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This paper deals with the distributed fault detection and isolation problem of uncertain,
nonlinear large-scale systems. The proposed method targets applications where the com-
putation requirements of a full-order failure-sensitive filter would be prohibitively
demanding. The original process is subdivided into low-order interconnected subsystems
with, possibly, overlapping states. A network of diagnostic units is deployed to monitor,
in a distributed manner, the low-order subsystems. Each diagnostic unit has access to a
local and noisy measurement of its assigned subsystem’s state, and to processed statisti-
cal information from its neighboring nodes. The diagnostic algorithm outputs a filtered
estimate of the system’s state and a measure of statistical confidence for every fault
mode. The layout of the distributed failure-sensitive filter achieves significant overall
complexity reduction and design flexibility in both the computational and communication
requirements of the monitoring network. Simulation results demonstrate the efficiency of
the proposed approach.[DOI: 10.1115/1.4037839]

1 Introduction

The majority of contemporary industrial and commercial con-
trol systems are composed of a large number of spatially distrib-
uted feedback modules with heterogeneous sensors, actuators, and
controllers that exchange information over a band-limited com-
munication network that is embedded within the system. These
large-scale systems are characterized by high-dimensional state-
spaces and nonlinear dynamics. Typical applications are water
distribution networks, power grids, automated highway systems,
swarms of unmanned aerial vehicles, and environmental control
systems, just to name a few. Large-scale systems are much more
vulnerable to faults since the effects of a single malfunction to an
individual part may rapidly diffuse to the entire system due to the
interconnection of the various subcomponents.
Availability, dependability, and resiliency are becoming major

design goals for large-scale technological systems due to stringent
economic, ecological, and safety demands. These attributes are of
major importance, primarily for safety-critical systems, e.g., air-
planes, automobiles, and nuclear reactors, since they ensure public
safety. Therefore, there is a growing need for reliable real-time
monitoring and supervision especially in the case of safety-critical
systems. Fault diagnosis (FD) describes the dual objective of
detecting the occurrence of a fault (detection) and identifying it
(identification or isolation). A timely diagnosis of a fault mode
may improve the system’s availability and maintainability by
avoiding down-times, breakdowns, and catastrophic failures rates.
Research in the field of FD has attracted significant attention

since the beginning of the 1970s. The significant majority of exist-
ing FD methods [1–6] have a centralized architecture in the sense
that the sensor measurements and the diagnostic algorithm are
collected and executed by a singleton processing unit. Centralized
FD is considered a matured field that has established reliable solu-
tions to many engineering applications. However, the applicability
of this traditional approach is limited to concentrated low-order
systems.
Modern processes involve high-dimensional state-spaces as

well as highly nonlinear dynamics. In the case of large-scale and
spatially distributed systems, centralized FD becomes ill-suited.
Every monitoring system has certain limitations in terms of

computational power and communication bandwidth. When the
dimensionality and complexity of the system increases, it is likely
that these limitations will not be satisfied by a centralized configu-
ration. The online monitoring of a high-dimensional system would
require extensive computations from the central processing unit.
Processes with geographically remote subcomponents necessitate
long distance and energy demanding broadcasts or complex multi-
hop routing protocols to transmit information to the central fusion
center. In both cases, a centralized architecture exhibits poor
scalability.
In the literature, the majority of distributed fault detection and

identification methods are developed for discrete-event systems
and for multiprocessor computing applications [7–9]. A growing
interest in the development of distributed fault detection algo-
rithms has also been reported by the wireless sensor networks
community [10]. In this work our attention is spotlighted to
model-based FD methods for dynamic systems that utilize a math-
ematical model of the process. A rudimentary classification of
existing distributed FD model-based methodologies can take place
based on the data type that is exchanged between the nodes of the
diagnostic system. The diagnostic nodes (DNs) can exchange: raw
measurements of the interconnected states [11–13], state estimates
[14,15], or fault signatures [16]. The most prominent work on dis-
tributed, observed-based FD for nonlinear dynamic systems has
been reported by Ferrari et al. [11] and Boem et al. [17]. The
authors apply overlapping decomposition techniques to subdivide
the monolithic process to a set of reduced order subsystems. Each
subsystem is monitored by a local nonlinear observer. Seminal
work in distributed estimation-based FD using Kalman filtering is
reported in Ref. [18]. The algorithm is based on the distributed
version of Kalman filter (KF) established by Olfati-Saber [19,20].
The KF is restricted to linear system, while linearization
(extended KF) leads to high false alarms rates [21].
Foundational work on estimation-based FD for nonlinear sys-

tems that employ large number of correlated sensors is introduced
in Refs. [22,23]. The author combines a distributed particle filter-
ing algorithm for state estimation with fused hypothesis testing
through likelihood tests, to determine the occurrence of fault
modes. The proposed method is mainly geared toward relative
low-order systems monitored by a high number of interconnected
sensors. The layout of the algorithm does not accommodate subdi-
visions of the original process. The applied classical likelihood
tests require a bank of estimators equal to the number of fault
modes. Such replication of the state is unsuitable for large-scale
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systems. A full-order distributed failure-sensitive filter has also
been introduced by Noursadeghi and Raptis [24,25]. In this
scheme, a detection network is assigned to monitor the entire state
of the monolithic system using only local measurements. Simi-
larly to the work of Cheng, the authors did not considered any
form of subdivision in the dynamics of the original process.
Instead, the algorithm introduced in Refs. [24,25] provides an esti-
mate of the entire state of the monolithic system.
The particle filter (PF) is an ideal estimator for fault diagnosis

since it avoids linearity and Gaussian noise assumptions. A com-
prehensive analysis on distributed PF algorithms is given by
Hlinka [26,27] and Mohammadi [28,29]. A distributed PF scheme
for FD diagnosis that accounts for system decomposition is
reported in Ref. [30]. The authors propose a hybrid modeling
approach where every potential fault is treated as a system mode.
This approach assumes that the transition probability between the
fault modes is known a priori. This probabilistic information may
not be available in most real-life applications.
In this work, we present a distributed, model-based and sequen-

tial fault diagnosis methodology for large-scale, stochastic nonlin-
ear systems that are subject to multiple fault modes. This
approach targets systems where the state dimension is signifi-
cantly large (102states and higher). A distributed version of the
particle filtering method will serve as the foundation of the
derived diagnostic algorithms. We introduce a reduced-order fault
diagnostic algorithm that allows the subdivision of the original
process dynamics to low-order interconnected subsystems with
state overlap. A DN is assigned to monitor every partition of the
monolithic system and triggers alarm indicators based on its local
observations and information exchange between neighboring
units. Each local failure sensitive filter outputs an estimate of the
subsystem’s state vector and the probabilities of failure of the
local fault modes.
Our reduced-order FD technique achieves a dramatic decrease

to the computational complexity of the original problem and pro-
vides significant design flexibility to the layout of the algorithm.
The PF is an ideal estimator since it eliminates complex Lyapunov
arguments that are required by the observed-based methods to
guarantee convergence. A binary update rule is used to repopulate
the particles and estimate the system modes without the need for
transition probabilities. The failure sensitive filter can simultane-
ously detect and identify faults without the need for a bank of esti-
mators. The proposed algorithm takes advantage of the
decentralized architecture and computational strength of modern
embedded systems such as wireless sensor networks and multicore
processors.
This paper is organized as follows: A brief description of the

PF algorithm is presented in Sec.2. The synthesis of a centralized
PF fault diagnosis algorithm is outlined in Sec.3. The centralized
algorithm serves as a benchmark framework for its distributed
counterpart. The reduced-order distributed version of the failure
sensitive filter is presented in Sec.4. The performance of the pro-
posed methodology is evaluated in Sec.5via numerical simula-
tions. Finally, concluding remarks are given in Sec.6.

2 Centralized Particle Filtering

The filtering problem is formulated based on the discrete time
state-space approach. The purpose is to estimate the state of the
system by using a sequence of noisy measurements. Consider a
time-dependent, state vectorxðkÞ2Rnx, wherek2Zþ is the
time index. The state-transition model of the statex(k) is defined
according to

xðkÞ¼fðxðk 1Þ;vðk 1ÞÞ (1)

wherefðkÞ:Rnx nv! Rnxis a known, nonlinear function, and
vðkÞ2Rnvstands for system’s process noise. At time stepk, the
measurement equation of the statex(k) is expressed by

zðkÞ¼hðxðkÞÞ þxðkÞ (2)

where zðkÞ2Rnz represents the measurement vector,hðkÞ:
Rnx! Rnzis a known nonlinear function, andxðkÞ2Rnxstands
for the measurement noise. It is assumed that both the process
noisev(k) and measurement noisexðkÞare white and independent
with known probability density functions (pdf). From a Bayesian
perspective, the objective is to recursively quantify some degree
of belief in the statex(k), given the measurement datazð1:kÞup
to timek. The belief is expressed by the calculation of theposte-
riorpdfpðxðkÞjzð1:kÞÞ. The calculation of the posterior density
pðxðkÞjzð1:kÞÞallows the computation of various measures of the
statex(k), such as the minimum mean square error

x̂ðkÞ¢EfxðkÞjzð1:kÞg ¼

ð

xðkÞpðxðkÞjzð1:kÞÞdxðkÞ (3)

The PF is a sequential Monte Carlo method that uses a finite set
of “particles” to represent probability density functions [31]. The
basic idea is to represent the non-Gaussian posterior pdf
pðxðkÞjzðkÞÞby a set of randomly drawn particlesxiðkÞand
corresponding weightswiðkÞ. Using set of particles and the
weightsfxiðkÞ;wiðkÞgNsi¼1, the posterior can have the following dis-
crete approximation:

p̂ðxðkÞjzðkÞÞ 
XNs

i¼1

wiðkÞdðxðkÞ xiðkÞÞ (4)

wheredðÞdenotes the multivariate delta Dirac function. As the
number of particles becomes very large, the sequential Monte
Carlo representation is closer to the analytical description of the
posterior. Using the representation in Eq.(4), one can obtain vari-
ous estimates ofx(k). For example, the minimum mean square
error estimate is approximated as

x̂ðkÞ¼
XNs

i¼1

wiðkÞ

ð

xðkÞdðxðkÞ xðiÞðkÞÞdxðkÞ

¼
XNs

i¼1

wiðkÞxiðkÞ (5)

Different variations of the PF algorithm exist depending on the
choice of the importance density function and the resampling
step. The most standard form of the PF algorithm is the sequential
importance resampling filter (SIR). The SIR filter forms the foun-
dation for some well-known PFs including the bootstrap filter
[32], the auxiliary PF [33], and the regularized PF [33]. These PFs
are derived using a suboptimal choice of the proposal pdf
qðxðkÞjzðk 1Þ;zðkÞÞ.
The most frequently used and easiest to implement SIR algo-

rithm is the bootstrap filter that is employed during this work. In
this filter, the particles are updated using the state-transition den-
sity functionpðxðkÞjxðk 1ÞÞas the importance pdf. In this case,
the weight update equation simplifies to

wiðkÞ/wiðk 1ÞpðzðkÞjxiðkÞÞ (6)

The measurement noisexis considered as a Gaussian distribu-
tion with zero mean and covariance matrixRx, the likelihood
function for each particle is calculated by

pðzðkÞjxiðkÞÞ NðeiðkÞ;0;RxÞ (7)

whereNðeiðkÞ;0;RxÞis the normal distribution with zero mean
and covariance matrixRx evaluated at the pointse

iðkÞ¼zðkÞ
hðxiðkÞÞ, whereeiðkÞis the prediction error of theith
particle. For a detailed description of various PF algorithms and
resampling techniques, the reader is referred to Ref. [33]. The
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pseudocode of the bootstrap filter and resampling are provided in
Tables1and2, respectively. The block diagram of the bootstrap
algorithm is shown in Fig.1.

3 Centralized Particle Filtering Fault Diagnosis

This work extends the methodology introduced in Ref. [34]
from one-dimensional fault-growth models to dynamic state-space
systems of nonlinear processes introducing the centralized particle
filtering fault diagnosis (CPFFD) algorithm. The CPFFD algo-
rithms generate two outputs. The first is the system’s state esti-
mate from a sequence of noise infested measurements. The
second output is a statistical characterization for the occurrence of
each fault mode that can trigger fault alarms.
Consider the uncertain, nonlinear, and discrete-time dynamic

systemSdescribed by the following state-space model:

S:

xðkÞ¼fðxðk 1Þ;uðk 1ÞÞ þ 

XM

j¼1

bðk kj0Þg
jðxðk 1Þ;uðk 1ÞÞ þvðk 1Þ

zðkÞ¼hðxðkÞÞ þxðkÞ

(8)

where the termsxðkÞ2Rnx,uðkÞ2Rnu, andzðkÞ2Rnzrefer to
the state, input, and measurement vector, respectively;fðkÞ:
Rnx! Rnx, andhðkÞ:Rnx! Rnzdenote the known nonlinear
functions of the system’s healthy dynamics and measurement
model, whilevðkÞ2Rnx andxðkÞ2Rnzstand for the process
and measurement noise sequences, respectively.
The monolithic system’s healthy dynamics are subjected toM

potential fault modes described by the nonlinear functions
fgjðxðkÞ;uðkÞÞgMj¼1withg

jðkÞ:Rnx nu! Rnx. The termbðk
kj0Þis a scalar function representing the time profile of the fault
modejoccurring at some unknown timekj0. We can consider both
abrupt(step-like) orincipient(exponential-like) fault modes,
defined as

bðk kj0Þ¼

0 k<kj0

1
|{z}
abrupt

or 1 cðkk
j
0
Þ;c>1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
incipient

k kj0

8
>>><

>>>:

(9)

It is assumed that the system is initiated from the healthy mode
(bðÞ ¼0atk¼0). Due to the random occurrence of the possible
faults, the monolithic system may be viewed as a hidden Markov
model, where the transition probabilities between the different
system modes are unknown.
The proposed failure sensitive filter embeds the dynamics of

the monolithic systemSgiven in Eq.(8), as well as a binary vari-
able (for every potential fault), that identifies the changes in the

process dynamics expressed by the termsbðk kj0Þ. Hence, the

binary state vectorbjðkÞ¼½bj1ðkÞ b
j
2ðkÞ

T, withbj1;b
j
22f0;1g

Table 1 Pseudocode of the BOOTSTRAP PF algorithm [31]

functionBOOTSTRAP PF

Inputs:xiðk 1Þ;wiðk 1Þ;zðkÞ

Outputs:xiðkÞ;wiðkÞ

Required:RESAMPLE

1:fori¼1:Nsdo

2: xiðkÞ¼fðxiðk 1Þ;viðk 1ÞÞ Particles update

3: wiðkÞ¼wiðk 1ÞpðzðkÞjxiðkÞÞ Weights update

4:end for

5:wiðkÞ¼
wiðkÞ

XNs

j¼1

wjðkÞ

Weight normalization

6:½fxiðkÞ;wiðkÞgNsi¼1 ¼RESAMPLE½fx
iðkÞ;wiðkÞgNsi¼1 Resampling

7:̂xðkÞ¼
XNs

i¼1

wiðkÞxiðkÞ Minimum mean-square error

Table 2 Pseudocode of the RESAMPLING algorithm [33]

functionRESAMPLE

Inputs:xiðkÞ;wiðkÞ

Outputs:xjðkÞ;wjðkÞ

1:cð1Þ¼0 Initialize the cumulative distribution function (CDF)

2:fori¼2:Nsdo

3: cðiÞ¼cði 1ÞþwiðkÞ Construct CDF

4:end for

5:i¼1 Start at the bottom of the CDF

6:uð1Þ¼U½0;N1
s Draw a starting point

7:forj¼1:Nsdo

8: uðjÞ¼uð1ÞþN1
s ðj 1Þ Move along the CDF

9: whileuðjÞ>cðiÞdo

10: i¼iþ1

11: end while

12: xjðkÞ¼xiðkÞ Assign samples

13: wjðkÞ¼N1
s Assign weights

14:end for

Fig. 1 Block diagram of the bootstrap PF

Table 3 Pseudocode of the CPFFD algorithm

functionCPFFD

Inputs:Xiðk 1Þ;wiðk 1Þ;uiðk 1Þ;ZðkÞ

Outputs:XiðkÞ;wiðkÞ;f̂b
j

2ðkÞg
M
j¼1

Required:RESAMPLE

1:fori¼1:Nsdo

2: XiðkÞ¼FðXiðk 1Þ;uiðk 1Þ;Vðk 1ÞÞ Particles update

3: wiðkÞ¼wiðk 1ÞpðZðkÞjXiðkÞÞ Weights update

4:end for

5:wiðkÞ¼ wiðkÞ

XNs

j¼1

wjðkÞ

Weight normalization

6:½fXiðkÞ;wiðkÞgNsi¼1 ¼RESAMPLE½fX
iðkÞ;wiðkÞgNsi¼1 Resampling

7:X̂ðkÞ¼
XNs

i¼1

wiðkÞXiðkÞ Minimum mean-square error

8:forj¼1:Mdo

9: b̂
j

2ðkÞ¼E½b
j
2ðkÞjZðkÞ Probabilities of failure

10:end for
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andj¼1;…;M, is introduced to estimate the occurrence of each

fault mode. More specifically,bj1ðkÞ¼1 indicates that the

absence of failure modej, whilebj2ðkÞ¼1 denotes that the fault
modejis detected to the system. The continuous-valued states are
coupled with the discrete-valued binary fault occurrence estimates
resulting in a hybrid model.
The operating condition of the system (normal or faulty), as

well as the detection and isolation of the faults, is determined by
employing a particle filtering scheme for the statistical characteri-
zation of both the binary and continuous-valued states, as new
measurements are received. Hence, the state vector that is used by
the PF algorithm is the combination of the continuous state vector
and the binary state vector asXTðkÞ¼½ðxcðkÞÞT ðb1ðkÞÞT

ðbMðkÞÞT 2Rnxþ2M, wherexcðkÞ¢xðkÞ. Therefore, the state-
transition dynamics ofXare described by

Sf:

xcðkÞ¼fðxcðk 1Þ;uðk 1ÞÞ þ 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

evolution of continuous states

XM

j¼1

gjðxcðk 1Þ;uðk 1ÞÞ bj2ðk 1Þþ~vðk 1Þ

bjðkÞ¼Uðbjðk 1Þþnjðk 1ÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

evolution of binary states

;j¼1;…M

zðkÞ¼hðxcðkÞÞ þ~xðkÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

measurement

(10)

where~vðkÞ2Rnxand~xðkÞ2Rnzare approximations of the failure
sensitive filter’s process and measurement noise, respectively. These
noise sequences should be as close as possible to the actual ones

(vðkÞandxðkÞ). The nonlinear functionU:R2!f½01T;½10Tg,
represents the evolution of the binary states driven by the identically
independent distributed (i.i.d) uniform white noisenjðkÞ. The func-
tionUðÞis defined such that the previous statebjðk 1Þis ran-
domly excited at each time step bynjðk 1Þ. This random vector of

R2is assigned to one of the binary states (normal/faulty operating
condition) based on the distance metric of the perturbed vector

bjðk 1Þþnjðk 1Þto the coordinates½01Tand½10T.
By using this technique, when one of the fault modes occurs,

the weights will gradually converge the corresponding binary
variablebj2ðkÞto one (b

j
2ðkÞ!1). This is due to the fact that

the likelihood of the measurements will diminish the weights of
the particles associated with the healthy condition. This way, the
occurrence of the each fault is estimated exclusively through the
measurement data and the process model, without the knowledge
of the fault modes transition probabilities. The functionUðÞ
serves as “likelihood feedback” that drives the sample population
of the binary states. A choice ofUðÞthat has been successfully
used in Refs. [34–36]is

UðxÞ¼
e1 ifkx e1kkx e2k
e2 else

(11)

wheree1¼½1;0
Tande2¼½0;1

T. The state model of the CPFFD
algorithm can be written in a more compact form as

Sf:
XðkÞ¼FðXðk 1Þ;uðk 1Þ;Vðk 1ÞÞ

ZðkÞ ¼ HðXðkÞÞ þ~xðkÞ

whereZðkÞ¼zðkÞ;VðkÞ¼½~vðkÞn1ðkÞ…nMðkÞ, andF ðÞ;HðÞ
are nonlinear functions of appropriate dimensions and structure.
The aforementioned definition will be used to ease the notation in
subsequent parts of the analysis. The outputs of the CPFFD mod-
ule arethe estimation of the systems’s state vectorandthe proba-
bilities of failure of each fault mode. These probabilities are the
expectations of the binary statesb̂

j

2ðkÞ¼E½b
j
2ðkÞjZðkÞ. This

measure is used to trigger alarm indicators if its value exceeds a

certain thresholda2ð0;1Þthat marks the probability of detection
(i.e.,b̂

j

2ðkÞ<aindicates that the system is in healthy operating
condition). With this layout, two or more different co-existing
fault modes can be simultaneously detected. The pseudocode of
the CPFFD algorithm is given in Table3.
The probability of failure is a much more computationally

attractive measure compared to classical change detection meth-
ods such as hypothesis testing. In the context of fault isolation,
detection algorithms using hypothesis testing through logarithm
likelihood ratio test requires the execution of a bank of estimators
that is equal to the fault modes. For large-scale systems, this com-
putational load is prohibited. The proposed CPFFD algorithm is
significantly more efficient, since it increases the dynamics of the
detector by onlyMbinary state vectors.

4 Distributed Particle Filtering Fault Diagnosis

The CPFFD algorithm described in Sec.3is not scalable or
robust to complex large-scale dynamical systems that employ
scattered measurement sensors over large geographical regions.
For high-dimensional large-scale systems, this methodology
becomes impractical due to limitations in the observation range of
sensors, communication bandwidth, and computation power of
the centralized computing node.
In this section, we present a reduced-order distributed particle

filtering fault diagnosis (DPFFD) algorithm for large-scale nonlin-
ear systems. The original diagnostic problem is subdivided to a
number of lower-order interconnected fault sensitive filters. With
this technique, each low-order filter can balance its computation
power requirements and volume of data transfers. Similar to Ref.
[37], we take into account subdivisions with state overlap. The
states that are common between two or more subsystems are
referred to as shared states. Shared states between subsystems
appear when state variables are mutually monitored by sensors
that correspond to different subsystems.
Here, we briefly illustrate the three most characteristic types of

decomposition based on a similar description given in Ref. [37].
The most communication intensive decomposition involves nono-
verlapping subsystems of order one (Fig.2(a)). This fragmenting
is the most computationally effective, however, most likely the
communication limitations will be reached. On the contrary, the
decomposition depicted in Fig.2(b)provides a balanced compro-
mise between computational labor and communication broadcasts.
It is important to note that there exists a trade-off between compu-
tation power and communication capacity for the nodes of the net-
work. The third case (Fig.2(c)) is similar to the previous scenario
with the difference that there is overlap between the subsystems.
In principal, overlapping dynamics increase both the complexity
and the communication requirements of the overall design. This
additional complexity overhead is due to the fusion of the com-
mon measurements and shared state estimates between the nodes.
The overlap can increase the fidelity of states and measurements
that are exposed to higher uncertainty, since they are monitored
by more than one sensor. This fact can justify the additional effort
in terms of complexity and communications that stems from over-
lapping states. Decomposition techniques are out of the scope of
this paper, and the interested readers are referred to Refs. [38,39].
Graph theoretical tools are deployed to represent the dynamical

interdependence of the system’s states [37]. Adirected graphor
digraphprovides a pictorial representation of the system’s struc-
ture [40]. The digraph of systemSis defined as the pair
Gs¼ðVs;EsÞ, whereVs¼v[V[Bis the set of vertices con-
sisted of the system statesv¼fXjgj¼1;…;nx, the noise inputs
V¼fvjgj¼1;…;nx, and the scalar termsB¼fbjgj¼1;…;M. The setEs
represents the oriented edges defined by the ordered pairs
fl;mg, where l2Vsand m2v. An oriented edge exists
between the stateXl(orvlandbl) and stateXm, if the former
appears at the dynamic equation of the latter. If an edge exists
between vertices landm, we call themadjacentand denote this
relationship byl m. We define the neighborhoodVm Vsof
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the vertexXm2vas the setVm¼fXl2vjfXl;Xmg2Esgof all
adjacent states toXm. The digraphGsis also referred to asstruc-
tural graphof the systemS.
From a graph theoretical perspective, each subsystemSIof the

monolithic process is represented by a cut-point set of vertices
VðIÞs, whereV

ðIÞ
s v. Each cut-point set includes states that are

observed locally by sensors of its corresponding subsystem. The
components ofvthat belong to the cut-point setVðIÞs comprise the
local states of subsystemSI. States from subsystems with depart-
ing directed edges that enter the vertices of a cut-point set deter-
minethe interconnection variablesorforcing terms.
Following the previous definitions [41], every subsystemSIhas

a local state vectorxI2R
nxI, local interconnection variables vec-

tordI2R
ndI, and local process noise input vectorvI2R

nvI. Each
of theMfault modes will have their own presence in every sub-
system. LetgJIðkÞdenote the appearance of the fault modeJðJ¼
0;1;…;MÞat subsystemIðI¼1;…;NÞ. Based on the earlier def-
inition, the state space model of each subsystemSIis described by

SI:

xIðkÞ¼fIðxIðk 1Þ;dIðk 1Þ;uIðk 1ÞÞ

þ
XM

j¼1

bjIðk kj0Þg
j
IðxIðk 1ÞdIðk 1Þ;uIðk 1ÞÞ

þvIðk 1Þ

zIðkÞ¼hIðxIðkÞÞ þxIðkÞ

(12)

whereuIðkÞ2R
nuIandzIðkÞ2R

nzIrefer to the control input and
measurement vector of subsystemI, respectively. The nonlinear
functions fIð;;Þ:R

nxI RndI RnuI! RnxI and hIðÞ:
RnxI! RnzI denote to the local subsystem and measurement

dynamics; whilevIðkÞ2R
nxIandxIðkÞ2R

nzIstand for the sub-
system and measurement noise, respectively.
Likewise to the centralized approach, the formulation of the

reduced order local PF for fault diagnosis will include a vector of
binary states to represent the absence or presence of each fault mode.
The binary vector of failure modejat subsystemIis represented by
bjIðkÞ¼½b

j
1;IðkÞb

j
2;IðkÞ

Twith the local fault functiongjIðÞ.
The aforementioned definitions are illustrated with a simple

example. Consider a three-dimensional system with the global state
vector xðkÞ¼½X1ðkÞ;X2ðkÞ;X3ðkÞ

T, the noise vector
vðkÞ¼½v1ðkÞ;v2ðkÞ;v3ðkÞ

T, and the set of change step functions
B¼fb1ðkÞ;b2ðkÞg. The digraph of this example is shown in Fig.3.
Each sensor set monitors one subsystem. The monolithic system of
the this example is decomposed into two subsystems represented by
the cut-point setsVð1Þs ¼fX1;X2gandV

ð2Þ
s ¼fX2;X3g. The local

dynamic models of these two overlapping subsystems are

S1:

x1ðkÞ ¼f1ðX1ðk 1Þ;X2ðk 1Þ;X3ðk 1Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d1ðk1Þ

Þþ

b11ðk k10Þg
1
1ðX1ðk 1ÞÞ þ 

b21ðk k20Þg
2
1ðX2ðk 1ÞÞ þv1ðk 1Þ

z1ðkÞ ¼h1ðX1ðkÞ;X2ðkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
x1ðkÞ¼½X1ðkÞX2ðkÞ

T

Þþx1ðkÞ

(13)

S2:

x2ðkÞ¼f2ðX2ðk 1Þ;X3ðk 1Þ;X1ðk 1Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
d2ðk1Þ

Þþ

b22ðk k0Þg
2
2ðX2ðk 1ÞÞ þv2ðk 1Þ

z2ðkÞ¼h2ðX2ðkÞ;X3ðkÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
x2ðkÞ¼½X2ðkÞX3ðkÞ

T

Þþx2ðkÞ

(14)

The compact formulation of the local reduced-order failure sen-
sitive filter that incorporates the evolution of the binary states is
given by

SfI:
XIðkÞ¼FIðXIðk 1Þ;UIðk 1Þ;VIðk 1ÞÞ

ZIðkÞ¼HIðXIðkÞÞ þxIðkÞ
(15)

where XI¼½ðxIÞ
Tðb1IÞ

T…ðb2IÞ
T…ðbMIÞ

TT2RnxIþ2M, UI¼

½ðuIÞ
T ðdIÞ

TT,ZI¼zI;VI¼½~v
T
In
T
I
T, andFIðÞ;HIðÞare non-

linear functions with appropriate dimensions and structure. The
diagnostic algorithm includes the design of one DN for each sub-
systemSI. Each DN consists of a processing unit that executes the
local PF algorithm. The nodes can measure their own local states
and communicate with their neighbors to obtain a processed esti-
mate of their forcing term vector. The layout of the proposed
DPFFD algorithm is depicted in Fig.4. The algorithm can be sep-
arated into three main parts.
Particles update: In the first part, each DN executes a local

bootstrap PF. For every subsystem,Nsparticles are drawn

Fig. 3 System digraph of the running example with three
states. The circles represent the states, and the squares repre-
sent the noise input and scalar variables vectors (fault occur-
rence terms). The thunderbolt marks illustrate the location of
the potential failure modes.

Fig. 2 Characteristic types of system decomposition: (a) low complexity, many interconnec-
tions, (b) balanced complexity/communications with no shared states, and (c) balanced com-
plexity/communications, with shared states. This figure is based on a similar one in Ref. [37].
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according to the state transition propagation given in Eq.(15).
This action requires estimates of the forcing termsd̂Iobtained by
the neighbors of DNI. At timek 1 all subsystems have already
generated an estimate of their own states.
Weights update: In this step, each node uses its local observa-

tion and updates its particles’ weights based onpðZIðkÞjX
i
IðkÞÞ.

By taking into account the estimates of the neighboring statesd̂I,
and by choosing the proposal distribution similar to the local state
transition function, the weight update is given by

wiIðkÞ /wiIðk 1ÞpðZIðkÞjX
i
IðkÞÞ (16)

The local PF is concluded after the weight normalization and
resampling steps of the bootstrap filter (Sec.2). The outputs of
each DN are an estimation of the subsystems’ state vector̂xIðkÞ,
and the probabilities of failure b̂

j

2;IðkÞ¼E½b
j
2;IðkÞjZIðkÞ;

j¼1;…;M.
Shared states fusion: The last part of the reduced-order DPFFD

algorithm involves the fusion of state variables that belong to
overlapping cut-point sets. At each time step, the estimates of all
DN are collected by a central fusion center that assembles the final
global output of the diagnostic network. The data transmitted to
the central unit contain only postprocessed information. This is
the only centralized processing action that takes place on the
fusion center and does not add significant computational overhead
to the algorithm. A running average filter is executed between the
shared states to calculate a common estimate of their value.
The state estimatesx̂I2R

nxIof each DN do not have the same
dimensions and cannot be added directly. To this end, the local
state matricesHI2R

nx nxIare introduced that convert the local
state estimateŝxIto the vectorŝx

g
Iof dimensionnx. The vector̂x

g
I

has nonzero entries, equal to the components ofx̂I, at the states
that correspond to the elements of the cut-point setVIs. The rows
ofHIcorrespond to the components of the global continuous val-
ued state vectorx, while its rows to the components ofxI. The
binary matrixHIhas a nonzero entry (equal to one) to itsi–jele-
ment, if the global state variableXiappears to thejth component
of the local statexI. For the local state vectors one has

x̂gI¼HÎxI (17)

where the local state matrixHIis defined as follows:

½HIml¼
1if½xIl Xm
0 else

(18)

In the context of the running example given in Eqs.(13)and(14),
the local state matrixes for each DN are

H1¼

1 0

0 1

0 0

2

6
4

3

7
5 H2¼

0 0

1 0

0 1

2

6
4

3

7
5 (19)

with corresponding full dimensional local vectors

x̂g1¼

X̂
S1
1

X̂
S1
2

0

2

6
6
6
6
4

3

7
7
7
7
5
x̂g2¼

0

X̂
S2
2

X̂
S2
3

2

6
6
6
6
4

3

7
7
7
7
5

(20)

The superscripts are added to clarify the subsystem that each com-
ponent belongs to. We further introduce the binary selection
system-to-state (StS) matrixT2RInx. Each entry indicates the
presence of a global state to each subsystem. The StS matrixT
has a nonzero entry (equal to one) to itsi–jelement, if the state
variableXjappears to subsystemSi. The StS matrix is defined as

½T ij¼
1ifXj2Si
0 else

(21)

Thenxdimensional local state vectorsx̂
g
Iare added together.

Every element of the resulting summation vector is divided by the
number of appearances of the corresponding state variable to the
cut-point sets. Denote byr¼

PN
I¼1HÎx

g
Ithe sum of thenxdimen-

sional state vectors. Theith element of the global fused state vec-
tor̂xis given by

~x½i¼
1

XN

j¼1

T½ ji

r½i (22)

For the running illustration, the StS matrix is

T ¼
1 1 0
0 1 1

(23)

Hence, the global fused state vector~xaccording to Eq.(22)is
given by

~x¼

X̂
Sf
1

1

X̂
Sf
1

2þX̂
Sf
2

2

2

X̂
Sf
2

3

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(24)

The block diagram, with the breakdown of the reduced-order
DPFFD algorithm’s steps, is depicted in Fig.5. The corresponding
pseudocode of the proposed algorithm is outlined in Table4.
The reduced-order DPFFD algorithm results to a significant

reduction in the computational complexity and communication
bandwidth requirements of each DN. Suppose that the large-scale
system hasnxþ2Mstates. The computational complexity of the
centralized architecture, according to Ref. [42] and by considering
Nsparticles is approximated byOððnxþ2MÞ

2 NsÞfloating
point operations (flops). By decomposing the system intoNsub-
systems, the number of the state variables is decreased toðnxþ2
MÞ=Nat each subsystem. Assuming thatNsparticles are generated
in every reduced-order estimator node, and with the assumption of
no shared states, the total computational complexity of the
reduced-order DPFFD algorithm reduces toOððnxþ2MÞ

2

Ns=NÞ.

5 Numerical Results

This section provides an evaluation of the proposed DPFFD
algorithm via extensive numerical simulations. Two systems of

Fig. 4 Schematic of the reduced-order DPFFD algorithm. The
thunderbolt markers represent the location of the potential fault
modes in the system.
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different dimensionality are analyzed to validate the efficiency of
the algorithm. In both cases, the process model under investiga-
tion is a water tank system. This process was selected since its
dynamics are nonlinear and its physical subcomponents (water
tanks) are clearly identified.
The first case study involves the water tank system illustrated in

Fig.6. This process consists of nine identical cylindrical tanks of

cross-sectional areaSc. The tanks are connected with pipes of
cross section areaSp. The flow rateQi;jbetween tankiand tankj
is defined by means of Torricelli’s rule as

Qi;j¼liSp signðXi XjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gjXi Xjj

q

withi;j21;2;…;10 (25)

Fig. 5 Block diagram of theith DN

Table 4 Pseudocode of the REDUCED-ORDER DPFFD algorithm

functionREDUCED-ORDER DPFFD

Inputs:xIðk 1Þ;HI;fb
j
Iðk 1ÞgMj¼1;w

i
Iðk 1Þ;uIðk 1Þ;ZIðkÞ;Gs

Outputs:XiIðkÞ;w
i
IðkÞ;f̂b

j

2;IðkÞg
M
j¼1;~x

Required:CPFFD

1:forI¼1:Ndo

2: forj¼1:nxIdo

3: FindVjbased onGs Find the neighborhood set of node j

4: dI¼[j2VjfXjg [
nxI
j¼1fXjg Calculation of forcing term vector

5: end for

6: UI¼½ðuIÞ
TðdIÞ

TT Control input at DNI

7: XI¼½ðxIÞ
Tðb1IÞ

T…ðb2IÞ
T…ðbMIÞ

TT State vector of DNI

8:½XiIðkÞ;w
i
IðkÞf̂b

j

2;IðkÞg
M
j¼1¼CPFFD½X

i
Iðk 1Þ;wiIðk 1Þ;UIðk 1Þ;ZIðkÞ Calculation of the particles, particles weights and probabilities of

failure

9: x̂gI¼HÎxI Conversion of the reduced-order vectorxIto the full-order vectorx
g
I

10:end for

11:r¼
XN

I

x̂gI Summation of the full-order local state vectors

12:fori¼1:nxdo

13: ~x½i¼
½ri

XN

j¼1

½T ji

Calculation of the global state fusion vector’s elements

14:end for
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whereliis the flow correction term of tanki,gis the gravity con-
stant, andXiis the water level of theith tank. The water level
dynamics of tankiis determined by means of mass balance equa-
tion as

_Xi ¼
1

Sc

X

j2Ni

Qi;j (26)

whereNirefers to the neighboring tanks of tanki. The nominal
values of the process’s parameters are given in Table5and are
based on the benchmark process described in Ref. [43]. The fault
modes under consideration are abrupt leaks to the water tanks.
The leakage dynamics ot tankjare given by

gjXjkðÞ ¼
2ljSp

Sc
signXjkðÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gjXjkðÞj

q
(27)

By discretizing the continuous dynamics, the difference equation
of theith tank takes the form

XikðÞ¼Xik 1ð Þþ
Ts
Sc

X

j2Ni

Qi;jk 1ð Þ

þTs bk ki0 giXik 1ð Þð Þþvik 1ð Þ i¼1;…9

(28)

whereTs¼0:1 s is the sampling period, and the process noise
vi2R is drawn from the normal distributionNð0;0:05Þ. The
goal of this simulation scenario is to investigate the case of
decomposition with overlapping states. To this end, the mono-
lithic process is decomposed into two reduced-order subsystems,
namelyS1andS2, as shown in Fig.6. Figure7(a)depicts the
structural graph of the monolithic process and its partitions. The
local observation vectors of the two DNs are expressed by

z1ðkÞ¼x1ðkÞþx1ðkÞ

z2ðkÞ¼x2ðkÞþx2ðkÞ
(29)

where x1¼½X1;…;X6
T;x2¼½X4;…;X9

T,d1¼½X7;X8;X9
T;

d2¼½X1;X2;X3
T, and the measurement noise sequencesx1and

x2 are generated by the multivariate normal distribution
Nð0;0:1Þ. The subgraphs of the observation fusion are depicted
in Fig.7(b). As shown in this figure, the statesfX4;X5;X6gare
shared between the two DNs. Three failure modes are seeded at
tanks 1, 4, and 5 at the time stepsT¼290;250;and 200 s, respec-
tively. The time horizon of the simulation is set to 360 time steps.
The number of particles at each DN is set toNs¼200.
During the execution of the reduced-order DPFFD algorithm,

the i.i.d noise that drives the binary states is generated by the dis-
tributionUð 0:6;0:6Þ. Figure8shows the population of the par-
ticles on theb1 b2plane during the healthy and faulty operating

Table 5 Model parameters of the water tank system

Parameter Meaning Value

Sc Tank cross-sectional area 0:0154 m2

Sp Cross section of interacting pipes 2 105m2

li Flow correction term 1
g Gravity constant 9:81 m=s2

Fig. 7 (a) Structural graph and subsystem decomposition and
(b) separation of shared and unshared states for observation
fusion. The presence of thebterm and the noiseVare omitted
for illustrative purposes.

Fig. 6 Schematic of the nine-tank system that has been
decomposed into two subsystems. The subsystems are speci-
fied by the dashed lines while the fault mode locations are
noted by double arrows.

Fig. 8 Spatial distribution of the binary particles during the execution of the failure sensitive
filter. The cross markers denote the locations ofe1ande2, respectively.
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condition of the system at a given time instant. The selection of
this noise range plays a crucial role in the performance of the
algorithm. The effect of the i.i.d uniform white noise is illustrated
in Fig.9. When the noise isUð a;aÞwitha¼0.5 (too small),
there is no overlap between the two regions; thus, the particles
remain trapped in the healthy state even in the presence of a fault.

On the contrary, when the overlap increases (a 0:8), the par-
ticles keep transitioning between the states and the output of the
failure filter is indecisive.
The binary state’s update functionUðÞof Eq.(10)is essentially

a “data-driven feedback” for the failure sensitive filter. This way,
when the process is healthy, the filter will diminish the particles

Fig. 9 Spatial distribution of the binary particles with different range of i.i.d driving noise
when the process is in healthy operating condition. The cross markers denote the locations of
e1ande2.

Fig. 10 First case study: probabilities of failure (dashed dotted line) for each fault mode as generated by the two DNs. The solid
horizontal line marks the detection threshold. The solid vertical line indicates the occurrence instant of the fault. The statesX4,
X5, andX6are shared between the two DNs.
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that correspond to fault modes indirectly through the likelihood
function [34]. A compromising value that ensures the optimal
operation of the diagnostic filter was shown to bea¼0.6.
The probabilities of failure for each fault mode are illustrated in

Fig.10. Due to the overlap of the two DNs, the estimates of com-
mon statesfX4;X5;X6gare fused using the central averaging step
described in Sec.4. As it can be seen, both DNs can timely detect
and isolate their respective fault modes.
The second simulation scenario involves a grid of 100 water

tanks organized in a lattice of ten rows and ten columns. In this
scenario, the dimensionality of the system is significantly
increased compared to the first case. To the authors knowledge
this is the highest dimension simulation example encountered in
the literature of FD. The goal is to validate the DPFFD algorithm
when applied to a large-scale system. A DN is assigned to each
water tank. The DNs monitor the water level of their respective
tank and exchange information with their adjacent nodes. The
observation equation of each DN is expressed by

ziðkÞ¼xiðkÞþxiðkÞ (30)

wherexi¼Xiandi¼1;…;100. The two-dimensional location of
the tank in the grid array is converted to a single index. The one-
dimensional indexiis calculated by

i¼nrowþðncol 1Þ Nrows (31)

wherenrowandncolare the row and column number of the tank in
the grid, andNrowsdenotes the total rows in the array.
Abrupt leaks are seeded randomly to nine tanks at the time

instances listed in Table6. The nominal values of the system
parameters are identical to the first scenario (Table5). The mea-
surement/process noise are drawn from the normal distribution
Nð0;1Þ. The time horizon of the simulation is set to 190 time

steps. The same tuning guidelines for the failure sensitive filters
hold with the first example. The initial values of the estimated
tank water levels are set to 14 m.
Due to the high dimensionality of the system’s states, the simu-

lation results are presented with respect to both time and space.
The illustration of the probabilities of failure, the actual and esti-
mated values of the water tank levels are shown in the first, sec-
ond, and the third row of Fig.11, respectively. The output values
of the DNs are depicted as color-coded pixels based on their loca-
tion in the lattice, for different time instances. The probabilities of
failure with respect to time, only for the leaked tanks, are shown
in Fig.12. When a leak is seeded in one of the tanks, its water
level will gradually reduce. For a transient interval, the neighbor-
ing tanks will try to compensate for this loss due to the pressure
difference until their level will also start to decrease as well. The
diagnostic performance is deemed satisfactory since each DN can
promptly detect and isolate its own fault mode in spite of having
access to local information. This case study involves only nono-
verlapping subsystems; therefore, state fusion was not necessary.
The computational reduction compared to the CPFFD algorithm is
dramatic. Instead of processing 100 states, each node is responsi-
ble of monitoring a one-dimensional system.

Table 6 Occurrence time of each fault mode

Fault mode number Time of occurrence

Mode 82 10
Mode 91 30
Mode 13 50
Mode 92 70
Mode 64 90
Mode 10 110
Mode 28 130
Mode 55 150
Mode 96 170

Fig. 11 Second case study: probabilities of failure (first row), actual (second row), and estimated (third row) values of the tanks
water levels at different time instances. Each pixel represents the water level of a tank in the lattice.

Fig. 12 Second case study: probabilities of failure (dashed
line) with respect to time of the DNs with a leak occurring to
their respective tank. The solid horizontal line marks the detec-
tion threshold. The solid vertical line signals the fault occur-
rence instant.
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6 Conclusions

We have presented a reduced-order distributed implementation
of a fault detection and isolation algorithm for nonlinear large-
scale systems. A network of interconnected DNs is employed to
monitor the entire process. Each node monitors lower-order subdi-
visions of the monolithic system. The DNs have access to partial
local measurements and can communicate with adjacent nodes of
the monitoring network. The layout of the scheme is driven by the
two main constraints of networked systems: the available commu-
nication bandwidth and processing capabilities of the nodes. An
on-line hypothesis testing module is embedded at each failure sen-
sitive filter that triggers alarm indicators in the presence of a fault.
This inference component eliminates the need for the entire sys-
tem’s state at each DN and the necessity of a bank of estimators to
isolate the occurring faults. A simplistic state fusion step takes
place between nodes that monitor common states. This approach
relieves the filter design analysis by substituting the complex sta-
bility proofs that are required by observed-based methods, with
Monte Carlo simulations that are conveniently applicable to real-
life sensor networks.
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Nomenclature

b¼binary vector ofSf

B¼set of time profile functions
bI¼binary vector of subsystemS

f
I

dI¼interconnection variables (forcing terms) of
subsystemSI

ei¼prediction error of particlei
fðÞ ¼state transition function
F ðÞ ¼compact state transition function
fIðÞ ¼state transition function of subsystemSI
FIðÞ ¼compact state transition function of subsystem

SfI
Gs¼structural graph (digraph) of systemS
gjðÞ ¼function of fault modej
gjIðkÞ¼fault function of failure modejat subsystem

SI
hðÞ ¼observation function
hIðÞ ¼observation function of subsystemSI
HIðÞ ¼compact local observation function
HI¼local state matrix
k¼time index
kj0¼time occurrence of failure modej
M¼number of failure modes
n¼uniform white noise
N¼number of subsystems
ndI¼dimension of subsystem’sSIforcing vectordI
nu¼dimension of input vector
nuI¼dimension of subsystem’sSIinput vectoruI
nv¼dimension of process noise vector
nvI¼dimension of subsystem’sSIsystem noise

vectorvI
nx¼dimension of state vector
nxI¼dimension of subsystem’sSIstate vectorxI
nz¼dimension of observation vector
nzI¼dimension of subsystem’sSImeasurement

vectorzI
nx¼dimension of measurement noise vector
nxI¼dimension of subsystem’sSImeasurement

noise vectorxI
Ns¼number of particles

Nð;;Þ ¼normal distribution
pðxðkÞjzð1:kÞÞ ¼posterior density function

pðxðkÞjxðk 1ÞÞ ¼state transition density function
pðzðkÞjxðkÞÞ ¼likelihood density function

qðxðkÞjzð1:kÞÞ ¼proposal distribution function
R¼set of real numbers
S¼monolithic system
SI¼subsystemIof monolithic systemS
Sf¼failure sensitive filter
SfI¼subsystemIof failure sensitive filterS

f

T¼StS matrix
u¼input vector
uI¼input vector of subsystemSI
UI¼compact input vector of subsystemS

f
I(combi-

nation ofuIanddI)
Uð;Þ ¼uniform distribution
v¼process noise vector
~v¼approximate process noise vector
V¼set of noise inputs
V¼compact noise vector of systemSf(combina-

tion of~vandn)
vI¼process noise vector of subsystemSI
VI¼compact noise vector of subsystemS

f
I(combi-

nation ofvIandnI)
Vm¼neighborhood set of vertexm
VIs¼set of vertices of the graphGs
wi¼particles’ weight
wiI¼particles’ weight of DNI
x¼state vector of monolithic systemS
~x¼global fused state vector
X¼compact state vector ofSf(combination ofxc

andbjjj¼1;…;M)
xI¼state vector of subsystemSI
Xi¼state variablei
XI¼compact state vector of subsystemS

f
I(combi-

nation ofxcIandb
j
Ijj¼1;…;M)

xi¼particles ofx
xc¼continuous valued state vector ofSf

XiI¼particles generated by DNI

x̂gI¼nxorder estimate of statexI

X̂
SfI
j¼estimate ofXjby DNI
z¼measurement vector
Z¼compact measurement vector of systemSf

zI¼observation vector of subsystemSI
ZI¼compact observation vector of subsystemS

f
I

Zþ¼set of positive integers
b¼time profile function of a fault’s occurrence
dðÞ ¼Dirac function
es¼edges of the graphGs
Rx¼covariance matrix of measurement noise
UðÞ ¼update function of the binary states
v¼set of system states
x¼measurement noise vector
~x¼approximate measurement noise vector
xI¼measurement noise vector of subsystemSI

References
[1] Willsky, A. S., 1976, “A Survey of Design Methods for Failure Detection in
Dynamic Systems,”Automatica,12(6), pp. 601–611.

[2] Gertler, J. J., 1988, “Survey of Model-Based Failure Detection and Isolation in
Complex Plants,”IEEE Control Syst. Mag.,8(6), pp. 3–11.

[3] Frank, P. M., 1990, “Fault Diagnosis in Dynamic Systems Using Analytical and
Knowledge-Based Redundancy: A Survey and Some New Results,”Automa-
tica,26(3), pp. 459–474.

[4] Chen, J., and Patton, R. J., 1999,Robust Model-Based Fault Diagnosis for
Dynamic Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands.

[5] Venkatasubramanian, V., Rengaswamy, R., Yin, K., and Kavuri, S. N., 2003,
“A Review of Process Fault Detection and Diagnosis—Part I: Quantitative
Model-Based Methods,”Comput. Chem. Eng.,27(3), pp. 293–311.

[6] Ding, S. X., 2008,Model-Based Fault Diagnosis Techniques: Design Schemes,
Algorithms, and Tools, Springer Science & Business Media, Berlin.

[7] Baroni, P., Lamperti, G., Pogliano, P., and Zanella, M., 1999, “Diagnosis of
Large Active Systems,”Artif. Intell.,110(1), pp. 135–183.

Journal of Dynamic Systems, Measurement, and Control MAY 2018, Vol. 140

Downloaded From: http://asmedigitalcollection.asme.org/ on 04/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

/ 051009-11

http://dx.doi.org/10.1016/0005-1098(76)90041-8
http://dx.doi.org/10.1109/37.9163
http://dx.doi.org/10.1016/0005-1098(90)90018-D
http://dx.doi.org/10.1016/0005-1098(90)90018-D
http://dx.doi.org/10.1016/S0098-1354(02)00160-6
http://dx.doi.org/10.1016/S0004-3702(99)00019-3


[8] Rish, I., Brodie, M., Ma, S., Odintsova, N., Beygelzimer, A., Grabarnik, G., and
Hernandez, K., 2005, “Adaptive Diagnosis in Distributed Systems,”IEEE
Trans. Neural Networks,16(5), pp. 1088–1109.

[9] Le, T., and Hadjicostis, C. N., 2006, “Graphical Inference Methods for Fault Diagnosis
Based on Information From Unreliable Sensors,” Ninth International Conference on
Control, Automation, Robotics and Vision (ICARCV), Singapore, Dec. 5–8, pp. 1–6.

[10] Dong, H., Wang, Z., Ding, S. X., and Gao, H., 2014, “A Survey on Distributed
Filtering and Fault Detection for Sensor Networks,”Math. Probl. Eng.,2014,
p. 858624.

[11] Ferrari, R. M., Parisini, T., and Polycarpou, M. M., 2012, “Distributed Fault Detec-
tion and Isolation of Large-Scale Discrete-Time Nonlinear Systems: An Adaptive
Approximation Approach,”IEEE Trans. Autom. Control,57(2), pp. 275–290.

[12] Boem, F., Ferrari, R. M., Parisini, T., and Polycarpou, M. M., 2013,
“Distributed Fault Diagnosis for Continuous-Time Nonlinear Systems: The
Input–Output Case,”Annu. Rev. Control,37(1), pp. 163–169.

[13] Shames, I., Teixeira, A. M., Sandberg, H., and Johansson, K. H., 2011,
“Distributed Fault Detection for Interconnected Second-Order Systems,”Auto-
matica,47(12), pp. 2757–2764.

[14] Yan, X.-G., and Edwards, C., 2008, “Robust Decentralized Actuator Fault
Detection and Estimation for Large-Scale Systems Using a Sliding Mode
Observer,”Int. J. Control,81(4), pp. 591–606.

[15] Zhang, X., and Zhang, Q., 2012, “Distributed Fault Diagnosis in a Class of Inter-
connected Nonlinear Uncertain Systems,”Int. J. Control,85(11), pp. 1644–1662.

[16] Daigle, M. J., Koutsoukos, X. D., and Biswas, G., 2007, “Distributed Diagnosis
in Formations of Mobile Robots,”IEEE Trans. Rob.,23(2), pp. 353–369.

[17] Boem, F., Ferrari, R. M., Parisini, T., and Polycarpou, M. M., 2011, “A Distrib-
uted Fault Detection Methodology for a Class of Large-Scale Uncertain Input-
Output Discrete-Time Nonlinear Systems,” 50th IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC), Orlando, FL, Dec.
12–15, pp. 897–902.

[18] Franco, E., Olfati-Saber, R., Parisini, T., and Polycarpou, M. M., 2006,
“Distributed Fault Diagnosis Using Sensor Networks and Consensus-Based Fil-
ters,” 45th IEEE Conference on Decision and Control (CDC), San Diego, CA,
Dec. 13–15, pp. 386–391.

[19] Olfati-Saber, R., 2009, “Kalman-Consensus Filter: Optimality, Stability, and
Performance,” 48th IEEE Conference on Decision and Control (CDC), Shang-
hai, China, Dec. 15–18, pp. 7036–7042.

[20] Olfati-Saber, R., 2007, “Distributed Kalman Filtering for Sensor Networks,”
46th IEEE Conference on Decision and Control (CDC), New Orleans, LA, Dec.
12–14, pp. 5492–5498.

[21] Kadirkamanathan, V., Li, P., Jaward, M. H., and Fabri, S. G., 2002, “Particle
Filtering-Based Fault Detection in Non-Linear Stochastic Systems,”Int. J. Syst.
Sci.,33(4), pp. 259–265.

[22] Cheng, Q., Varshney, P. K., Michels, J. H., and Belcastro, C. M., 2009,
“Distributed Fault Detection With Correlated Decision Fusion,”IEEE Trans.
Aerosp. Electron. Syst.,45(4), pp. 1448–1465.

[23] Cheng, Q., Varshney, P. K., Michels, J., and Belcastro, C. M., 2005, “Distributed
Fault Detection Via Particle Filtering and Decision Fusion,” Eighth International
Conference on Information Fusion (ICIF), Philadelphia, PA, July 25–28, p. 8.

[24] Noursadeghi, E., and Raptis, I., 2015, “Full-Order Distributed Fault Diagnosis for
Large-Scale Nonlinear Stochastic Systems,”ASMEPaper No. DSCC2015-9927.

[25] Noursadeghi, E., and Raptis, I., 2015, “Distributed Fault Detection of Nonlinear
Large-Scale Dynamic Systems,”ACM/IEEE Sixth International Conference on
Cyber-Physical Systems, Seattle, WA, Apr. 14–16, pp. 51–59.

[26] Hlinka, O., Hlawatsch, F., and Djuric, P. M., 2013, “Distributed Particle Filter-
ing in Agent Networks: A Survey, Classification, and Comparison,”IEEE Sig-
nal Process. Mag.,30(1), pp. 61–81.

[27] Hlinka, O., 2012, “Distributed Particle Filtering in Networks of Agents,”Ph.D.
dissertation, Vienna University of Technology, Vienna, Austria.

[28] Mohammadi, A., 2013, “Distributed Implementations of the Particle Filter With
Performance Bounds,”Ph.D. dissertation, York University, Toronto, ON,
Canada.

[29] Mohammadi, A., and Asif, A., 2011, “A Consensus/Fusion Based Distributed
Implementation of the Particle Filter,” Fourth IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
San Juan, Puerto Rico, Dec. 13–16, pp. 285–288.

[30] Sadeghzadeh Nokhodberiz, N., and Poshtan, J., 2014, “Belief Consensus–Based
Distributed Particle Filters for Fault Diagnosis of Non-Linear Distributed Sys-
tems,”Proc. Inst. Mech. Eng., Part I,228(3), pp. 123–137.

[31] Ristic, B., Arulampalam, S., and Gordon, N., 2004,Beyond the Kalman
Filter: Particle Filters for Tracking Applications, Vol. 830, Artech House,
London.

[32] Gordon, N. J., Salmond, D. J., and Smith, A. F., 1993, “Novel Approach to
Nonlinear/Non-Gaussian Bayesian State Estimation,”IEE Proc. F Radar Signal
Process.,140(2), pp. 107–113.

[33] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T., 2002, “A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,”
IEEE Trans. Signal Process.,50(2), pp. 174–188.

[34] Orchard, M., 2006, “A Particle Filtering-Based Framework for Online Fault
Diagnosis and Failure Prognosis,”Ph.D. dissertation, Georgia Institute of Tech-
nology, Atlanta, GA.

[35] Raptis, I. A., and Vachtsevanos, G., 2011, “An Adaptive Particle Filtering-
Based Framework for Real-Time Fault Diagnosis and Failure Prognosis of
Environmental Control Systems,”Annual Conference of the Prognostics and
Health Management Society, Montreal, QC, Canada, Sept. 25–29.

[36] Raptis, I. A., Sconyers, C., Martin, R., Mah, R., Oza, N., Mavris, D., and
Vachtsevanos, G. J., 2013, “A Particle Filtering-Based Framework for Real-
Time Fault Diagnosis of Autonomous Vehicles,”Annual Conference of the
Prognostics and Health Management Society, New Orleans, LA, Oct.
14–17.

[37] Ferrari, R. M., 2009, “Distributed Fault Detection and Isolation of Large-Scale
Nonlinear Systems: An Adaptive Approximation Approach,”Ph.D. dissertation,
Universita degli studi di Trieste, Trieste, Italy.

[38]Siljak, D. D., 1978,Large-Scale Dynamic Systems: Stability and Structure,
Vol. 2, North Holland, Amsterdam, The Netherlands.

[39] Vidyasagar, M., 1980, “Decomposition Techniques for Large-Scale Systems
With Nonadditive Interactions: Stability and Stabilizability,” IEEE Trans.
Autom. Control,25(4), pp. 773–779.

[40] Mesbahi, M., and Egerstedt, M., 2010,Graph Theoretic Methods in Multiagent
Networks, Princeton University Press, Princeton, NJ.

[41] Khan, U. A., and Moura, J. M., 2008, “Distributing the Kalman Filter for
Large-Scale Systems,”IEEE Trans. Signal Process.,56(10), pp. 4919–4935.

[42] Karlsson, R., Schon, T., and Gustafsson, F., 2005, “Complexity Analysis of the
Marginalized Particle Filter,” IEEE Trans. Signal Process.,53(11), pp.
4408–4411.

[43] Zhang, X., Polycarpou, M. M., and Parisini, T., 2002, “A Robust Detection and
Isolation Scheme for Abrupt and Incipient Faults in Nonlinear Systems,”IEEE
Trans. Autom. Control,47(4), pp. 576–593.

051009-12 /Vol. 140, MAY 2018

Downloaded From: http://asmedigitalcollection.asme.org/ on 04/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Transactions of the ASME

http://dx.doi.org/10.1109/TNN.2005.853423
http://dx.doi.org/10.1109/TNN.2005.853423
http://dx.doi.org/10.1109/ICARCV.2006.345228
http://dx.doi.org/10.1155/2014/858624
http://dx.doi.org/10.1109/TAC.2011.2164734
http://dx.doi.org/10.1016/j.arcontrol.2013.03.008
http://dx.doi.org/10.1016/j.automatica.2011.09.011
http://dx.doi.org/10.1016/j.automatica.2011.09.011
http://dx.doi.org/10.1080/00207170701536056
http://dx.doi.org/10.1080/00207179.2012.696146
http://dx.doi.org/10.1109/TRO.2007.895081
http://dx.doi.org/10.1109/CDC.2011.6160645
http://dx.doi.org/10.1109/CDC.2006.376797
http://dx.doi.org/10.1109/CDC.2009.5399678
http://dx.doi.org/10.1109/CDC.2007.4434303
http://dx.doi.org/10.1080/00207720110102566
http://dx.doi.org/10.1080/00207720110102566
http://dx.doi.org/10.1109/TAES.2009.5310310
http://dx.doi.org/10.1109/TAES.2009.5310310
http://dx.doi.org/10.1109/ICIF.2005.1591999
http://dx.doi.org/10.1115/DSCC2015-9927
http://dl.acm.org/citation.cfm?id=2735981
http://dl.acm.org/citation.cfm?id=2735981
http://dx.doi.org/10.1109/MSP.2012.2219652
http://dx.doi.org/10.1109/MSP.2012.2219652
https://publik.tuwien.ac.at/files/PubDat_209278.pdf
https://publik.tuwien.ac.at/files/PubDat_209278.pdf
http://www.cse.yorku.ca/~marash/Qualifier/ArashThesis.pdf
http://dx.doi.org/10.1109/CAMSAP.2011.6136005
http://journals.sagepub.com/doi/pdf/10.1177/0959651813512478
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://dx.doi.org/10.1109/78.978374
https://smartech.gatech.edu/handle/1853/19752
https://www.phmsociety.org/node/646
https://www.phmsociety.org/node/646
https://www.phmsociety.org/node/969
https://www.phmsociety.org/node/969
https://www.openstarts.units.it/bitstream/10077/3118/1/00_master.pdf
http://dx.doi.org/10.1109/TAC.1980.1102422
http://dx.doi.org/10.1109/TAC.1980.1102422
http://dx.doi.org/10.1109/TSP.2008.927480
http://dx.doi.org/10.1109/TSP.2005.857061
http://dx.doi.org/10.1109/9.995036
http://dx.doi.org/10.1109/9.995036

	s1
	l
	s2
	FD1
	FD2
	FD3
	FD4
	FD5
	FD6
	FD7
	s3
	FD8
	FD9
	1
	2
	1
	3
	FD10
	FD11
	s3
	s4
	FD12
	FD13
	FD14
	FD15
	3
	2
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	FD23
	FD24
	s5
	4
	FD25
	5
	4
	FD26
	FD27
	FD28
	FD29
	5
	7
	6
	8
	9
	10
	FD30
	FD31
	6
	11
	12
	s6
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

