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Goss’s wilt (GW) of maize is caused by the Gram-positive bacterium Clavibacter

michiganensis subsp. nebraskensis (Cmn) and has spread in recent years throughout

the Great Plains, posing a threat to production. The genetic basis of plant resistance is

unknown. Here, a simple method for quantifying disease symptoms was developed and

used to select cohorts of highly resistant and highly susceptible lines known as extreme

phenotypes (XP). Copy number variation (CNV) analyses using whole genome sequences

of bulked XP revealed 141 genes containing CNV between the two XP groups. The CNV

genes include the previously identified common rust resistant locus rp1. Multiple Rp1

accessions with distinct rp1 haplotypes in an otherwise susceptible accession exhibited

hypersensitive responses upon inoculation. GW provides an excellent system for the

genetic dissection of diseases caused by closely related subspecies of C. michiganesis.

Further work will facilitate breeding strategies to control GW and provide needed insight

into the resistance mechanism of important related diseases such as bacterial canker of

tomato and bacterial ring rot of potato.

Keywords: goss’s wilt, resistance, copy number variation, rp1, Zea mays

INTRODUCTION

Goss’s bacterial wilt and leaf blight of maize, or simply Goss’s wilt (GW), was first identified in
1969 (Schuster et al., 1972; Ruhl et al., 2009). In recent years, the disease has emerged as a serious
threat to production (Jackson et al., 2007; Wise et al., 2009; Mueller andWise, 2014). The estimated
total yield loss due to GW, from 2012 to 2015, was more than 500 million bushels in the US and
Canada (Mueller et al., 2016). Clavibacter michiganensis subsp. nebraskensis (Cmn), the causal
agent of GW, is a Gram-positive bacterium (Phylum Actinobacteria) and a vascular pathogen
of maize, causing systemic wilting on young plants and leaf blight at all stages of plant growth
(Ruhl et al., 2009). However, the genetic basis of host resistance to actinobacteria, in general,
is poorly understood. The lack of genetic resources to control C. michiganesis, specifically, has
led to extensive quarantine measures, particularly, for ring spot of potato, which is caused by
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C. michiganesis subsp. sepedonicus. Quarantine measures are
also targeted to C. michiganesis subsp. michiganesis, a related
wilt and canker pathogen of tomato. Ectopic expression of
genes conferring broad-spectrum antimicrobial activities was
reported to enhance basal defenses of tomato against a related
wilt pathogen C. michiganensis subsp. michiganensis (Kabelka
et al., 2002; Coaker and Francis, 2004; Balaji and Smart, 2012).
Two additional subspecies, C. michiganesis subsp. tesselarius and
C. michiganesis subsp. insidiosus, cause diseases of wheat and
alfalfa, respectively (Francis et al., 2010). A sixth subspecies
has been recently proposed, C. michiganesis subsp. phaseoli,
which causes a systemic disease in common bean (González and
Trapiello, 2014).

Plant defense genes dynamically co-evolve with diverse
pathogens, and are, therefore, highly polymorphic (Brooks et al.,
2006). In general, the adaptive value of defense genes may
impose fitness costs and, consequently, they may be eliminated
without compromising plant health (Tian et al., 2003). Pathogen
resistant (R) genes can occur in clusters at specific genomic loci,
particularly in cases of common R gene classes (Marone et al.,
2013). Genes in clusters may have adaptive advantages derived
from rapid evolution due to rearrangement. Rearrangement
can generate new specificities, and under low disease pressure,
eliminate deleterious genes, thus generating intra-species copy
number variation (CNV) that includes presence and absence
variation (PAV). CNV has been identified for plant disease
defense genes in a range of species (Bakker et al., 2006; Shen et al.,
2006; Cook et al., 2012; Xu et al., 2012; González et al., 2013;
Golicz et al., 2016). For example, the 31 kb locus Rhg1 confers
resistance to soybean cyst nematode and appears to function due
to multiplication of the locus (Cook et al., 2012).

Maize genomes exhibit high levels of genomic structural
variation (Schnable et al., 2009; Springer et al., 2009; Beló
et al., 2010; Hirsch et al., 2014). Analysis of sequences of 27
diverse maize inbred lines indicated that the B73 reference
genome contains ∼70% low copy sequences (Gore et al.,
2009). Transcriptomic analysis of 503 diverse maize inbred
lines identified 8,681 representative transcript assemblies that
are absent in the B73 reference genome (Hirsch et al.,
2014). Furthermore, genotyping-by-sequencing (GBS) analysis
of 14,129 maize inbred lines found 1.1 million PAVs (Lu
et al., 2015a). Relative to inbred line B73, genes with reduced
copy number in non-B73 lines are enriched in the pathways
of stress responses, indicative of high variability in copy
number for disease defense genes (Swanson-Wagner et al.,
2010). For example, the rp1 locus is a highly variable genomic
complex of maize, conferring race-specific resistance to the
common rust fungus (Hulbert, 1997; Smith et al., 2004). The
locus carries multiple rp1 paralogs, which are members of
the nucleotide binding site leucine-rich repeat (NLR) family.
Unequal crossovers generate gene duplications, gene losses,
and genes with new phenotypic characteristics, and, ultimately,
yielding lines with diverse haplotypes at the rp1 region
(Bennetzen et al., 1988; Richter et al., 1995). The number
of rp1 paralogs varies in a broad range from one to greater
than fifty copies (Smith et al., 2004). A similar example of a
resistant gene that varies in copy number is the recently cloned

maize wall-associated kinase (ZmWAK) that confers resistance
to head smut. ZmWAK is absent in many modern maize lines,
while present in wild relatives. Absence of ZmWAK is highly
correlated with high susceptibility to head smut (Zuo et al., 2015).
Despite the few examples, the functional consequences of CNV
to plant defense are largely unexplored, and the methodology
for such studies needs improvements. Here, we established a
simple phenotyping method to quantify disease symptoms and
identified disease defense associated genes through comparing
average copy number between bulked pools of individual maize
lines that displayed highly resistant or susceptible phenotypes,
which was referred to as extreme phenotype bulk copy number
variation (XP-CNV) analysis.

MATERIALS AND METHODS

Genetic Materials
Six hundred and fifteen maize accessions (largely inbred lines)
that were subjected to disease phenotyping, including lines from
the Maize 282 Association Panel (Flint-Garcia et al., 2005), were
ordered from North Central Regional Plant Introduction Station
(NCRPIS). These accessions were used to identify GW resistant
and susceptible lines. To validate the association between the rp1
locus and GW resistance, Rp1, Rp3, and Rp5 accessions were
used. These accessions were maintained and introgressed to the
GW susceptible inbred line H95.

Quantitative Phenotyping of Disease
Symptoms
A method was established for quantification of GW disease
development. A virulence strain CMN06-1, isolated from Iowa
maize field in 2006 by Dr. Charlie Block, was cultured on nutrient
broth yeast extraction (NBY) medium at 28◦C for 2–3 days.
Maize plants were grown in the greenhouse at 28◦C with a
14 h photoperiod. The third leaf of three-leaf maize seedlings
was inoculated by cutting at 2 cm from the tip with scissors
dipped in bacterial inoculum of optical density of 0.55–0.60 at
600 nm. Lengths of lesion were measured from the cut surface
at the tip to the distal-most position on the leaf that exhibits a
gray, chlorotic or water-soaked lesion at 13 days post-inoculation
(DPI). Common lines were used in different batches to examine
batch effects.

Selection of Highly Resistant (R) Lines and
Highly Susceptible (S) Lines
The lesion phenotyping protocol was used to inoculate the third
leaf of three-leaf seedlings. An exception was made for seedlings
(335 out of 2,958) that had not developed to the desirable
stage on the inoculation day. For those cases, the second or
fourth leaves were inoculated instead. From phenotyping data, a
statistically significant but weak association was found between
seedling heights, from soil surface to the top node of plants,
and lesion lengths. To generate comparable lesion phenotypes
among maize genotypes, a linear model to obtain best linear
unbiased estimation (BLUE) was applied. The model used raw
lesion lengths measured at 13 DPI and genotype as response
variable and explanatory variable, respectively. Seedling height,
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inoculation leaf, and batch were used as other covariates in the
model. The BLUE values of lesion lengths were used to represent
host resistance levels. Maize genotypes with estimated lesions
less than 9 cm were considered as highly resistant (R) genotypes,
while those with lesions higher than 22 cm or those with lesions
higher than 20 cm and 80% inoculation leaves showing whole
leaf wilting were considered as highly susceptible (S) genotypes.
Based on genetic relations inferred from genotypes, some highly
R and S lines were removed to reduce the genetic redundancies
from closely related lines. Selected highly R (N = 37) or highly S
lines (N = 44) were used for the XP-CNV analysis.

WGS Sequencing of Highly R and S Pools
Seeds were germinated and grown in the greenhouse at 28◦C
with a 14 h photoperiod. Fresh leaves of seedlings at the 2–3
leaf-stage were harvested. Tissues of highly R lines and highly
S lines were pooled to form highly R pool and highly S pool,
respectively. Pooled tissues were frozen in liquid nitrogen, and
homogenized with liquid nitrogen to fine powder. Nuclei were
extracted to reduce the proportion of DNAs from organelle
genomes, followed by using the Qiagen DNeasy Plant Mini Kit
protocol to extract nucleus DNA (Zhang et al., 2012; Liu et al.,
2017). Nucleus genomic DNAs were used for TruSeq PCR-free
library preparation. Two biologically replicated samples for each
of highly R and highly S pools were prepared and subjected to
WGS sequencing with one sample per lane using a HiSeq2500.
Paired-end reads (2 × 126 bp) were generated. Sequencing was
conducted at Macrogen, Inc., South Korea.

Trimming and Alignment of WGS
Sequences
The software Trimmomatic (version 0.32) was
used to trim adaptor sequences and low quality
sequences (Bolger et al., 2014) with the parameter of
“ILLUMINACLIP:<adaptor>:3:20:10:1:true LEADING:3
TRAILING:3 SLIDINGWINDOW:4:13 MINLEN:50.” The
adaptor sequence was from https://github.com/timflutre/
trimmomatic/blob/master/adapters/TruSeq3-PE.fa. Reads
retained after trimming were aligned to the B73 reference
genome (B73Ref2; Schnable et al., 2009) using BWA (0.7.15-
r1140) with the “mem” module (Li and Durbin, 2009). The
minimal mapping score of 40 was required and an in-house script
(github.com/liu3zhenlab/scripts/blob/master/bwa.filter/sampar
ser.bwa.pl) was used to filter alignments to ensure that reads
were uniquely aligned with high confidence. Specifically, each
alignment was required to have the insert between 150 and 800
bp, at least 50 bp alignment length, at least 96% identity, and at
most 4% unaligned percentage of a read length. The samtools
software (version 1.1; Li et al., 2009a) was used to convert
alignments in the SAM format to the BAM format.

Statistical Analysis of CNV between R and
S Pools
HTSeq (0.6.1p1) was used to count read depth for each gene
(filtered gene set, 5b) using the “union” mode. The generalized
linear model, implemented in the DESeq2 package (version
1.4.5), for read counts of genes with at least 20 total reads from

all four samples was used for testing the null hypothesis that no
difference in read depth between highly R pools and highly S
pools (Love et al., 2014). A false discovery rate (FDR) approach
was used to account for multiple tests (Benjamini and Hochberg,
1995). The FDR 10% was used as the cutoff for declaration of
significant CNVs.

Gene Annotation
Gene annotation was downloaded from the annotation
at Phytozome (https://phytozome.jgi.doe.gov/pz/portal.
html#!bulk?org=Org_Zmay) and the B73Ref2 annotation at
maizesequence.org.

GO Enrichment Test of CNV Genes
Enrichment analysis was performed for determining if a certain
GO term is over-represented in Up-CNV genes (greater copies
in R pools) vs. Dn-CNV genes (fewer copies in R pools), and
vice versa. The randomly resampling method (N = 10,000) in
the GOSeq enrichment test (Young et al., 2010) was employed.
GO terms with p-values smaller than 0.05 were considered to be
over-represented in a group.

Validation of CNV Genes Using WGS
Sequencing Data of the Maize 282
Association Panel
WGS data of the Maize 282 Association Panel were downloaded
from iplant shared from the Panzea research group. Among all
WGS sequenced lines, 239 maize lines were phenotyped in this
study. Sequencing reads were trimmed and aligned to the B73
reference genome (B73Ref2; Schnable et al., 2009) with the same
procedures as used for highly R and SWGS data. HTSeq (0.6.1p1)
was applied to count read depth for each gene (filtered gene set,
5b) using the “union” mode. Total pairs of reads after trimming
were used to determine RPM (read pairs per million of total
read pairs) of each gene as normalized values. The correlation
was determined between normalized read counts and phenotypic
values for each examined gene.

Quantitative Real-Time PCR (qPCR)
Genomic DNA was isolated using fresh leaves of seedlings at
the 2–3 leaf-stage. qPCR was performed in 10 µL reactions
containing 4.2 µL g DNA, 0.4 µL 10mM of each primer, and 5
µL 2x SYBR Green PCR Master Mix (Bio-Rad) on the CFX96TM

real time system (Bio-Rad). Primer efficiencies were measured
and relative copy number was calculated using the comparative
Ct method (Livak and Schmittgen, 2001). The actin gene was
used as the endogenous control. A gene specific primer pair was
designed to amplify GRMZM2G005134. Primers for qPCR were
listed in the Supplementary Table 1.

Cytogenetic Analysis
Maize somatic chromosome preparations using the drop
technique, direct probe labeling by nick translation and the
florescence in situ hybridization (FISH) were performed as
described previously (Kato et al., 2004, 2006). The clone
containing ∼1.7 kb part of rp1 gene was provided by Dr. James
A. Birchler. The insert was sequenced by Sanger sequencing
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and found 100% similar to the first 1,521 bp of the coding
region of the Rp1-D allele (Genbank accessions: AY581258 and
AF107293) (Supplementary Figure 1), corresponding to the
N-terminal NBS region of the rp1 gene, which is the most
conservative part of the gene (Ramakrishna et al., 2002). To
make the FISH probe, the insert was amplified with standard
primers M13; PCR products were purified with Invitrogen
PCR purification kit (Life Technologies, USA) and labeled with
Texas red-5-dCTP (PerkinElmer, USA). Oligonucleotide probes
labeling centromeric repeats CentC CCTAAAGTAGTGGATTG
GGCATGTTCG and 5S ribosomal DNA TAGTAAAAATGGGT
GACCGTTCTCGTGTTA were synthesized by Integrated DNA
Technologies with 6-FAM attached to the 5′ end. For nucleolus
organizing region (NOR) probe, wheat clone pTa71 (Gerlach
and Bedbrook, 1979) was labeled with Fluorescein-12-dUTP
(PerkinElmer, USA). Chromosome preparations were mounted
and counterstained with 4’,6-diamidino-2-phenylindole solution
(DAPI) in Vectashield (Vector Laboratories, USA). Images were
captured with a Zeiss Axioplan 2 microscope using a cooled
charge-coupled device camera CoolSNAP HQ2 (Photometrics,
USA) andAxioVision 4.8 software (Zeiss). Images were processed
using the Adobe Photoshop software.

Data Access
WGS Illumina sequencing data of the pools of highly R
and S lines have been deposited at Sequence Read Archive
(SRP100278).

RESULTS

A Simple Inoculation Method for GW
Disease Quantification
To establish a rapid and reproducible method for quantification
of GW, the effects of growth stages and leaf positions on
lesion expansion were first tested on seedlings of a maize
inbred line Mo17. The results indicated that three-leaf seedlings

overall exhibited longer lesion expansion compared to four-
leaf seedlings in the same time period, allowing for greater
potential variation in symptoms (Supplementary Figure 2A).
Three-leaf seedlings of 25 maize inbred lines were inoculated
on the second or third leaf, and the lesion lengths were
measured every 2 days from 3 to 13 DPI. Two-way ANOVA
analysis on the factors of inoculation leaf and maize genotype
found the greater mean expansion of lesions on third leaves
vs. second leaves of diverse maize lines. Also high variation
in lesion length between maize lines and low variation within
individuals of a given line were observed on the third leaf
compared to the second leaf (Supplementary Figure 2B),
suggesting that the third leaf at the three-leaf seedling stage
is optimal for lesion phenotyping. Twenty-four NAM parents
and Mo17 showed a wide range of among-genotype variation
in lesion length using this phenotyping method at 13 DPI
(Supplementary Figure 3). The method was used to measure
lesion lengths at 13 DPI to represent host resistance levels
for 615 maize lines. Overall, maize lines showed a wide
range of variation in lesion length from 2.8 to 32.1 cm at
13 DPI (Figures 1A,B, Supplementary Table 2; a time-lapse
video of a highly susceptible line provided in Supplementary
Movie 1). To account for potential variation from plant
growth habits of the individual lines, a linear regression model
was fitted for lesion lengths based on plant heights. Based
on corrected lesion lengths, 37 so-called highly resistant (R)
genotypes and 44 highly susceptible (S) genotypes were selected
from 615 lines as extreme phenotypes (XP) (see Methods)
(Figure 1C).

Differential Gene Copy Number in R and S
Pools
Two biologically replicated pools of R lines and pools S lines
selected from 615 lines were subjected to whole genome shotgun
(WGS) sequencing. In total, ∼50.3x (125.7 Gb) and 49.6x (123.9
Gb) sequences were generated for the R and S pools, respectively.

FIGURE 1 | Quantification of lesions caused by a Cmn strain. (A) The lesion development on third leaf of three-leaf seedlings of a resistant maize line (GA152) and a

susceptible maize line (Elkobbel). (B) Histogram of lesion lengths of 615 maize lines at 13 DPI. (C) Selection of highly resistant (R) and highly susceptible (S) maize lines

based on the best linear unbiased estimation (BLUE) values of lesion lengths.
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WGS sequencing data were aligned to the B73 reference genome
and uniquely mapped reads were used for determining read
depths per gene. We employed a novel approach, XP-CNV, to
examine CNV between the R and S pools through comparing
genic read depths. Each of the genes (N = 37,483) with at least
20 total reads from all the four samples (two biological replicates
of R and S pools) was subjected to a statistical test for the
null hypothesis of no difference in sequencing depths between
the R and S pools (Love et al., 2014). As a result, 141 genes
exhibited significantly differential read depths between R and
S pools. These genes were considered as candidate CNV genes
showing distinct copies in the R and S lines. Among the candidate
CNV genes, 90 and 51 genes were displayed more copies (Up-
CNV) and fewer copies (Dn-CNV) in R vs. S, respectively
(Supplementary Table 3).

Candidate CNV genes were found on all 10 maize
chromosomes (Figure 2A). Some genes were physically
close. Six loci on chromosomes 1, 2, 6, and 10, each of which
harbors multiple Up-CNV genes in relation to R pools, were
closely clustered within 250 kb of each other, while four loci
were observed close together on chromosomes 2, 6, and 7 for
Dn-CNV genes in relation to R pools. Noticeably, a locus at the
short arm on chromosome 10 contained four Up-CNV genes
(GRMZM2G083246, GRMZM2G349565, GRMZM2G005134,
and GRMZM2G143769). Functional annotation revealed that
all these four genes are rp1 family members. The rp1 gene,
GRMZM2G083246, displayed the highest fold change (2.5x) of
sequencing depths in R pools vs. S pools among all Up-CNV
genes (Figure 2B). Rp1 is an NLR gene that was previously
discovered to confer race-specific resistance to common rust of
maize (Smith et al., 2004).

Besides rp1, a number of other Up-CNV genes were associated
with plant disease responses. For example, a SEC-14-related gene
(GRMZM2G363377), and one of top Up-CNV genes, displayed
a 2.4x fold change in sequencing depths of R pools vs. S
pools (Table 1). SEC-14-like genes encode phospholipid transfer
proteins, which can play an important role in plant innate
immune responses (Kiba et al., 2014). Another Up-CNV gene
(GRMZM2G362303) encodes a wall-associated kinase (WAK).
WAK family members have been demonstrated to be associated
with plant defenses, including the rice OsWAK1, Arabidopsis
WAK10 and WAK22 (Diener and Ausubel, 2005; Li et al.,
2009b; Meier et al., 2010), and maize ZmWAK (Zuo et al.,
2015). Gene ontology (GO) enrichment analysis of Up-CNV
vs. Dn-CNV showed that the GO term transport (GO:0006810)
was overrepresented in Dn-CNV (p < 0.03). Other GO terms
associated with protein kinase, electron carrier, ion binding
and heme binding, although not significantly overrepresented,
occurred at least three times in Up-CNV but were absent in
Dn-CNV.

Confirmation of the Association of the rp1

Locus with GW Resistance
WGS data of individual lines of 239 maize accessions from
the Maize 282 Association Panel was used to corroborate the
association of rp1 with disease resistance. The 239 lines are a
subset of 615 lines whose disease resistance levels (lesion lengths)
were phenotyped in this study. For each rp1 gene, the correlation
of lesion lengths with normalized read counts of the gene
were examined. All four rp1 genes identified as Up-CNV genes
showed negative correlations with susceptibility as determined by
lesion length (all four p-values smaller than 0.002, correlations

FIGURE 2 | Candidate disease-associated genes identified via XP-CNV. (A) A genome-wide view of the distribution of sequencing depth comparison between highly

R pools and highly S pools across 10 maize chromosomes. Each dot designates a gene. Y-axis represents log2 values of ratios of read depths of R to S, signifying

CNV between R and S pools. Genes with statistically significantly higher and lower read depths of R vs. S pools were interpreted as Up-CNV (green) and Dn-CNV

(blue), respectively. Orange boxes indicate centromeric positions. Red arrow points to the rp1 locus. (B) Read depths (reads per gigabit total aligned reads, RPG)

across the Up-CNV gene GRMZM2G083246 from the pools of two highly R (R2 and R3) and two highly S (S1 and S3) pools.
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TABLE 1 | Information of the top ten Up-CNV and the top 10 Dn-CNV genes.

GeneID log2FCa p-Value padjb Chr Start End Descriptionc

GRMZM2G083246 1.32 4.05E-09 2.54E-05 10 3643040 3645180 LRR and NB-ARC domains containing disease resistance protein (rp1)

GRMZM2G026176 1.28 1.51E-09 1.42E-05 1 257112452 257127180 Unknown

GRMZM2G363377 1.25 5.04E-11 9.48E-07 2 184717427 184745555 Sec14p-like phosphatidylinositol transfer family protein

GRMZM2G169013 1.25 2.08E-08 1.12E-04 2 7859326 7861362 Unknown

GRMZM2G702514 1.19 7.19E-12 2.70E-07 10 136325395 136339339 Flavanone 3-hydroxylase

GRMZM2G357081 1.19 1.21E-09 1.42E-05 1 257033199 257043603 Shaggy-like kinase 13

GRMZM2G349565 1.17 6.10E-07 1.76E-03 10 3764373 3766967 LRR and NB-ARC domains containing disease resistance protein (rp1)

GRMZM2G009770 1.12 9.94E-07 2.44E-03 9 151759076 151762771 Leucine-rich repeat protein kinase family protein

GRMZM2G127619 1.08 1.16E-06 2.57E-03 6 159004500 159005754 Unknown

GRMZM2G701441 1.08 2.77E-09 2.08E-05 3 38609811 38632417 Unknown

GRMZM2G086935 −0.94 3.38E-05 2.70E-02 7 71388331 71391082 Unknown

GRMZM2G106165 −0.95 2.06E-05 1.94E-02 4 50720961 50724861 Serine-type carboxypeptidase

GRMZM2G049027 −0.96 5.95E-05 3.82E-02 6 91353470 91355242 Cleavage and polyadenylation specificity factor 30

GRMZM2G575323 −0.96 4.89E-05 3.47E-02 1 126269847 126270723 Unknown

GRMZM2G164672 −0.97 3.74E-05 2.87E-02 1 174565242 174567097 Unknown

GRMZM5G829946 −0.98 2.30E-05 2.06E-02 2 66708324 66712872 PLC-like phosphodiesterases superfamily protein

GRMZM2G166695 −1.08 6.98E-08 2.92E-04 4 57590015 57595523 Remorin family protein

GRMZM2G009624 −1.09 1.04E-06 2.44E-03 1 123774374 123777663 RNA-binding (RRM/RBD/RNP motifs) family protein

GRMZM2G320305 −1.15 8.25E-08 3.10E-04 10 2690434 2694516 Ferredoxin-NADP(+)-oxidoreductase 2

GRMZM2G014323 −1.22 3.94E-08 1.85E-04 1 37667524 37685753 Cell division control 2

aLog2-fold change in read depth between R and S pools.
bAdjusted p-values.
cGene functional annotation from Phytozome or maizesequence.org.

were from −0.346 to −0.203) (Figure 3A, Supplementary
Figure 4). Quantitative PCR (qPCR) of one of rp1 genes,
GRMZM2G005134, on B73, 22 R lines and 22 S lines, which
randomly selected from highly R and S lines, using a specific
primer pair of GRMZM2G005134, showed a high correlation
between qPCR signals and sequencing depths of this gene
(correlation = 0.831, p = 3.04e-6) (Supplementary Figure 5).
Of 22 R lines and 22 S lines, 11 R and 17 S lines displayed
extremely low qPCR signals, indicating that GRMZM2G005134
probably was absent in these lines (Supplementary Figure 6).
The t-test comparing the R lines and B73 with S lines
resulted in a significant association between qPCR signals of
GRMZM2G005134 and GW resistance (p < 0.05) (Figure 3B).
Eight R and S lines were randomly selected for fluorescent in
situ hybridization (FISH) using a 1.7kb rp1 probe to examine the
overall rp1 FISH signals (Figure 3C, Supplementary Figure 7).
Resistant and susceptible lines showed strong or weak rp1
FISH signals, depending on the line. For examples, A441-5,
a susceptible line, and NC306, a resistant line, had strong
rp1 signals, whereas K14758, a susceptible line, and GA152, a
resistant line had weak rp1 signals (Figure 3C). Thus, if rp1 is
responsible for the resistance, specific combinations or specific
rp1 paralogs rather than the total number of rp1 paralogs are
associated with resistance.

Multiple Rp1 haplotypes, containing various rp1 copies and
different rp1 genes (Collins et al., 1999), were collected and
introgressed to an inbred line H95 that is highly susceptible
to both common rust and GW. All Rp1 haplotypes confer
race-specific resistance to common rust. We phenotyped the

introgression Rp1 lines to assess GW resistance. As additional
controls, Rp3 and Rp5 introgression lines were also tested.
Of eleven Rp1 accessions, three lines, containing RpG (an
rp1 haplotype), Rp1-IG or Rp1-JC13, showed high levels of
resistance in comparison to H95, with 61.6% (p = 2.4e-6), 64.9%
(p= 1.4e-11), and 47.5% (p= 2.8e-10) reduction in lesion length,
respectively (Figure 4A). All three lines showed necrotic and/or
chlorotic symptoms at inoculation sites, resembling an HR
reaction (Figure 4B). Some Rp1 accessions exhibited moderate
resistance to GW in comparison to H95, including accessions
Rp1-JF69, Rp1-J, and Rp1-JD46 with 36.8% (p = 3.2e-8), 33.8%
(p = 7.3e-6), and 29.4% (p = 1.2e-3) reduction in lesion length,
respectively. Both Rp3 and Rp5 accessions did not show enhanced
resistance. Quantification of disease resistance of these rp1
haplotypes corroborated the association between the rp1 locus
and GW resistance.

DISCUSSION

The genetic basis of host/pathogen interactions to Clavibacter,
in any system, is poorly understood. This study examined the
genetic basis of the emerging maize Gram-positive bacterial
disease GW. We applied XP-CNV to identify GW-associated
CNV and discovered an associated locus in the region of the R
locus rp1 to Puccinia sorghi, the causal agent of common leaf
rust (Hulbert, 1997; Smith et al., 2004). The co-localization was
corroborated by the observation of effective resistance ofmultiple
but not all Rp1 accessions. Resistance to rust and possibly
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FIGURE 3 | Association of an rp1 gene with disease resistance. (A) Correlations between read depths of an rp1 gene (GRMZM2G005134) and lesion lengths of 239

lines from the Maize 282 Association Panel. Highly resistant and susceptible lines that are overlapped with the Maize 282 Association Panel are labeled in green and

blue, respectively. (B) Boxplots of qPCR signals of GRMZM2G005134 in the group of selected R lines and B73 as well as the group of S lines. (C) FISH of the 1.7kb

rp1 probe on somatic late prophase of chromosome 10 of four maize lines. Rp1 signals are in red; CentC, NOR, and 5S rDNA repeats are in green; chromosomes

counterstained with DAPI are in blue. Bar corresponds to 5µm.

FIGURE 4 | Effects of multiple Rp1 accessions on disease resistance. (A) Distribution of lesion lengths at 13 DPIs in multiple Rp1 accessions of which the rp1 locus

was introgressed into the inbred line H95. In the boxplot, the vertical line within each box indicates a median of lesion lengths. Asterisks indicate statistically significant

differences between H95 and an Rp1 accession (t-test, *p < 0.001). (B) Goss’s wilt phenotype of H95 and three Rp1 accessions, RpG (an Rp1 haplotype), Rp1-IG,

and Rp1-JC13, at 13 DPIs with a Cmn strain. Numbers in square brackets indicate the times of backcross generations.
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CMN is due to either the unique combination of rp1 genes
(Hu et al., 1997) or intragenic recombination events generating
novel rp1 genes at the rp1 locus (Smith et al., 2010). Some of
these haplotypes mediate spontaneous defense (lesion mimic)
responses even in the absence of rust infection (Hu et al., 1997;
Chintamanani et al., 2010; Smith et al., 2010). Lesion mimic
phenotypes have not been observed in most of the GW resistant
lines identified in this study. The GW resistance identified in
these lines is thus probably due to a specific response to the
bacterial pathogen and not a non-specific induction of defense
responses. In the simplest application of the results, manipulation
of known resistant rp1 haplotypes in elite germplasm may
provide enhanced resistance to GW.

Many plant disease resistance genes are dispensable to the
general fitness of the plant (Collins et al., 2003; McHale et al.,
2012; Yao et al., 2015; Hardigan et al., 2016). Therefore,
in theory, some CNV such as PAV or tandem duplication
should be detectable by SNP markers that exhibit high linkage
disequilibrium with CNV locations. A human study indicated
that 77% of CNVs were effectively tagged by SNPs, suggesting
GWAS can capture the majority of CNV (Conrad et al., 2010).
Genotyping by CNV of multiple unlinked homologous family
members may obfuscate SNP analysis. Unlike SNPs or small
insertions or deletions (InDels), PAV or other CNV have not been
well established. In this study, XP-CNV was used with bulked
WGS sequencing data for the purpose of reducing sequencing
cost. Sequencing depths per gene were determined to infer
average gene copy numbers of individuals in each GW R and
S pools. The statistical comparison between the R and S pools
resulted in a set of genes with differential average gene CNVs
between the two groups, and many Up-CNV genes in R pools
seemed to be defense-related. The strategy of XP-CNV should be
efficient for direct identification of causal CNV genes.

We have utilized sequencing data of theMaize 282 Association
Panel to verify the GW association with rp1 genes, suggesting
that the XP-CNV result is largely repeatable. However, XP-
CNV analyses are subject to false discovery. First, organelle
sequences homologous to nuclear chromosomes could result in
high variation in read depths (Lough et al., 2015). The number
of organelles, such as mitochondria or chloroplasts, varies in
different tissues and the percentage of organelle genomes in DNA
samples is subject to DNA extraction procedures. Therefore,
falsely discovered CNV can result from organelle sequences.
Here, two biological replicates of each R and S pool were done
to minimize the effect of organelle variation. Second, the method
is influenced by the population structure of selected lines, which
could lead to spurious association (Balding, 2006). One solution
is to generate sequences of individual lines that can be used
to assess population structure, and to establish phenotype-CNV
association with the control of population structure.

Genomic structural variation (SV) includes CNV and other
SV types such as inversions and rearrangements, and only CNV
was examined in this study. It is still challenging to reliably
genotype SV other than CNV in a population scale. However, the
advance of longer read sequencing and bioinformatics algorithms
has improved the calling accuracy and reliability (Pirooznia et al.,
2015; Dong et al., 2016; Huddleston et al., 2016; Peng et al.,
2016). In future, with the continuous decrease of sequencing

cost and improvement of sequencing technologies, the majority
of plant germplasms will be sequenced in a decent depth.
Phenotypic association of CNV and perhaps other genomic
structural variation would be a regular analysis in addition to
regular GWAS.

Through XP-CNV, we identified the association between
the rp1 genes and disease resistance to GW caused by the
Gram-positive bacterium Cmn. HR-like resistant responses were
observed for multiple Rp1 haplotypes. It is unknown whether
one or multiple separate genes with separate elicitors occur
at the locus. The Rp1 locus encodes a number of nucleotide
binding site/leucine rich repeat proteins, which are known to
participate in the recognition of pathogen effectors (Deyoung
and Innes, 2006). In Gram-negative bacteria, many of the known
effectors are delivered to plant cells through the type III systems
(T3SS). However, no secretion systems equivalent to T3SS has
been identified in Cmn (Bentley et al., 2008; Gartemann et al.,
2008; Lu et al., 2015b). The known virulence factors of related
Clavibacter pathogens are secreted by the type II secretion
system (T2SS). Alternatively, toxins or other non-proteinaceous
compounds may trigger the HR. The revelation of the association
between the rp1 locus and GW provides a system to elucidate
molecular interactions between hosts and bacterial species of
C. michiganensis.
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