
POSTER: PenJ1939: An Interactive Framework for Design and
Dissemination of Exploits for Commercial Vehicles

Subhojeet Mukherjee
Colorado State University

Subhojeet.Mukherjee@colostate.edu

Noah Cain
Colorado State University

noahcain@rams.colostate.edu

Jacob Walker
Colorado State University

jksctwkr@rams.colostate.edu

David White
Colorado State University
dwhite54@colostate.edu

Indrajit Ray
Colorado State University
Indrajit.Ray@colostate.edu

Indrakshi Ray
Colorado State University

Indrakshi.Ray@colostate.edu

ABSTRACT

Vehicle security has been receiving a lot of attention from both

the black hat and white hat community of late. Research in this

area has already led to the fabrication of different attacks, of which

some have been shown to have potentially grave consequences.

Vehicle vendors and original equipment manufacturers (OEM)s

are thus presented with the additional responsibility of ensuring

in-vehicular communication level security. In this poster paper, we

present a framework, which allows any individual to write, test,

and store exploit scripts which could then be run by any interested

party on in-vehicular networks of commercial vehicles like trucks

and buses.

KEYWORDS

CAN; J1939; Exploit; Script; Development; Interactive; Download

1 INTRODUCTION

Back in the 70’s vehicles were driven purely by physical and me-

chanical interactions. Today, much of the human-mechanical inter-

action is mediated through embedded devices also referred to as

Electronic Control Units (ECU)s. These devices are often intelligent

and can ensure smooth driving, safety and comfort. The computeri-

zation of vehicles has, however, led to the advent of newer exploits

which target these embedded devices and the underlying network

they communicate with. Hackers and security professionals have

shown that embedded networks in passenger cars can be compro-

mised to cause large scale damage [2]. These networks primarily

rely on the Controller Area Network (CAN) protocol for message

exchange. While CAN ensures reliable message delivery across

ECUs, it does not specify how messages on the network are utilized

by ECUs. While passenger vehicles mostly use proprietary specifi-

cations to make such decisions, commercial vehicles use a common

set of standards (SAE J1939 [1]) specified by SAE International.

This makes commercial vehicles increasingly more susceptible to

attacks which target the ubiquitously used SAE J1939 protocol stack.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.

© 2016 Copyright held by the owner/author(s). ISBN 978-1-4503-4946-8/17/10.
DOI: https://doi.org/10.1145/3133956.3138844

Figure 1: SAE J1939 Protocol Stack

Recently, security researchers [5, 6] have shown that attacks can

be launched at different layers of the SAE J1939 protocol stack.

Since commercial vehicles expose almost the same set of attack

surfaces as passenger vehicles, these attacks can be realized using

similar tool-sets and can have severe consequences. In this poster

paper, we present a framework which can be used to develop, test

(on a built-in testbed setup) and store exploits written by any in-

dividual with J1939/CAN or relevant security related experience.

These scripts can then be downloaded by a plethora of interested

individuals including industry professionals, mechanics and garage

technicians, and other tech-savvy users. Eventually, we aim to

create an easily accessible framework which can benefit the heavy

vehicle security community by making exploits accessible readily

and expediently, thereby accelerating the process of penetration

testing.

2 BACKGROUND

CAN [4] is an arbitration-based protocol that facilitates highly

reliable communication over a multi-master broadcast serial bus.

The SAE J1939 [1] protocol runs on top of CAN, i.e. it utilizes the

physical communication standards exposed by the CAN protocol.

The J1939 protocol stack is organized based on the seven layer OSI

networking model. Currently, SAE standards are specified for 4 of

the 7 layers1. These layers are shown in Fig. 1. A J1939 message is

composed by an ECU at the Application layer and transmitted as a

sequence of bits at the Physical/CAN layer after being bundled into

fixed size Protocol Data Units (PDU)s. A typical J1939 PDU consists

of a 29 bit Identifier Field and a 64 bit Data Field. A single J1939

message is uniquely identified using a Parameter Group Number

or PGN. For example, messages related to torque or speed control

1http://www.sae.org/standardsdev/groundvehicle/j1939a.htm

http://www.sae.org/standardsdev/groundvehicle/j1939a.htm


correspond to PGN 0 (000016). Information required to generate
a PGN for a message is embedded in the Identi�er �eld. Vehicle
speci�c parameters are embedded within the Data �eld. When an
ECU receives a J1939 message, it �rst obtains the PGN from the
identi�er �eld. It then refers to the SAE standards [1] to obtain a
set of parameter identi�ers known as Suspect Parameter Numbers
(SPNs) assigned to each PGN. Each SPN is assigned to a set of
a�ributes (starting position , length, resolution, o�set and name)
that can be used to interpret the contents of the Data Field. As an
hypothetical example, in the following bit sequence (representing
the contents on the Data �eld), 00011100...2, SPN 789, starting at bit
position 2 from le� and extending for 4 bit of length, could signify
percentage of torque applied when the decimal equivalent of the
sequence of 4 bits is multiplied by the resolution 0.125% and added
to the o�set 0 i.e 00112*0.12510→ 310 ∗ 0.12510.

3 PENJ1939 FEATURES
PenJ1939 is generally designed as an interactive framework which
can be used by professionals to design and access existing a�acks on
J1939 based networks. However, designing a�acks is o�en accompa-
nied by other helpful and o�en necessary activities like monitoring
bus tra�c, interpreting J1939 messages, etc. With PenJ1939, we
make an e�ort to integrate such features into one framework so
as to ease the process of development and testing of a�acks. Men-
tioned below are the salient features of PenJ1939:-

• Attack Scripting: Currently PenJ1939 allows a�acks to be scrip-
ted in the Python scripting language. We provide a development
interface, which could be used to write python code. As scripts
could sometimes involve threaded executions, we allow users to
split the scripting interface and develop/execute multiple pro-
grams in parallel. Users are also allowed to upload previously
wri�en and tested scripts on the PenJ1939 database.
• Script Testing: Each test script is executed on embedded con-

trollers connected to a physical testbed. Test outputs and associ-
ated errors or warnings are presented to the user in order to aid
in development. To test their scripts, users are required to obtain
access to dedicated node controllers which act as gateways to
the CAN network.

• Library Access: Script developers are also granted access to
modules developed previously. �is is done to avoid redun-
dancy and speed up the process of exploit writing. Currently, all
modules included as a part of a script are stored in the Module
database.

• Tra�c Sni�ng: We provide restricted access (via a TestBed
Manger) to the PenJ1939 experiment testbed. Script writers or
users can test scripts by running their code and observing rele-
vant outputs in hexadecimal format. Obtained outputs can also
be interpreted at runtime using an inbuilt J1939 interpreter. �is
allows users to see actual vehicle parameters, some of which
might be intended targets of the a�ack.

• Script Veri�cation: Scripts being wri�en on or uploaded to
the PenJ1939 framework are passed through a �nal veri�cation
phase before being commi�ed to the database. Albeit some
scripts might not be supported for execution on our testbed. We
still archive such scripts but notify end-users about the status.
Verifying a script only ensures it executes without errors or

warnings. Veri�cation does not ensure the eventual correctness
of the a�ack, i.e. whether it was successful in achieving the �nal
goal.

• Script Annotation: Before exploits are commi�ed to the Pen-
J1939 database, the exploit developers are encouraged to annotate
their scripts with metadata to be used later as search �elds. Cur-
rently, we support the following �elds: a simple Documentation
of what the exploit does, �ve default Tags: J1939 layer, type of
a�ack, a�ected ECUs, PGNs used and SPNs used and Pre-Requisites
like ARM operating systems for node controllers, necessary ECUs
connected to the bus, bus baud-rate etc.

• Regex-based Filtering: PenJ1939 exposes a number of regular
expression-based �ltering interfaces. Script writers can �lter
tra�c sni�ed o� the J1939 network. PenJ1939 supports message
�ltering based on PGNs, SPNs, SPN interpreted values and regex-
based �ltering on raw hexadecimal expressions for both the
ID and Data �elds. Modules and scripts can be �ltered on the
contents of their documentation, or associated tags and pre-
requisites using regular expressions.

• Downloading Scripts: End-users can download previously up-
loaded scripts by either browsing the script directories or exe-
cuting search regular expression-based queries. Before down-
loading a script, the user can verify the script’s execution to see
if it achieves the desired results, and the user can also access
information about the developer of the script.

4 ARCHITECTURE AND COMPONENT
INTERACTION

Fig. 2 shows the interactions between the architectural components
of PenJ1939. �e thick solid boxes represent web-pages accessible
to the user. In order to write or download exploits, users need to be
logged into the PenJ1939 system. �e Login-Manager is responsible
for verifying user credentials and/or signing up new users. Users
can also take a brief tutorial of the system before creating user
accounts. Both scripts wri�en and uploaded on the system are
sent to the TestBed Manager for �nal veri�cation. �e status of
the script is accordingly updated to “Yes” if it had an error free
execution or “N/A” if the testbed platform does not have adequate
resources to run the script. Failed scripts are rejected and the user
is noti�ed accordingly. Once a script is ready to be uploaded to
the DB-Manager, the Scripting-Manager asks the user to annotate
scripts and modules by populating metadata search �elds. �e
DB-Manager is also responsible for executing regular expression
queries on search �elds and return relevant scripts and modules.
Users can select modules from the module browser, and read the
module’s documentation before using such modules. Once scripts
are ready to be tested, users can request nodes. �e TestBed-Manager
is responsible for returning node handles, if a free node is found.
�e testbed is modeled on a previously published work from our
group [3]. Currently, the ECU Layer has 3 ECUs (Engine Controller,
Retarded, Brake Controller) a�ached to it. �e Sensor and Simulator
Layer is currently disabled. �e testbed thus generates tra�c as
obtainable from a standalone truck. Two BeagleBone black devices,
acting as Node Controllers are a�ached to the CAN network. Users
can reserve these nodes to execute their scripts via the TestBed-
Manager.



Figure 2: PenJ1939 Components and their Interactions

5 CURRENT IMPLEMENTATION AND
FUTURE WORK

We have started the implementation process for PenJ1939. As men-
tioned earlier the testbed was a part of previous research and hence
was set up at the beginning. All managers (Fig. 2) and associated
databases have been set up. A J1939 decoder was designed as a
part of our previous work [3]. Core functional modules of that
the decoder were integrated into the PenJ1939 system in order to
design the J1939-Interpreter. We are currently in the process of
designing the web-based front-ends.

In future, we aim to improve some security critical aspects of
our system. In particular, we believe that by integrating proper
authentication and authorization mechanisms it may be possible
for security professionals and researchers to alert speci�c OEMs
about security issues in their J1939 implementations. We also aim
to add additional features like authorized editing of code and patch
management as a vision for of making PenJ1939 more usable.

ACKNOWLEDGEMENT
�e work was supported in part by NSF under award numbers CNS
1619641 and CNS 1715458.

REFERENCES
[1] 2013. Serial Control and Communications Heavy Duty Vehicle Network - Top

Level Document. (2013). h�p://standards.sae.org/j1939 201308
[2] C. Miller and C. Valasek. 2014. A Survey of Remote Automotive A�ack Surfaces.

Black Hat USA 2014 (2014).
[3] J. Daily, R. Gamble, S. Mo��, C. Raines, P. Harris, J. Miran, I. Ray, S. Mukherjee,

H. Shirazi, and J. Johnson. 2016. Towards a Cyber Assurance Testbed for Heavy
Vehicle Electronic Controls. SAE International Journal of Commercial Vehicles 9,
2 (2016), 339–349.

[4] R. Bosch. 1991. CAN speci�cation version 2.0. Rober Bosch GmbH, Postfach
300240 (1991).

[5] S. Mukherjee, H. Shirazi, I. Ray, J. Daily and R. Gamble. 2016. Practical DoS
A�acks on Embedded Networks in Commercial Vehicles. In Proceedings of 12th
International Conference on Information Systems Security. 23–42.

[6] Y. Burakova, B. Hass, L. Millar, A. Weimerskirch. 2016. Truck Hacking: An
Experimental Analysis of the SAE J1939 Standard. In Proceedings of 10th USENIX
Conference on O�ensive Technologies. 211–220.

http://standards.sae.org/j1939_201308

	Abstract
	1 Introduction
	2 Background
	3 PenJ1939 Features
	4 Architecture and Component Interaction
	5 Current Implementation and Future Work
	References

