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Abstract. We study the notion of van der Corput sets with respect to
general compact groups.
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1. Introduction. Given a sequence (2,)52,; C T = R/Z, the classical van
der Corput’s difference theorem in uniform distribution theory states that if
(Tpan — )22 is uniformly distributed in T for all h € ZT, then (z,,)5
itself is also uniformly distributed in T.

In [5], Kamae and Mendes France made the important observation that
in order for (x,)5; to be uniformly distributed in T, it suffices to have the
uniform distribution in T of (x,, 1y — )% for h in a certain subset H of Z™.
Such a set H is called a van der Corput set. A prototype result of this kind
had already been proven by Delange, where one can take H to be the set of all
multiples of a positive integer a. Other examples of van der Corput sets are

H1:{77,2271€Z+}

Hy={p—1:p prime}

Hs={i—j:i,j€l,i>j} where I is any infinite set of integers.
On the other hand, it is known that the set of all odd numbers is not van der
Corput. Also, no lacunary set is van der Corput.

Thanks to works of Kamae-Mendés France [5], Ruzsa [8,9], Montgomery

[7], Bergelson-Lesigne [1], and Nincevié¢-Rabar-Slijepcevié¢ [10], many criteria
for van der Corput sets are known. Extensive accounts of van der Corput

sets can be found in [1] and [7]. For a modern treatment of van der Corput’s
difference theorem, see [2].
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Let G be a compact (not necessarily abelian) group and pug be the nor-
malized Haar measure on G. We recall that a sequence (z,,)52; is said to be
uniformly distributed in G if

Nlim e ({1 <n<N:z, €C}) =ps(C)

for any open set C' C G with boundary measure 0. Van der Corput’s difference
theorem has been generalized to any compact group by Hlawka [4] (see also
[6, Chapter 4, Section 2]), namely that if the sequences (z,4xz, )32, are
uniformly distributed in a compact group G for all h € Z™, then the sequence
(25,)22, is also uniformly distributed in G. Naturally, the notion of van der
Corput sets also makes sense in any compact group. We make the following;:

Definition 1. Let G be a compact topological group. We say a set H C Z™ is
G-van der Corput (G-vdC for short) if the following is true. For any sequence
(r,)%; C G, if the sequence (2,457,1)2, is uniformly distributed for each
h € H, then the sequence (x,)% is also uniformly distributed in G.

Given this definition, from now on usual van der Corput sets are referred
to as T-vdC sets. Presumably, the property of G-van der Corput depends on
G. We will, however, prove the following:

Theorem 1. If a set H C Z™ is T-vdC, then it is also G-vdC for any compact
group G.

Kamae and Mendeés France [5] found a connection between T-vdC sets and
intersective sets which are much studied in combinatorial number theory and
ergodic Ramsey theory. A set H C Z™ is called intersective if for any dense
subset A of the integers (that is, mNHmMN”’N}I > 0), there exist two
elements of A whose difference is in H. Alternatively, H is intersective if and
only if it is a set of recurrence, i.e. H has the property that for any measure-
preserving dynamical system (X, B, u, T), for any A € B with pu(A4) > 0, there
is h € H such that u(ANT-"A) > 0. Kamae and Mendes France showed
that any T-vdC set is intersective. The converse is not true: Bourgain [3]
constructed a set that is intersective but not T-vdC. Furthermore, he showed
that the generic density conditions for T-vdC and intersective sets are the
same. We will extend Kamae and Mendes France’s argument to prove the
following.

Theorem 2. If G is a compact, second countable group (that is, its topology
has a countable base), then every G-vdC set is intersective.

As a consequence of Theorems 1 and 2, if G is a compact, second countable
group, then the class of all G-vdC sets lies in between the class of all T-vdC sets
and the class of all intersective sets. It is an interesting problem to determine if
these two inclusions are strict, even for a specific choice of G, e.g., G = Z/2Z.
This could be a difficult problem since Bourgain’s construction of a set that is
intersective but not T-vdC is difficult.

In Section 2 we will recall some preliminaries on uniform distribution. In
Section 3 and Section 4 we will prove Theorems 1 and 2.
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2. Prelimiaries. We first recall Weyl’s criterion for general compact groups.
Let G be a compact group with normalized Haar measure pg. A representation
of G of degree k is a continuous homomorphism D from G to the multiplicative
group GL(k) of all nonsingular complex matrices of order k. A representation
D is called unitary if D(x) is unitary for all z € G. Two representations Dy, Do
of the same degree k are said to be equivalent if there exists a nonsingular k x k
matrix S such that

Dy(z) = SDy(2)S™!

for all z € G.

A representation D of degree k is called reducible if there exists a subspace
V of CF of dimension 0 < dim(V') < k such that D(z)V C V for allz € G. D
is called irreducible if it is not reducible.

Let {DW : X\ € A} be a system of representations of G that is obtained by
choosing exactly one representation from each equivalence class of irreducible
unitary representation. Let D(®) be the trivial representation. We then have:

Proposition 1 (Weyl’s criterion, [6, Theorem 4.1.3]). The sequence (2,,)22, C
G is uniformly distributed in G if and only if for any A € A, X\ # 0, we have

We will also need the following simple fact, whose proof we will omit:

Lemma 1. If D is a non-trivial irreducible representation of G, then

ZD(m)duG =0.

Next, we recall some criteria for T-vdC sets. Though we will only need (A),
(C), and (F), we will list all of them for completeness. For a set H C ZT, the
following conditions are all equivalent to H being T-vdC.

(A) (Ruzsa) For any sequence (u,)>°; of bounded complex numbers, if

1

N

lim —E Upy hUn =0

N—oo N & T HIEn
n=

for any h € H, then

(B) (Ruzsa) For any sequence (u,)22; of complex numbers satisfying

lmy oo Zgzl lun|? < oo, if

1 N
J\}gnoo N Zlu”Jrhm =0
n=
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for any h € H, then

1&2%52%—0

(Kamae- Mendés France, Ruzsa) For any nonnegative, finite measure p
on T, if fu(h fT —hz)du(z) = 0 for any h in H, then u is continuous
at 0 (that is, u({O}) =0).

(Bergelson—Lesigne) For any nonnegative, finite measure pon T,if ), _
|fi(h)] < oo, then p is continuous at 0.

(Kamae-Mendes France, Ruzsa) For any € > 0, there exists a nonnegative
real trigonometric polynomial

= Z ane(nx)
neZ

supported on H U (—H) U {0} (that is, a,=0 for n ¢ HU (—H) U {0})
satisfying 7(0) = 1 and ag <.
(Bergelson-Lesigne) For any € > 0, there exists a finite, positive-definite
sequence (an) (that is, Y-, /ey @n—n2nZn > 0 for any sequence (z,,) €
CZ) supported on HU(—H)U{0} (that is, a,=0 forn ¢ HU(—H)U{0})
satisfying

Z a, =1 and ag < €.

neZ

(Nincevié-Rabar-Slijepcevi¢) H is operator recurrent, that is, for any
Hilbert space H, for any unitary operator U on H, for any x € H whose
orthogonal projection on Ker(U — I) is non-zero, there exists h € H such
that

(Uhz,x) #0.

3. Proof of Theorem 1. In proving Theorem 1, we use the following result
due to Bergelson-Lesigne, which is a Hilbert space generalization of criterion

(A).

Proposition 2 ([1, Corollary 1.31]). Let H C Z™" be a T-vdC set. Let (u,)2
be any bounded sequence in a Hilbert space H. If

N

. 1
Nm 5 Zl<“n+h7 n) =0
n=

for any h € H, then

NIT;NZ“PO

Bergelson-Lesigne deduced this from a generalized van der Corput inequal-
ity ([1, Proposition 1.30]) and criterion (F'). We remark that in the case where
‘H is finite-dimensional (which is all we need), this can also be proved by the
method of correlation functions ([6, Section 2, Chapter 4]) and criterion (C).
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For each k, GL(k) is naturally a Hilbert space under the inner product
(A, B) = Tr(B'A).

Let H be any T-vdC set. Let (2,)2%; C G be a sequence such that
(Tpanwy, 1), is uniformly distributed in G for any h € H. Let D be any
unitary representation of degree k of G. By Weyl’s criterion (Proposition 1),

N—oo N

N
lim Z (pinx, ) =0.

We have

=

D1 14) = Jim, v 320Dl Dl

0= lim —
N—o0

H
1>

Since D is unitary, the sequence (D(z,,)) is bounded. Proposition 2 implies
that

By Weyl’s criterion, this implies that (x,,)2%; is uniformly distributed in G
and H is G-vdC.

4. Proof of Theorem 2. Since G is second-countable, it follows from the Peter-
Weyl theorem that the system of representatives {D®) : X € A} of unitary
representations of G is countable (since, in this case, L?(G) is separable).

In proving Theorem 2, we will generalize Kamae-Mendes France’s proba-
bilistic argument in [5]. Suppose H C Z™ is G-vdC but not intersective. Then
there is a set A C Z7 of positive upper density such that AN (4 — k) =0 for
all h e H.

Let {un}nez+ be a sequence of random variables taking values in G as
follows. Put u, = 1g for all n € A. For n € ZT \ A, we select u,, € G
uniformly and independently (with respect to u¢g). Fix h € H. We have

1 ifneAand n+ h € A,
1) Ungn iftneAand n+h & A;
Unthlln = u, ! ifng Aand n+h € A;

Upipuyt ifng Aandn+h & A.

Since AN(A—h) =, the first case does not occur. From here it can be shown
using standard probablistic arguments that the random variables wu,, . pu,,*
are independent and uniform in G. Indeed, uniformity is immediate. As for
independence, one only needs to verify independence of families of random
variables {uy, 1 u;, ' }/_; where the pairs of indices {n;, n;+h} are not pairwise
disjoint. We leave the details to the reader.
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By the law of large numbers and Lemma 1, for any non-trivial A € A, we
have

ngnoo — ZD (Un+nu, ) = /D(A)((E)d/ig =0
G

almost surely.

Since A is countable, the above equation in conjunction with Weyl’s crite-
rion (Proposition 1) almost surely implies that for any h € H, the sequence
(unnu,1)SS is uniformly distributed in G. Since H is G-vdC, we have almost
surely (uy,)5% is uniformly distributed in G.

Let D be any non-trivial irreducible unitary representation of G. On the
one hand, by Weyl’s criterion, we have almost surely

. 1
A}gnmNZD(un) =0. (1)

On the other hand, by the law of large numbers, and Lemma 1

li D( D(x = 2

i o= [P0 @
ngA

almost surely, where Ay = AN{1,2,..., N}. From (1) and (2) and the fact that

u, = 1lg for all n € A, we see that limy_, o % =0, which is a contradiction

since A has positive upper density.
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