


In this paper, instead of adding pairwise constraints,
we propose a novel non-convex optimization formula-
tion to incorporate dimensional reduction with linear
support vector classification, in which we consider both
L1-hinge loss and L2-hinge loss. The main objective of
our method is to learn the low-dimensional features
that could approximate the original high-dimensional
data and form a good separating hyperplane simul-
taneously. Figure 1 illustrates the difference between
previous linkage-based methods and our hyperplane-
based method (a more straightforward illustration is
presented in V-D). The non-convex optimization prob-
lem can be solved efficiently and the convergence to
stationary points can be guaranteed.
Furthermore, for datasets whose elements are all non-

negative, such as images and texts, we can easily in-
corporate the non-negative constraints into our formu-
lation. This leads to better interpretability of the low-
dimensional features. Previous studies [17], [18] have
demonstrated that non-negativity is important for these
applications, and in this case our model becomes a
combiniation of SVM and Non-negative Matrix Factor-
ization(NMF), or can also be viewed as a semi-supervised
NMF method.
Our contributions can be summarized below:

• We propose a novel hyperplane-based semi-
supervised dimension reduction approach to learn
the low-dimensional embedding and separating hy-
perplane simultaneously.

• We design an efficient block coordinate descent
algorithm to solve the problem, and the algorithm
can be easily scaled to datasets with millions of
features. Moreover, our algorithm is quite flexible so
it is easy to incoporate non-negative constraints and
learn interpretable features for non-negative data.

• For problems with many unlabeled data and few
labeled data, we show that our proposed method
can get a low dimensional embedding with higher
classification accuracy compared with other state-of-
art semi-supervised dimension reduction methods.

II. Related Work

Dimension reduction is an important technique for
large-scale and high dimensional data analytic. Tradi-
tionally, dimension reduction is conducted in an un-
supervised way. Given a set of n samples with m fea-
tures, Principal Component Analysis(PCA) is used to
reduce the dimensionality from m to k by conducting
SVD decomposition on the feature matrix. Several other
techniques have also been proposed to enforce specific
structures in the lower dimensional space; for example
NMF [14] is used to get the non-negativity and ICA [22]
can be used to split mixed signals. Matrix completion
and inductive matrix completion [10] are used for par-
tially observed data, and robust PCA [9] can be used to
deal with corrupted data matrix.

A. Semi-supervised dimension reduction

The main focus of this paper is to study how to
conduct dimension reduction with little supervision.
With some small but useful supervised information, it
is possible to guide or bias the dimension reduction into
what we expect. A common way to encode supervision is
by providing a list of “must-link” (similar) and “cannot-
link” (dissimilar), which are pairwise constraints be-
tween instances [20]. In this setting, the instance pairs
with must-link should be close to each other while
pairs with cannnot-link should be far away in the low
dimensional space after dimension reduction.
SSDR [4] uses these pairwise constraints generated

from supervised label to create a Laplacian graph to
guide the dimension reduction process. GCDR-LP [21]
uses a similar idea as [4] but allows different weights
on observed must-links and cannot-links. However, these
methods are graph-based algorithms and may not per-
form well in the SVM setting. We have compared with
them in the experimental results.
For non-negative data, several methods including [6]

and [16] have been proposed to improve conventional
non-negative matrix factorization by making use of la-
beled data. Experimental results in [6], [16] demon-
strated that their methods work well for document clus-
tering problem. However, our numerical experiments
show that the performance of non-negative dimension
reduction is more sensitive to the setting of parameters
and it is generally hard to conduct cross validation with
only few labeled data. Therefore, in this paper we only
point out the potential connection between these non-
negative dimension reduction methods and our pro-
posed method and exclude non-negative constraints in
the experiments.

B. Fasthals

Fasthals [5] is one of state-of-art algorithms for large-
scale non-negative matrix factorization. It breaks the
original low-rank approximation into k rank-one ap-
proximation subproblems and each subproblem can be
solved efficiently. Although it is an unsupervised dimen-
sion reduction algorithm, in this work we show that the
idea of Fasthals can also be used to solve our semi-
supervised low-dimensional approximation problem and
help us to develop a scalable algorithm.

III. Notations

The notations used in this paper is summarized in
Table I. Note that our goal is to conduct low-rank
approximation of X by X ≈ BH and learn the low-
dimensional separating hyperplane {x : wT x = 0} simul-
taneously. As shown in Figure 2, the first ntr samples
in X are labeled samples, and the rest are unlabeled
samples. The prediction of our model for the unlabeled
data j will be sign(wT

hj ).





Lemma 1. Assume f is continuously differentiable over the
set X . Furthermore, suppose that for each j and x ∈ X , the
minimum of

argminξ∈Xj f (x1,x2, ...,xj−1,ξ,xj+1, ...,xL)

is uniquely attained. Let x(k) be the sequence generated by
the update rule IV.4. Then every limit point is a stationary
point.

The proof and details of the above Lemma can be
found in [3].

Difficulties: In our optimization problem, the most
straightforward way is to use 3 blocks, B,H and w,
and alternatively updating each of them. However, the
subproblem with respect to H is hard to solve since H is
in both first term and third term of the objective func-
tion. Furthermore, this 3-block approach cannot easily
incorporate non-negative constraints. Another intuitive
way is to optimize H column by column since each
column of H is independent to each other, and the
corresponding subproblem is:

min
hi

l(yi ,w
T
hi ) + ‖xi −Bhi‖22 + const, 0 < i ≤ ntr.

However, this subproblem cannot be solved exactly
(needs another inner loop to solve) when our loss func-
tion is L1-hinge loss or L2-hinge loss.

Proposed update rule: In the following section, we
show that updating one row of H at a time is the most
efficient way to solve DRSVM optimization problem, and
we will develop an efficient algorithm based on this.

For simplicity, we denote

f (w,B,H) =

ntr
∑

i=1

l(yi ,w
T
hi ) +

λ1

2
‖w‖22 +

λ2

2
‖X −BH‖2F

+
λ3

2
(‖B‖2F + ‖H‖2F )

(IV.5)

and

B = [b1,b2, ...,bk], H = [h
·1,h·2, ...,h·k]

T .

We propose to update one column of B and one row
of H at a time, and then after the updates of B and H ,
we can fix them and update the vector w. Therefore the
overall update sequence will be in the following order:

b1→ b2→ ...→ bk → h
·1→ h

·2→ ...→ h
·k →w

Note that this order is inspired by the HALS algorithm
[5], which is widely used in NMF. Next we discuss the
detailed update rules and time complexity for each block
of variables.

1) Updating B: First, we consider the subproblem with
respect to bj :

min
bj

f (w, [b1,b2, ...,bk],H) ⇔

min J
(j)
B (bj ) =

λ2

2
‖X −

k
∑

i=1

bih
T
·i + bjh

T
·j − bjh

T
·j‖

2
F +

λ3

2
‖bj‖22

Denote X(j) = X −
k

∑

i=1

bih
T
·i + bjh

T
·j

min J
(j)
B (bj ) =

λ2

2
‖X(j) − bjhT

·j‖
2
F +

λ3

2
‖bj‖22

When h
·j is fixed, J

(j)
B (bj ) is a convex function for bj ,

so we can solve it by setting ∇bj J
(j)
B = 0 to get the optimal

solution b
∗
j :

∇bj J
(j)
B = λ2(‖h·j‖22bj −X(j)

h
·j ) +λ3bj = 0

b
∗
j =

X(j)
h
·j

‖h
·j‖22 +

λ3
λ2

=
(X −BH + bjh

T
·j )h·j

‖h
·j‖22 +

λ3
λ2

=
[XHT ]j −B[HHT ]j + bj‖h·j‖22

‖h
·j‖22 +

λ3
λ2

(IV.6)

When the non-negative constraint bj ≥ 0 is added, we

can split bj = [bj,1, bj,2, ..., bj,m]
T , and write J

(j)
B (bj ) as:

m
∑

i=1

{λ2

2
‖X(j)

i· − bj,ih
T
·j‖

2
F +

λ3

2
b2j,i },

where X
(j)
i· denote the ith row of X(j).

From this decomposition, we can see that every com-
ponents bj,i in bj are “independent” to each other, and

each part λ2
2 ‖X

(j)
i· − bj,ih

T
·j‖

2
F + λ3

2 b2j,i is just a quadratic

optimization problem of the one-dimensional variable
bj,i .
Then it is easy to see that if

b∗j,i = argmin
bj,i

λ2

2
‖X(j)

i· − bj,ih
T
·j‖

2
F +

λ3

2
b2j,i

then the optimal solution after adding the non-negative
constraints will be

max{0, b∗j,i } = argmin
bj,i≥0

λ2

2
‖X(j)

i· − bj,ih
T
·j‖

2
F +

λ3

2
b2j,i

This implies that

{b∗j }+ = argmin
bj≥0

J
(j)
B (bj ),

where b
∗
j is the solution of Eq. (IV.6).

To sum up, for updating bj , the optimal solution can
be computed by (IV.6) without nonnegative constraints,
and furthermore we just need a simple element-wise pro-
jection even after adding the non-negative constraints.



2) Updating H : We split H into [Hl ,Hu] and X into
[Xl ,Xu], where Hl ,Xl correspond to instances with seen
labels (see Figure 2).

min
H

f (w,B, [Hl ,Hu]) ⇔

(min
Hl

ntr
∑

i=1

l(yi ,w
T
hi ) +

λ2

2
‖Xl −BHl‖2F +

λ3

2
‖Hl‖2F )

+ (min
Hu

λ2

2
‖Xu −BHu‖2F +

λ3

2
‖Hu‖2F )

(IV.7)

For the second part:

min
Hu

λ2

2
‖Xu −BHu‖2F +

λ3

2
‖Hu‖2F

=min
HT
u

λ2

2
‖XT

u −HT
u B

T ‖2F +
λ3

2
‖HT

u ‖2F

The update of Hu is essentially the same as the update
of B, so here we can get the update formula as follows:
Denote Hu = [hu·1,hu·2, ...,hu·k]

T , then we have

h
∗
u·j =

[XT
u B]j −HT

u [B
TB]j +hu·j‖bj‖22

‖bj‖22 +
λ3
λ2

, (IV.8)

and if the non-negative constraints are added, we have

h
∗
u·j =















[XT
u B]j −HT

u [B
TB]j +hu·j‖bj‖22

‖bj‖22 +
λ3
λ2















+

.

The update of Hl is more sophisticated and it is
an important step since it is connected with both the
supervised learning model and dimension reduction.
Denote Hl = [hl·1,hl·2, ...,hl·k]

T

Fix hl·1,hl·2, ...,hl·j−1,hl·j+1, ...,hl·k and minimize Eq
(IV.7) over hl·j we get

min
hl·j

f (w,B,H)⇔

ntr
∑

i=1

l(yi ,w
(j)T

h
(j)
i +wjhj,i ) +

λ2

2
‖X(j)

l − bjhl·j‖2F +
λ3

2
‖hl·j‖22

=

ntr
∑

i=1

{

l(yi ,w
(j)T

h
(j)
i +wjhj,i ) +

λ2

2
‖X(j)

li − bjhj,i‖
2
2 +

λ3

2
h2j,i

}

This decomposition breaks the original problem into
ntr “independent” subproblems. In addition to L1-hinge
and L-2 hinge loss, this strategy is also suitable for other
loss functions as long as they are linear predictors. This
is the reason why HALS’s framework can be generalized
to our semi-supervised scenario.
Under L-1 hinge loss
For each subproblem:

min
hj,i

Dji (hj.i ) :=max(0,1− yi (w(j)T
h
(j)
i +wjhj,i ))

+
λ2

2
‖X(j)

li − bjhj,i‖
2
2 +

λ3

2
h2j,i

(IV.9)

Denote S+ = {hj,i : 1 − yi (w(j)T
h
(j)
i +wjhj,i ) ≥ 0},S− =

{hj,i : 1− yi (w(j)T
h
(j)
i +wjhj,i ) ≤ 0} and τ = S+∩S− = {hj,i :

1− yi (w(j)T
h
(j)
i +wjhj,i ) = 0}

Lemma 2. When wj , 0, let h∗+j,i = argminhj,i∈S+Dji (hj,i )

and h∗−j,i = argminhj,i∈S−Dji (hj,i ). Then at least one of h∗+j,i
and h∗−j,i equals to τ. If h∗+j,i = h∗−j,i = τ, the solution for Eq.

IV.16 is τ. Otherwise, the solution is the one that not equals
to τ.

Proof. Since max(0,1−yi (w(j)T
h
(j)
i +wjhj,i ) a convex func-

tion of hj,i and
λ2
2 ‖X

(j)
li − bjhj,i‖

2
2 + h2j,i is strictly convex,

so Dji is a strictly convex function of hj,i . Obviously S+
and S− are convex sets, so h∗+j,i = argminhj,i∈S+Dji (hj,i ) and

h∗−j,i = argminhj,i∈S−Dji (hj,i ) exist and they are unique.

Assume that h∗+j,i , τ and h∗−j,i , τ, then there exist

λ > 0, s.t. τ = λh∗+j,i + (1 − λ)h∗−j,i , since Dji (h
∗+
j,i ) ≤ Dji (τ)

and Dji (h
∗−
j,i ) ≤Dji (τ), we have λDji (h

∗+
j,i )+(1−λ)Dji (h

∗−
j,i ) ≤

Dji (τ) =Dji (λD
∗+
ji +(1−λ)D∗−ji ), which is contradicted with

the strictly convexity of Dji . So we prove that at least one
of h∗+j,i and h∗−j,i equals to τ.

h∗j,i = argmin
hj,i∈{h∗+j,i ,h

∗−
j,i }
Dji (hj,i ). If h

∗+
j,i and h∗−j,i equals to τ, then

h∗j,i = τ obviously. Otherwise, we assume that h∗+j,i , τ

without loss of generality, then we have h∗−j,i = τ since

one of h∗+j,i and h∗−j,i must equals to τ. Because τ ∈ S+, so
Dji (h

∗+
j,i ) ≤ Dji (τ) = Dji (h

∗−
j,i ), then we have h∗j,i = h∗+j,i . So

the solution h∗j,i is the one of h∗+j,i and h∗−j,i that not equals
to τ. So we have completed the proof of Lemma 2.

Note that h∗+j,i = argminhj,i∈S+Dji (hj,i ) and let

h∗−j,i = argminhj,i∈S−Dji (hj,i ) are both very simple

one-dimensional quadratic optimization problems.

h∗+j,i =projS+















λ2X
(j)T
li bj + yiwj

λ2‖bj‖22 +λ3















=projS+















λ2([X
T
liB]j −Hli [B

TB]j + ‖bj‖22hj,i ) + yiwj

λ2‖bj‖22 +λ3















(IV.10)
And

h∗−j,i =projS−















λ2X
(j)T
li bj

λ2‖bj‖22 +λ3















=projS−















λ2([X
T
liB]j −H

T
li [B

TB]j + ‖bj‖22hj,i )
λ2‖bj‖22 +λ3















(IV.11)

When wj , 0

τ =
1− yiw(j)T

h
(j)
i

yiwj
,

and by Lemma 2, we can easily find h∗j,i after we get

h∗+j,i ,h
∗−
j,i and τ.



When wj = 0, the L1-hinge loss part is ignored, and
h∗j,i will simply be h∗−j,i .
When the non-negativity constraint is considered, we

just need to project h∗j,i to [0,+∞] to get {h∗j,i }+
The above update rules can be vectorized and effi-

ciently implemented by vector and matrix operations:

τ = (e−Y � (H (j)
l

T
w

(j)))� (Ywj ) (IV.12)

where e = [1,1, ...,1]T1×ntr

h
∗+
l·j = projS+















λ2([X
T
l B]j −H

T
l [B

TB]j + ‖bj‖22hl·j ) +Ywj

λ2‖bj‖22 +λ3















(IV.13)

h
∗−
l·j = projS−















λ2([X
T
l B]j −H

T
l [B

TB]j + ‖bj‖22hl·j )

λ2‖bj‖22 +λ3















(IV.14)
And the update rule could be simply expressed as:

h
∗
l·j = h

∗+
l·j +h

∗−
l·j − τ (IV.15)

Under L-2 hinge loss
For each subproblem:

min
hj,i

Gji (hj.i ) :=max(0,1− yi (w(j)T
h
(j)
i +wjhj,i ))

2

+
λ2

2
‖X(j)

li − bjhj,i‖
2
2 +

λ3

2
h2j,i

(IV.16)

The idea here is exactly same with L-1 hinge loss. We
can show that Lemma 2 also holds for L-2 hinge loss
using the same technique. So we skip the details and
just give the key results directly.

h
∗+
l·j = projS+















λ2([XlB]j −Hl [B
TB]j + ‖bj‖22hl·j ) +M

λ2‖bj‖22 +λ3 +2w2
j















(IV.17)

Where M = 2(Ywj )e−2(Y�Y )�wj (H
(j)T
l w

(j)) = 2(Ywj )e−
wj (H

(j)T
l w

(j)) since yi ∈ {−1,+1} and Y �Y = [1,1, ...,1]T .
h∗−j,i is exactly the same under L2 or L1-hinge loss.

h
∗−
l·j = projS−















λ2([X
T
l B]j −H

T
l [B

TB]j + ‖bj‖22hl·j )

λ2‖bj‖22 +λ3















3) Updating w:
The update of w is a standard linear support vector
classification problem, we use the state-of-art solver for
large-scale linear SVM - LIBLINEAR [11].
Since we have reduced the dimensionality, our prob-

lem here is a standard n� p problem and it is usually
more efficient to solve the primal problem of SVM in
this situation.
L1-SVM:
In LIBLINEAR, L1-SVM can only be solved in dual

form by coordinate descent [12]. In addition, we cannot

use the previous wt−1 as our initial point to get wt since
we don’t know how to initialize the dual variable that
corresponding to w

t−1. Moreover, we need to solve the
dual precisely (set a very small tolerance) in order to
decrease the primal objective value in each iteration.
L2-SVM:
In LIBLINEAR, the primal problem of L2-SVM can

be efficiently solved by Newton method [13]. It can take
w

t−1 as the initial point and speed up the computation.
Above analysis showed that the primal solver for L2-

SVM is more efficient than the dual solver for L1-SVM.
Numerical experiments show that L1-SVM and L2-SVM
usually have similar performance in real-world datasets.
So L2-hinge loss is recommended to be used.

C. Convergence

By Lemma 1, our algorithm is guaranteed to have
convergence to stationary point.

D. Initialization

Since our algorithm is only able to find stationary
points, different initializations could converge to differ-
ent points and further affect the classification perfor-
mance. A good initialization is thus important since it
can lead to a better convergent point and meanwhile
speeding up the convergence speed.
Here we use the top k SVD to get B0 and H0 since

it is the exact solution for Low-rank approximation
(the right part of Eq. (IV.1)). Let X ≈ UkΣkV

T
k , then

our B0 = Uk

√
Σk and H0 =

√
ΣkV

T
k . Numerical exper-

iments demonstrate that our algorithm could usually
lead to faster convergence and better convergent points
compared with random initialization. Note that the top
k SVD decomposition for large sparse matrix can be
computed efficiently by using PROPACK [23], so the
time spent on initialization is negligible.
When non-negative constraints are considered, we

simply use random initialization.

E. Complexity analysis

Time complexity

Let S = nnz(X). In each iteration, we need to com-
pute HHT ,XHT ,BTB and XTB, the complexities are
O(k2n),O(kS),O(k2m) and O(kS) respectively. The up-
date of B requires O(k2m) operations and the update
of H needs O(k2n) operations. So the total complexity
for each iteration is O(k2(n +m) + kS) + O(SVM-Solver).
Numerical experiments show that the time spent on
updating w (SVM-Solver) is far smaller than the time
spent on updating B and H .
Space complexity

The space complexity is straightforward since all ma-
trices we need to store are X,Y ,B,H,w, so the space
complexity is O(k(m+n) + S).
The detailed algorithm can be found in Algorithm 1.



Algorithm 1 DRSVM

Input: Yl ,Xl ,Xu , k,λ1,λ2,λ3, loss,nng,maxiter
% nng is the short-cut for non−negative
X = [Xl ,Xu], [m,n] = size(X), ntr = size(Xl ,2)
Initialize B ∈ Rm×k , H ∈ Rk×n and w

(0) = zeros(k)
if nng then
B = {B}+,H = {H}+

end if
for t = 1,2, . . . ,maxiter do
% Update B
HHT =HHT ,XHT = XHT

for i = 1,2, . . . , k do
‖h

·i‖22 =HHT (i, i)
Call update rule IV.6
if nng then

bj = {bj }+
end if

end for
BTB = BTB,XlTB = XT

l B,XuTB = XT
u B

% Update H
Split H into [Hl ,Hu]
for i = 1,2, . . . , k do
% Update Hu·k

Call update rule IV.8
% Update Hl·k

if L1-hinge loss then
Calculate h

∗+
·i by Eq. IV.13

else if L2-hinge loss then
Calculate h

∗+
·i by Eq. IV.17

end if
Calculate τ ,h∗−

·i by Eq. IV.12 and Eq. IV.14
Call Update rule IV.15
if nng then

h
·j = {h·j }+

end if
end for
% Update w

if L1-hinge loss then
Call LIBLINEAR L1-dual Solver

else if L2-hinge loss then
Call LIBLINEAR L2-primal Solver
with initial point wi−1

end if
if stopping criterion is met then
break

end if
end for
Output: B,H,w

V. Experimental Results

In this section, we compare DRSVM with other exist-
ing semi-supervised and unsupervised dimension reduc-
tion methods on classification accuracy. We vary the size
of labeled data in the experiments to demonstrate our

algorithm outperforms existing methods when observing
a small subset of labels. The following algorithms are
included in comparisons:

• DRSVM: Our semi-supervised dimension reduction
method with both L1 and L2 hinge loss.

• SVD+SVM: Classical unsupervised Low-rank ap-
proximation approach—using PCA (or equivalently,
SVD on the feature matrix) to conduct dimension re-
duction, and then run SVM on the low-dimensional
features.

• SSDR+kNN [4]: Semi-supervised dimension reduc-
tion based on graph constraints. To run this method,
we transform the observed labels into must-link
and cannot-link constraints between all the labeled
instances. For example, when there are p instances
with label +1 and q instances with label -1, we
generate p2 + q2 must-links between instances with
same labels, and pq cannot link between instances
with different labels.

• SSDR+SVM: Similar to SSDR+kNN, but the final
classifier is changed to SVM. We use LIBLINEAR
to train a linear SVM model on low-dimensional
features computed by SSDR.

Here we consider the case when the number of la-
beled data is far less than number of unlabeled data,
which is common in many real world applications. The
performance of all algorithms are evaluated by the clas-
sification accuracy on unlabeled data. All experiments
are conducted on a server with 32 Intel Xeon E5-2690 @
2.90GHz CPUs and enough memory.

We use 5 datasets to conduct our experiments. Among
them, three (rcv1, news20, webspam) are document
data. All datasets used are available on the web-
page of LIBSVM [7] https:/www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/. Table III presents the statistics of
each dataset.

dataset # features # samples # nnz
adult 123 48,842 677,323
gisette 5,000 7,000 34,700,997
webspam 254 350,000 29,796,333
news20 1,355,191 19,996 9,097,916
rcv1 47,236 697,641 51,055,210

TABLE III: Dataset Statistics

A. Implementation

We implement SSDR+kNN, SVD+SVM and DRSVM
by MATLAB. Note that SSDR needs to find the top k
eigenvectors of a dense m × m matrix, and the naive
implementation is not able to handle datasets with more
than 100,000 features. Special tricks are used to solve the
scalability issue, and our implemented SSDR is efficient
in speed and only require O(k(m + n) + S) space which
is the same as DRSVM. These tricks are described in
Appendix.



dataset # labeled data L1-DRSVM L2-DRSVM SVD+SVM SSDR+kNN SSDR+SVM
adult 20 76.39 76.35 76.29 76.34 66.78
adult 40 79.7 78.31 79.51 78.10 75.76
adult 60 78.2 81.3 76.71 78.75 78.62
adult 80 81.5 80.51 80.03 78.43 77.38
adult 100 82.07 80.7 79.61 78.93 77.55
adult 150 81.86 81.73 77.22 80.17 78.97
adult 200 82.17 81.16 78.04 80.08 77.07
gisette 20 80.63 82.43 80.56 52.52 56.7
gisette 40 86.26 87.5 85.65 65.54 79.18
gisette 60 88 88.78 87.8 70.03 79.3
gisette 80 88.66 89.49 88.63 73.6 77.5
gisette 100 89.26 89.1 89.15 79.93 84.5
gisette 150 89.52 90.03 89.49 84.06 84.98
gisette 200 89.68 90.43 89.79 84.28 82.6
webspam 20 60.37 62.05 60.43 60.92 60.41
webspam 40 60.91 76.28 60.68 66.87 60.68
webspam 60 66.5 73.69 61.01 72.06 61.6
webspam 80 74.43 74.35 60.92 77.82 63.3
webspam 100 75 74.53 61.5 80.43 65.4
webspam 150 78.65 76.18 61.13 80.84 67.4
webspam 200 78.08 76.57 61.25 82.49 70.5
news20 20 71.06 70.52 59.99 49.98 68
news20 40 75.23 76.69 76.89 50.04 52.5
news20 60 77.27 74.65 75.91 50.01 56
news20 80 75.99 74.11 76.79 50.11 51.14
news20 100 77.3 76.03 77.96 50.24 51.56
news20 150 76.14 76.1 73.29 49.99 59.15
news20 200 73.12 75.65 72.99 50.04 60.47
rcv1 20 72.75 73.36 72.22 47.54 60.18
rcv1 40 78.34 79.04 76.98 47.55 59.26
rcv1 60 85.44 85.28 85.51 48.87 64.7
rcv1 80 87.41 87.03 87.67 59.04 70.19
rcv1 100 88.34 87.04 88.46 56.2 70.74
rcv1 150 89.55 89.13 88.9 63.54 69.49
rcv1 200 89.5 89.61 88.5 73.03 65

TABLE II: Prediction accuracy on unlabeled data.

B. Prediction for unlabeled data

Experiments setting

In the experiments, we consider the scenario when the
number of labeled data is far less than the number of
unlabeled data. For each data set, we try 20, 40, 60,
80, 100, 150 and 200 as the number of labeled data.
For SSDR, we set α = 1 and β = 20 which is the same
parameter setting used in [4]. As for the kNN prediction,
we set the number of nearest neighbours to be 5. For
the SVM solver in SVD+SVM and SSDR+SVM, we set
C = 1. For our model, we simply set λ1 = λ2 = λ3 = 1.
In subsection V-C, we will empirically show that our
algorithm is robust to different parameter settings.

Prediction Accuracy

Table II presents the detailed results of prediction
accuracy. DRSVM outperforms the other two methods
in most cases, and L1-DRSVM and L2-DRSVM usually
yield very similar accuracy. With some further inves-
tigation, we find that there are some cases where the
performance of DRSVM and SVD+SVM are similar. This
is mainly due to our particular initialization scheme: we
use the solution of SVD+SVM to initialize our algorithm
for training DRSVM, so their performances tend to be
similar if there are stationary points close to the initial-
ization.

However, in Table II, we observe SSDR+kNN outper-
forms our methods on webspam dataset with more than
80 observed samples. The main reason is that webspam
dataset only has 254 features, so a linear hyperplane
(used in SVD+SVM, SSDR+SVM, DRSVM) does not have
enough capability to separate positive/negative data. In
contrast, kNN is a nonlinear model and works very
well on low-dimensional data. Despite this deficiency
of linear SVM, our models are still better when the
number of labeled data less than 80, which indicates
that the proposed approach can better utilize the label
information.

C. Sensitivity Analysis

Here we analyze the robustness of our algorithm.
Many studies [7], [11] have shown that the parameter
C (which is λ1 in our model) in SVM is quite robust
under both L-1 hinge loss and L-2 hinge loss, so here we
only study the robustness of λ2 and λ3 due to limited
space.
We try different values of λ2 and λ3 on news20 and

rcv1 when the number of labeled data is 100. From Table
IV, we can see that the test accuracy on unlabeled data
is quite robust to different values of λ2 and λ3 in most
cases. Therefore, we are able to set λ1 = λ2 = λ3 = 1 to
achieve good prediction accuracy on all 5 datasets.





sophisticated but doable, we left this as our future
work.
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Appendix

Implementation tricks for SSDR
We consider the case when our feature matrix X =

[x1,x2, ...,xn] ∈ Rm×n is a large sparse matrix.
The Linkage matrix for SSDR [4] is defined by

S(i, j) =























1
n2

+ α
nC

if (xi ,xj ) ∈ C
1
n2
− β

nM
if (xi ,xj ) ∈M

1
n2

otherwise,

Where M is the set of pairs that are labeled as “must-
link”, C is the set of pairs that are labeled as “cannot-
link”, nM and nC are the total number of pairs in M and
C respectively.
D is a diagonal matrix whose diagonal elements are

the column sum of S . In SSDR, we need to solve the top
k eigen-decomposition of X(D − S)XT , which is a m ×m
dense matrix.
However, by using Lanczos algorithm with partial re-

orthogonalization [23], we don’t need to compute matrix
X(D − S)XT explicitly. We just need to specify how to
efficiently compute X(D − S)XT z for a given z ∈ Rm.
Given z ∈ Rm,X(D − S)XT z = X(D(XT z))−X(S(XT z)).
The first part of the right side – X(D(XT z)) only needs

O(nnz(X) +n) to compute.
For the second part, it is easy to get XT z. Let y = XT z.

Since the linkage matrix is dense, so the most difficult
part now is how to compute Sy efficiently
Let L1 = {i : yi = +1}, L2 = {i : yi = −1} and Lu = {i :

xi is unlabeled}. Then S can be expressed as the product
of 2 low-dimensional matrices U ∈ Rn×3, V ∈ R3×n, where























i ∈ L1 :Ui,1 =
1
n2
− β

nM
,Ui,2 =

1
n2

+ α
nC

,Ui,3 =
1
n2

i ∈ L2 :Ui,1 =
1
n2

+ α
nC

,Ui,2 =
1
n2
− β

nM
,Ui,3 =

1
n2

i ∈ Lu :Ui,j =
1
n2

for ∀j = 1,2,3

and






















i ∈ L1 : V1,i = 1,V2,i = 0,V3,i = 0

i ∈ L2 : V1,i = 0,V2,i = 1,V3,i = 0

i ∈ Lu : V1,i = 0,V2,i = 0,V3,i = 1

Therefore, we can write Sy as U(Vy) and the time
complexity to compute Sy is only O(n) now.
To sum up, the total time complexity to compute X(D−

S)XT z is O(nnz(X)+n), and the total space complexity is
O(k(m + n) + nnz(X)) since all matrices we need to store
are X,D,U,V .


