
current could serve to resolve the issue with the stability of the magnetic field strength in mag-
netars [59]. In another direction, it will be important to understand if this new magneto-transport 
property can significantly affect the thermal and electric conductivity producing a tangible sep-
aration between the transport properties of compact stars formed by neutrons or by quarks in 
the MDCDW phase. We underline that the condition of electrical neutrality does not need to 
be satisfied locally for compact hybrid stars [60], which could have a core in the MDCDW 
phase with an anomalous charge contribution and Hall currents circulating inside and at the sur-
face. These and other questions highlight the importance to explore which observable signatures 
could be identified and then used them as telltales of the presence of the MDCDW phase in the 
core.

The anomalous Hall current could be also produced in future HIC like those planned at the 
Nuclotron-based Ion Collider Facility (NICA) at Dubna, Russia [23] and at the Facility for An-
tiproton and Ion Research (FAIR) at Darmstadt, Germany [22], which will explore the high 
density, cold region of the QCD phase map, and where event-by-event off-central collisions will 
likely generate perpendicular electric and magnetic fields [61]. It will be interesting to carry out 
a detailed quantitative analysis of how these currents could lead to observable signatures, even 
after taking into account that there the QGP distributes itself more as an ellipsoid than as an 
sphere about the center of the collision. The Hall currents will tend to deviate the quarks from 
the natural outward direction from the collision center and one would expect a different geom-
etry of the particle flow in the MDCDW phase compared to other dense phases that have no 
anomalous electric current. The realization of the MDCDW phase in the QGP of future HIC 
experiments is likely viable because the inhomogeneity of the phase is characterized by a length 
	x = h̄/q ∼ 0.6 fm for q ∼ μ = 300 MeV [29], much smaller than the characteristic scale 
L ∼ 10 fm of the QGP at RHIC, NICA, and FAIR, while the time scale for this phase will be the 
same as for the QGP.

Other interesting effects might emerge by considering the fluctuations δθ of the axion field. If 
one goes beyond the mean-field approximation, there will be mass and kinetic terms of the axion 
field fluctuation. Besides, due to the background magnetic field, the axion fluctuation couples 
linearly to the electric field via the term κδθE · B, so the field equations of the axion fluctuation 
and the electromagnetic field will be mixed, giving rise to a quasiparticle mode known as the 
axion polariton mode [62]. The axion polariton mode is gapped with a gap proportional to the 
background magnetic field. This implies that electromagnetic waves of certain frequencies will 
be attenuated by the MDCDW matter, since in this medium they propagate as polaritons. The 
axion polariton could be useful to design a way to probe the presence of the MDCDW phase in 
future HIC experiments at high baryon densities, due to its effect in the attenuation of certain 
light frequencies when light is shined through the collision region.
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9. Concluding remarks

In this paper we studied the topological effects of the MDCDW phase, which could be one of 
the phases of cold-dense quark matter in a magnetic field. We showed that the system exhibits an 
anomalous charge that depends on the applied magnetic field and the modulation of the particle-
hole condensate. The topological nature of the electric charge can be traced back to the spectral 
asymmetry of the LLL modes. The spectral asymmetry is also responsible for an anomalous 
non-dissipative Hall current that depends on the modulation parameter.

We call the reader’s attention to an interesting connection between ultraviolet (UV) and in-
frared (IR) phenomena in the MDCDW phase. The appearance of �anom in the thermodynamic 
potential (71) is a consequence of the regularization of the high-energy modes in the difference 
of two ill-defined sums from which the anomalous and the finite medium contributions are ex-
tracted [29]. Since the anomalous term contributes to the gap equation for q , whose origin is 
IR because it comes from the quark–hole pairing, we have that the UV physics affects the IR 
properties of the system.

The results we are reporting can have significance for HIC physics and neutron stars. Future 
HIC experiments, that will take place at lower temperatures and higher densities, will certainly 
generate strong magnetic and electric fields in their off-central collisions and will open a much 
more sensitive window to look into a very challenging region of QCD. For example, the Com-
pressed Baryonic Matter (CBM) at FAIR [22] have been designed to run at unprecedented 
interaction rates to provide high-precision measures of observables in the high baryon density 
region. That is why it is so timing and relevant to carry out detailed theoretical investigations of 
all potential observables of the MDCDW phase. Therefore, we hope that our findings will serve 
to stimulate quantitative studies to identify signatures of the anomalous effects here discussed in 
the future HIC experiments.

Interestingly, the anomalous effects of the MDCDW phase share many properties with simi-
lar phenomena in condensed matter systems with non-trivial topologies as topological insulators 
[56], where θ depends on the band structure of the insulator; Dirac semimetals [63], a 3D bulk 
analogue of graphene with non-trivial topological structures; and WSM [35], where the deriva-
tive of the angle θ is related to the momentum separation between the Weyl nodes. Countertop 
experiments with these materials can therefore help us to gain useful insight of the physics gov-
erning the challenging region of strongly coupled QCD, thereby inspiring new strategies to probe 
the presence of the MDCDW phase in neutron stars and HIC.

An important question that should be tackled in detail in the near future is the stability of 
the MDCDW phase. Can the MDCDW phase be erased by the fluctuations of the condensate 
at arbitrary small temperatures, as known to occur in the real kink crystal phase [64] or in the 
DCDW phase [65]? We anticipate that the answer is no. Let us explain why. In the DCDW phase, 
the energy spectrum of the Nambu–Goldstone fields has soft-energy modes in the transverse mo-
menta that produce infrared divergencies and hence erase the long-range order of the condensate 
at any finite temperature [65]. The problematic fluctuations are of two types. One is a mix of the 
phonon and the chiral fluctuation in the third internal direction. The corresponding Goldstone 
boson is electrically neutral. The other consists of chiral fluctuations in the internal directions 1 
and 2. These fluctuations are electrically charged. For the neutral fluctuation we expect that, just 
as was argued in the appendix of [64], the external magnetic field should qualitatively modify 
the dispersion of the phonon/chiral mix in such a way that it will be linear in all the directions, 
thus eliminating the infrared divergences. On the other hand, for the charged fluctuations the 
modification of the dispersion should be due to the fact that they couple with the background 
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magnetic field through the covariant derivative. Similarly to what we proved several years ago 
for the charged fluctuations in the Magnetic CFL phase [66], the dispersions of the charged fluc-
tuations in the MDCDW phase must acquire a field-dependent mass because in the presence of 
the magnetic field the chiral symmetry is explicitly reduced to the subgroup U(1)L × U(1)R , so 
there are no charged Goldstone bosons.
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