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Physics lab courses are an essential part of the physics undergraduate curriculum. Learning goals for these
classes often include the ability to interpret measurements and uncertainties. The Physics Measurement Ques-
tionnaire (PMQ) is an established open-response survey that probes students’ understanding of measurement
uncertainty along three dimensions: data collection, data analysis, and data comparison. It classifies students’
reasoning into point-like and set-like paradigms, with the set-like paradigm more aligned with expert reasoning.
In the context of a course transformation effort at the University of Colorado Boulder, we examine over 500 stu-
dent responses to the PMQ both before and after instruction in the pre-transformed course. We describe changes
in students’ overall reasoning, measured by aggregating four probes of the PMQ. In particular, we observe large
shifts towards set-like reasoning by the end of the course.

I. INTRODUCTION

There is interest nationally in improving physics lab
courses [1], yet they remain under-studied compared to lec-
ture classes [2]. Proficiency with measurement and data anal-
ysis have been recently identified in national reports as im-
portant learning outcomes for physics lab courses [3, 4]. An
understanding of measurement uncertainty is critically tied to
these learning outcomes. Furthermore, measurement uncer-
tainty has been identified by physics faculty at our own insti-
tution as an important learning goal in the context of an ongo-
ing course transformation of the introductory lab class at the
University of Colorado Boulder (CU).

Several assessments have been developed to study students’
understanding of measurement uncertainty in physics lab
classes, including the Concise Data Processing Assessment
(CDPA), the Laboratory Data Analysis Instrument (LDAI),
and the Physics Measurement Questionnaire (PMQ). The
CDPA was developed to measure student understanding of
both measurement uncertainty and mathematical models of
measured data [5]. Subsequent work using the CDPA has
focused on the use of scaffolding in instruction [6] and gen-
der differences in physics labs [7]. The LDAI was developed
more recently to assess data analysis skills within the context
of a single lab report, and highlights measurement uncertainty
in that context [8]. The CDPA and LDAI are both multiple
choice assessments. This work uses the Physics Measure-
ment Questionnare (PMQ) [9, 10], which uses open-ended re-
sponses for greater insight into student reasoning.

The PMQ was developed by researchers at the University of
Cape Town, South Africa and the University of York, United
Kingdom. Foundational work in Cape Town provided a the-
oretical basis for lab course design around measurement un-
certainty [11], highlighting the difference between conceptual
understanding and procedural abilities, and finding that stu-
dents can have one but not necessarily the other [9]. Later
work showed that while traditional courses improved proce-
dural performance, only a small fraction of students exhib-
ited a deeper conceptual understading after instruction [10].
The PMQ has also been used at Uppsala University, Sweden,
showing that a lab course about measurement yielded mixed

results in students’ ability to appropriately use ideas about un-
certainty [12]. In the United States, the PMQ has also been
used at the University of Maryland College Park [13, 14] and
at North Carolina State University [15], both showing signifi-
cant gains in understanding of measurement uncertainty after
completion of research-based courses.

The PMQ consists of several questions, or probes, con-
cerning three aspects of understanding measurement uncer-
tainty: data collection, data analysis, and data comparison.
Each probe comprises a decision about measurement uncer-
tainty (usually posed as a multiple choice question) and an
open-response text box for justifying or explaining that deci-
sion. Here we focus on four probes: repeating measurements
(RD), which probes data collection; using repeated measure-
ments (UR), which probes data analysis; and comparing same
means with different spread (SMDS) and comparing different
means with the same spread (DMSS), which both probe data
comparison. See Ref. [10] for a more complete description of
each probe.

The PMQ was designed to classify student reasoning into
two broad paradigms: point-like and set-like. Buffler et al.
[16] defined these paradigms as follows. Point-like reasoning
stems from the idea that a single measurement can yield the
“true value” of a physical quantity. It often results in indi-
vidual measurements being considered independently of each
other. In contrast, set-like reasoning recognizes that no indi-
vidual measurement yields the true value, and that multiple
measurements will form a distribution. The set-like paradigm
is more aligned with expert-like reasoning.

In this work, we study students’ understanding of measure-
ment uncertainty in the context of an introductory lab physics
course at CU. We focus on two central research questions: (i)
Can the PMQ provide significant signals that are sensitive to
the range of student understanding in a large introductory lab
physics course at our, or a similar, institution? and (ii) How
well does our traditional physics introductory lab course teach
measurement uncertainty concepts probed by the PMQ? Our
findings will inform ongoing course transformation work, and
form a baseline for studying the transformed course.
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II. CONTEXT AND METHODS

This work focuses on the population of students that took
a large-enrollment stand-alone introductory lab course at CU
during Fall 2016. The course is typically taken by students
in their second semester of study, after completion of an in-
troductory course on mechanics, and taken concurrently with
an introductory course on electricity and magnetism. For all
of these students, this was their first physics lab class at CU.
Of all the students enrolled in the introductory lab course be-
tween 2004 and 2014, 76% were male and 24% were female;
74% were white, 9% were Asian-American, 8% belonged to
an underrepresented racial/ethnic group in physics in the US,
and 4% were international students [17]. In Fall 2016, 8%
of students in the course were physics majors, 63% were en-
gineering majors (excluding engineering physics), 18% were
non-physics science and math majors, and 11% were majors
in other disciplines.

The course is structured as a series of six two-week lab ac-
tivities. Activities cover a range of topics in mechanics, elec-
tricity and magnetism, and other areas of physics. Students
write lab reports after completing each activity. The course
also includes a 50 minute weekly lecture with clicker ques-
tions, homework assignments on error analysis, and pre-lab
questions. It does not have a midterm or a final exam.

In this study, the PMQ was administered electronically at
the beginning and the end of an introductory physics lab
course described above. Both the pre-test and the post-test
acted as in-class assignments in the course, graded only for
participation and constituting a combined 2% of the final
course grade. Of the 588 students who completed the course,
525 completed both the pre- and post-tests and formed the
data set for our analysis.

Student open-ended responses were initially coded by one
of the authors (R.H.) using an expanded version of the code-
book developed by Volkwyn et al. [18]. These codebooks in-
cluded a separate set of codes for each probe. The codes take
into account both the multiple choice answer and the open-
response explanation. Additional emergent codes were added
to Volkwyn’s set during the initial coding process. After the
responses were coded, the research team collaboratively as-
signed a paradigm designation to each code that was indica-
tive of the type of reasoning used: either P for point-like, S
for set-like, or N for neither. The N designation encompassed
reasoning that did not fit into the point-set paradigms, as well
as responses that were off-topic, uninterpretable, or too vague
to determine the underlying reasoning of the student. A single
response could be assigned multiple codes, however almost
all of the responses fell within a single paradigm. The few
responses (2.5% of responses to all pre- and post-test probes)
with multiple codes that mapped to multiple paradigms were
counted as N.

To determine the reliability of our paradigm assignments,
a test of inter-rater reliability was performed for each probe.
A random subset of 10% of the pre-test responses was coded
independently by another one of the authors (B.P.), and the as-
sociated paradigms for each response were then compared to
the paradigms from the first rater. Two measures of inter-rater

TABLE I. Definitions of overall student paradigms.

Student paradigm Number of P’s Number of S’s

point-like ≥ 1 0
set-like 0 ≥ 1
mixed ≥ 1 ≥ 1
mixed 0 0

agreement were computed. The percent agreement was 78%,
and the Cohen’s kappa statistic was 0.63, indicating “substan-
tial agreement” [19, 20].

To measure overall student understanding of measurement
uncertainty, we count the number of P or S responses a student
gave to each of the four probes used from the PMQ. Addition-
ally, in order to simplify interpretation of the overall trends
in our data set, we developed a well-defined method of com-
bining the paradigm designations from the individual PMQ
probes into a single paradigm designation for a student over-
all. Assigning overall student paradigms has also been done
in previous studies using the PMQ at Cape Town and at Mary-
land [10, 13]; studies at Uppsala [12] and North Carolina [15]
did not assign paradigms to students overall. Here, we refer
to the overall student paradigms as point-like and set-like, us-
ing italics to differentiate these coding designations from the
more general and conceptual idea of point-like or set-like rea-
soning.

Our method was as follows, and is also summarized in Ta-
ble I. If a student’s responses to the four probes from the
PMQ (for either the pre-test or the post-test) included P but
no S designations, we classified that student as point-like (for
the pre-test or the post-test). Within one standard deviation,
our average point-like student had about 1–3 P responses. If a
student’s responses included S but no P designations, we clas-
sified that student as set-like. Our average set-like student had
about 2–4 S responses. If a student’s responses included both
P and S designations, we classified that student as mixed. And
finally, if a student’s responses were exclusively designated
as N, with no P or S responses, we classified that student as
mixed as well. However, that final case occurred only twice
in the entire data set, once in the pre-test and once in the post-
test, albeit from different students. Our average mixed student
had about 1–2 P responses and about 1–3 S responses.

We used two measures of significance when comparing data
in this study to investigate changes between the pre-test and
post-test distributions of student paradigms: the nonparamet-
ric Mann-Whitney U-test at the 5% significance level as a test
of statistical significance [21], and the variance of the multino-
mial distribution as an indicator of practical significance. We
used Mann-Whitney on distributions produced by three differ-
ent ways of measuring student understanding: by counting the
number of P responses for each student, by counting the num-
ber of S responses for each student, or by treating each overall
student paradigm (point-like, set-like, or mixed) as a distinct
entity. We used the variance of the multinomial distribution to
calculate uncertainties in the fraction of students with a given
paradigm. We used the variance, normalized to the number
of students in the population, to calculate the 95% confidence
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FIG. 1. Overall understanding of measurement uncertainty by over-
all student paradigm for both the pre-test and the post-test. Error
bars show 95% confidence interval. By treating the overall student
paradigms together as a single distribution, the pre-test and post-test
distributions are statistically different (p � 0.01).

interval.

III. RESULTS AND DISCUSSION

Figure 1 shows the distribution of overall student paradigms
both before and after instruction. We see a significant change
in paradigm distribution after instruction (p � 0.01), with an
increase in the percentage of students coded as set-like and
a decrease in the percentage of those coded as point-like and
mixed. Furthermore, there were very few overall point-like
students in both the pre-test and the post-test. This low inci-
dence of consistent point-like reasoning is similar to results
from Maryland [13], but contrasts with previous studies us-
ing the PMQ in Cape Town [9, 11]. As our coding scheme
is based on the same codebook used in those other studies,
we believe that these comparisons are not due to coding dif-
ferences, but rather indicative of differences between student
populations. The student populations and institutional con-
texts in Cape Town differ in many ways from Colorado and
Maryland, the latter two of which are predominantly white,
large, selective R1 institutions with large physics programs
in the United States. Nonetheless, we measure a statistically
and practically significant decrease in the percentage of stu-
dents coded as point-like after instruction at CU. Moreover,
the prevalence of mixed students suggests that most students
come in with an inconsistent and context-dependent under-
standing of measurement uncertainty, and that such mixed un-
derstandings remain for a considerable number of students af-
ter instruction.

To further explore how students’ understanding shifted dur-
ing instruction, we show a two-dimensional histogram of
overall student paradigms in Fig. 2. Each bar represents the
subpopulation of students that started in a specific paradigm
for the pre-test, and then ended in a specific paradigm for
the post-test. Since our population was dominated by stu-
dents showing set-like or mixed reasoning, we focus on those

FIG. 2. Shifts in overall student understanding of measurement un-
certainty between pre-test and post-test by overall student paradigm.

paradigms here. To better understand the changes in un-
derstanding that led to these shifting distributions in overall
paradigm, we look for significant changes between pre-test
and post-test. We also calculate the average change in the
number of P and S responses for each prominent subpopula-
tion in Fig. 2.

The populations of students that did not change their overall
paradigm, either remaining set-like or remaining mixed after
instruction, did not have significantly different numbers of in-
dividual S responses between pre-test and post-test (p = 0.31
for set-like and p = 0.09 for mixed). However, the popula-
tions of students who did change their overall paradigm, from
set-like to mixed or mixed to set-like, had significantly dif-
ferent numbers of individual S responses between pre-test and
post-test (p � 0.01 in both cases). The students who switched
from mixed to set-like had an average shift in the number of
individual S responses of 0.97 ± 0.09 and an average shift in
the number of P responses of -1.09 ± 0.05, gaining one S re-
sponse and losing one P response on average. Similarly, the
students who switched from set-like to mixed had an average
shift in the number of individual S responses of -0.82 ± 0.15
and an average shift in the number of P responses of 1.09 ±
0.09, losing one S response and gaining one P response on
average.

Lastly, we note a limitation to our analysis at the level
of overall student paradigms. While this approach gives
a comprehensive picture of general student understanding,
the prevalence of mixed reasoning suggests that there are
marked differences in students’ understanding between indi-
vidual probes. A deeper look probe-by-probe, both compar-
ing probes to each other and looking at pre-post shifts on a
probe-by-probe basis, would yield insight not captured by the
analysis presented here. We have begun such an analysis, as
presented in a companion proceedings paper [22].
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IV. CONCLUSIONS AND OUTLOOK

This work answers two overall research questions, as dis-
cussed above. With regard to question (i), we find that the
PMQ produces significant signals in the context of a large
introductory lab physics course at CU. It captures a variety
of overall paradigms of students’ understanding of measure-
ment uncertainty. Furthermore, it shows statistically signifi-
cant shifts towards more expert-like reasoning between pre-
test and post-test distributions. Additionally, there are notable
differences between results from our student population and
those measured in previous PMQ studies, in particular a very
low incidence of consistently point-like reasoning both before
and after instruction. Despite the low number of consistent
point-like reasoners, the PMQ nevertheless provides useful
information for a large standalone lab course at an R1 uni-
versity in the US. Student populations with different levels of
preparation compared to CU students may include a different
fraction of consistent point-like reasoners prior to instruction.
Nonetheless, developing new probes, or modifying existing
ones, could improve signals from the PMQ when used at CU
or similar institutions.

With regard to question (ii), using the PMQ, we measure
significant shifts towards set-like reasoning after instruction

in our traditional physics introductory lab course. However,
the majority of our students initially show an inconsistent
understanding of set-like concepts across individual probes
of the PMQ, and a sizable fraction of them continue to show
such inconsistency after instruction. These results establish
a baseline that we will use to inform and evaluate our
introductory lab course transformation. Future investigation
will verify whether these trends hold in additional semesters.
Furthermore, looking in detail at individual PMQ probes
will help us to understand which aspects of uncertainty yield
shifts, either positive or negative, after instruction. This infor-
mation could aid in designing instructional approaches that
leverage the existing set-like concepts that students bring into
our class, and move students towards more consistent expert
reasoning. In this way, our subsequent course transformation
will perhaps yield greater shifts towards set-like reasoning,
and more consistent reasoning across different aspects of
measurement uncertainty.
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