Student reasoning about measurement uncertainty in an introductory lab course
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Proficiency with calculating, reporting, and understanding measurement uncertainty is a nationally recognized
learning outcome for undergraduate physics lab courses. The Physics Measurement Questionnaire (PMQ) is a
research-based assessment tool that measures such understanding. The PMQ was designed to characterize
student reasoning into point or set paradigms, where the set paradigm is more aligned with expert reasoning.
We analyzed over 500 student open-ended responses collected at the beginning and the end of a traditional
introductory lab course at the University of Colorado Boulder. We discuss changes in students’ understanding
over a semester by analyzing pre-post shifts in student responses regarding data collection, data analysis, and

data comparison.

I. INTRODUCTION AND MOTIVATION

Undergraduate physics lab courses provide students with
opportunities to develop and practice experimental physics
skills that are essential for many professional researchers.
Such skills include data analysis and visualization, as well as
the ability to compute and understand uncertainties [1]. In-
deed, there is a national need for college graduates with these
and other skills in a wide variety of physics and engineering
career pathways [2, 3]. However, compared to lecture-based
instruction, there is relatively little research on lab courses [4],
and additional work is needed to identify effective teaching
practices in these environments. In this paper, we describe an
important aspect of a research-based transformation of PHYS
1140, a large-enrollment stand-alone introductory lab course
at the University of Colorado Boulder (CU). In particular, we
focus on establishing baseline data for pre-post shifts in stu-
dents’ understanding of measurement uncertainty, a learning
outcome that has been identified as important by the faculty
involved in the transformation process.

In our transformation effort, we rely on point and set
paradigms to characterize student understanding of measure-
ment uncertainty. Developed by researchers at the Univer-
sity of Cape Town and the University of York [5, 6], these
paradigms describe two opposing ideas about uncertainty. A
student using point-like reasoning believes that a single mea-
surement can yield the “true value” of a physical quantity,
while a student using set-like reasoning recognizes that no in-
dividual measurement yields the true value. Point-like reason-
ers consider individual measurements independently of each
other, while set-like reasoners consider a distribution of mea-
surements with an associated mean and spread [7]. One of
the main goals for the transformed lab course is to support stu-
dents in developing a set-like understanding of measurement
uncertainty, which is associated with expert-like understand-
ing.

We use the Physics Measurement Questionnaire (PMQ) [5,
8] to classify student reasoning into the point or set paradigm.
The PMQ is a free-response assessment that consists of sev-
eral questions, or “probes.” In this study, we restrict our anal-
ysis to four probes: repeating measurements (RD), using re-
peated measurements (UR), same mean with different spread
(SMDS), and different mean with the same spread (DMSS).

The RD and UR probes were designed to measure students’
understanding of measurement uncertainty in the context of
data collection and data analysis, respectively. The SMDS
and DMSS probes both focus on data comparison. The PMQ
is typically administered before and after instruction, and it
can be used to measure shifts in student understanding from
one paradigm to another.

In this article, we use the PMQ to provide insight into the
effectiveness of PHYS 1140 prior to transformation, i.e., as it
has been traditionally taught for many years. Accordingly, we
explore two related research questions: (i) Which of the four
PMQ probes shows significant shifts in point- or set-like rea-
soning in our traditional lab course? and (ii) Which aspects of
measurement uncertainty probed by the PMQ does our tradi-
tional lab course teach well, and which need to be improved?

II. BACKGROUND

The PMQ was first implemented at the University of Cape
Town [5, 6, 8]. It has since been used at Uppsala Univer-
sity [9], the University of Maryland College Park [10, 11],
and North Carolina State University [12]. In all of these pre-
vious studies, the PMQ has been implemented in introductory
lab courses, and has been used in an evaluative capacity for
traditional or transformed labs. We use the PMQ in a similar
capacity in this study.

The RD, SMDS, and DMSS probes each have four parts:
(1) a prompt that describes a hypothetical scenario from a lab
activity, (ii) two or three statements about the scenario, (iii) a
multiple-choice question asking students to select which state-
ment they agree with most, and (iv) an open-response text box
that students must use to explain their reasoning. The RD
probe describes a single measurement, and students must ex-
plain whether (and how many) additional measurements are
needed. As an example, the SMDS probe is shown in Fig. 1.
The SMDS and DMSS probes both present two tables of five
measurements. For the SMDS probe, the two data sets have
the same mean but different spreads, and students must ex-
plain whether or not one data set is better than the other. For
the DMSS probe, the two data sets have different means but
the same spread, and students must explain whether or not the
data sets are in agreement with one another. The UR probe has
a slightly different format than the other probes: it presents

2017 PERC Proceedings, edited by Ding, Traxler, and Cao; Peer-reviewed, doi:10.1119/perc.2017.pr.056
Published by the American Association of Physics Teachers under a Creative Commons Attribution 3.0 license.
Further distribution must maintain attribution to the article’s authors, title, proceedings citation, and DOIL.

244



Two groups of students compare their results for d obtained by releasing the ball at i = 400 mum.

Their resulrs for five releases are shown below.

Group A Group B
Release d (mm) d (mm)
1 144 141
2 132 160
3 424 410
4 440 424
] 435 440
Average: 435 435
Our results are better. -
They are all between Our results are just 1 think the
424 pum and 444 mm. as good as yours. results of
Yours are spread Our average is the group B are
berween 410 mm Same as yours. berter than
and 460 mm. We both got the results
435 mum for d. of group A.
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FIG. 1. The SMDS probe of the PMQ. Students are asked “With
which group do you most closely agree?”” and given the option to
choose either A, B, or C. They are then prompted to “Explain your
choice.”

one table of five measurements, and asks students to record
a single value as the final result. Students must then explain
their choice in an open-response text box. More information
about PMQ probes can be found in Ref. [8].

For all PMQ probes, students’ written explanations are the
primary data that are analyzed. Qualitative approaches, such
as those described in the following section, allow researchers
to determine whether students’ explanations align with the
point or set paradigms. Statistical methods can then be used
to look for significant differences in students’ reasoning from
pre- to post-instruction. This mixed methods approach is
more time consuming than strictly multiple-choice assess-
ments (e.g., the Concise Data Processing Assessment [13—
15]), but also more informative: students’ written explana-
tions can help researchers understand zow and why students’
reasoning is shifting (or not shifting) on a particular probe.

III. CONTEXT AND METHODS

Participants in this study were students who completed
PHYS 1140 during Fall 2016. Students typically enroll in
PHYS 1140 during their second semester of study, after com-
pleting an introductory mechanics course and while concur-
rently enrolled in an electricity and magnetism course. PHYS
1140 convenes twice per week, once each for lab and lecture.
In the lab portion, students complete six two-week-long ac-
tivities that focus on classical physics phenomena. Students
are responsible for completing pre-lab questions, writing lab
reports, completing homework assignments on error analysis,
and participating in clicker questions during lecture. There are
no exams.

Of the 588 students in our study, 8% were physics ma-
jors, 63% were engineering majors (excluding engineering
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physics), 18% were non-physics science and math majors, and
11% were majors in other disciplines. Most students who
complete PHYS 1140 are white and/or male. For example,
between 2004 and 2014, 76% of the students who completed
the course were men and 24% were women; 74% were white,
9% were Asian American, 8% were members of an under-
represented racial or ethnic group in the US, and 4% were
international students [16].

We administered the PMQ to all PHYS 1400 students both
before and after instruction. The PMQ was treated as an in-
class assignment worth 2% of the final course grade, graded
for participation only. In this article, we focus only on data
generated by the 525 students who completed both the pre-
test and post-test.

We analyzed student responses to the PMQ using four cod-
ing schemes, one each for the RD, UR, SMDS, and DMSS
probes. These schemes were based on codebooks initially de-
veloped by Volkwyn et al. [17] in the context of their work
at the University of Cape Town. To fully capture the range
of responses in our dataset, we expanded these codebooks by
adding additional codes. The research team collaboratively
assigned each code in the codebooks a score of P, S, or N,
depending on whether the code represented point-like reason-
ing, set-like reasoning, or reasoning that did not fit into either
paradigm. An N was also assigned to responses that were off-
topic, difficult to interpret, or had elements of both point- and
set-like reasoning.

All responses were coded by one author (R.H.). Another
author (B.P.) independently coded a random subset of 10%
of the pre-test responses to ensure reliability of the expanded
codebook. To determine the inter-rater reliability of the pro-
cess of assigning P, S, or N codes to student responses, we
computed the percent agreement (78%) and Cohen’s kappa
statistic (0.63). We conclude that there was substantial agree-
ment between the two raters [18, 19].

We looked for differences between pre- and post-test PMQ
scores for each probe. In our analyses, we represented pre-
and post-test score distributions in three ways: first, using
all three possible scores (P, S, or N) per student per probe;
second, using P or not-P scores; and third, using S or not-S
scores. When comparing pre-post distributions, we computed
measures for both statistically and practically significant dif-
ferences. To determine if there were statistically significant
differences between pre- and post-test distributions, we com-
pared the distributions for each probe using the nonparamet-
ric Mann-Whitney U-test at the 5% significance level [20]. To
determine if there were practically significant differences, we
computed the difference in the mean number of P scores be-
fore and after instruction, and we compared those differences
to the 95% confidence interval of the number of pre-test P
scores. We used the variance of the multinomial distribution
to determine 95% confidence intervals. Means and confidence
intervals were normalized by the total number of students in
the population. We repeated this process for S scores.
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FIG. 2. Fraction of students with S or P (filled or open markers and
dashed arrows, respectively) on each of four probes from the PMQ.
Markers represent pre-test means. Ends of arrows represent post-test
means. Shaded boxes represent the 95% confidence interval of pre-
test values. The p values in the legend refer to the result of a Mann-
Whitney U-test of statistical significance between pre- and post-test
distributions, with stars representing significant shifts and circles rep-
resenting no significant differences at the 5% significance level.

IV. RESULTS AND DISCUSSION

Figure 2 illustrates the paradigm assigned to student re-
sponses from each of the four PMQ probes before and after
instruction. The vertical axis represents the four probes we
studied. The horizontal axis represents the fraction of all stu-
dents in our study whose responses to a particular probe were
coded as S or P. Solid markers show the S fraction of the pre-
test, while open markers show the P fraction of the pre-test.
The end of the corresponding arrows show the same fractions
for the post-test data. The shaded boxes represent the 95%
confidence interval of the pre-test data as a measure of prac-
tical significance. Star markers indicate a statistically signifi-
cant shift between pre-test and post-test, while circle markers
indicate no statistically significant difference.

We see a statistically significant difference across all probes
between pre-test and post-test distributions of all paradigms
taken together (p < 0.01 for RD and DMSS, p = 0.01 for
UR, and p = 0.03 for SMDS). We also see a statistically sig-
nificant pre-post difference in whether responses were coded
as P in all probes except SMDS (p < 0.01 for RD and DMSS,
p = 0.01 for UR), whereas the pre-post difference in just the P
paradigm was not significant for the SMDS probe (p = 0.18).
Likewise, for whether the responses were coded as S, we see a
statistically significant difference for DMSS (p < 0.01), but
not for RD (p = 0.37), UR (p = 0.16), and SMDS (p = 0.09).
These findings are represented by markers in Fig. 2, with stars
representing statistically significant shifts.

The first probe, RD, shows low fractions of both S and P
codes in both the pre-test and post-test, with the plurality of
responses coded as N. Furthermore, the significant decrease in
P responses after instruction was not accompanied by a signif-
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icant increase in S responses, meaning that a larger fraction of
student responses fell into the N paradigm after instruction
than before.

We consider two possible interpretations that could be
drawn from this finding, each with different implications for
course transformation. One interpretation is that students
were unable to articulate a consistent reasoning in the context
of data collection at the start of the class, and that their in-
ability to do so increased (on average) after instruction. This
interpretation suggests that our traditional class is failing to
shift students towards more expert-like reasoning about mea-
surement uncertainty in data collection.

An alternative interpretation is that the RD probe is not ef-
fectively prompting many students to use reasoning aligned
with the point-set paradigms. This interpretation is sup-
ported by findings at Uppsala University, where this probe
was shown “not to distinguish among students who are ex-
perienced in the student laboratory at the secondary and in-
troductory university level [9].” The RD probe is the only
PMQ probe that deals with a single data point (as opposed
to sets of two or more measurements). Therefore, it is possi-
ble that this probe elicits a wider scope of ideas than the other
probes, readily prompting reasoning which is outside point-
set paradigms. Further qualitative analysis is needed on re-
sponses to this probe, in particular on the responses coded as
N, to better understand student reasoning.

In contrast, the UR probe shows a high fraction of S codes
and a low fraction of P codes both before and after instruction,
showing that our students come into our class consistently us-
ing expert-like reasoning for data analysis, and that they con-
tinue to do so at the end of the course. This result suggests that
the UR probe provides low signal in our course context, and
does not provide as meaningful a measure of changes in stu-
dents’ understanding of measurement uncertainty compared
to the other probes.

The final two probes (SMDS and DMSS, which concern
students’ ability to compare data sets) show the largest shifts
towards set-like reasoning, though only DMSS shows a sta-
tistically significant increase in S responses after instruction.
Overall, these increases represent larger shifts towards expert-
like reasoning when comparing data sets than when reasoning
about collecting or analyzing data. Furthermore, while DMSS
starts with a smaller fraction of S and a larger fraction of P
compared to SMDS, it also measures a significant decrease
in P after instruction while SMDS does not. The shifts for
DMSS are markedly larger than the other three probes, bring-
ing the DMSS post-test fractions of P and S to roughly the
same levels as the SMDS probe after instruction.

According to Buffler et al. [5], these two probes differ in
how the issue of spreads is presented. The SMDS probe
(which concerns two data sets with the same mean but differ-
ent spreads) “presented the issue of spread explicitly,” requir-
ing students to recognize spread “as a descriptor of the quality
of a set of measurements [5].” In contrast, for the DMSS probe
(which concerns two data sets with different means but the
same spread), “the notion of spread ... needed to be concep-
tualized and applied [5],” suggesting that DMSS treats spread
less explicitly than SMDS. In this light, our data suggest that



students treat spread using set-like reasoning when confronted
with it explicitly, even before instruction, but they are initially
less set-like in their ability to use notions of spread implicitly.
However, after instruction in our traditional course, students
consistently apply concepts related to spread whether those
concepts are contextually explicit or not.

V.  CONCLUSION AND OUTLOOK

These results answer the research questions posed above.
With regard to question (i), which concerns the probes them-
selves, each of the four probes we studied shows statistically
significant pre-post shifts in all paradigms of understanding
taken together, and all show nonzero shifts towards expert-
like reasoning. However, the UR probe shows a high fraction
of set-like reasoning and a low fraction of point-like reasoning
before instruction, providing little room for further improve-
ment. Correspondingly, shifts in the UR probe are of only
marginal practical significance, or not at all. In contrast, RD
and DMSS each show practically and statistically significant
shifts in either point or set paradigms, with DMSS showing
the largest shifts towards S and away from P.

Question (ii) concerns the specific aspects of student un-
derstanding measured by our probes. We see the largest shift
towards more expert-like reasoning when students compare
data sets, in particular when the notion of spread is contextu-
alized only implicitly. In contrast, while we see a significant
decrease in point-like approaches after instruction when stu-
dents reason about data collection, that shift was not accom-
panied by an increase in set-like reasoning. Furthermore, data
collection showed the lowest level of set-like reasoning over-
all, and also a low level of point-like reasoning, which could
suggest that students both start and end unable to articulate
their understanding about this aspect. More analysis is needed
to verify this finding due to the large fraction of responses to
this probe coded as N.

We note a limitation of point-set paradigms in probing stu-

dent understanding of measurement uncertainty. The point-set
paradigms encompass concepts surrounding statistical uncer-
tainty, where the spread of a data set arises from random vari-
ations. Systematic uncertainty, in which uncontrolled varia-
tions tend to skew data in a particular direction, is also an im-
portant aspect of measurement uncertainty, and is not treated
by these paradigms. Therefore, analysis of PMQ data based
on point-set paradigms does not measure student understand-
ing of systematic uncertainty, even if such information is con-
tained in student responses. Nonetheless, point-set analyses
of PMQ data are established as a measure of student under-
standing of statistical uncertainty, and our results should be
considered within that scope.

Despite this limitation, these findings nevertheless provide
guidelines for our ongoing transformation process of the intro-
ductory lab course at CU. Our results suggest that instructors
should highlight concepts of measurement uncertainty in the
context of data collection. One way to do this would be to pro-
vide students with opportunities to make and justify decisions
about whether or not to collect additional data for a given mea-
surement. The results presented here also support maintaining
a focus on data comparison throughout the course.

Lastly, our ongoing work aims to more fully understand
the variations contained within each paradigm classification.
More qualitative analysis is needed to better understand stu-
dents’ thought processes to better encompass the breadth of
student understanding around measurement uncertainty. Fu-
ture work will also focus on characterizing the finer gradations
within set- and point-like reasoning within each aspect probed
by the PMQ.
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