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ABSTRACT: Lipid phase heterogeneity in the plasma membrane is
thought to be crucial for many aspects of cell signaling, but the physical
basis of participating membrane domains such as “lipid rafts” remains
controversial. Here we consider a lattice model yielding a phase diagram
that includes several states proposed to be relevant for the cell membrane,
including microemulsion—which can be related to membrane curva-
ture—and Ising critical behavior. Using a neural-network-based machine
learning approach, we compute the full phase diagram of this lattice
model. We analyze selected regions of this phase diagram in the context of
a signaling initiation event in mast cells: recruitment of the membrane-
anchored tyrosine kinase Lyn to a cluster of transmembrane IgE-FceRI
receptors. We find that model membrane systems in microemulsion and
Ising critical states can mediate roughly equal levels of kinase recruitment
(binding energy ~ —0.6 kzT), whereas a membrane near a tricritical point can mediate a much stronger kinase recruitment (—1.7
kgT). By comparing several models for lipid heterogeneity within a single theoretical framework, this work points to testable
differences between existing models. We also suggest the tricritical point as a new possibility for the basis of membrane domains
that facilitate preferential partitioning of signaling components.

B INTRODUCTION conditions do not detect Lo/Ld separation above the
diffraction limit, possibly due in part to their dispersal by
cytoskeletal attachment in cells.'”” However, electron spin
resonance (ESR) studies on intact cells provide evidence for
coexisting Lo and Ld domains."” In cell plasma membranes,
these nanometer-scale phase-like domains are thought to be

The lateral organization of cell plasma membranes, which
contributes crucially to their functions, is regulated by
membrane proteins and lipids as well as by attachment to the
cytoskeleton and by communication with membrane trafficking
and other cellular processes. A primary component of

membrane organization appears to be the collective properties coalesced or stabilized as a result of an external stimulus (e.g,,
of the lipid populations, and this has been examined antigen cross-linking of immune receptors), and to play an
experimentally and theoretically, as described in numerous essential role in stimulated cell signaling, by facilitating
recent reviews (see refs 1 and 2 and reviews cited therein and colocalization of membrane proteins that partition into the
elsewhere in this paper). Whereas the diameter of a constituent same Lo-like domain, and separating them from those that
lipid is about 1 nm, the bulk of experimental evidence suggests partition into Ld-like domains.”'* We are particularly interested
that mammalian plasma membranes contain phase-based in cases where induced interactions between multiple Lo-
domains on the order of 10—200 nm in length.”~® This preferring components stabilize these domains, thereby
heterogeneity has been related to studies of simpler model recruiting other Lo-preferring components. Such lipid-mediated
membranes composed of a high melting point (T},) lipid, a low segregation has been implicated in many mechanisms of
T,, lipid, and cholesterol, considered to serve as an membrane protein signaling, including immune receptors,''
approximation of plasma membrane lipids.7 Varying the relative G-protein coupled receptorS,17 the oncogenic GTPase Ras,'®
amounts of these three types of lipids has yielded phase and others. A generic term that has emerged for plasma
diagrams showing regions of separation between phases membrane domains of Lo-like character is “lipid rafts”, and
characterized as liquid ordered (Lo, more high-T,, lipid and although the size, dynamics, and other features of these
more 8chlglesterol) and liquid disordered (Ld, more low-T,,

lipid).”~ . o .
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structures in functional cells surely vary compared to those in
model membranes, the lipid phase properties are expected to be
similar.

Theories of Raft Formation. Despite the centrality of
lipid-based membranes to cell biology, there remains no
consensus on the physical basis of lipid domains. As described
above, formation of lipid rafts has been tied to the observation
of phase separation in model plasma membranes, including
giant unilamellar vesicles (GUVs)'7#7192% and GPMVs.' ! In
addition to the simplest forms of two-phase coexistence, these
systems exhibit a rich variety of phase behavior, including
microemulsions,'”*>** lamellar phases (also called modulated
phases),”® and critical phenomena.”’ Moreover, despite recent
advances in experimental techniques (for recent reviews, see
refs 16 and 26), lipid rafts in cell plasma membranes remain a
difficult system to investigate—the dynamics and complexity of
real cell systems notwithstanding, the 10—200 nm dimension of
rafts* prevents direct observation via conventional light
microscopy. Thus, the goal for a theoretical consideration of
lipid raft physics should provide comparisons and hypotheses
that are amenable to testing with the currently available tools.

Toward this end, various theoretical models have been
proposed to describe raft-like phenomena. However, due to the
lack of direct experimental data on lipid rafts, the set of theories
that are consistent with observation is relatively uncon-
strained—models that disagree on the fundamental physics of
raft formation can give qualitatively similar results that agree
with extant experimental work." One theoretical viewpoint is
that lipid rafts are mediated by membrane curvature,”’ >’
which makes the interface between immiscible membrane
domains more energetically stable. It has also been proposed
that a surfactant species could provide a similar interface
between domains.’® Both of these viewpoints suggest that rafts
exist as part of a microemulsion phase, in which nanoscopic
domains of a characteristic size are stabilized due to the
curvature or surfactant. An alternate hypothesis suggests that
rafts are formed from critical fluctuations in membrane
composition, a result of proximity of the membrane to a 2D
Ising critical point.”"*" Experimental studies have provided
support for both an Ising critical point”' and interactions
consistent with a microemulsion.”***

We define lipid rafts as nanoscale domains concentrated with
Lo-preferring components, and as described above, these
domains can serve to colocalize membrane proteins that
partition similarly.

To analyze the functional consequence of rafts in depth, we
focus on the tractable example of transmembrane signaling
mediated by the IgE-FceRI receptor in mast cells. Physiolog-
ically, this stimulated transmembrane coupling activates cellular
signaling pathways involved in allergic immune responses
(reviewed in refs 32—34). The mast cell is stimulated when
specific multivalent ligands (antigen) physically cross-link
several IgE-FceRI receptors together in a cluster. This
clustering causes recruitment of the kinase Lyn, which is
anchored to the inner leaflet of the plasma membrane, and
when recruited, it phosphorylates the receptor, thereby
activating downstream signaling events (Figure 1). This kinase
recruitment is thought to be raft-mediated: both the cross-
linked receptors and the kinase preferentially partition into Lo-
like membrane domains, facilitating their coupling on the
plasma membrane.">***® The mast cell system serves as an
example of a more general paradigm in cell biology, in which
the orchestrated coclustering of membrane proteins due to an
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Figure 1. Signal initiation by IgE-FceRI. IgE-FceRI are cross-linked by
an external antigen. The resulting cluster of receptors stabilizes a lipid
raft that enables the recruitment of Lyn. Lyn performs the initial
phosphorylation steps that transmit the signal to more downstream
signaling partners.

extelrglal stimulus leads to initiation of transmembrane signal-
ing.

Model. In this work, we address some of the ambiguities in
the physics of lipid raft formation by a comparative approach.
We employ a lattice model originally described by Gompper
and Schick,®”** which can be used for simultaneous evaluation
of both microemulsions and critical phenomena. In addition,
this model captures features such as a lamellar (modulated)
phase and two-phase coexistence observed in other membrane
studies. Moreover, the model exhibits a tricritical point—
defined as the termination of a three-phase coexistence regime
in a phase diagram—which we suggest has interesting
implications for stimulated cell signaling.

The model consists of a two-dimensional square lattice with
the Hamiltonian (eq 1 with variables defined below)

2. (~Jog, — Ko5?)

H= ), (Ho + Ac?) +
i i,j

+ Z Lo(1 — (rjz)ak
ik (1)
Each site on the 2D lattice can take a spin value o of —1

(black pixel), O (gray pixel), or 1 (white pixel). Black and white

pixels represent membrane components favoring Ld and Lo

domains, respectively. Gray pixels represent a surfactant when
the surfacant strength L is greater than 0, or simply a molecule
with neutral domain preference when L = 0. The summation
over i is over all sites in the lattice; i, j is over all nearest

neighbors; i, j, k is over all groups of three adjacent pixels in a

straight horizontal or vertical line. We equate one lattice unit to

a length of 1 nm, the approximate diameter occupied by one

membrane lipid molecule.

Each of the five parameters of this model—H, A, ], K, and
L—has units of energy. We consider only non-negative values
for J, K, and L, while H and A can take any value. The external
fields H and A control the composition of the lattice. H
controls the relative abundance of 6 = —1 (black pixels) and o
= 1 (white pixels), while larger A increases the concentration of
6 = 0 (gray pixels). We consider this model in the grand
canonical ensemble: our simulation box represents one section
of the membrane, so it makes sense that the number of each
type of molecule can fluctuate, analogous to molecules diffusing
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in and out of the box. The coupling ] between adjacent pixels
represents the usual Ising model coupling, which, for a
membrane model, is the preference for molecules that prefer
Lo domains to be adjacent to other molecules that prefer Lo
domains (and similarly for Ld-preferring molecules). J can also
be thought of as equal to the line tension between black and
white pixels times a distance of 1 lattice unit (1 nm). K is a two-
pixel interaction that gives a favorable energy to adjacent
nongray pixels. For a particular concentration of gray pixels, a
higher value of K makes it more favorable to have those gray
pixels adjacent to each other. L controls the strength of gray
pixels as a surfactant; this term contributes a nonzero value only
when a gray pixel (¢ = 0) sits between two nongray pixels (¢ =
+1), and is favorable when the two nongray pixels have
different signs. Thus, increasing L > 0 makes it more favorable
for gray to sit between black and white.

In our implementation, rather than choosing a value for J, we
choose a value for temperature T in units of J/kg, and J is set
accordingly. The other parameters H, A, K, and L are chosen in
units of J. Boltzmann’s constant ky is set to unity.

Note that when L = 0 eq 1 reduces to the Blume—Emery—
Griffiths model.” With K also set to 0, eq 1 becomes the
Blume—Capel model.*”*' With A = —c0, corresponding to no
gray pixels present, eq 1 reduces to the Ising model.

Phases in the Lattice Model. When the lattice model of
Gompper and Schick was initially described, it was possible to
extract some key features of the phase diagram, most notably
the location of the critical line, by finite size scaling.”” With the
great increase in the power of computational resources since
that time, it has become possible for us to address the model
more globally by simulation.

We further take advantage of neural networks, which have
become a powerful machine learning technique, leading to the
development of computational tools to address challenging
problems such as image recognition.42 In image recognition, a
neural network is trained to read the pixel values of an image,
and output a label corresponding to what the image shows,
such as distinguishing between a cat and a dog. Similarly, neural
networks have been trained on simulated snapshots of phase
models in physics, to output a label corresponding to which
phase the snapshot represents. When this phase classification is
performed for snapshots at a large number of model parameter
sets, one obtains the phase diagram of the model.”>** With this
methodology, we label a region of parameter space as a distinct
“phase” if the neural network is able to distinguish simulation
snapshots in that region from snapshots representing other
phases. This definition is not always equivalent to a
thermodynamic definition of a phase (i.e.,, based on the value
of order parameters) but rather puts a greater emphasis on
visually identifiable, qualitative differences in system properties.

On the basis of our neural network analysis, we describe
eight phases (distinguishable qualitative behaviors specified
below) that the model (eq 1) produces. We name these as
follows: Within the fluid phase, all three components are well-
mixed, with only short-range interactions between them. The
black phase and white phase consist of nearly all black pixels and
white pixels, respectively. When H = 0, the Hamiltonian (eq 1)
is symmetric with respect to exchanging black and white, and
thus, these phases are seen in a state of two-phase coexistence.
The gray phase consists of nearly all gray pixels. The
microemulsion “phase” consists of black and white domains
stabilized by a boundary of surfactant. The critical “phase”
consists of fluctuating black and white domains, resulting from
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close proximity above a critical phase transition. Note that the
microemulsion and critical “phases” are not thermodynamically
distinct from one another or from the fluid phase.”** (Those
who define microemulsion-like states as two-phase nano-
domains (see ref 22) would instead say that the microemulsion
and critical “phases” are part of the two-phase coexistence
between the black and white phases.) However, because we are
interested in the qualitative nature of domains that could be
relevant for membranes, we choose to consider them
separately. The lamellar phase is similar to a microemulsion
“phase” in that the surfactant separates the black and white
domains, but instead of enclosed, roughly round domains, the
two domains exist as long stripes. Finally, the crystal phase
includes the behavior in which rectangular domains of black
and white exist, separated by a meshwork of surfactant.

Applying the Model to Cell Signaling. Here, we apply
the methodology of neural networks to the Gompper and
Schick lattice model, with the ultimate goal of understanding
how different qualitative phase behaviors in membranes
compare in their capacities to mediate cell signaling through
membrane receptors (Figures 1 and 2c). The neural-network-
derived phase diagram labels regions of parameter space
according to their distinctive behaviors, as described in the
previous section. We use this diagram to focus on sections of
parameter space that are proposed to be relevant for plasma
membrane heterogeneity, in particular the microemulsion and
critical “phases”. At these interesting points, we perform Monte
Carlo simulations to calculate the energy associated with
recruitment of an inner-membrane-anchored kinase (Lo-
preferring) into a transmembrane receptor cluster (also Lo-
preferring), as in the mast cell signaling system. Note that these
recruitment energies—in contrast to binding energies asso-
ciated with chemical bonds—are associated with long-range
forces: Proteins are recruited into an energetically favorable
region, without orienting and binding directly to specific sites
on proteins that stabilized the energetically favorable region.
Also, the energies we calculate are nonspecific—Lo- and Ld-
preferring proteins will share the same interactions as a group,
and their structure details would only determine the degree of
preference. Thus, these long-range forces allow nonspecific
interactions that are restricted only in terms of the components’
phase preference, as for colocalization in lipid rafts.

Monte Carlo methods allow us to explore the protein
energetics semiquantitatively throughout the phase diagram.
Moreover, the recruitment energies that we calculate agree with
exact conformal field theory results near the Ising critical
point,*® and hence should quantitatively describe experimental
systems near critical points. While our simulations focus on a
simplified model of clustered receptors, near critical points, our
results are universal, and are thus generalizable to a broad range
of phenomena associated with membrane heterogeneity. In
total, this method of recruitment energy calculation allows us to
evaluate how the qualitative behavior of the plasma membrane
relates to its capacity to form lipid rafts that can be stabilized
(e.g, by clustered receptors) to mediate biologically relevant
signaling.

The neural network approach is uniquely suited for this goal,
offering a number of advantages over more traditional analysis
approaches. First, it is capable of exploring large areas of
parameter space at low computational cost. Second, it is able to
detect qualitative changes in model behavior, such as
microemulsions, even if those changes do not correspond to
a true thermodynamic phase transition. These qualitative
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Figure 2. Schematic of the methodology used in this study. (a)
Schematic of the neural network (NN) used for phase prediction. The
pixel values from a Monte Carlo simulation on a 30 X 30 lattice serve
as inputs. (Black, white, and gray pixels are rescaled to non-negative
values for these simulations, as described in the Methods section.) The
network is trained using two hidden layers of 100 nodes each. The
network contains six outputs, corresponding to its confidence that the
input represents each of the six possible phases. Each pixel in the
simulation box has dimensions of 1 nm X 1 nm. (b) At each point in
parameter space (square pixels), the neural network was run on Monte
Carlo simulation results to label the phase. (c) Schematic of
simulations used to calculate the kinase binding energy by Bennett’s
method. The simulated system consists of two separate boxes, one
representing the membrane near the receptor cluster (left) and
another representing a section of the membrane at infinite distance
(right). The teal and magenta proteins’ ¢ values are fixed white, while
the rest of the lattices are Monte Carlo sampled. We use Bennett’s
method to calculate the free energy difference between state 1 (kinase
at infinity) and state 2 (kinase inside cluster). The dimension of each
pixel in the simulation boxes is 1 nm X 1 nm. The solid lines linking
panel a to panel b and panel b to panel ¢ show one example of how a
phase is determined and used in Bennett’s calculation.

differences have important consequences for cell signaling that
are facilitated by membrane organization.
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B METHODS

Monte Carlo Simulations. Snapshots of the lattice
model”” were generated by the Metropolis algorithm. The
length of the simulation was counted in sweeps, where, in each
sweep, each lattice site has on average 100 opportunities to be
flipped (total of 90 000 individual proposed moves for a 30 X
30 lattice,”” Figure 2a). Each proposed move consisted of
randomly choosing a lattice site and a target value (one of {—1,
0, 1} that was not the current value at the site). The move was
performed with probability min(1, e™YT), where AU is the
change in the Hamiltonian energy (eq 1) resulting from the
move.

To generate a single independent snapshot, the lattice was
randomized, then 100 sweeps were run to equilibrate, and the
final result was saved. To generate correlated snapshots,
additional sweeps were run after equilibration, and a sample
was saved after each sweep. Such snapshots are correlated
because a single sweep is not enough to fully reequilibrate the
lattice.

Neural Network Training. We chose the cross section H/J
=0, K/J =2, L/] = 3 (see Hamiltonian, eq 1) for training
because this is close to the cross section described by Gompper
and Schick® as containing examples of all major phases of the
model. Generation of the neural network training data was an
iterative and somewhat heuristic process. We started by sparsely
sampling a large region of (A, T) space in the H/] = 0, K/] =2,
L/J = 3 plane and labeling phases manually, to get a general
sense of the layout of the phase diagram. This allowed us to
find regions where we were highly confident about the correct
classification, and we used these regions for training data. In the
case of the microemulsion phase, this included checking that
the correlation function had a local minimum. [The appearance
of this oscillation in the correlation function is one (admittedly
somewhat arbitrary) definition of a microemulsion suggested by
Gommper and Schick.””] After the first round of training and
testing, we examined snapshots from different points in the
phase diagram to visualize where errors occurred, and we added
further training data at appropriate points to reduce these
errors. For example, we initially did not include the crystal
phase consisting of black and white rectangles, as this phase was
not described in previous work. We identified this as a separate
phase after it was labeled as fluid phase in earlier tests. The final
training data set is shown in Figure Sla, overlaid on the final
phase diagram. At each chosen set of training parameters (156
sets in total), 100 independent samples were acquired for
training, for a total of 15600 samples in the training set.

Note that, despite the heuristic approach to generating the
training data, it is not the case that we could generate an
arbitrary different phase diagram simply by changing the
training data. Rather, the phase diagram reflects real, qualitative
differences in the behavior of the system. In our experience,
training with a bad training set (e.g,, containing different phases
labeled as the same phase) leads to an obviously bad phase
diagram, in which some regions contain different adjacent pixels
classified as different phases with low confidence (quantified as
described below).

Two types of training data were acquired for use in training
two separate networks. In one data set (the snapshot approach,
phase diagram shown in Figure S1c), simply 100 independent
snapshots per parameter set were saved. In a second data set
(the averaged approach, phase diagram shown in Figure S1b),
100 independent groups of 10 correlated snapshots each (as
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described in the Monte Carlo Simulations section above) were
acquired. The 10 snapshots were averaged to give one average
image for the data set. Broadly speaking, this averaging has the
effect of smoothing out random fluctuations, allowing the
network training to focus on more constant aspects of each
phase.

The neural network code used is the implementation of ref
48, also available online at https://github.com/mnielsen/
neural-networks-and-deep-learning. Each training sample was
converted into an input vector of length 900 containing the
values at each site of the 30 X 30 lattice and a target output
vector of length 6, consisting of 1 at the index of the correct
phase and 0 for all other values. The values of the input vector
were rescaled such that black = 0, gray = 0.5, and white = 1, in
order to provide all non-negative inputs to the network (Figure
2a). The feed-forward neural network contained two hidden
layers of size 100 each, made up of sigmoid neurons. We
performed 25 epochs of training. In each epoch, the training
data were randomly divided into mini batches of size 10. With
each mini batch, stochastic gradient descent was performed by a
backpropagation algorithm with a learning rate of # = 0.06. We
use a cross-entropy cost function, with an L2 regularization
parameter of A = 0.04 to avoid overfitting. To avoid stopping
the stochastic training at a bad point, if the final classification
accuracy was worse than 0.85, extra epochs were run, one at a
time, until 0.85 was reached. For the snapshot approach, we
instead used a threshold of 0.9. This method resulted in at most
S (typically 0—2) extra epochs added. Ten instances of the
neural network were trained independently on the same
training data set. When working with the test data, we took the
average output of the 10 instances.

Neural Network Phase Diagram Generation. Test data
were generated by the same Metropolis method as the training
data. At each point in parameter space (H, K, L, A, T; eq 1)
where we sought to determine the phase, five snapshots or
correlated averages were generated. These were fed as input
into the neural networks, yielding output vectors with six
elements in the range [0, 1]. In these output vectors, a higher
value at a particular index indicates that the point more likely
belongs to the corresponding phase. Output vectors were
averaged over the 5 samples and 10 network instances to arrive
at a single final output vector (Figure 2a). The point was
classified as the phase corresponding to the maximum value in
the output vector (Figure 2b). The classification confidence was
calculated as the maximum value in the output vector, divided
by the sum of the output vector. When rendering the phase
diagrams, the phase classification determined the color—red,
green, blue, orange, pink, or yellow. The RGB value of the base
color was multiplied by the classification confidence, such that a
brighter [note that we use the term brightness here in the sense
of the HSB (hue, saturation, brightness) representation of
colors; HSB and HSV (hue, saturation, value) are equivalent
representations, so scaling the brightness is synonymous with
scaling the value] color represents a more confident
classification. For example, a point classified as lamellar [red,
RGB = (0.8, 0.4, 0.0)] with confidence 0.8 would be rendered
as RGB = (0.64, 0.32, 0.0).

The averaged approach was more effective than the snapshot
approach. With the snapshot approach, we could only
distinguish four phases: fluid, black/white, gray, and a single
region covering lamellar, microemulsion, and critical (Figure
Slc). With the averaged approach, we could distinguish six
phases (Figure S1b), but we had low confidence in the
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distinction between the fluid and gray phases (Figure S1d). To
combine these, on testing data, we used the gray output from
the snapshot approach, and the other five outputs from the
averaged approach. This gave the final phase diagram that we
believe most completely describes our understanding of it after
our work with both of these approaches.

Binding Energy Computation. We consider the binding
energy to be the difference in free energy between a single
white pixel (spin +1) with a set cluster of three other white
pixels, compared to that single white pixel being at an infinite
distance from that set cluster (Figure 2c). We call the set cluster
“receptors” and the designated single pixel “kinase”. To
compute this binding energy by Bennett’s method,*’
simulations were performed on the four separate lattices
shown in Figure 2c: State 1 consists of a 50 X S0 lattice
containing the set cluster of receptors and a separate 30 X 30
lattice containing the kinase. State 2 consists of a 50 X 50 lattice
containing the kinase within the cluster of receptors and a 30 X
30 lattice empty of the kinase. Note, for the 30 X 30 boxes
(Figure 2c, right), the smaller lattice size was permissible
because these boxes only ever contain one designated white
pixel, which affects the lattice on a shorter length scale than the
full receptor cluster. Samples were generated by the Metropolis
algorithm in the same way as the neural network training data,
but the predefined receptor and kinase proteins were required
to remain white. Any proposed move that attempted to flip one
of these spins was automatically rejected.

The free energy AF, corresponding to the binding energy, is
computed according to the following formula.

e—(AF—C)/(kBT) — (f((AU1—>2 - C)/(kBT))>1
(F((AU,, + C)/(kT))), @)

Here, C can be any constant, with the fastest convergence
achieved when C & AF. We choose C = —0.5 k3T and choose f
as the Fermi—Dirac function, f(x) = 1/(1 + €¥), as suggested in
ref 49. The numerator is calculated as an ensemble average
from simulations of state 1 (Figure 2c, top). AU,_, for each
sample is the energy change associated with exchanging the
kinase and a pixel at the center of the cluster (corresponding to
the kinase position in state 2). Likewise, the denominator is
calculated from simulations of state 2, and AU, _,, is the energy
change associated with exchanging the kinase located within the
cluster and the pixel corresponding to its position in state 1.

Note that the two separate boxes that make up each state in
Figure 2c¢ can be generated independently, and we use this to
our advantage. We initially generated the same number of
samples of the 50 X 50 box and the 30 X 30 box. Then, each 50
X 50 box was paired with 10 different 30 X 30 boxes, increasing
the number of samples of the state by a factor of 10. These
samples are not independent, but they still follow the correct
Monte Carlo statistics.

For calculating the binding energy at each parameter set to
be tested, simulations were performed for 5000 sweeps, a
sample was saved every sweep, and the lattice was reshuffled
every 10 sweeps. After data expansion, this gave 50000
nonindependent samples of each state, to be used in the
Bennett calculation.

B RESULTS

Neural Network Phase Identification. We trained neural
networks to classify the output of a Monte Carlo simulation of
the Gompper and Schick lattice model,”” according to the
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phase that the simulation represents. A schematic of the
network and an example of a resulting phase diagram are shown
in Figure 2a,b. The ¢ values from a 30 X 30 pixel Monte Carlo
snapshot (generated by the standard Metropolis method)>
were used as 900 inputs to the network. Training data consisted
of 15 600 such snapshots, which represented typical examples
of each phase of interest (Figure S1). The network was trained
with two hidden layers of 100 nodes each, and an output layer
of 6 nodes, corresponding to the six phases of interest in the
phase diagram. Alternatively, instead of single Monte Carlo
snapshots, we used input consisting of the average of 10
correlated snapshots from consecutive simulation steps. This
method tended to be more accurate in most cases, and our final
reported phase diagrams make use of some output from both
types of networks. Our procedures, including training of the
neural networks, are further described in the Methods section.

We initially evaluated the lattice model with H/J = 0, K/] =
2, L/J = 3, ranging over T/J and A/]J values of order 1. In the
original description of the model,”” this cross section was found
to contain examples of all phases present in the model.

Our neural network was able to confidently label six distinct
regions of the phase diagram (Figure 3), corresponding to the

Critical /

i

..
HfJ=I{;.—0|

icroemulson

Py

Figure 3. Phase diagram of the lattice model. The color of each pixel
with specified (A/], T/]) coordinates indicates the phase at that point,
as determined by the neural network. Pixels with a higher brightness
indicate a higher level of confidence in the classification. Snapshots
show typical examples of each of the phases, corresponding to the
black points on the phase diagram.

eight phases described in the Introduction: fluid, lamellar, gray,
crystal, black/white, and microemulsion/critical. The network
was not able to determine a distinct boundary between
microemulsion and critical fluctuations, so the single micro-
emulsion/critical label was applied to both. At larger values of
A, the region is a microemulsion, while, at smaller values of A,
the system shows fluctuating domains consistent with close
proximity to an Ising critical point. Instead of a clear boundary
between the critical fluctuation and microemulsion behaviors,
the regions blend into one another smoothly. Because two
models often used to explain lipid rafts—microemulsion and
critical phenomena' —are included within this phase, it is highly
relevant for membrane-related questions.
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The network applied the same black/white label to both the
black phase and white phase. Because the training data
contained examples of two-phase coexistence, including
snapshots of both black phase and white phase with the same
classification, the neural network was trained to apply the same
label to both. With H = 0, the black/white classification
represents two-phase coexistence between the black and white
phase, while, with H > 0, the white phase does not exist, and
the label represents only the black phase (conversely for H <
0). Finally, we note that the network applied the crystal label to
the limit of the lamellar phase in which the components
alternate with a period of one lattice unit.

Exploring the Phase Diagram. We used our neural
network to compute other cross sections of the phase diagram
and thereby gain a more complete perspective on the entire
parameter space. Remarkably, it was not necessary to retrain
the network to work with these other cross sections. We found
that the original network trained at H/J = 0, K/J=2,L/] =3
accurately identifies the phases elsewhere in the phase diagram,
for all H, K, and L values considered in this study.

Varying the surfactant strength L changes the topology of the
phase diagram (Figure 4). At zero or low L (L/] = 1.5), the
lamellar phase does not exist, and the black/white phase
directly borders the gray phase. At zero L, a tricritical point
exists at the intersection of the fluid, black/white, and gray
phases. At higher L (L/] = 3), we reach the case shown in
Figure 3, in which the lamellar and crystal phases exist between
the black/white and gray phases. At even higher L (L/] = 6),
the system becomes a crystal for nearly all values of A and T
tested, maximizing the number of surfactant interactions.

With K = 0 and L = 0, the model reduces to the more widely
studied Blume—Capel model (Figure $), in which gray pixels
are neutral in their interactions with white and black pixels. In
our diagram, the region between black/white coexistence and
the fluid phase can be identified as a critical transition by virtue
of the yellow critical region appearing between the blue and
orange regions. Note that microemulsions are not possible with
L = 0, and therefore, the entire yellow region in this cross
section represents Ising critical behavior. The critical line occurs
at the boundary between the blue and yellow regions in Figure
Sa. With H/J = 0.1, the critical “phase” disappears, correctly
showing that, at L = 0, H > 0, there is no longer a critical phase
transition (Figure Sb).

When L is increased with K = 0 (Figure S2), the phase
diagram has topology similar to the case with K/J = 2, although
the phase boundaries occur at lower A. Finally, we considered
some additional cross sections at positive H (Figure S3). We
note that, with H/J = 0.1, K/] = 2, L/] = 3, some yellow region
remains at high A. Presumably, this indicates microemulsion
behavior, because a critical line is not expected to exist at
nonzero H. At higher H (H/] = 0.5), the black/white
classification (here representing only the black phase) grows
to encompass most of the parameter space examined in this
range of A and T.

Quantifying Protein Recruitment in Terms of Prefer-
ential Partitioning. Having calculated the phase diagram for
the lattice model, we turned to our questions related to
biological function. In particular, we compare the effectiveness
of lipid-raft-mediated protein reorganization at various points
on the phase diagram. As a specific test, we consider the case of
three receptors (such as IgE-FceRI) cross-linked to form a
cluster; these are activated to initiate transmembrane signaling
only after recruiting a membrane-anchored kinase (such as Lyn;
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Figure 4. Cross sections of the phase diagram at varying values of the
surfactant strength. Surfactant strength L/J is varied from 0 to 6, with
constant H/J = 0, K/J = 2. Colors have the same meaning as in Figure
3.

see Figure 1). We assume both the receptors and the kinase
prefer Lo-rich domains (i.e., lipid rafts), and correspondingly,
we represent them with white pixels, which we place at selected,
fixed positions in the lattice. Lyn is represented by one white
pixel, whereas each of the three receptors is represented by 12
white pixels, corresponding to their relatively larger size (Figure
2c). We calculate the binding energy as the free energy
associated with moving the kinase into the middle of the three-
receptor cluster. A larger magnitude negative value indicates a
stronger contribution of lipid rafts to protein colocalization at a
particular point in the phase diagram.

Similar to what we and others have done previously,*® we use
Bennett’s method®” (eq 2) to calculate the free energy change.
We do so here in a more computationally efficient method than
in previous studies. In previous work, we calculated the energy
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Figure S. Cross sections of the phase diagram for the Blume—Capel
model (K = 0, L = 0), with H/J = 0 or 0.1. Colors have the same
meaning as in Figure 3.

change stepwise, moving the kinase out of the cluster, one
lattice unit at a time, and generating a profile of energy versus
position in the process.*® Here, we instead calculate the entire
energy in one step. Our simulated system (Figure 2c) consists
of two separate boxes, one containing the receptor cluster (left)
and the other representing membrane at infinite distance from
the cluster (right). By Bennett’s method, we compute the free
energy to move the kinase from the box at infinite distance
(state 1) to the center of the cluster (state 2).

We used the phase diagram to assist in choosing points for
Bennett simulations—we ran a simulation at each point marked
with a diamond in Figure 6. We focused our simulations
primarily on the microemulsion/critical region of the phase
diagram, and for comparison, we performed simulations at a
smaller number of points elsewhere in the phase diagram. We
additionally performed simulations in which a single white pixel
was set (instead of the receptor cluster) and calculated binding
energies for a second white pixel to come into proximity. We
found these binding energies to be qualitatively similar but
weaker compared to the case with the cluster (Figure S4).

Our results for a kinase associating with a receptor cluster
(Figure 2c) are shown by the colors of the diamonds in Figure
6. In the Blume—Capel (H = K = L = 0) phase diagram (Figure
6a), no microemulsion exists and we find roughly the same
binding energy of ~—0.6 kT at all points along the Ising
critical line at the boundary between the blue and yellow
regions. This corresponds to a modest increase in kinase
concentration, by a factor of %0~ 1.8. Along this critical line,
the binding energy does not show a dramatic difference above,
versus below, the transition temperature (columns of diamonds
along the blue—yellow boundary). Strikingly, as the tricritical
point is approached (the box in Figure 6a), we find a dramatic,
nearly 3-fold increase in the magnitude of the binding energy.
The minimum free energy of —1.7 kgT is achieved at the
tricritical A (1.9655 J) and 1.04 times the tricritical temperature
(0.634 J/kg). The corresponding increase in kinase concen-
tration by a factor of e'” ~ 5.5 is much more significant than
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Figure 6. Kinase binding energy at selected points in the phase diagram. Each colored diamond indicates the free energy change associated with
moving a kinase into a cluster of receptors (as in Figure 2c) at that point (A/J, T/]) in the phase diagram. The phase diagram colors are rendered
paler than in other figures to make the diamonds more clearly visible. (a) Binding energy in the Blume—Capel model (K = 0, L = 0) for the cross
section H = 0. (b) Inset of part a in the region around the tricritical point (black box in part a). The indicated point (black arrow) with the minimum
free energy of —1.7 kyT occurs at the tricritical A and 1.04 times the tricritical temperature. (c) Binding energy in the Blume—Capel model for the
cross section in which the external field H/J = 0.1 favors black pixels, opposite to the kinase and receptor preference for white pixels. (d) Binding
energy in a cross section that includes microemulsions and lamellar phases (K/J =2, L/] = 3). Within the microemulsion/critical phase, marked
points (magenta boxes) were analyzed with correlation functions and visual inspection of simulation snapshots (Figure S6). Point A is part of the
critical “phase”, point B is a microemulsion with length scale ~10, and point C is a microemulsion with length scale ~4. At certain points in this cross
section (blue color scale), including point C, the positive binding energy indicates that it is energetically unfavorable to bring the kinase into the

cluster.

the 1.8 factor at an ordinary critical point. We suspect that the
distance of the optimum above the tricritical temperature,
1.04%, is a finite size effect, as this value increases if the
simulation box is made smaller. The true optimum might occur
at exactly the tricritical temperature (0.610 J/kg).

To validate our new application of Bennett’s method (eq 2,
Figure 2c), we also calculated the energy profile at the tricritical
point stepwise by Jarsynski’s method,”" identical to the method
used in ref 46 (Figure SS). Due to the larger simulation box
used in this method, finite size effects are less of a concern. We
found a binding energy of ~ —1.5 kzT with Jarzynski’s method,
comparable to our result at 1.02X the tricritical temperature
with Bennett’s method (Figure 6b). However, at the tricritical
temperature, our application of Bennett’s method gives a
binding energy of only —1.0 kyT, presumably due to finite size
effects at this temperature.

We compare these results to the first-order phase transition
that occurs at H > 0 (Figure 6¢c), which yields a higher
concentration of black (Ld-preferring) pixels than white (Lo-
preferring) pixels in the lattice. We found a similar binding
energy of ~—0.6 kyT above the transition temperature in the
fluid phase. However, we see a substantially stronger binding
energy as low as ~ —1.4 k3T upon entering the phase-separated
state. In the context of membranes, this would correspond to a
situation in which most lipids on the membrane favor the Ld
phase, but our receptor/kinase proteins of interest favor Lo.

Finally, in Figure 6d, we consider the binding energy around
the microemulsion/critical region using the parameters of

Figure 3 (H/J = 0.0, K/J] = 2.0, L/] = 3.0). To aid in the
distinction between microemulsion and critical “phase” in this
cross section, at selected points (marked A, B, and C in Figure
6d), we performed correlation function analysis (Figure S6).
We confirmed that point A is in the Ising critical region, and
points B and C are in the microemulsion region. In the Ising
critical region (i, the yellow region at low values of A,
including point A), we again find a binding energy of ~ —0.6
kgT, the same as the case with no surfactant strength L (Figure
6a). As we move to higher A, corresponding to a micro-
emulsion region, we find a striking change. At a subset of the
points in the microemulsion region (including point C), the
binding energy becomes much weaker, even turning positive
(unfavorable). Intuitively, this happens when the characteristic
length scale of the microemulsion is smaller than the size of the
set receptor cluster. Considering microemulsions with a longer
length scale (near the blue—yellow boundary at A/J between 4
and $, including point B), we find a binding energy of —0.6 k;T,
comparable to that at an Ising critical point at lower values of
A. Thus, the results indicate that the binding energy associated
with microemulsion behavior depends on how the character-
istic length scale of the microemulsion compares to the spacing
of the clustered receptors. It is also possible that a
microemulsion exists at a length scale larger than our 30 X
30 nm’ snapshot used to generate the phase diagram. This
would likely appear as phase-separated in our diagram, and
indeed would look equivalent to phase-separated from the
perspective of a cluster of size less than 30 nm. On the basis of
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our simulated results at points in the phase-separated region,
this case would also likely yield a value of around —0.6 kzT
(Figure 6d).

The Figure 6d cross section contains no point comparable in
binding energy to the tricritical point in Figure 6a. The
minimum binding energy achieved in this cross section (except
perhaps at biologically irrelevant points at very low temper-
ature) is ~ —0.6 kT, which occurs along the entire boundary
between the black/white and microemulsion/critical regions.
This remains true if we more densely sample the entire length
of the phase boundaries (data not shown). Among all of the
phase states tested, the tricritical point at H = K = L = 0 (Figure
6a) leads to the strongest possible binding energy for kinase
and clustered receptors.

B DISCUSSION

Comparison to Published Results. We have generated
the phase diagram for the Gompper and Schick lattice model
using relatively new neural network methodologies. It is
important to consider how this method compares to other
more established methods for phase diagram determination.
We examine certain special cases of the model that allow for
direct comparison of our phase diagram to published phase
diagrams obtained by other methods.

By taking A to —co (no gray pixels) and H = 0, we have the
Ising model, with the well-known critical transition temperature
of 2/log(1 +/2)) ~ 2.269 J/k. Applying our existing network
to this case, we see the phase transition at close to the correct
temperature (Figure S7a). The network’s confidence level for
the Ising model is worse than optimal because this network was
trained to perform a more complicated classification on six
phases, instead of the two phases (fluid and black/white
coexistence) relevant to the Ising model. A different approach is
to train a network, solely on Ising model examples, to classify
between only the fluid phase and black/white coexistence. With
this model, we distinguish the phases with high confidence, and
we nearly perfectly identify the transition temperature (Figure
S7b). This level of accuracy is comparable to previous neural
network work on the Ising critical transition.*’

The result for the Blume—Capel model (K = 0, L = 0; Figure
S) with H = 0 is comparable to results with this model from
other methods. We find good quantitative agreement on the
location of phase boundaries with Beale’s phase diagram from
finite size scalin%52 (Figure S8). We also show the mean field
theory solution™ for comparison. The tricritical point has an
upper critical dimension of three, meaning that mean field
theory is expected to be inaccurate near the tricritical point in
this two-dimensional model.>®> However, our calculated result is
much closer to the more accurate finite size scaling solution.

Our diagrams can also be compared to those obtained in
Gompper and Schick’s original description of the model’’
(Figure S9). Note that, to make this comparison, it was
necessary to add the parameter K2, the equivalent of K between
second nearest neighbors in a straight line. This had no effect
on the overall shape of the phase diagram but shifted the phase
boundaries slightly. We find very good agreement on the
location of the critical line in all cross sections with Gompper
and Schick’s transfer matrix approach. The original phase
diagram included a Lifshitz line, which the authors defined as
the separation between Ising and microemulsion regions. This
helps us better interpret the combined microemulsion/critical
region in our phase diagram, which is in fact a microemulsion
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to the right of the Lifshitz line. In other aspects of the phase
diagram, the neural network approach provided new
information, and it revealed shortcomings of the original
phase diagram. We note our new placement of the lamellar
phase (red) is qualitatively different from the Gompper and
Schick diagram, including a lobe that sits below the phase-
separated state on the temperature axis. We give a new
boundary between the gray phase (pink) and the fluid phase
(orange). Our identification of the rectangular crystal phase
(green) is entirely new, not addressed in the original study (the
diagonal crystal that our network labeled as part of this phase
arguably belongs in the lamellar phase, but the rectangular
features are clearly a distinct phase).

Some of these novel features are relevant to the biological
system of interest, while others are not (such as the rectangular
crystal phase, which likely exists only due to the use of a square
lattice), but all point to the strengths of global computational
approaches in phase diagram prediction, which allow direct
comparisons. Theoretical techniques like finite size scaling
frequently focus on specific interesting areas of the phase
diagram, such as the critical line. In our neural network
approach, we instead indiscriminately analyzed entire slices of
the phase diagram, extracting features in both critical and
noncritical regions. This is especially valuable for a problem
such as biological lipid-based membranes, for which different
groups have proposed that the most relevant states are either
near a critical point”"*" or away from a critical point.”***°

Finally, to further validate the application of this model to the
study of lipid membranes, we compare our neural-network-
derived phase diagrams with the numerical and mean-field
phase diagrams produced in previous studies on the formation
of lipid rafts (nanoscale domains concentrated with Lo-
preferring components, as defined in the Introduction). We
consider first microemulsion-based models, which propose that
either surfactant-like lipid species’® or membrane curva-
ture”***’ stabilize the interface between different phase
domains. Importantly, the generality of our neural network
approach means that we could in principle explicitly reproduce
the results of the different membrane models described above.
It should even be possible to train a neural network with
multiple models simultaneously, a potential avenue for future
work. Here, however, we are interested in comparing the results
of our single-Hamiltonian neural network approach with results
in the membrane modeling literature.

How much agreement should we expect between the neural
network trained on our Hamiltonian (eq 1) and models with
different Hamiltonian forms and explicitly different energetic
terms (e.g., composition—curvature interactions)? Due to the
presence of gray pixels as surfactants, our model most closely
resembles models that make use of hybrid lipids,””** so we can
ask how our model compares to curvature-based models, which
are seemingly the most different. As discussed above (Results),
our Hamiltonian captures much of the physics of other
membrane models, including 2D Ising critical and tricritical
behavior. In these critical regimes, our Hamiltonian is
equivalent to all others due to the universality of critical
behavior.”

Outside these critical regimes, in the biologically relevant
microemulsion phase, we also expect qualitative agreement
between our model and curvature-based models. Intuitively, in
a microemulsion regime, the gray pixels in our model will act
analogously to regions of curvature mismatch: in a system with
droplets of one phase suspended in a backdrop of another
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phase, the boundaries of the droplets will be regions of
concentrated surfactant-like interaction. In our model, this
looks like a domain of either black or white pixels encircled by a
strip of gray pixels; in the curvature model, the picture is the
same, except that the gray pixels are replaced by a region of
curvature change (this can be pictured as the droplet “popping
out” of the membrane). Importantly, in this regime, we have a
defined length scale in both models: in ours, it arises from the
concentration of gray pixels, while in the curvature model it
arises from the mechanical properties of the membrane.

Ultimately, however, the comparison of predicted phase
behavior serves as the best indicator of model similarity, and we
find good agreement between the phase diagrams in the
literature (both curvature- and hybrid-lipid-based) and those
generated by our neural network approach (Figure 7). Our
phase diagrams reproduce all of the features found in these
other model frameworks, including Ising critical transitions,
lamellar phases, two-phase coexistence, and tricritical phenom-
ena. Moreover, the general topology of the phase diagrams is
consistent regardless of model choice; for instance, all models
considered here predict a lamellar phase separated from a
microemulsion phase by an Ising critical line, with the
microemulsion phase, in turn, separated from an ordinary
fluid phase by a boundary that is not a true thermodynamic
phase transition. This consistency with previously calculated
phase diagrams”** speaks to the generality of our approach,
which allows us to describe and compare a wide variety of
membrane phenomenologies using a single model framework.

Application to Lipid Rafts. We set out with this model to
analyze competing hypotheses on the physical basis for
formation of lipid rafts: does stabilization of nanoscale Lo-like
domains arise from proximity to a critical phase transition, or
from nanodomains of a characteristic size, as in a micro-
emulsion? We found that, in some ways, the two hypotheses are
much alike. As described in the Introduction, considerable
evidence supports the view that lipid rafts serve to recruit
proteins to the correct place on the cell membrane, such as our
example of Lyn kinase recruitment into a set IgE-FceRI cluster,
where both components are Lo-preferring. Our phase diagram
shows that critical and microemulsion phase states can be
equally beneficial thermodynamically for this membrane
purpose. As we showed, both can give about the same optimal
binding energy of —0.6 kzT. We also showed it is possible to sit
in a region between microemulsion and critical point with a
classification that is subjective. Gompper and Schick chose the
Lifshitz line as an arbitrary distinction for what qualifies as a
microemulsion, while our neural network was unable to draw a
sharp line between the two behaviors.

Our energy calculations make a clear prediction for a
difference between clearly critical and clearly microemulsion
states (at lower and higher values of A, respectively).
Microemulsions carry the requirement of a particular character-
istic size, and can only effectively stabilize lipid domains smaller
than that size. If the set cluster of Lo components is larger than
the microemulsion length scale, then there is actually exclusion
of other Lo components from the cluster (Figure 6d). In
contrast, if the membrane sits near an Ising critical point, the
consequent lipid rafts are stabilized at all length scales, never
excluding other Lo components. If the membrane indeed exists
as a microemulsion, then in principle it should be possible to
experimentally exceed the correct length scale, and cause a
reversal of the lipid-mediated signaling. To our knowledge, this
exact experiment has not been carried out, and may remain
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Figure 7. Schematic comparison of our phase diagram with those from
the microemulsion literature. (a) Mean-field phase diagram from a
model with hybrid lipid species acting as a surfactant. Adapted from ref
54. (b) Mean-field phase diagram from a model with curvature
coupled to membrane composition to produce a surfactant-like
interaction. Adapted from ref 7. (c) Phase diagram generated by our
neural network approach. The X coordinate gives the strength of
surfactant-like interaction in part b, or the concentration of surfactant
species in parts a and c. The Y coordinate represents temperature.
Note that this is a schematic representation, so the actual axes from the
source papers differ in scale and representation. For the sake of
comparison to the other models, we use yellow here to represent only
microemulsions, not Ising critical behavior. The yellow-orange
gradient in part c¢ is used to schematize the ambiguity between
microemulsion and ordinary fluid phase, and represents our best
interpretation of the location of the microemulsion state, taking into
account the neural network output (Figure 3), snapshots within the
phase diagram (Figure 3, yellow-bordered panels), and the location of
the Lifshitz line from ref 37 shown in Figure S9.

challenging to implement. However, in mast cells, a structurally
defined ligand with spacing of 13 nm has been studied,” and
the resulting large receptor spacing lowers, but does not
eliminate, the signaling response. This suggests that, if the mast
cell signaling response relies on a microemulsion-mediated
kinase recruitment, that microemulsion length scale must be
larger than 13 nm.

One argument sometimes used in favor of microemulsions is
that they are easier to achieve, requiring less cell-directed tuning
of the membrane. However, our phase diagram points to an
additional complication: the cell not only has to tune the
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membrane composition to a microemulsion but also must tune
the length scale to the characteristic size necessary for the
correct biological function, which may be highly variable,
depending on the signaling pathway and components involved.

What about the actin cytoskeleton? It is widely thought that
cortical actin couples to the membrane, forming “corrals” that
add further complexity to the heterogeneity of the membrane.
However, in many ways, this does not affect our conclusions, as
typical size estimates for actin corrals®® are above our
simulation size of 50 X SO nm® (Figure 2c). A small cluster
of Lo-preferring components set within one corral sees a
particular membrane composition, regardless of the corral
boundaries at longer length scales. However, actin involvement
motivates two other considerations. First, we should not ignore
the phase-separated region of the phase diagram (blue, Figures
3—5 and Figures S2 and S3), as the membrane may have a
phase-separating composition, driven below the diffraction limit
only by actin-mediated partitioning.'”>” We see that a phase-
separating membrane would yield a kinase binding energy
similar to the minimum in the microemulsion/critical phase
(Figure 6a,d). Second, we note that, due to cortical actin, the
membrane composition encountered by receptors might not be
the global composition of the membrane. This actin meshwork
has been proposed to preferentially sequester either Lo or Ld
lipids,lz’?’6 which would deplete these from a cluster set in the
middle of a corral.

The most striking new discovery from our phase diagram and
energy calculations is the power of a membrane at a tricritical
point. Our computations show that, near the tricritical point,
the potential binding energy due to lipid rafts increases by a
factor of 3 compared to any of the other proposed models:
critical point, microemulsion, or phase-separated two-phase
coexistence. This increase in energetic favorability could confer
a significant advantage for lateral recruitment in the membrane.

Moreover, the interactions near a tricritical point are long-
range in nature, which could also have important implications
for signaling in the natural cell environment. Previous
conformal field theory results have shown that, near an Ising
critical point, proteins can interact via long-range critical
Casimir forces.” Because our method of calculating binding
energies agrees with the results from ref 46, our system should
also exhibit such long-range interactions near the tricritical
point but with a different power law governing their spatial
decay. The large effect at the tricritical point likely comes from
the different critical exponents of this universality class. In
particular, the potential that gives rise to critical Casimir forces
scales with the correlation function g(r), which itself scales as
g(r) ~ ™ near a critical point, where d is the dimension of
our system and 7 is a universal critical exponent.>® Plugging in
the relevant critical exponents, we see that g(r) scales as 7> at
the Ising critical point but as ¥~%23 at the tricritical point.”>**~%!
Thus, at the tricritical point, the critical exponent ( = 0.15)
allows attraction between Lo-preferring components to remain
stronger at a longer distance, especially compared to direct
chemical bonds or electrostatic interactions (which are
expected to be screened over ~1 nm in the cell), and also
longer range than the r7* attractive forces mediated by
membrane curvature.*®

To our knowledge, a tricritical point has not previously been
considered as a serious proposition for the physical basis of
lipid rafts, and perhaps for a good reason: achieving proximity
to a tricritical point requires tuning of three relevant
parameters, whereas proximity to an Ising critical point requires
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only two. In the three-dimensional phase space of the Blume—
Capel model, only a single point is a tricritical point. However,
we note that, in a many-component cell membrane with many
more than 3 degrees of freedom, there would be more
possibilities for tuning to a tricritical composition. The detailed
nature of “lipid rafts” is probably quite variable even within a
single functional cell membrane, and localized tuning may be
possible for a particular signaling purpose. Furthermore, we
argue that, if effective lipid rafts provide a strong enough
evolutionary advantage for the cell to respond appropriately to
environmental stimuli, it might be to the cell's advantage to
maintain a tricritical composition (at least locally), and gain the
massive improvement in lipid raft energetics that results.
Conversely, the optimal lipid raft strength for signaling to be
appropriately regulated in the cell might be weaker than what is
generated by the tricritical point, in which case we would expect
the membrane to exist in one of the other phase states explored
in this study.

It is also reasonable to ask whether lipid rafts could facilitate
interactions between Lo-preferring components that lead to the
formation of the cluster itself. This was not the case we
considered for mast cells, in which clustering was due to
physical cross-linking of the IgE-FceRI by antigen. In T cell
receptor signaling, for example, clusters form in the absence of
cross-linking by a mechanism that remains unclear.”” The Ising
critical point or microemulsion binding energy of —0.6 kT
would not be sufficient to cause clustering of individual
receptors; this requires considerably stronger interactions. We
previously performed calculations and simulations based on the
formulas for Casimir forces given in ref 46 and concluded that
these forces, at an Ising critical point, are not large enough to
mediate receptor clustering (Milka Doktorova and Eshan Mitra,
unpublished observations). However, we now note that the
stronger binding energies found near the tricritical point may
be sufficient to mediate receptor coclustering, independently of
external agent.

We further note that the concept of a membrane at a
tricritical point is not inconsistent with observations of GPMVs
showing ordinary Ising critical exponents.”’ We argue that a
membrane might exhibit tricritical behavior at short length
scales and Ising critical behavior at the longer length scale
accessible with current experimental techniques. This hypoth-
esis can be formalized using renormalization group (RG)
theory, a tool for describing how the observed behavior of a
system changes due to coarse-graining. Here, coarse-graining
corresponds to the loss in resolution when a membrane is
observed with a diffraction-limited microscope. Certain points
in parameter space are RG fixed points, which are unaffected by
coarse-graining (i.e., look the same at different length scales).
Other points under RG coarse-graining “flow” toward or away
from the fixed points (Figure S10). The 2D tricritical fixed
point and Ising critical fixed point are two examples of such RG
fixed points, with systems tending to flow from tricritical to
Ising behavior under coarse-graining. As seen in Figure S10,
physical systems that flow near the tricritical point will show
tricritical behavior on length scales relevant for protein
organization but could then flow away to Ising behavior on
the longer length scales observed in GPMV studies. [Indeed,
the phase diagram of a physical system near a critical point
echoes the flow diagram near the corresponding renormaliza-
tion-group fixed point (the irrelevant contracting directions
only making analytic changes in the phase boundaries), leading
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to a common conflation of the two (adding “flow” arrows to the
boundaries in experimental phase diagrams).]

While our work with this lattice model has been useful in
addressing many hypotheses on lipid organization (and
proposing a new, tricritical possibility), it has some limitations.
In particular, this is a thermodynamic model, operating under
the assumption of a steady state. Kinetic hypotheses about lipid
organization, such as active actin remodeling,”* would require a
different theoretical framework in order to compare to the cases
that we have explored. However, our neural-network-based
methods should allow similar morphological classification.
Moreover, while it is possible for active processes to be
described by Isinzg critical behavior,** studies on GPMVs
isolated from cells”" show that these membranes remain close
to an Ising critical point even after any active processes have
likely been disrupted in sample preparation.

Another future direction for this theoretical approach is to
convert the phase diagrams using external fields H and A into
diagrams based on the concentration of each component. We
chose to use a model with fixed external fields and variable
composition to enable efficient simulations on small system
sizes, and to easily compare with existing theory literature.
These external fields could be converted to the corresponding
compositions of each component, transforming the phase
diagram to one of fixed compositions. This would allow more
direct comparison to experimental phase diagrams of model
membranes such as in ref 19.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpcb.7b1069S.

Supporting Figures S1—S9 showing training of the neural
network, additional cross sections of the phase diagram,
comparisons of the phase diagram to previous results
from the literature, binding energy computations for
additional cases, and interpretation of results in the
context of renormalization group theory (PDF)

B AUTHOR INFORMATION

Corresponding Authors

*Phone: 607-255-4095. E-mail: babl3@cornell.edu.

*Phone: 607-255-5132. E-mail: sethna@cornell.edu.

ORCID

Barbara Baird: 0000-0003-0151-7899

Present Address

SE.D.M.: Los Alamos National Laboratory, P.O. Box 1663, Los
Alamos, NM 87545.

Notes

The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

E.D.M,, D.H,, and B.B. were supported by National Institutes of
Health grants R01-AI018306 followed by R01-GM117552, and
their contributions further benefited from participation in the
HHMI/MBL Summer Institute supported by an HCIA award.
S.C.W. was supported by the Department of Defense through
the National Defense Science Engineering Graduate Fellowship
(NDSEG) Program. ].P.S. was supported by the National
Science Foundation grants DMR-1312160 and DMR-1719490.
E.D.M. was additionally supported by the National Institutes of

3511

Health under the Ruth L. Kirschstein National Research Service
Award (2T32GMO008267) from the National Institute of
General Medical Sciences. We are grateful to Frank Zhang
for discussions on the use of neural networks for phase diagram
prediction, to Archishman Raju, Colin Clement, and Benjamin
Machta for discussions on critical phenomena and scaling
analysis, and to Gerald Feigenson for discussions on lipid
membranes.

B REFERENCES

(1) Schmid, F. Physical Mechanisms of Micro- and Nanodomain
Formation in Multicomponent Lipid Membranes. Biochim. Biophys.
Acta, Biomembr. 2017, 1859 (4), 509—528.

(2) Léonard, C.; Alsteens, D.; Dumitru, A. C.; Mingeot-Leclercq, M.-
P,; Tyteca, D. Lipid Domains and Membrane (Re)Shaping: From
Biophysics to Biology. In The Biophysics of Cell Membranes: Biological
Consequences; Epand, R. M., Ruysschaert, J.-M., Eds.; Springer:
Singapore, 2017; pp 121-17S.

(3) Munro, S. Lipid Rafts. Cell 2003, 115 (4), 377—388.

(4) Pike, L. J. Rafts Defined: A Report on the Keystone Symposium
on Lipid Rafts and Cell Function. J. Lipid Res. 2006, 47 (7), 1597—
1598.

(S) Sengupta, P.; Holowka, D.; Baird, B. Fluorescence Resonance
Energy Transfer between Lipid Probes Detects Nanoscopic Hetero-
geneity in the Plasma Membrane of Live Cells. Biophys. . 2007, 92
(10), 3564—3574.

(6) Lingwood, D.; Simons, K. Lipid Rafts as a Membrane-Organizing
Principle. Science 2010, 327 (5961), 46—50.

(7) Schick, M. Theories of Equilibrium Inhomogeneous Fluids.
http://faculty.washington.edu/schick/Abstracts/sens-book.pdf (ac-
cessed Jun 6, 2017).

(8) Dietrich, C.; Bagatolli, L. a; Volovyk, Z. N.; Thompson, N. L,
Levi, M.; Jacobson, K.; Gratton, E. Lipid Rafts Reconstituted in Model
Membranes. Biophys. J. 2001, 80 (3), 1417—1428.

(9) Veatch, S. L.; Keller, S. L. Seeing Spots: Complex Phase Behavior
in Simple Membranes. Biochim. Biophys. Acta, Mol. Cell Res. 2005,
1746 (3), 172—185.

(10) Veatch, S. L.; Keller, S. L. Separation of Liquid Phases in Giant
Vesicles of Ternary Mixtures of Phospholipids and Cholesterol.
Biophys. . 2003, 85 (S), 3074—3083.

(11) Baumgart, T.; Hammond, A. T, Sengupta, P.; Hess, S. T.;
Holowka, D. A; Baird, B. A,; Webb, W. W. Large-Scale Fluid/fluid
Phase Separation of Proteins and Lipids in Giant Plasma Membrane
Vesicles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (9), 3165—3170.

(12) Machta, B. B; Papanikolaou, S.; Sethna, J. P.; Veatch, S. L.
Minimal Model of Plasma Membrane Heterogeneity Requires
Coupling Cortical Actin to Criticality. Biophys. J. 2011, 100 (7),
1668—1677.

(13) Swamy, M. J; Ciani, L; Ge, M; Smith, A. K;; Holowka, D.;
Baird, B.; Freed, J. H. Coexisting Domains in the Plasma Membranes
of Live Cells Characterized by Spin-Label ESR Spectroscopy. Biophys.
J. 2006, 90 (12), 4452—4465.

(14) Simons, K.; Gerl, M. J. Revitalizing Membrane Rafts: New Tools
and Insights. Nat. Rev. Mol. Cell Biol. 2010, 11 (10), 688—699.

(15) Holowka, D.; Gosse, J. A.; Hammond, A. T.; Han, X.; Sengupta,
P.; Smith, N. L.; Wagenknecht-Wiesner, A.; Wu, M.; Young, R. M,;
Baird, B. Lipid Segregation and IgE Receptor Signaling: A Decade of
Progress. Biochim. Biophys. Acta, Mol. Cell Res. 2005, 1746 (3), 252—
259.

(16) Sezgin, E.; Levental, I; Mayor, S.; Eggeling, C. The Mystery of
Membrane Organization: Composition, Regulation and Roles of Lipid
Rafts. Nat. Rev. Mol. Cell Biol. 2017, 18 (6), 361—374.

(17) Chini, B.; Parenti, M. G-Protein Coupled Receptors in Lipid
Rafts and Caveolae: How, When and Why Do They Go There? J. Mol.
Endocrinol. 2004, 32 (2), 325—338.

(18) Nussinov, R; Jang, H; Tsai, C. J. Oligomerization and
Nanocluster Organization Render Specificity. Biol. Rev. 20185, 90 (2),
587-598.

DOI: 10.1021/acs.jpcb.7b10695
J. Phys. Chem. B 2018, 122, 3500—3513



The Journal of Physical Chemistry B

(19) Feigenson, G. W. Phase Diagrams and Lipid Domains in
Multicomponent Lipid Bilayer Mixtures. Biochim. Biophys. Acta,
Biomembr. 2009, 1788 (1), 47—52.

(20) Konyakhina, T. M.; Feigenson, G. W. Phase Diagram of a
Polyunsaturated Lipid Mixture: Brain sphingomyelin/1-Stearoyl-2-
Docosahexaenoyl-Sn-Glycero-3-Phosphocholine/cholesterol. Biochim.
Biophys. Acta, Biomembr. 2016, 1858 (1), 153—161.

(21) Veatch, S. L, Cicuta, P.; Sengupta, P.; Honerkamp-Smith, A.;
Holowka, D.; Baird, B. Critical Fluctuations in Plasma Membrane
Vesicles. ACS Chem. Biol. 2008, 3 (5), 287—293.

(22) Some groups describe the presence of “nanodomains”,'® a state
of two-phase coexistence consisting of nanoscopic domains of a
characteristic size, rather than a microemulsion, which is defined as
a one-phase state with domains of a characteristic size. The difference in
terminology arises from a difference in the definition of the location of
the phase boundary. Theoretical physicists commonly define a phase
based on the average of some order parameter, which is calculated over
a long length scale. If this length scale is larger than the characteristic
domain size, then the domains are averaged out in this calculation,
leading to the conclusion that the system consists of a single phase,
and the designation of “microemulsion”. However, some experimen-
talists define a system to be in two-phase coexistence whenever an
experimental technique (e.g,, FRET, which has a detection length scale
of ~2—8 nm) detects the presence of two components.”* Analysis of
the same “microemulsion” system with small characteristic domains
would indeed give detection of two distinct components, leading to
the conclusion of two-phase coexistence, and the label of “nano-
domains”. In this study, we use the term “microemulsion” but note
that the same area of the phase diagram could be deemed
“nanodomains” if one adopted an empirical definition of two-phase
coexistence such as what is used in ref 24.

(23) Stanich, C. A.; Honerkamp-Smith, A. R; Putzel, G. G.; Warth,
C. S.; Lamprecht, A. K;; Mandal, P.; Mann, E.; Hua, T.-A. D.; Keller, S.
L. Coarsening Dynamics of Domains in Lipid Membranes. Biophys. J.
2013, 105 (2), 444—454.

(24) Heberle, F. A,; Wy, J; Goh, S. L.; Petruzielo, R. S.; Feigenson,
G. W. Comparison of Three Ternary Lipid Bilayer Mixtures: FRET
and ESR Reveal Nanodomains. Biophys. J. 2010, 99 (10), 3309—3318.

(25) Konyakhina, T. M.; Goh, S. L.; Amazon, J.; Heberle, F. A; Wy,
J; Feigenson, G. W. Control of a Nanoscopic-to-Macroscopic
Transition: Modulated Phases in Four-Component DSPC/DOPC/
POPC/Chol Giant Unilamellar Vesicles. Biophys. J. 2011, 101 (2),
L8-L10.

(26) Levental, I; Veatch, S. L. The Continuing Mystery of Lipid
Rafts. J. Mol. Biol. 2016, 428 (24), 4749—4764.

(27) Schick, M. Membrane Heterogeneity: Manifestation of a
Curvature-Induced Microemulsion. Phys. Rev. E 2012, 85 (3), 031902.

(28) Sadeghi, S.; Miiller, M.; Vink, R. L. C. Raft Formation in Lipid
Bilayers Coupled to Curvature. Biophys. J. 2014, 107 (7), 1591—1600.

(29) Amazon, J. J; Goh, S. L; Feigenson, G. W. Competition
between Line Tension and Curvature Stabilizes Modulated Phase
Patterns on the Surface of Giant Unilamellar Vesicles: A Simulation
Study. Phys. Rev. E 2013, 87 (2), 22708.

(30) Palmieri, B; Safran, S. A. Hybrid Lipids Increase the Probability
of Fluctuating Nanodomains in Mixed Membranes. Langmuir 2013, 29
(17), 5246—5261.

(31) Honerkamp-Smith, A. R; Veatch, S. L; Keller, S. L. An
Introduction to Critical Points for Biophysicists; Observations of
Compositional Heterogeneity in Lipid Membranes. Biochim. Biophys.
Acta, Biomembr. 2009, 1788 (1), 53—63.

(32) Blank, U; Rivera, J. The Ins and Outs of IgE-Dependent Mast-
Cell Exocytosis. Trends Immunol. 2004, 25 (5), 266—273.

(33) Gilfillan, A. M.; Rivera, J. The Tyrosine Kinase Network
Regulating Mast Cell Activation. Immunol. Rev. 2009, 228 (1), 149—
169.

(34) Rivera, J; Gilfillan, A. M. Molecular Regulation of Mast Cell
Activation. J. Allergy Clin. Immunol. 2006, 117 (6), 1214—1225.

3512

(35) Holowka, D.; Baird, B. Roles for Lipid Heterogeneity in
Immunoreceptor Signaling. Biochim. Biophys. Acta, Mol. Cell Biol.
Lipids 2016, 1861 (8), 830—836.

(36) Shelby, S. A; Veatch, S. L; Holowka, D. A.; Baird, B. A.
Functional Nanoscale Coupling of Lyn Kinase with IgE-FceRI Is
Restricted by the Actin Cytoskeleton in Early Antigen-Stimulated
Signaling. Mol. Biol. Cell 2016, 27 (22), 3645—3658.

(37) Gompper, G.; Schick, M. Lattice Model of Microemulsions: The
Effect of Fluctuations in One and Two Dimensions. Phys. Rev. A: At,
Mol, Opt. Phys. 1990, 42 (4), 2137—2149.

(38) Gompper, G.; Schick, M. Lattice Model of Microemulsions.
Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41 (13), 9148—9162.

(39) Blume, M.; Emery, V. J.; Griffiths, R. B. Ising Model for the A
Transition and Phase Separation in He3-He4Mixtures. Phys. Rev. A:
At, Mol, Opt. Phys. 1971, 4 (3), 1071—1077.

(40) Blume, M. Theory of the First-Order Magnetic Phase Change in
UQ2. Phys. Rev. 1966, 141 (2), 517—524.

(41) Capel, H. W. On the Possibility of First-Order Transitions in
Ising Systems of Triplet Ions with Zero-Field Splitting. Physica 1966,
32 (5), 966—988.

(42) Krizhevsky, A.; Sutskever, 1; Hinton, G. E. ImageNet
Classification with Deep Convolutional Neural Networks; Pereira, F.,
Burges, C. J. C, Bottou, L, Weinberger, K. Q. Eds; Curran
Associates, Inc.: Red Hook, NY, 2012.

(43) Carrasquilla, J,; Melko, R. G. Machine Learning Phases of
Matter. Nat. Phys. 2017, 13 (5), 431—434.

(44) Wang, L. Discovering Phase Transitions with Unsupervised
Learning. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94 (19),
19510sS.

(45) Gompper, G.; Schick, M. Lattice Model of Microemultions.
Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41 (13), 9148—9162.

(46) Machta, B. B.; Veatch, S. L.; Sethna, J. P. Critical Casimir Forces
in Cellular Membranes. Phys. Rev. Lett. 2012, 109 (13), 1-S.

(47) The lattices we use for mapping phase diagrams are small; the
size was chosen to capture the correlations on length scales of interest
to protein aggregation, and for convenient training of the network.
Phases without structure on long length scales should be well
described by our small simulations; we would expect shifts in
boundaries of microemulsion phases, for example, only when the
modulation approaches 30 pixels. Near critical points, all length scales
are important for the physics, but we show that the phase boundaries
converge fairly rapidly. The shift in the effective critical temperature in
a system of size L goes as L', so for the Ising critical point with v = 1,
we expect 3% shifts in phase boundaries for a 30 X 30 system (beyond
the precision of our methods), and near the tricritical point with v =
5/9 we find even smaller shifts.

(48) Nielsen, M. A. Neural Networks and Deep Learning.
neuralnetworksanddeeplearning.com (accessed Jan 1, 2017).

(49) Bennett, C. H. Efficient Estimation of Free Energy Differences
from Monte Carlo Data. J. Comput. Phys. 1976, 22, 245—268.

(50) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller,
A. H,; Teller, E. Equation of State Calculations by Fast Computing
Machines. J. Chem. Phys. 1953, 21 (6), 1087—1092.

(51) Jarzynski, C. Nonequilibrium Equality for Free Energy
Differences. Phys. Rev. Lett. 1997, 78 (14), 2690—2693.

(52) Beale, P. D. Finite-Size Scaling Study of the Two-Dimensional
Blume-Capel Model. Phys. Rev. B: Condens. Matter Mater. Phys. 1986,
33 (3), 1717—1720.

(53) Cardy, J. Scaling and Renormalization in Statistical Physics;
Cambridge University Press: New York, 1996.

(54) Palmieri, B.; Grant, M,; Safran, S. A. Prediction of the
Dependence of the Line Tension on the Composition of Linactants
and the Temperature in Phase Separated Membranes. Langmuir 2014,
30 (39), 11734—11745.

(5S) Sil, D;; Lee, J. B.; Luo, D.; Holowka, D.; Baird, B. Trivalent
Ligands with Rigid DNA Spacers Reveal Structural Requirements for
IgE Receptor Signaling in RBL Mast Cells. ACS Chem. Biol. 2007, 2
(10), 674—684.

DOI: 10.1021/acs.jpcb.7b10695
J. Phys. Chem. B 2018, 122, 3500—3513



The Journal of Physical Chemistry B

(56) Kusumi, A.; Fujiwara, T. K.; Morone, N.; Yoshida, K. J.; Chadda,
R.; Xie, M.; Kasai, R. S.; Suzuki, K. G. N. Membrane Mechanisms for
Signal Transduction: The Coupling of the Meso-Scale Raft Domains
to Membrane-Skeleton-Induced Compartments and Dynamic Protein
Complexes. Semin. Cell Dev. Biol. 2012, 23 (2), 126—144.

(57) Honigmann, A.; Sadeghi, S.; Keller, J.; Hell, S. W.; Eggeling, C.;
Vink, R. A Lipid Bound Actin Meshwork Organizes Liquid Phase
Separation in Model Membranes. eLife 2014, 3, e01671.

(58) Nienhuis, B.; Berker, A. N.; Riedel, E. K.; Schick, M. First- and
Second-Order Phase Transitions in Potts Models: Renormalization-
Group Solution. Phys. Rev. Lett. 1979, 43 (11), 737—740.

(59) Pearson, R. B. Conjecture for the Extended Potts Model
Magnetic Eigenvalue. Phys. Rev. B: Condens. Matter Mater. Phys. 1980,
22 (S), 2579—-2580.

(60) Nienhuis, B.; Warnaar, S. O.; Blote, H. W. J. Exact Multicritical
Behaviour of the Potts Model. J. Phys. A: Math. Gen. 1993, 26 (3), 477.

(61) Kwak, W.; Jeong, J; Lee, J.; Kim, D.-H. First-Order Phase
Transition and Tricritical Scaling Behavior of the Blume-Capel Model:
A Wang-Landau Sampling Approach. Phys. Rev. E. Stat. Nonlin. Soft
Matter Phys. 2015, 92 (2—1), 22134.

(62) Sherman, E.; Barr, V,; Samelson, L. E. Super-Resolution
Characterization of TCR-Dependent Signaling Clusters. Immunol. Rev.
2013, 251 (1), 21-38.

(63) Rao, M; Mayor, S. Active Organization of Membrane
Constituents in Living Cells. Curr. Opin. Cell Biol. 2014, 29, 126—132.

(64) Noble, A. E.; Machta, J.; Hastings, A. Emergent Long-Range
Synchronization of Oscillating Ecological Populations without External
Forcing Described by Ising Universality. Nat. Commun. 20185, 6, 6664.

3513

DOI: 10.1021/acs.jpcb.7b10695
J. Phys. Chem. B 2018, 122, 3500—3513



