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This paper deals with the distributed fault detection and isolation problem of uncertain,
nonlinear large-scale systems. The proposed method targets applications where the com-

putation requirements of a full-order failure-sensitive filter would be prohibitively
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demanding. The original process is subdivided into low-order interconnected subsystems
with, possibly, overlapping states. A network of diagnostic units is deployed to monitor,
in a distributed manner, the low-order subsystems. Each diagnostic unit has access to a
local and noisy measurement of its assigned subsystem’s state, and to processed statisti-
cal information from its neighboring nodes. The diagnostic algorithm outputs a filtered
estimate of the system's state and a measure of statistical confidence for every fault
mode. The layout of the distributed failure-sensitive filter achieves significant overall

complexity reduction and design flexibility in both the computational and communication
requirements of the monitoring network. Simulation results demonstrate the efficiency of
the proposed approach. [DOI: 10.1115/1.4037839]

1 Introduction

The majority of contemporary industrial and commercial con-
trol systems are composed of a large number of spatially distrib-
uted feedback modules with heterogeneous sensors, actuators, and
controllers that exchange information over a band-limited com-
munication network that is embedded within the system. These
large-scale systems are characterized by high-dimensional state-
spaces and nonlinear dynamics. Typical applications are water
distribution networks, power grids, automated highway systems,
swarms of unmanned aerial vehicles, and environmental control
systems, just to name a few. Large-scale systems are much more
vulnerable to faults since the effects of a single malfunction to an
individual part may rapidly diffuse to the entire system due to the
interconnection of the various subcomponents.

Availability, dependability, and resiliency are becoming major
design goals for large-scale technological systems due to stringent
economic, ecological, and safety demands. These attributes are of
major importance, primarily for safety-critical systems, e.g., air-
planes, automobiles, and nuclear reactors, since they ensure public
safety. Therefore, there is a growing need for reliable real-time
monitoring and supervision especially in the case of safety-critical
systems. Fault diagnosis (FD) describes the dual objective of
detecting the occurrence of a fault (detection) and identifying it
(identification or isolation). A timely diagnosis of a fault mode
may improve the system’s availability and maintainability by
avoiding down-times, breakdowns, and catastrophic failures rates.

Research in the field of FD has attracted significant attention
since the beginning of the 1970s. The significant majority of exist-
ing FD methods [1-6] have a centralized architecture in the sense
that the sensor measurements and the diagnostic algorithm are
collected and executed by a singleton processing unit. Centralized
FD is considered a matured field that has established reliable solu-
tions to many engineering applications. However, the applicability
of this traditional approach is limited to concentrated low-order
systems.

Modemn processes involve high-dimensional state-spaces as
well as highly nonlinear dynamics. In the case of large-scale and
spatially distributed systems, centralized FD becomes ill-suited.
Every monitoring system has certain limitations in terms of
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computational power and communication bandwidth. When the
dimensionality and complexity of the system increases, it is likely
that these limitations will not be satisfied by a centralized configu-
ration. The online monitoring of a high-dimensional system would
require extensive computations from the central processing unit.
Processes with geographically remote subcomponents necessitate
long distance and energy demanding broadcasts or complex multi-
hop routing protocols to transmit information to the central fusion
center. In both cases, a centralized architecture exhibits poor
scalability.

In the literature, the majority of distributed fault detection and
identification methods are developed for discrete-event systems
and for multiprocessor computing applications [7-9]. A growing
interest in the development of distributed fault detection algo-
rithms has also been reported by the wireless sensor networks
community [10]. In this work our attention is spotlighted to
model-based FD methods for dynamic systems that utilize a math-
ematical model of the process. A rudimentary classification of
existing distributed FD model-based methodologies can take place
based on the data type that is exchanged between the nodes of the
diagnostic system. The diagnostic nodes (DNs) can exchange: raw
measurements of the interconnected states [11-13], state estimates
[14,15], or fault signatures [16]. The most prominent work on dis-
tributed, observed-based FD for nonlinear dynamic systems has
been reported by Ferrari et al. [11] and Boem et al. [17]. The
authors apply overlapping decomposition techniques to subdivide
the monolithic process to a set of reduced order subsystems. Each
subsystem is monitored by a local nonlinear observer. Seminal
work in distributed estimation-based FD using Kalman filtering is
reported in Ref. [18]. The algorithm is based on the distributed
version of Kalman filter (KF) established by Olfati-Saber [19,20].
The KF is restricted to linear system, while linearization
(extended KF) leads to high false alarms rates [21].

Foundational work on estimation-based FD for nonlinear sys-
tems that employ large number of correlated sensors is introduced
in Refs. [22,23]. The author combines a distributed particle filter-
ing algorithm for state estimation with fused hypothesis testing
through likelihood tests, to determine the occurrence of fault
modes. The proposed method is mainly geared toward relative
low-order systems monitored by a high number of interconnected
sensors. The layout of the algorithm does not accommodate subdi-
visions of the original process. The applied classical likelihood
tests require a bank of estimators equal to the number of fault
modes. Such replication of the state is unsuitable for large-scale
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systems. A full-order distributed failure-sensitive filter has also
been introduced by Noursadeghi and Raptis [24,25]. In this
scheme, a detection network is assigned to monitor the entire state
of the monolithic system using only local measurements. Simi-
larly to the work of Cheng, the authors did not considered any
form of subdivision in the dynamics of the original process.
Instead, the algorithm introduced in Refs. [24,25] provides an esti-
mate of the entire state of the monolithic system.

The particle filter (PF) is an ideal estimator for fault diagnosis
since it avoids linearity and Gaussian noise assumptions. A com-
prehensive analysis on distributed PF algorithms is given by
Hlinka [26,27] and Mohammadi [28,29]. A distributed PF scheme
for FD diagnosis that accounts for system decomposition is
reported in Ref. [30]. The authors propose a hybrid modeling
approach where every potential fault is treated as a system mode.
This approach assumes that the transition probability between the
fault modes is known a priori. This probabilistic information may
not be available in most real-life applications.

In this work, we present a distributed, model-based and sequen-
tial fault diagnosis methodology for large-scale, stochastic nonlin-
ear systems that are subject to multiple fault modes. This
approach targets systems where the state dimension is signifi-
cantly large (10 states and higher). A distributed version of the
particle filtering method will serve as the foundation of the
derived diagnostic algorithms. We introduce a reduced-order fault
diagnostic algorithm that allows the subdivision of the original
process dynamics to low-order interconnected subsystems with
state overlap. A DN is assigned to monitor every partition of the
monolithic system and triggers alarm indicators based on its local
observations and information exchange between neighboring
units. Each local failure sensitive filter outputs an estimate of the
subsystem’s state vector and the probabilities of failure of the
local fault modes.

Our reduced-order FD technique achieves a dramatic decrease
to the computational complexity of the original problem and pro-
vides significant design flexibility to the layout of the algorithm.
The PF is an ideal estimator since it eliminates complex Lyapunov
arguments that are required by the observed-based methods to
guarantee convergence. A binary update rule is used to repopulate
the particles and estimate the system modes without the need for
transition probabilities. The failure sensitive filter can simultane-
ously detect and identify faults without the need for a bank of esti-
mators. The proposed algorithm takes advantage of the
decentralized architecture and computational strength of modern
embedded systems such as wireless sensor networks and multicore
processors.

This paper is organized as follows: A brief description of the
PF algorithm is presented in Sec. 2. The synthesis of a centralized
PF fault diagnosis algorithm is outlined in Sec. 3. The centralized
algorithm serves as a benchmark framework for its distributed
counterpart. The reduced-order distributed version of the failure
sensitive filter is presented in Sec. 4. The performance of the pro-
posed methodology is evaluated in Sec. 5 via numerical simula-
tions. Finally, concluding remarks are given in Sec. 6.

2 Centralized Particle Filtering

The filtering problem is formulated based on the discrete time
state-space approach. The purpose is to estimate the state of the
system by using a sequence of noisy measurements. Consider a
time-dependent, state vector x(k) € R™, where k € Z" is the
time index. The state-transition model of the state x(k) is defined
according to

x(k) = f(x(k = 1),v(k — 1)) M
where f(k) : R™™ — R™ is a known, nonlinear function, and

v(k) € R™ stands for system’s process noise. At time step k, the
measurement equation of the state x(k) is expressed by
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2(k) = h(x(k)) + o (k) @

where z(k) € R™ represents the measurement vector, h(k) :
R™ — R™ is a known nonlinear function, and w(k) € R™ stands
for the measurement noise. It is assumed that both the process
noise v(k) and measurement noise (k) are white and independent
with known probability density functions (pdf). From a Bayesian
perspective, the objective is to recursively quantify some degree
of belief in the state x(k), given the measurement data z(1 : k) up
to time k. The belief is expressed by the calculation of the poste-
rior pdf p(x(k)|z(1 : k)). The calculation of the posterior density
p(x(k)|z(1 : k)) allows the computation of various measures of the
state x(k), such as the minimum mean square error

£() AEL@(1: )} =[50 px(B=(1 : D)x(t) )

The PF is a sequential Monte Carlo method that uses a finite set
of “particles” to represent probability density functions [31]. The
basic idea is to represent the non-Gaussian posterior pdf
p(x(k)|z(k)) by a set of randomly drawn particles x'(k) and
corresponding weights w/(k). Using set of particles and the
weights {x(k), w' (k)}~,, the posterior can have the following dis-
crete approximation:

px(k)|z(k)) ~ Zl W (k)3(x(k) — ¥ (k)) @

where d(-) denotes the multivariate delta Dirac function. As the
number of particles becomes very large, the sequential Monte
Carlo representation is closer to the analytical description of the
posterior. Using the representation in Eq. (4), one can obtain vari-
ous estimates of x(k). For example, the minimum mean square
error estimate is approximated as

=

x(k) = ZW‘ (k) jx(k)é(X(k) —xO(k))dx (k)
- Zuf (k)x'(k) ©)

i=1

Different variations of the PF algorithm exist depending on the
choice of the importance density function and the resampling
step. The most standard form of the PF algorithm is the sequential
importance resampling filter (SIR). The SIR filter forms the foun-
dation for some well-known PFs including the bootstrap filter
[32], the auxiliary PF [33], and the regularized PF [33]. These PFs
are derived using a suboptimal choice of the proposal pdf
ax(k)|z(k — 1), 2(k)).

The most frequently used and easiest to implement SIR algo-
rithm 1is the bootstrap filter that is employed during this work. In
this filter, the particles are updated using the state-transition den-
sity function p(x(k)|x(k — 1)) as the importance pdf. In this case,
the weight update equation simplifies to

W (k) ocw'(k — 1)p(z(k)|¥ (K)) ©)

The measurement noise @ is considered as a Gaussian distribu-
tion with zero mean and covariance matrix X, the likelihood
function for each particle is calculated by

p(2(k) Y (k) ~ N (€ (k),0, %) M

where N (¢/(k),0,Z,) is the normal distribution with zero mean
and covariance matrix ¥, evaluated at the points ¢ (k) = z(k)
—h(xi(k)), where &/(k) is the prediction error of the ith
particle. For a detailed description of various PF algorithms and
resampling techniques, the reader is referred to Ref. [33]. The
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Table 1 Pseudocode of the BOOTSTRAP PF algorithm [31]

function BOOTSTRAP PF
Inputs : x'(k —1),w/ (k— 1),z(k)
Outputs : x'(k),w!(k)

Required : RESAMPLE
l:fori =1:N; do

2 X(k) = fxi(k—1),vi(k—1)) &> Particles update
3 wik) = wilk — 1) - p(z(k) |x' (k) &> Weights update
4: end for

5:wi(k) = ﬂ > Weight normalization

anm

6: [(£(), W(R)}%] = RESAMPLE[(x(K), w(R)}l%] > Resampling

7: x(k) > Minimum mean-square error

- E‘wi(k)f(k)
i=1

Table2 Pseudocode ofthe RESAMPLING algorithm [33]

function RESAMPLE
Inputs : x'(k), w'(k)
Outputs : +* (k), w/(k)
L:e(1)=0

2:fori =2:N, do
3 cli)=c(i—1) +wi(k)
4: end for

5:i=1

6: u(1) = U[O,N; !
T:forj=1:N;do

8 wu(j)=u(l)+N(j—-1)
9: while u(j) > c(i) do

10: i=i+1

11:  end while

= Initialize the cumulative distribution function (CDF)

= Construct CDF

= Start at the bottom of the CDF
> Draw a starting point

> Move along the CDF

122 ¥ (k) =X (k) > Assign samples
13: wik) = &> Assign weights
14: end for

pseudocode of the bootstrap filter and resampling are provided in
Tables 1 and 2, respectively. The block diagram of the bootstrap
algorithm is shown in Fig. 1.

3 Centralized Particle Filtering Fault Diagnosis

This work extends the methodology introduced in Ref. [34]
from one-dimensional fault-growth models to dynamic state-space
systems of nonlinear processes introducing the centralized particle
filtering fault diagnosis (CPFFD) algorithm. The CPFFD algo-
rithms generate two outputs. The first is the system’s state esti-
mate from a sequence of noise infested measurements. The
second output is a statistical characterization for the occurrence of
each fault mode that can trigger fault alarms.

Consider the uncertain, nonlinear, and discrete-time dynamic
system S described by the following state-space model:

x(k) = f(x(k— 1),
S: Zﬁ — k) - & (x(k — 1),

z(k) = h(x(k)) + (k)

u(k — 1)) +---

uk=1)) +v(k—=1)  @®)
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plz(k)|2' (k) ~ N (h(2"(k)) — 2(k),0,E,)

= h{z'(k))

{ wik—1)
Particle Update o Weights update

(k) = f {2k = 1), (k = 1)) ey w (k) = w(k = 1 - pl=(K) ()}
o #{E) = B (e(i) + (k)

=(k) w' (k)

k) ) '
) ) L. (k) Normalize
Resampling al
| u'(k) - Lk}

Fig.1 Block diagram of the bootstrap PF

Table3 Pseudocode of the CPFFD algorithm

function CPFFD

Xk —1),w (k —1),0d (k — 1), Z(k)
Outputs : Xi(k),wi(k), {F4(k)}™,

Required : RESAMPLE

l:fori =1:N; do

Inputs :

2 Xik) = F(X(k—1),4i(k —1),V(k—1)) & Particles update
3 wik) =w(k—1)-p(Z2(k)|X(k) &> Weights update
4: end for

o w (k) . -
S:w'(k) =—— > Weight normalization

Z“f'(k)
61 [{A/(K), w (0} ] = RESAMPLE(/(K), W ()}
T: X(k) = iwf(k)x'(k)
8: forj = 1"M do

9 By(k) = E[By(K)|2(K)]
10: end for

> Resampling

> Minimum mean-square error

= Probabilities of failure

where the terms x(k) € R™, u(k) € R™, and z(k) € R™ refer to
the state, input, and measurement vector, respectively; f(k):
R™ — R™, and h(k) : R™ — R™ denote the known nonlinear
functions of the system’s healthy dynamics and measurement
model, while v(k) € R™ and w(k) € R™ stand for the process
and measurement noise sequences, respectively.

The monolithic system’s healthy dynamics are subjected to M
potential fault modes described by the nonlinear functions
wuxwlmanM R™. The term B(k—

) is a scalar functmn representing the time profile of the fault
mode j occurring at some unknown time k{) ‘We can consider both
abrupt (step-like) or incipient (exponential-like) fault modes,
defined as

0 k< Id)
Bk—K)={ 1 or1—c®H 51 k=K ©
;;:; incipient

It is assumed that the system is initiated from the healthy mode
(B(-) = 0 at k=0). Due to the random occurrence of the possible
faults, the monolithic system may be viewed as a hidden Markov
model, where the transition probabilities between the different
system modes are unknown.

The proposed failure sensitive filter embeds the dynamics of
the monolithic system § given in Eq. (8), as well as a binary vari-
able (for every potential fault), that identifies the changes in the
process dynamics expressed by the terms ﬁ HO) Hence, the

binary state vector b/(k) = [ (k) ¥, (k)]", with b}, b, € {0,1}
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and j = 1,..., M, is introduced to estimate the occurrence of each
fault mode. More specifically, b|(k) =1 indicates that the
absence of failure mode j, while (k) =1 denotes that the fault
mode j is detected to the system. The continuous-valued states are
coupled with the discrete-valued binary fault occurrence estimates
resulting in a hybrid model.

The operating condition of the system (normal or faulty), as
well as the detection and isolation of the faults, is determined by
employing a particle filtering scheme for the statistical characteri-
zation of both the binary and continuous-valued states, as new
measurements are received. Hence, the state vector that is used by
the PF algorithm is the combination of the continuous state vector

and the binary state vector as XT(k) = [(x(k))" (b'(k))"
- (BM(K)"] € R™™M  where x°(k) £ x(k). Therefore, the state-
transition dynamics of A are described by

xo(k) =f (k= 1), u(k — 1)) +---

-
evolution of continuous states

Z.s"'(f(k—l),u( —1))-Bylk—1) +¥(k— 1)

Yk)=oF k-1 +rk-1),j=1,..M
evolution Df"‘lr}im.ry states

= h(x“ (k) + B(8)
—V—

measurement

5 (10)

z(k)

where 7(k) € R™ and @(k) € R™ are approximations of the failure
sensitive filter’s process and measurement noise, respectively. These
noise sequences should be as close as possible to the actual ones
(v(k) and e(k)). The nonlinear function ®: R2 — {[01]",[10]"},
represents the evolution of the binary states driven by the identically
independent distributed (i.i.d) uniform white noise #/(k). The func-
tion ®(:) is defined such that the previous state b/(k — 1) is ran-
domly excited at each time step by n/(k — 1). This random vector of
R? is assigned to one of the binary states (normal/faulty operating
condition) based on the distance metric of the perturbed vector
B (k — 1) 4 # (k — 1) to the coordinates [0 1]" and [10]".

By using this technique, when one of the fault modes occurs,
the weights will gradually converge the corresponding binary
variable b (k) to one (b, (k) — 1). This is due to the fact that
the likelihood of the measurements will diminish the weights of
the particles associated with the healthy condition. This way, the
occurrence of the each fault is estimated exclusively through the
measurement data and the process model, without the knowledge
of the fault modes transition probabilities. The function @(-)
serves as “likelihood feedback™ that drives the sample population
of the binary states. A choice of ®@(-) that has been successfully
used in Refs. [34-36] is

_Jea iffx—el<lr-el
Dx) = {82 else an
where e; = [1;0]" and e, = [0;1]". The state model of the CPFFD

algorithm can be written in a more compact form as

o . X0 = FQE—1),u(k— 1), V(k~ 1))
- Z(k) = H(X(k)) + o (k)

where Z(k) = z(k), V(k) = [?(k) n! (k)...n™(k)], and F(-), H(-)
are nonlinear functions of appropriate dimensions and structure.
The aforementioned definition will be used to ease the notation in
subsequent parts of the analysis. The outputs of the CPFFD mod-
ule are the estimation of the systems’s state vector and the proba-
bilities of failure of each fault mode. These probabﬂmes are the
expectations of the binary states b2 (k) = E[p5(k)|Z(k)]. This
measure is used to trigger alarm indicators if its value exceeds a

051009-4 / Vol. 140, MAY 2018

oertam threshold o € (0; 1) that marks the probability of detection
(ie., b2 (k) < o indicates that the system is in healthy operating
condition). With this layout, two or more different co-existing
fault modes can be simultaneously detected. The pseudocode of
the CPFFD algorithm is given in Table 3.

The probability of failure is a much more computationally
attractive measure compared to classical change detection meth-
ods such as hypothesis testing. In the context of fault isolation,
detection algorithms using hypothesis testing through logarithm
likelihood ratio test requires the execution of a bank of estimators
that is equal to the fault modes. For large-scale systems, this com-
putational load is prohibited. The proposed CPFFD algorithm is
significantly more efficient, since it increases the dynamics of the
detector by only M binary state vectors.

4 Distributed Particle Filtering Fault Diagnosis

The CPFFD algorithm described in Sec. 3 is not scalable or
robust to complex large-scale dynamical systems that employ
scattered measurement sensors over large geographical regions.
For high-dimensional large-scale systems, this methodology
becomes impractical due to limitations in the observation range of
sensors, communication bandwidth, and computation power of
the centralized computing node.

In this section, we present a reduced-order distributed particle
filtering fault diagnosis (DPFFD) algorithm for large-scale nonlin-
ear systems. The original diagnostic problem is subdivided to a
number of lower-order interconnected fault sensitive filters. With
this technique, each low-order filter can balance its computation
power requirements and volume of data transfers. Similar to Ref.
[37], we take into account subdivisions with state overlap. The
states that are common between two or more subsystems are
referred to as shared states. Shared states between subsystems
appear when state variables are mutually monitored by sensors
that correspond to different subsystems.

Here, we briefly illustrate the three most characteristic types of
decomposition based on a similar description given in Ref. [37].
The most communication intensive decomposition involves nono-
verlapping subsystems of order one (Fig. 2(a)). This fragmenting
is the most computationally effective, however, most likely the
communication limitations will be reached. On the contrary, the
decomposition depicted in Fig. 2(b) provides a balanced compro-
mise between computational labor and communication broadcasts.
It is important to note that there exists a trade-off between compu-
tation power and communication capacity for the nodes of the net-
work. The third case (Fig. 2(c)) is similar to the previous scenario
with the difference that there is overlap between the subsystems.
In principal, overlapping dynamics increase both the complexity
and the communication requirements of the overall design. This
additional complexity overhead is due to the fusion of the com-
mon measurements and shared state estimates between the nodes.
The overlap can increase the fidelity of states and measurements
that are exposed to higher uncertainty, since they are monitored
by more than one sensor. This fact can justify the additional effort
in terms of complexity and communications that stems from over-
lapping states. Decomposition techniques are out of the scope of
this paper, and the interested readers are referred to Refs. [38,39].

Graph theoretical tools are deployed to represent the dynamical
interdependence of the system’s states [37]. A directed graph or
digraph provides a pictorial representation of the system’s struc-
ture [40]. The digraph of system S is defined as the pair
Gs = (Vs, &), where Vs = yUV UB is the set of vertices con-
sisted of the system states y = {X;} the noise inputs
V ={vj}_1, - and the scalar terms BJ_ ﬁ u- The set £
represents the onented edges defined by the ordered pairs
{v,vm}, where vy €V, and v, € y. An oriented edge exists
between the state X; (or v; and ;) and state X,,, if the former
appears at the dynamic equation of the latter. If an edge exists
between vertices v and v, we call them adjacent and denote this
relationship by vy ~ v,,. We define the neighborhood V,, C V; of
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Fig. 2 Characteristic types of system decomposition: (a) low complexity, many interconnec-
tions, (b) balanced complexity/communications with no shared states, and (c¢) balanced com-
plexity/communications, with shared states. This figure is based on a similar one in Ref. [37].

the vertex X,, € x as the set V,, = {X; € y|[{X}, X\, } € &} of all
adjacent states to X,,. The digraph G; is also referred to as struc-
tural graph of the system S.

From a graph theoretical perspective, each subsystem S; of the
monolithic process is represented by a cut-point set of vertices
V“ , where V“ C y. Each cut-point set includes states that are
observed locally by sensors of its corresponding subsystem. The
components of ¥ that belong to the cut-point set V') comprise the
local states of subsystem S;. States from subsystems with depart-
ing directed edges that enter the vertices of a cut-point set deter-
mine the interconnection variables or forcing terms.

Following the previous definitions [41], every subsystem S§; has
a local state vector x; € R™, local interconnection variables vec-
tor d; € R"™ , and local process noise input vector v; € R™ . Each
of the M fault modes will have their own presence in every sub-
system. Let g/ (k) denote the appearance of the fault mode J (J =

1,...,M) at subsystem / (I = 1,...,N). Based on the earlier def-
inition, the state space model of each subsystem S, is described by

x;(k) = fi(xa(k — 1), di(k — 1), u;(k — 1))
Sy : +gﬁ‘}(k—'%)‘s{(x;(k— Ddy(k —1),u;(k — 1))

—HJ;U( — 1)
zy(k) = hy(xi(k)) + an (k)
(12)

where u;(k) € R™ and z;(k) € R™ refer to the control input and
measurement vector of subsystem /, respectively. The nonlinear
functions  fi(-,-,-) : R™ x R™ x R™ — R" and Iy(-) :
R"™ — R™ denote to the local subsystem and measurement

Fig. 3 System digraph of the running example with three
states. The circles represent the states, and the squares repre-
sent the noise input and scalar variables vectors (fault occur-
rence terms). The thunderbolt marks illustrate the location of
the potential failure modes.

Journal of Dynamic Systems, Measurement, and Control

dynamics; while v;(k) € R™ and (k) € R™ stand for the sub-
system and measurement noise, respectively.

Likewise to the centralized approach, the formulation of the
reduced order local PF for fault diagnosis will include a vector of
binary states to represent the absence or presence of each fault mode.
The binary vector of faJlure mode j at subsystem / is represented by

b (k) = [b, ,(k) P, ,(k)]" with the local fault function g/ (-).

The aforementloned definitions are illustrated with a simple
example. Consider a three-dimensional system with the global state
vector  x(k) = [X;(k), X%(k) X3(k)]", the noise  vector
v(k) = [vi(k),v2(k),v3(k)]", and the set of change step functions
B = {p,(k), B, (k)}. The digraph of this example is shown in Fig. 3.
Each sensor set monitors one subsystem. The monolithic system of
the this example is deoomposed into two subsystems represented by
the cut-point sets V'V = {X;,X,} and V¥ = {X,,X3}. The local
dynamic models of these two overlapping subsystems are

xi(k) =filXi(k—1),X2(k—1),X3(k—1))+---
dy(k-1)
_ Bk — k) - g} (Xi(k — 1)) +--
S puog)gme-ng-y P
zi(k) = m(Xa1(k),X2(k)) + o1 (k)
\_‘Vd.
1 (k)= (k)X ()]
10 (k) = fH(Xa(k — 1), X3(k — 1), X, (k — 1) )+
d(k-1)
S : B3k — ko) - g5(Xa(k — 1)) +va(k — 1) (14)

(k) = ha(Xa(k), X3(K)) + o (k)
-
xa(k)=[Xa (k)X (k)]
The compact formulation of the local reduced-order failure sen-

sitive filter that incorporates the evolution of the binary states is
given by

g Xik) = Fr(Xi(k—1),Us(k—1),Vi(k - 1))

517 Z0) = M ®) + or(k) >
Whel;? fﬁfT: [(x1)" (b} )T---(b?)T---g’}")T]T e R™2M .y =
()" (d)']", 21 =2, V=[] n}]", and F;(-), H,(-) are non-

linear functions with appropriate dimensions and structure. The
diagnostic algorithm includes the design of one DN for each sub-
system S;. Each DN consists of a processing unit that executes the
local PF algorithm. The nodes can measure their own local states
and communicate with their neighbors to obtain a processed esti-
mate of their forcing term vector. The layout of the proposed
DPFFD algorithm is depicted in Fig. 4. The algorithm can be sep-
arated into three main parts.

FParticles update: In the first part, each DN executes a local
bootstrap PE. For every subsystem, N; particles are drawn
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Fig. 4 Schematic of the reduced-order DPFFD algorithm. The
thunderbolt markers represent the location of the potential fault
modes in the system.

according to the state transition propagation given in Eq. (15).
This action requires estimates of the forcing terms d; obtained by
the neighbors of DN /. At time k — 1 all subsystems have already
generated an estimate of their own states.

Weights update: In this step, each node uses its local observa-
tion and updates its particles’ weights based on p(Z;(k)|X}(k)).
By taking into account the estimates of the neighboring states d,
and by choosing the proposal distribution similar to the local state
transition function, the weight update is given by

Wik) o wi(k — Dp(Z1(k)|Xi(K) (16)
The local PF is concluded after the weight normalization and
resampling steps of the bootstrap filter (Sec. 2). The outputs of
each DN are an estimation of the subsystems state vector X;(k),
and the probabilities of failure bﬂ(k) E[V, 21(k)|Z;(k)]
j=1 ..M.

Shared states fusion: The last part of the reduced-order DPFFD
algorithm involves the fusion of state variables that belong to
overlapping cut-point sets. At each time step, the estimates of all
DN are collected by a central fusion center that assembles the final
global output of the diagnostic network. The data transmitted to
the central unit contain only postprocessed information. This is
the only centralized processing action that takes place on the
fusion center and does not add significant computational overhead
to the algorithm. A running average filter is executed between the
shared states to calculate a common estimate of their value.

The state estimates £; € R™ of each DN do not have the same
dimensions and cannot be added directly. To this end, the local
state matrices H; € R™™™ are introduced that convert the local
state estimates %; to the vectors £7 of dimension n,. The vector &5
has nonzero entries, equal to the components of xj, at the states
that correspond to the elements of the cut-point set Vi The rows
of H; correspond to the components of the global continuous val-
ued state vector x, while its rows to the components of x;. The
binary matrix H; has a nonzero entry (equal to one) to its i—f ele-
ment, if the global state variable X; appears to the jth component
of the local state x;. For the local state vectors one has

J‘c‘f =H;% (17)
where the local state matrix H; is defined as follows:
1 if[x], =X,
(Hil {0 else (18)

In the context of the running example given in Egs. (13) and (14),
the local state matrixes for each DN are

051009-6 / Vol. 140, MAY 2018

1 0 00
Hi=1]0 1 H,=11 0 (19)
0 0] 0 1
with corresponding full dimensional local vectors
5 0
o8 .5, . XS:
H=|g0| #=|% (20
0 Xy

The superscripts are added to clarify the subsystem that each com-
ponent belongs to. We further introduce the binary selection
system-to-state (StS) matrix 7 € R’*™, Each entry indicates the
presence of a global state to each subsystem. The StS matrix 7
has a nonzero entry (equal to one) to its i—j element, if the state
variable X; appears to subsystem §;. The StS matrix is defined as

_[1 ifX;eS;
[ﬂ"f o {0 else

The n, dimensional local state vectors %] are added together.
Every element of the resulting summation vector is divided by the
number of appearances of the corresponding state variable to the
cut-point sets. Denote by ¢ = ) _,_, H;%{ the sum of the n, dimen-
sional state vectors. The ith element of the global fused state vec-
tor ¥ is given by

(21

_ 1
(], = ——1dl, (22)
3 (7]
=1
For the running illustration, the StS matrix is
110
T= [0 1 1] (23)

Hence, the global fused state vector ¥ according to Eq. (22) is
given by

(24)

The block diagram, with the breakdown of the reduced-order
DPFFD algorithm’s steps, is depicted in Fig. 5. The corresponding
pseudocode of the proposed algorithm is outlined in Table 4.

The reduced-order DPFFD algorithm results to a significant
reduction in the computational complexity and communication
bandwidth requirements of each DN. Suppose that the large-scale
system has n, + 2 - M states. The computational complexity of the
centralized architecture, according to Ref. [42] and by considering
N, particles is approximated by O((n,+2-M)>-N,) floating
point operations (flops). By decomposing the system into N sub-
systems, the number of the state variables is decreased to (n, + 2 -
M) /N at each subsystem. Assuming that N; particles are generated
in every reduced-order estimator node, and with the assumption of
no shared states, the total computational complexity of the
reduced-order DPFFD algorithm reduces to O((n, + 2 - M)’

-N;/N).

5 Numerical Results
This section provides an evaluation of the proposed DPFFD

algorithm via extensive numerical simulations. Two systems of
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Xr (k) — Tr (X (k= 1) uj(k = 1),...
Di(k - 1), Vi(k — 1))
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Yy

wh(k) oc wi(k — Dp(Z1(k)| X} (k), Di(k — 1))
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relevant nodes Gy
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Fig. 5 Block diagram of the ith DN

Table 4 Pseudocode of the REDUCED-ORDER DPFFD algorithm

function REDUCED-ORDER DPFFD

Inputs : x;(k — 1), Hy, {B}(k — DI, wh (k — 1), ur(k — 1), Z1(k),Gs
Outputs : Xj(k), wi(k), {55, ()}, %

Required: CPFFD

l:for7 =1:Ndo

2: forj=1:n,do

3 Find V,- based on G, r> Find the neighborhood set of node j

4 dp = Uy {X;} — U;;’ X5} t> Calculation of forcing term vector

5:  end for

6 U= [(w) (d)"] & Control input at DN /

70 A=) (B ... (b)) &> State vector of DN I

8 [Xﬁ(k)fwﬁ(k){ﬁif(k)}ﬁ,] = CPFFD[Xi(k — 1), wi(k — 1),Us(k — 1), Z1 (k)] t> Calculation of the particles, particles weights and probabilities of
failure

9: if = Hyxy > Conversion of the reduced-order vector x; to the full-order vectorx‘f

10: end f?\rr

11: 0= Eif = Summation of the full-order local state vectors

12: for i = 1 :n, do

13: [&], = TEL— t= Calculation of the global state fusion vector’s elements
>im,
=

14: end for

different dimensionality are analyzed to validate the efficiency of cross-sectional area §.. The tanks are connected with pipes of
the algorithm. In both cases, the process model under investiga-  cross section area S,. The flow rate Q;; between tank i and tank j
tion is a water tank system. This process was selected since its  is defined by means of Torricelli’s rule as

dynamics are nonlinear and its physical subcomponents (water

tanks) are clearly identified. S sien(X — X)) -4 /201X — X

The first case study involves the water tank system illustrated in Qij = Ky - Sp - sign(Xi i) glXi i
Fig. 6. This process consists of nine identical cylindrical tanks of withi,j€ 1,2,...,10 (25)
Journal of Dynamic Systems, Measurement, and Control MAY 2018, Vol. 140 / 051009-7
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Fig. 6 Schematic of the nine-tank system that has been
decomposed into two subsystems. The subsystems are speci-
fied by the dashed lines while the fault mode locations are
noted by double arrows.

Table5 Model parameters of the water tank system

Parameter Meaning Value
S. Tank cross-sectional area 0.0154 m>
Sy Cross section of interacting pipes 2% 1079 m?
Wi Flow correction term 1
g Gravity constant 9.81m/s?
o S
7 T SE— s 51 n
- & =

Xi| X2 X3 .\'.|‘X_—,‘X.; X;| Xs| Xo

¥ i B N DN1() X1, Xo, X3
oo DN1(—ODN2 X, X5, X
Xy Xy (X -
DN20D) X7, Xs, Xy
(a) (b)

Fig. 7 (a) Structural graph and subsystem decomposition and
(b) separation of shared and unshared states for observation
fusion. The presence of the § term and the noise Vare omitted
for illustrative purposes.

where y; is the flow correction term of tank i, g is the gravity con-
stant, and X; is the water level of the ith tank. The water level
dynamics of tank 7 is determined by means of mass balance equa-
tion as

Healthy operating condition

[%]

1}2

(26)

(3

JEN

where N/; refers to the neighboring tanks of tank i. The nominal
values of the process’s parameters are given in Table 5 and are
based on the benchmark process described in Ref. [43]. The fault
modes under consideration are abrupt leaks to the water tanks.
The leakage dynamics ot tank j are given by

§xw) = (2‘;’78”) sign(X;(K)) /2 (0)] @D

By discretizing the continuous dynamics, the difference equation
of the ith tank takes the form

X;(k) = Xi(k — 1) + = 0k —
JE.N.
+Ts - Bl —kp) - g Xk — 1)) +vi(k—1) i=1,..9

(28)

where T, =0.1s is the sampling period, and the process noise
vi € R is drawn from the normal distribution A/(0,0.05). The
goal of this simulation scenario is to investigate the case of
decomposition with overlapping states. To this end, the mono-
lithic process is decomposed into two reduced-order subsystems,
namely §; and S,, as shown in Fig. 6. Figure 7(a) depicts the
structural graph of the monolithic process and its partitions. The
local observation vectors of the two DNs are expressed by

z1 (k) = x1 (k) + i (k)
29
26) = x2(8) + 02(K) @)
where X1 = [X1,...,Xq]", %2 = [Xa, ..., Xo]", i = [X7, X5, Xo]",

d» = [XI,XQ,X_a,]T, and the measurement noise sequences ®; and
-, are generated by the multivariate normal distribution
N(0,0.1). The subgraphs of the observation fusion are depicted
in Fig. 7(b). As shown in this figure, the states {X4, X5,Xs} are
shared between the two DNs. Three failure modes are seeded at
tanks 1, 4, and 5 at the time steps T = 290,250, and 200 s, respec-
tively. The time horizon of the simulation is set to 360 time steps.
The number of particles at each DN is set to N, =200.

During the execution of the reduced-order DPFFD algorithm,
the i.i.d noise that drives the binary states is generated by the dis-
tribution 2/(—0.6,0.6). Figure 8 shows the population of the par-
ticles on the by — b, plane during the healthy and faulty operating

Faulty operating condition

'
—
Y

h]

(b)

Fig. 8 Spatial distribution of the binary particles during the execution of the failure sensitive
filter. The cross markers denote the locations of e, and e,, respectively.
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n(k) ~ U(—0.5,0.5)

n(k) ~ U(~0.6,0.6)

Fig. 9 Spatial distribution of the binary particles with different range of i.i.d driving noise
when the process is in healthy operating condition. The cross markers denote the locations of

e; and es.
DN1 DN 2
Tank 1 Tank 4 Tank 4 Tank 7
A4 Fﬂm oy 25541
e m:.w-«‘:iJ boturapagromatiissed M aesswt ot ime s s WS
§ Tank 2 Tank 5 Tank 5 Tank 8
2 v, ) s
g y ¥
B \
=z 1
R DT TTA el b o BITATO I N 0y P00 ORIy oY ]
B
o
Tank 3 Tank 6 Tank 6 Tank 9
Pt ana®ersden po uteindty g T el HigtrlvoPri s AVl et ke o haserer datirvmgins iptheiantytoH]
Time (sec) Time (sec) Time (sec) Time (sec)

Fig. 10 First case study: probabilities of failure (dashed dotted line) for each fault mode as generated by the two DNs. The solid
horizontal line marks the detection threshold. The solid vertical line indicates the occurrence instant of the fault. The states X,,

Xs, and Xg are shared between the two DNs.

condition of the system at a given time instant. The selection of
this noise range plays a crucial role in the performance of the
algorithm. The effect of the i.i.d uniform white noise is illustrated
in Fig. 9. When the noise is U(—a,a) with a=0.5 (too small),
there is no overlap between the two regions; thus, the particles
remain trapped in the healthy state even in the presence of a fault.

Journal of Dynamic Systems, Measurement, and Control

On the contrary, when the overlap increases (a > 0.8), the par-
ticles keep transitioning between the states and the output of the
failure filter is indecisive.

The binary state’s update function @(-) of Eq. (10) is essentially
a “data-driven feedback™ for the failure sensitive filter. This way,
when the process is healthy, the filter will diminish the particles
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Table 6 Occurrence time of each fault mode

Fault mode number Time of occurrence
Mode 82 10
Mode 91 30
Mode 13 50
Mode 92 70
Mode 64 90
Mode 10 110
Mode 28 130
Mode 55 150
Mode 96 170

that correspond to fault modes indirectly through the likelihood
function [34]. A compromising value that ensures the optimal
operation of the diagnostic filter was shown to be a=0.6.

The probabilities of failure for each fault mode are illustrated in
Fig. 10. Due to the overlap of the two DNs, the estimates of com-
mon states {X4,Xs5,Xs} are fused using the central averaging step
described in Sec. 4. As it can be seen, both DNs can timely detect
and isolate their respective fault modes.

The second simulation scenario involves a grid of 100 water
tanks organized in a lattice of ten rows and ten columns. In this
scenario, the dimensionality of the system is significantly
increased compared to the first case. To the authors knowledge
this is the highest dimension simulation example encountered in
the literature of FD. The goal is to validate the DPFFD algorithm
when applied to a large-scale system. A DN is assigned to each
water tank. The DNs monitor the water level of their respective
tank and exchange information with their adjacent nodes. The
observation equation of each DN is expressed by
where x;=X;and i = 1, ..., 100. The two-dimensional location of
the tank in the grid array is converted to a single index. The one-
dimensional index i is calculated by

[ = Ay + (Hcol - 1) * was (31}
where n,.,, and ng, are the row and column number of the tank in
the grid, and N_,,, denotes the total rows in the array.

Abrupt leaks are seeded randomly to nine tanks at the time
instances listed in Table 6. The nominal values of the system
parameters are identical to the first scenario (Table 5). The mea-
surement/process noise are drawn from the normal distribution
N(0,1). The time horizon of the simulation is set to 190 time

k= 70

Tank (2,9) Tank {1,10) Tank (3,2)
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!’\"‘vw'.‘-'—".’ul "l.-va'n'hq\-.“\-.a PR WL S

time (sec) time (sec) time (sec)

Fig. 12 Second case study: probabilities of failure (dashed
line) with respect to time of the DNs with a leak occurring to
their respective tank. The solid horizontal line marks the detec-
tion threshold. The solid vertical line signals the fault occur-
rence instant.

steps. The same tuning guidelines for the failure sensitive filters
hold with the first example. The initial values of the estimated
tank water levels are set to 14m.

Due to the high dimensionality of the system’s states, the simu-
lation results are presented with respect to both time and space.
The illustration of the probabilities of failure, the actual and esti-
mated values of the water tank levels are shown in the first, sec-
ond, and the third row of Fig. 11, respectively. The output values
of the DNs are depicted as color-coded pixels based on their loca-
tion in the lattice, for different time instances. The probabilities of
failure with respect to time, only for the leaked tanks, are shown
in Fig. 12. When a leak is seeded in one of the tanks, its water
level will gradually reduce. For a transient interval, the neighbor-
ing tanks will try to compensate for this loss due to the pressure
difference until their level will also start to decrease as well. The
diagnostic performance is deemed satisfactory since each DN can
promptly detect and isolate its own fault mode in spite of having
access to local information. This case study involves only nono-
verlapping subsystems; therefore, state fusion was not necessary.
The computational reduction compared to the CPFFD algorithm is
dramatic. Instead of processing 100 states, each node is responsi-
ble of monitoring a one-dimensional system.
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Fig. 11 Second case study: probabilities of failure (first row), actual (second row), and estimated (third row) values of the tanks
water levels at different time instances. Each pixel represents the water level of a tank in the lattice.
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6 Conclusions

‘We have presented a reduced-order distributed implementation
of a fault detection and isolation algorithm for nonlinear large-
scale systems. A network of interconnected DNs is employed to
monitor the entire process. Each node monitors lower-order subdi-
visions of the monolithic system. The DNs have access to partial
local measurements and can communicate with adjacent nodes of
the monitoring network. The layout of the scheme is driven by the
two main constraints of networked systems: the available commu-
nication bandwidth and processing capabilities of the nodes. An
on-line hypothesis testing module is embedded at each failure sen-
sitive filter that triggers alarm indicators in the presence of a fault.
This inference component eliminates the need for the entire sys-
tem’s state at each DN and the necessity of a bank of estimators to
isolate the occurring faults. A simplistic state fusion step takes
place between nodes that monitor common states. This approach
relieves the filter design analysis by substituting the complex sta-
bility proofs that are required by observed-based methods, with
Monte Carlo simulations that are conveniently applicable to real-
life sensor networks.
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Nomenclature

b = binary vector of §
B = set of time profile functions
by = binary vector of subsystem S;
d; = interconnection variables (forcing terms) of
subsystem S;
e' = prediction error of particle i
f(-) = state transition function
F(-) = compact state transition function
fi(+) = state transition function of subsystem S,
Fi(-) = compact state transition function of subsystem
S7
G, = structural graph (digraph) of system §
&/(+) = function of fault mode j
£;(k) = fault function of failure mode j at subsystem
S
h(-) = observation function
hy(-) = observation function of subsystem S,
H,(-) = compact local observation function
H; = local state matrix
k = time index
k), = time occurrence of failure mode j
M = number of failure modes
n = uniform white noise
N = number of subsystems
ng, = dimension of subsystem’s S, forcing vector d,
n, = dimension of input vector
ny,, = dimension of subsystem’s S; input vector i
n, = dimension of process noise vector
n,, = dimension of subsystem’s S; system noise
vector vy
n, = dimension of state vector
n,, = dimension of subsystem’s S; state vector x;
n, = dimension of observation vector
n,, = dimension of subsystem’s §; measurement
vector z;
n, = dimension of measurement noise vector
n,, = dimension of subsystem’s §; measurement
noise vector @y
N; = number of particles
N+, ) = normal distribution
p(x(k)|z(1 : k)) = posterior density function

Journal of Dynamic Systems, Measurement, and Control

p(x(k)|x(k — 1)) = state transition density function

p(z(k)|x(k)) = likelihood density function
q(x(k)|z(1 : k)) = proposal distribution function
R = set of real numbers
S = monolithic system
S; = subsystem [ of monolithic system §
= failure sensitive filter
S"; = subsystem / of failure sensitive filter §
T = StS matrix
u = input vector
uy = input vector of subsystem S;
U; = compact input vector of subsystem S‘; (combi-
nation of u; and d;)
U(-, -) = uniform distribution
= process noise vector
= approximate process noise vector
= set of noise inputs
= compact noise vector of system " (combina-
tion of v and n)
= process noise vector of subsystem S,
V; = compact noise vector of subsystem Sf (combi-
nation of v; and n;)
Vm = neighborhood set of vertex m
Vi = set of vertices of the graph G;
w' = particles’ weight
wi = particles’ weight of DN /
x = state vector of monolithic system §
X = global fused state vector
A = compact state vector of §" (combination of x°
and bj|;_, _
x; = state vector of subsystem S
X; = state variable {
A'; = compact state vector of subsystem S"; (combi-
nation of x§ and b izt,.a)
x' = particles ofx
x° = continuous valued state vector of §
X} = particles generated by DN [/

£} = n, order estimate of state x;
Xff = estimate of X; by DN /
z = measurement vector
Z = compact measurement vector of system §
z; = observation vector of subsystem S,
Z; = compact observation vector of subsystem Sf
Z™ = set of positive integers
B = time profile function of a fault’s occurrence
6(-) = Dirac function
g, = edges of the graph G;
¥, = covariance matrix of measurement noise
@(-) = update function of the binary states
¥ = set of system states
@ = measurement noise vector
() = approximate measurement noise vector
; = measurement noise vector of subsystem S;

'C‘Q‘:tc
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