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ABSTRACT: Equilibrium and nonequilibrium free energies of Nonequilibrium molecular

complex fluids are fundamental quantities that can be used to
determine a wide array of system properties. Recently, we
demonstrated the direct determination of the equilibrium free
energy landscape and corresponding elasticity of polymer chams
from work calculations in highly nonequilibrium fluid flows." In
the present study, we further demonstrate the generality of this
formalism by applying this method to polymeric systems driven
by fluid flows with vorticity and for molecules with dominant
intramolecular hydrodynamic interactions (HI). We employ
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Brownian dynamics simulations of double stranded DNA with fluctuating HI, and we analyze polymer dynamics and the
resultant free energy calculations in the context of the nonequilibrium work relations. Furthermore, we investigate the role of HI
on the work and housekeeping power required to maintain a polymer chain at a nonequilibrium steady-state in flow, and we
consider the relationship between housekeeping power and polymer chain size. On the basis of the results in this study,
nonequilibrium work relations appear to be a powerful set of tools that can be used to understand the behavior of polymeric

systems and soft materials.

B INTRODUCTION

Polymers are ubiquitous materials in modern society. During
processing, polymer chains are exposed to nonequilibrium
conditions that give rise to complex dynamics. A full
description of the dynamic behavior of long chain macro-
molecules can be a challenging task. In the past, the
nonequilibrium behavior of polymers in flow has been studied
using a combination of bulk rheology, single polymer dynamics,
kinetic theory, and simulations.””* Bulk rheological ex7per1-
ments such as flow blrefrlngence, and light scattermg are
used to infer information regarding polymer conformation
orientation in flow, whereas single molecule techniques have
allowed for the direct observation of polymers in shear flow,®
planar extensional flow,”'° and two-dimensional mixed flows.""
In this way, single molecule studies have uncovered intriguing
information regarding the dynamic behavior of polymers at the
molecular level. For example, observation of polymer dynamics
in strong flows reveals distinct molecular stretching pathways
and rich individualistic behavior.’ In many cases, single
molecule methods allow for the determination of the full
distribution of polymer conformations at the molecular level,
rather than the mean value of a bulk property. Experimental
observation of chain dynamics in flow has been complemented
by significant progress in computational modeling, including
development of Brownian dynamics and Monte Carlo
simulations.

In general, the modeling of nonequilibrium polymer
dynamics using coarse-grained simulations follows a fairly
structured approach. Model parameters based on polymer
chemistry (e.g., elasticity, persistence length, contour length),
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solution conditions (e.g, Debye length, solvent quality), or
both (e.g, longest polymer relaxation time) are chosen such
that simulations accurately capture known (equilibrium)
properties of molecules. Using this approach, the non-
equilibrium dynamics of polymer chains are simulated using
predetermined parameters, thereby revealing microstructual
information and far-from-equilibrium properties such as chain
stretch or solution stresses. Single molecule visualization and
Brownian dynamics simulation of polymer chains provides a
particularly powerful combination of complementary tools to
study polymer dynamics.*

With this in mind, is it possible to approach nonequilibrium
polymer dynamics from a fundamentally different perspective,
one in which far-from-equilibrium properties of polymer chains
are used to determine equilibrium fundamental materials
properties such as elasticity? At first glance, this appears to be
a daunting task for many reasons, including the highly
dissipative nature of hydrodynamic forces in fluid flow. In
this work, we show that equilibrium polymer properties such as
stored elastic energy and polymer elasticity can be directly
determined from polymer dynamics in a wide array of
conditions, including fluid flows with vorticity and for polymer
chains with dominant intramolecular hydrodynamic interac-
tions (HI). In this way, rheological information can be used to
determine characteristic properties that define specific poly-
meric systems. Determination of these fundamental properties
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is enabled by nonequilibrium work relations that allow for
calculation of equilibrium properties from far-from-equilibrium
information.

Over the past decade, nonequilibrium work relations have
been used in the field of biophysics in order to study short
polymer chains of biological origin (e.g,, RNA hairpins). Most
of these experimental methods rely on single molecule
techniques such as force spectroscopy (e.g., optical tweezers,
AFM) in the absence of fluid flow. These methods typically
require complex instrumentation with at least one end of the
molecule tethered to a surface and the other attached to an
optically trapped bead, AFM tip, or magnetic bead through
which a conservative force is directly applied.'” On the other
hand, fluid flows can be used to generate substantial
hydrodynamic forces on polymer molecules, which results in
stretching and orientation of polymer chains in flow.>*'>'*
However, until recently, nonequilibrium work relations have
not been applied to the field of complex fluids.

Recent advances in nonequilibrium statistical mechanics
via Jarzynski’s equality (JE)'”'® have enabled equilibrium
properties to be determined from the work required to drive a
process arbitrarily far from equilibrium. The Jarzynski equality
is given as

e PAF = (e7Py = /dw p(w)e™™ (1)

where AF is the free energy change between two states, w is the
work done on the system during a process connecting the
states, # = 1/kpT is the inverse Boltzmann temperature with kg
as Boltzmann’s constant and T as absolute temperature, and
p(w) is the probability distribution associated with the work
distribution w. In general, JE is a nonequilibrium work relation
that enables the determination of free energy differences
between two states from repeated nonequilibrium work
measurements during an arbitrary process. In the original
statement of the JE, the initial and final states of the system
were taken to be equilibrium states.'” However, the work
relation has also been extended to nonequilibrium steady-
states’” and nonequilibrated states,"> under certain circum-
stances. A sufficient condition for the application of the JE to
nonequilibrium steady-states is that the steady-state distribution
function W,q, can be described by a Boltzmann distribution
such that yy,.e « @ exp[—pH], where ® is any arbitrary
function and H is the position dependent Hamiltonian.*’

Prior to the JE and related nonequilibrium work relations,
free energy changes between two states were computed only for
reversible processes such that

AF = (w)

15,16

)

In many cases, tremendous time scales are required to access
these states in a reversible fashion. Alternatively, the free energy
change associated with near equilibrium states is given by

2
AF = (w) 50 3)
where ¢ is the variance of the work distribution from repeated
work measurements, a result obtained from linear response
theory.”"** In addition, for processes with Gaussian work
distributions, which is the case near equilibrium or under the
stiff spring approximation, it can be shown that eq 1 reduces to
eq 3. Since the development of the Jarzynski equality,
nonequilibrium work relations have been extensivelZ a}z)flied to
biophysical system523_29 and quantum systems - using
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experiments and computer simulations. In biophysical
applications, free energy changes between states were
determined from pulling DNA and RNA hairpins using force
spectroscopy in the absence of fluid flow over length scales
ranging from tens of angstroms to hundreds of nanometers. In
order to develop a practical framework to study complex fluids
dynamics and rheology, however, nonequilibrium work
relations need to be applied to systems driven by fluid flow.

Recently, we developed a framework to determine elasticity
from single molecule polymer dynamics in vorticity-free linear
flows." In particular, we applied the nonequilibrium framework
to study synthetic polymers and biopolymers stretched in
tethered uniform and extensional flow, using both Brownian
dynamics simulations and analysis of experimental data." In this
way, we calculated equilibrium free energy landscapes and
force—extension relationships for free-draining chains of A-
DNA and polystyrene from their stretching trajectories in flow.
However, realistic polymer chains are typically not free-draining
molecules. In dilute solutions, polymer chains are affected by
intramolecular hydrodynamic interactions (HI), wherein seg-
ments of a polymer affect solvent velocity, thereby perturbing
the motion of nearby segments of the same polymer that are in
close proximity.'® Intramolecular HI is especially important for
dynamics in the coiled state, wherein interior segments of the
polymer chain are shielded from the full solvent flow field by
outer segments of the polymer chain.

In general, the implications of HI can be significant especially
for long and flexible polymer chains.*> ™" Regarding equili-
brium chain dynamics, HI leads to enhanced diffusivities (D)
and diminished longest relaxation times (7z) for a constant
molecular weight (M). For example, the center-of-mass
diffusion constant D and the longest relaxation time 7 follow
distinct scalings as a function of number of Kuhn segments
(Ny) of the polymer chain, such that D ~ N ! and 75 ~ Ni?
for free-draining chains following Rouse dynamics, while D ~
N¢ % and 73 ~ N for hydrodynamically interacting chains
in a @-solvent following Zimm dynamics.*®** In the case of far-
from-equilibrium dynamics, HI can lead to even more
pronounced and interesting physics. For high molecular weight
polymers, intramolecular HI leads to polymer conformation
hysteresis in extensional flow,'”'**® while in confined geo-
metries, HI results in distinct mobility and chain migration
dynamics.**~* Although the effect of HI on chain dynamics is
understood, the implication of HI on nonequilibrium work
relations remains largely unknown.**

In addition to hydrodynamic interactions, vorticity plays a
key role in polymer dynamics. For example, vorticity leads to
characteristic tumbling dynamics of flexible and semiflexible
polymer chains in shear flows.*>™*’ Shear flow is a linear flow
with equal contributions of pure rotation and pure
deformation,*® which results in an interesting interplay between
polymer stretching, tumbling, and restretching events.****’
Recently, the dynamics of polymers in shear flow have been
studied in the context of nonequilibrium work relations and
corresponding fluctuation theorems,® ™ albeit using single-
mode Hookean dumbbell models of polymer chains. Hookean
force relations provide a strictly linear elasticity, which results in
unphysical behavior in strong flows.> From this view, prior
work has applied nonequilibrium work relations to Hookean
dumbbell models of polymer chains in shear flow, but results
have largely been limited to the weak shear rate regime.
Application of the JE to polymers in strong shear flow is of
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particular interest from a rheological and thermodynamic
perspective.53

Here, we report the determination of fundamental materials
properties by applying the JE to polymer chains in a wide range
of linear flows. We use Brownian dynamics simulations to
carefully extract the free energy landscape of polymer chains,
which allows for the determination of chain elasticity for free-
draining and nonfree-draining polymers in tethered uniform
flow, planar extensional flow, and shear flow. In particular, we
consider elastic models that describe synthetic polymer
molecules such as polystyrene and biopolymers such as double
stranded DNA. Finally, we make connections between
nonequilibrium work quantities such as housekeeping power
to well-known rheological quantities, and we derive expressions
that deepen our understanding of this framework. In this way,
we demonstrate the general applicability of using this new
formalism in nonequilibrium statistical mechanics to elucidate
fundamental properties from polymer dynamics.

B BROWNIAN DYNAMICS SIMULATIONS AND WORK
CALCULATIONS

Model Description. Polymers are modeled using a coarse-
grained description of macromolecules, where chains are given
by a series of N, beads connected by massless springs. Beads
serve as contact points with the fluid or centers of
hydrodynamic drag, connected by N = N, — 1 springs that
prescribe the average elasticity of the molecules.'”>>>* The
motion of a polymer chain with fluctuating intramolecular
hydrodynamic interactions is governed by a force balance on
each bead and yields the stochastic differential equation:

1 & 0
dr, = |u(r) + — D,-F + —-D,. |dt
i ( 1) kBT Zl ij Zl 61'- ij
= ] ]
+ 2 ) B-dW,

j=1 4)
where r; is the position vector of bead i, u(r;) is the unperturbed
fluid velocity at position r, and Dj; is the diffusion tensor that
satisfies a fluctuation—dissipation theorem such that:

N,

T
Dij = Z Bil’B,'l
=1 (%)

where B; is lower-triangular and represents the weighting
factors, dW; is the vector representative of a Wiener process”
with components chosen randomly from a Gaussian distribu-
tion with mean 0 and variance dt, and F; is the vector
comprising the total nonhydrodynamic and non-Brownian
forces acting on bead j. In modeling intrachain HI, there are
two popular choices for the diffusion tensor: the Oseen—Burger
(OB) and the Rotne—Prager—Yamakawa (RPY) tensor.’® In
both cases, the term »7%(d/dr,)D; = 0, which greatly
simplifies the force balance given by eq 4. We employ the
RPY tensor in our simulations because it remains positive-
semidefinite for all polymer chain configurations. The RPY
tensor is given by:
kB—TIi}., ifi=j
6mna

ij

(6a)
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where 7, is the solvent viscosity, a is the bead radius which is
related to a hydrodynamic interaction parameter h* such that a
= h*((zkgT)/H)Y?, r; is the vector displacement between
beads i and j, and H is Hookean spring constant such that H =
((3ksT)/(Nibi)), where Ny, is the number of Kuhn steps
per spring and by is the Kuhn step size. Using this description,
the contour length of the polymer chain is L = (N, — 1)Ny by
It should be noted that h* = 0 for free-draining chains, which
implies that D is isotropic in the absence of HI.

In order to express eq 4 in dimesionless form, we define a
characteristic time scale t, = {/4H, where { is the drag
coefficient of each bead, a length scale I, = ((kzT)/H)"/?, a force
scale F, = (HkgT)"?, and an energy scale E; = kgT.
Furthermore, it is convenient to recast the force balance in
eq 4 in terms of spring connector vectors Q; = r;;; — 1; such
that:

4alr;

(6b)

N,
dQ, = [Pe(x-Q) + Z Dy, = Di,j)'Ff]dt
j=1

1

+ \/E[Bi+1,i+1 dw,, + Z (Bi+1,j - Bi,j) dVV,]

j=1 )
where we have considered linear flows such that u(r,) = k-r,
where K is the velocity gradient tensor. In eq 7, Pe = Gt, is the
bead Péclet number, where G is the strain rate; G = ¢ in
extensional flow and G = 7 in shear flow. Finally, FF is the net
entropic force on bead i and is given as

F, ifi=1
Ff =

, F,—-F_, ifl<i<N

—-Fy_, ifi=N (8)
where F} = +(9/(0Q;))¢* is the entropic force in spring i, and
¢° is the connector potential. For modeling double stranded
DNA, we employ the Marko-Siggia force-relation:>”

kyT| 1 1 1
i e
10-8)
For modeling synthetic polymers, we employ Cohen’s Padé

approximation®® to the inverse-Langevin chain (ILC) function
to represent the entropic elasticity between two beads:*

2 R
Q Q,lQ

2, )
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(&)
F = kB_T 2 Q

. B b (Q%)z o (10)

In both cases, Q, = Ngby is the maximum extensibility
(contour length) of the spring connector, and Q = IQ | is the
magnitude of the spring connector vector. The Marko—Siggia
relation has been shown to accurately model the elasticity of
double stranded DNA (dsDNA), while the inverse-Langevin
function is commonly used as the elasticity of polystyrene.>*

Nonequilibrium Work Definition. Jarzynski’s equahty
relies on nonequilibrium work values for an arbitrary process.'
Therefore, the application of JE to Brownian dynamics
simulations of single polymer molecules stretched by flow
requires an accurate definition of the work exerted by the fluid
on the polymer in flow. In previous applications of the JE
involving force spectroscopy (e.g., optical tweezers), work is
defined simply as force exerted over a specified distance. For
particles (and polymers) in flow, work is rigorously defined
through the following relation:"*"

P
dtU+Z

i=1

dw

[u(r) —U+ f-[E — u(ri)]] dt
(11)

where U is the net potential energy experienced by a particle,
which is directly related to the connector potential ¢° in
simulations and is explicitly independent of time, and f;
accounts for nonconservative forces other than hydrodynamic
flow exerted on particles. Note that the applied work for
nonconservative forces (e.g, solid—solid friction) can be
expressed as f-dr, However, in our simulations, f; = 0. The
first two terms on the right-hand side of eq 11 are the material
(or convective) derivative of U, which describes the total time
rate of change of the potential energy, analogous to the
transport of momentum in fluid motion given by the Navier—
Stokes equation.®® It is convenient to recast eq 11 in
dimensionless form in terms of spring connector vectors such
that:

N
= [(X Pete-)-E) e

i=1

(12)

In this study, we define terminal states as given by a
predefined molecular stretch or extension, such that the work
done by the fluid is calculated in transitioning the polymer from
an initial molecular extension to a final molecular extension.
With this definition, the free energy change between states
(defined by constant molecular extensions) is determined by
applying JE in dimensionless form

N

1
AF = —In[ — -
n N EXP( Wk)

t k=1

(13)

where N, is the total number of trajectories in the ensemble
exponential average. The number of trajectories required to
yield reasonable estimates of the free energy change between
states depends on the dissipated work (w,) = (w) — AF.>® This
number becomes prohibitively large when (w,) > kT, which
can limit the application of JE to microscopic systems.”* As
discussed below, strategies have been developed to ensure that
the work calculation is tractable.
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Algorithm. In solving the dynamic force balance given by
eqs 7—10, we employ a highly efficient predictor—corrector
method to calculate the conformational changes in the polymer
molecule as represented by the spring connector vectors. We
follow closely the algorithm originally proposed by Somasi et
al.% that has been adapted to simulations with fluctuating HI**
and excluded volume (EV).'°

At each time step, the algorithm begins with a predictor step,
which is a simple Euler method to estimate the spring
connector vectors at a later time t + At given the connector
vectors at time ¢:

Q,* JtHAL [P (K Qt) + Z (D;+1,] D,l) Fs t]

j=1

i
At + \/E[Bf+lli+1'dwf+1 + Z (Bf+1,j - nyj)‘dW;]
j=1

(14)
where Q #**4! is the Euler prediction for the connector vector
of spring i at time t + At. Next, we employ a correction based
on the predicted connector vectors such that

QT+ (Dl — DY) B )AL

1 §
EPe(K-Qf + Q) + (Dl 4, — D} )F

N,
+ Z (Df+1,j - Df,j)'F; At + \/E[Bf+1,i+1'dwf+1
j=1

1

+ Z (Bf+1,;' - Bf,;)'dw;]

j=1 (15)
where F; = ifj <i;else F; = Fs’ and Q *' is the corrected
spring connector i. The quantlty |Q,+At| is first determined by
solving a cubic equation derived from eq 15 that can be
expressed differently for models of polystyrene®* and DNA'"
based on their respective force-relations. By solving the cubic
equation, the corrected estimate Q !4 is obtained. In writing
eq 15, we add two diagonal terms involving D' on both sides to
avoid breaking the summation so as to conveniently determine
Q"% implicitly. Finally, the third step is an iterative
determination of spring connector vector i given by:

Fs,H—At

QU+ (D100 = D)0

1 _ _
= [EPe(K-Qf + k- Q") + (D, — D) EY

b
+ Z (Df+1,j - Df,j)'Fj‘]At + \/E[Bf+1,i+1'dwf+1
=1

1

¢ ¢ t

+ D (B, — B.)-dW']

=1 (16)

where FY' = B4 if j < i; else F; = F"**. We use eq 16 to

determine the spring connector Vectors Q,*At for all N springs.

For the iterative step, we use a convergence criterion given by
e

o
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N
e > Z (Q5+At _ Q:+At)2

i=1

(17)

If the convergence criterion is not satisfied, then the values of
Q™A are copied into Q'Y and the algorithm steps are
repeated in eq 16 until the condition in eq 17 is satisfied. Upon
convergence, the set of spring connectors Q! is finally
determined. We typically set &, to 107 in our simulations.

In this algorithm, we have assumed D and B; are constant
during each time step At. This assumption is reasonable for
small At as demonstrated by Jendrejack et al® It should be
noted that this assumption is unnecessary for D; in simulating
free-draining chains, because by definition, free-draining chains
have constant D;. For hydrodynamically interacting chains, the
elements B, of weighting factors B; are determined at the start
of each time step via a Cholesky decomposition® on the
elements D, of le"}’56 such that

a—1

21\1/2
Brm = (D(m - Z Gay)
y=1
1 <
B{Zﬂ = _(D(lﬁ - z Uayo'/j}/)l/z, ifa > ﬂ
%p y=1

where @, f, y represent the row and column positions of the
composite tensors D and B. As implemented, the Cholesky
decomposition is an O(N®) operation, where N represents the
number of rows in D. Other more efficient computational
methods have been developed, including an O(N**®) method
based on Chebyshev polynomials developed by Fixman,®
which is efficient especially for chains with significant excluded
volume.'”®" More recently, even more efficient algorithms have
been developed, including O(N log N * and O(N)® methods,
though these are well-suited for simulations of polymers in
confined geometries.

On the basis of the work definition in eq 12, the work dw
exerted by the fluid on the polymer during a time step At
depends only the spring connector vectors Q} and the elasticity
in the springs F;". Therefore, once the single trajectories of the
polymer are known, the work done by the fluid can be
calculated. The work computed for a trajectory k is given by:

N N

w, = z Z PC(K'Q_:+nAt)‘Ff’t+nAtAt

n=0 i=1

(19)

where t = 0 at the beginning of the simulation, and N, is the
number of time steps in simulating trajectory k. As an aside, we
note that the work calculation can also be performed using the
hydrodynamic drag exerted by the fluid on the polymer chain,
which is useful in analyzing experimental data.' In brief, the
work definition utilized in the analysis of single-molecule
experimental data is of the same functional form as in eqs 11
and 19. However, in the work expression used in the
experimental analysis, the spring force is replaced by the
hydrod?fnamic drag force using Zimm and slender-body
theory.” Nevertheless, in this study, we use the work definition
given by eq 12. When considering the work done by the fluid to
stretch a polymer to predefined extension, the calculation is
terminated at the first instance that the chain reaches the final
extension; therefore, N, varies for each trajectory due to the
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stochasticity associated with the Brownian forces in thermal
motion. When considering housekeeping power, N, is constant
for all trajectories because we are concerned with the rate of the
average work done over all trajectories after the molecule has
reached an average steady-state (see section Housekeeping
Power). Indeed, it is this consideration that enables us to relate
the housekeeping power to viscometric functions by relying on
the assumption of ergodicity."

Stratification. Processes driven by fluid flow result in highly
nonequilibrium conditions, thereby generating large amounts of
dissipated work. In applying the JE to polymer molecules in
flow, we employ a strategy known as stratification to overcome
the limitations associated with highly dissipative processes
driving overall large free energy changes.*® We divide a process
associated with a large free energy change AF,, into N,
subprocesses with smaller free energy changes, and we
determine the work distribution p(w;) for each i subprocess.
We then apply the JE to each subprocess to determine the
associated free energy change AF, Because free energy is a
thermodynamic state variable and is additive,”” we can
determine the total free energy change AF,; by summing
over the subprocesses such that AF,, = Y N«AF, Moreover,
determination of the total free energy change using this
approach is generally convenient, because it allows the free
energy landscape to be mapped as a function of molecular
extension, which define our subprocesses.

We employ two methods in applying the stratification
strategy to our calculations. In strategy I, we apply small
successive step functions to the flow strength and allow a
polymer molecule to first reach its average steady-state
extension at each successive flow rate.! In strategy II, we
apply a large step function to the flow strength and calculate the
work required to transition between successive predefined
molecular extensions. Both strategies are valid for work
calculations, because we have defined our terminal states by
molecular extension. In brief, we note that the equilibrium
statement of the JE requires that the initial states be
“equilibrated”. This requirement is inherently satisfied in typical
bead—spring models of polymeric materials because the chain
elasticity at all times depends only on the molecular extension
of the polymer chain. Furthermore, it should be noted that in
both cases, the final states are defined by a fixed molecular
extension, but we anticipate that strategy II will yield larger
values of dissipated work due to the larger overall step in flow
strength.

Housekeeping Power. Calculation of the work exerted by
the fluid to stretch a polymer chain enables the determination
of the equilibrium free energy landscape and elasticity. In this
case, the work done by the fluid on the polymer is computed
from time zero until the first time the polymer reaches a
predefined molecular stretch. In addition to this calculation, it
also is instructive to consider the work exerted by the fluid to
maintain an average steady-state stretch, which is the work
required to maintain an average nonequilibrium molecular
extension in flow. Here, we define the housekeeping power (or
applied power) as the rate of work performed by an external
agent to maintain a polymer chain at a given average steady-
state.">! There is a sharp contrast between the case where a
molecule is maintained at an average steady-state by
conservative forces and the case where it is maintained by
nonconservative forces, such as those encountered in hydro-
dynamic flows. For conservative forces, the applied power P =
(w) is exactly zero, which is indicative of thermodynamic
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equilibrium. For hydrodynamic flows involving dissipative
forces, P is a nonzero constant for steady flows and is
intimately related to bulk polymer viscometric functions for
dilute polymer solutions in linear flows." In this work, we
carefully investigate the effect of HI and vorticity on the
housekeeping power for polymers in hydrodynamic flows.

B RESULTS AND DISCUSSION

Free Energy Calculations in Flow. As a starting point, we
determined the work required to stretch polymers in planar
extensional flow. To begin, we simulated the dynamics of A-
DNA in flow using a free-draining dumbbell model, where h* =
0 and N, = 2. For over 15 years, I-DNA has been used as a
model polymer chain in single polymer experiments; A-DNA
labeled with intercalating dyes such as YOYO-1 is typically
considered to have a contour length L = 21 pm, Kuhn step size
bx = 132 nm, and approximately Ny = 159 Kuhn steps.* We
calculate the work done by the fluid to stretch a single polymer
chain from an initial molecular extension (state a) to a
predefined final molecular extension (state b). After a given
polymer molecule reaches a predefined final state b, work
calculations are halted for the trajectory. After the stretching
event has concluded, it may be envisioned that the molecule is
maintained at state b by a conservative force such that no
additional work is performed on the molecule after reaching the
final state; however, this is merely a construct to conceptualize
the process.

Representative transient work values and the corresponding
ensemble average of the work performed by the fluid to stretch
A-DNA during a particular event are shown in Figure 1. During

350+ Indiv. Work "> mm— |
3001 /
k250 []
=< 200} //
<
o 150—/ o
= 100} gt
%
50 f
I
Y A
0 5 10 15 20 25 30 35 40

e

Figure 1. Transient work trajectories for stretching A-DNA in
extensional flow at Wi = 0.63. In this case, polymer molecules are
stretched from a fractional extension x/L = 0.32 to 0.38 at a constant
Wi. Thin lines represent work trajectories from individual polymer
chains, and thick lines represent ensemble average work.

this stretching event, A-DNA is transitioned from a fractional
extension x/L = 0.32 (state a) to x/L = 0.38 (state b) in planar
extensional flow at a flow strength of Wi = 0.63. In determining
the work distribution w required to stretch a polymer from the
initial to final state, we only focus on the work required to reach
the final extension. Therefore, the incremental work done by
the fluid is zero after a given molecular trajectory reaches state
b, which results in apparent plateaus in transient work values
for single polymers shown in Figure 1. Our results show that
different polymer chains reach their final extension (state b) at
different times, which is consistent with a stochastic stretching
process, thereby yielding a distribution of work values.
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To further understand the origin of the work distribution for
the process shown in Figure 1, we examine transient work
trajectories for single chains responding to an imposed fixed
flow rate (Figure 2). Overall, we observe two general classes of
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Figure 2. Transient work trajectories and corresponding transient
molecular stretch for a free-draining polymer dumbbell model of A-
DNA in extensional flow at Wi = 0.63, where molecules stretched from
x/L = 032 to 0.38. Thin lines represent trajectories from single
polymer chains, and thick lines represent ensemble average quantities.
(a) Trajectory for a process where the work done by the fluid on the
molecule is less than average transient work. (b) Trajectory for a
process where the work done by the fluid on the molecule is greater
than average transient work. (c) Trajectory for a process where the
work done by fluid on the molecule is significantly greater than average
transient work.

stretching events, as interpreted through transient work values:
(1) trajectories with accumulated work values less than the
average work and (2) trajectories with accumulated work values
much greater than the average work. A molecular trajectory
with a work value less than the average work is shown in Figure
2a. Stretching trajectories that yield small work values typically
correspond to processes that are strongly dominated by
stretching events, with few contracting events during the
process. However, larger work values correspond to trajectories
where the molecule spends a significant time contracting, which
is interesting given that the overall process is a stretching event
(Figure 2, parts b and c). During a molecular contraction event
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Figure 3. Equilibrium free energy landscape for A-DNA (contour length, L ~ 21 ym) and polystyrene (L ~ 1.2 um) determined from
nonequilibrium dynamic simulations in general flows using the JE. The free energy at zero extension is defined as the reference state or zero energy.
(a) Energy landscape for DNA molecules stretched in planar extensional flow. (Inset) Histogram showing distribution of work values required to
stretch DNA molecules from Wi = 0.59 to Wi = 0.63, corresponding to a change in fractional extension from x/L &~ 0.32 to 0.38. (b) Energy
landscape for DNA molecules stretched in tethered uniform flow. (Inset) Histogram showing distribution of work values required to stretch DNA
molecules from Pe = 8 to Pe = 9, corresponding to a change in fractional extension from x/L = 0.63 to 0.65. (c) Energy landscape for PS molecules
stretched in planar extensional flow. (Inset) Histogram showing distribution of work values required to stretch PS molecules from Wi = 0.44 to Wi =
0.49, corresponding to a change in fractional extension from x/L = 0.06 to 0.13.

in flow, the transient work increases in a concave-down manner
because the incremental work decreases relative to a pure
instantaneous stretching event. We note that the contraction
event is due to the stochastic nature of single polymer dynamics
at the imposed fixed flow rate. Nevertheless, the fluid continues
to do work on the polymer chain, and the transient work
continues to increase with a positive slope. On the other hand,
during molecular stretching events, incremental work values
generally increase relative to static stretch or contraction events,
thereby yielding a concave-up shape of the transient work.
Many individual stretching trajectories exhibit both contraction
and stretching events, as shown in Figure 2b.

In this study, the system is defined as a polymer molecule at a
fixed molecular extension. Here, we consider dynamic processes
wherein a molecule is stretched from an initial molecular
extension to a predefined final molecular extension by an
imposed flow field. After determining the work distribution for
a dynamic process, the JE can be applied to calculate the free
energy difference for the given process (Figure 3). In particular,
we divide a large process into a set of smaller subprocesses
using the method of stratification. In this way, we can apply the
JE using the work distribution for each subprocess (as given by
eq 1), and then sum the energies together to determine the free
energy change for a large process. For example, we determined
the work distribution for the dynamic process shown in Figure
1 by building a histogram of work done by the fluid to stretch
A-DNA from x/L = 0.32 to 0.38 at a flow strength of Wi = 0.63
over several realizations (inset of Figure 3a). In an analogous
manner, simulations of several subprocesses are performed for
different flow strengths. Using this approach, we can determine
the entire equilibrium free energy landscape of A-DNA as a
function of molecular extension, remarkably over 3 orders of
magnitude in energy, as shown in Figure 3a. Interestingly, the
free energy change associated with molecular transitions
between states of constant molecular extension correspond
exactly to the stored elastic energy in polymer chain.' In a
second scenario, the system could be defined as a polymer
molecule maintained in flow at a fixed flow strength or Wi. In
this case, the dynamic process involves transitioning the system
in a finite protocol from an initial Wi (state a) to a final Wi
(state b). For this process, the work definition is entirely
different from that in eqs 11 and 19. Furthermore, the
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application of Jarzynski equality to this scenario allows for the
determination of a fundamentally different energy landscape
altogether; this is subject of future work. Nevertheless, the
present method considers states of constant molecular
extension, and by using this method, we can determine the
free energy difference to be within +1 kT of the analytic value
obtained from integrating the Marko—Siggia force relation.

We further validated our method by studying the stretching
dynamics of polymers in other flows. In addition to
determining the stored elastic energy from stretching DNA in
planar extensional flow, we also simulated the stretching
dynamics of A-DNA in uniform flow using a free-draining
dumbbell model. In this simulation, one terminus of the
polymer chain is tethered to a fixed position in the flow field.
The inset in Figure 3b shows the work distribution for a
subprocess in which a molecule is stretched from a fractional
extension x/L = 0.63 to 0.65 in a uniform flow at a flow
strength of Pe = 9. By applying the JE and employing the
strategy of stratification, we are able to determine the free
energy landscape of A-DNA in uniform flow as shown in Figure
3b. Beyond applying our method to extract the equilibrium free
energy landscape of biopolymers from stretching trajectories in
flow, we further validated our approach by studying the
stretching dynamics of polystyrene (PS) molecules in planar
extensional flow. Figure 3¢ shows the equilibrium free energy
landscape determined from applying the JE to work
distributions obtained from the analysis of simulated free-
draining stretching trajectories of PS molecules (contour length
L = 1.2 ym) in planar extensional flow. The inset in Figure 3c
shows a typical work distribution for a subprocess in which a PS
molecule is stretched from a fractional extension x/L = 0.06 to
0.13 in a planar extensional flow at a Wi = 0.49. Overall, our
results from the analysis of PS molecules in flow are in good
agreement with the analytic stored elastic energy obtained by
directly integrating the Padé approximation to the inverse-
Langevin chain (ILC) relation with respect to molecular
extension.

Free energy calculations demonstrate that the JE is applicable
to free-draining models of polymer chains in vorticity-free
linear flows. The equations of motion describing free-draining
models of polymer chains are characterized by additive
stochasticity. However, for models of polymer chains that
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incorporate fluctuating HI, the equations of motion are
characterized by multiplicative stochasticity.>> In order to
demonstrate the robustness of our framework in the presence
of HI, and therefore multiplicative stochasticity, we perform
free energy calculations for multibead—spring models with
fluctuating HI. In particular, we simulate the dynamics of A-
DNA using a multibead model with #* = 0.12 and N, = 10,
parameters which are similar to prior work on A-DNA.®® Here,
we employ the stratification strategy II, wherein a large step
function in strain rate is applied, and the work done by the fluid
to stretch a polymer to a predefined molecular extension is
determined. This strategy is especially advantageous in that
single chains are not held or maintained at their corresponding
average nonequilibrium steady-state extension before stepping
to the next the flow strength. This approach is particularly
convenient due to the significant computational expense for
simulation polymer chains with fluctuating HIL

We determined the equilibrium free energy for polymer
chains modeled using coarse-grained multibead—spring chains
with fluctuating HI (Figure 4). Parts a and b of Figure 4 show
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Figure 4. Equilibrium free energy landscape from multibead—spring
model with fluctuating HI for A-DNA in general flows using the JE
with stratification Strategy II. The free energy at zero extension is
defined as the reference state or zero energy. (a) Energy landscape for
molecules stretched in extensional flow at Wi = 0.8. (Inset)
Corresponding transient ensemble average fractional extension. (b)
Energy landscape for molecules stretched in shear flow at Wi = 0.8.
(Inset) Corresponding transient ensemble average fractional exten-
sion.

the free energy landscape of A-DNA determined using
stratification strategy II at Wi = 0.8 in planar extensional flow
and shear flow, respectively. In strategy II, a molecule is
stretched from a coiled state (equilibrated under no flow) to a
final average stretched state at a given flow strength or Wi. The
insets of parts a and b of Figure 4 show the corresponding
transient trajectory of the ensemble average molecular
extension of A-DNA at Wi = 0.8 in an imposed extensional
flow and shear flow, respectively. In applying strategy II, we
determine the work done by the fluid as a molecule transitions
between predefined molecular extensions which prescribe the
subprocesses. In planar extensional flow, we observe that the
free energy landscape can be determined up to a molecular
extension that corresponds to the final average molecular
extension reached by the polymer (Figure 4a). Interestingly, in
shear flow, we observe that the free energy landscape can be
determined significantly beyond the molecular extension that
corresponds to the final average extension reached by the
polymer (Figure 4b). This is mainly due to the tumbling
dynamics observed in shear flow; an individual trajectory for a
molecule in shear flow explores a wide range of molecular
extension as a molecule stretches, tumbles, collapses, and
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restretches.*®*® Therefore, our results suggest that the
application of nonequilibrium work relations to molecules in
shear flow allows for the determination of the free energy
landscape of the molecule well-beyond its average molecular
extension in flow.

Finally, we can combine both stratification strategies to
determine the stored elastic energy of the molecule for even
higher energies as shown in Figure S. Here, we apply successive
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Figure S. Equilibrium free energy landscape from multibead—spring
model with fluctuating HI for A-DNA in extensional flow. In this case,
polymer molecules are initialized at an equilibrium average extension
and are stretched by extensional flow using both stratification
strategies.

and large steps in flow strength to stretch the molecule between
nonequilibrium steady-states, akin to stratification strategy I
Within each large step in flow strength, the work done by the
fluid on the polymer is determined as the molecule transitions
between predefined molecular extensions which prescribes the
subprocess, akin to stratification strategy II. On the basis of the
work distribution for each subprocess, the free energy change
between molecular extensions is calculated by applying the JE.
The combination of both stratification strategies allows for
efficient determination of the free energy landscape of the
molecule. Furthermore, in all cases (Figures 3—5), once the free
energy landscape is determined, chain elasticity can easily be
calculated as the derivative of the energy with respect to
molecular extension.'

Housekeeping Power. Housekeeping power (or applied
power) is defined as the rate of work required for the fluid to
maintain a polymer molecule at a constant average steady-state
extension in flow. In this way, the fluid continues to perform
work on a polymer in order to maintain a nonequilibrium
steady-state. In brief, we calculate the transient work beyond
the first time a molecule reaches its target predefined steady-
state extension for several flow strengths in shear flow (Figure
6) and planar extensional flow (Figure 7). Transient work for
single trajectories and the corresponding ensemble average
work for A-DNA modeled as a free-draining dumbbells
stretched at Wi = 0.45 in shear and extensional flow are
shown in Figures 6a and 7a, respectively. In both cases, we
observe the average work increases linearly with time at long
times. This indicates that the housekeeping power can be
defined as:

P=limM

t—co t

(20)
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Figure 6. Housekeeping power for A-DNA in shear flow at Wi = 0.45.
(a) Transient individual (thin lines) work trajectories and ensemble
average (thick line) work trajectory. (b) Jarzynski work distribution
after ~#100 relaxation times.
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Figure 7. Housekeeping power for A-DNA in extensional flow at Wi =
0.4S. (a) Transient individual (thin lines) work trajectories and
ensemble average (thick line) work trajectory. (b) Jarzynski work
distribution after ~100 relaxation times.

such that P is a nonzero constant in agreement with the
predictions for steady-states maintained by nonconservative
forces as in hydrodynamic flows.>!

In order to deepen our understanding of the nature of the
housekeeping power, we investigated more closely the work
distributions in linear flows. Figures 6b and 7b show the
corresponding work distribution after ~100 relaxation times in
shear flow and extensional flow. In the case of shear flow, we
observe a near Gaussian work distribution, which indicates that
the average state of molecule is near “equilibrium” at this flow
strength (Figure 6b).”> Indeed, a near Gaussian work
distribution might be expected because the molecule remains
(on average) in the compact configuration in shear flow at Wi =
0.4S5. However, a small fraction of trajectories exhibit negative
work values in shear flow, which is a striking feature of the work
distribution. Negative work corresponds to trajectories in which
a molecule spends more time contracting than stretching,
which is plausible in weak shear flow due to vorticity. However,
we do not observe any trajectories with negative work values
for polymers in extensional flow at Wi = 0.45, as shown in
Figure 7b. Extensional flow is a strong flow with the ability to
induce highly stretched polymer conformations in flow, which
generally results in the molecule undergoing significantly more
stretching events relative to contraction events. In addition, we
observe that the average transient work in extensional flow is an
order of magnitude larger than in shear flow at Wi = 0.45. In
extensional flow, a polymer chain will be stretched to (on
average) a higher molecular extension compared to shear flow;
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therefore, the fluid performs more work to maintain the average
steady-state in extensional flow relative to shear.

Figure 8 shows the transient average work at different flow
strengths for A-DNA modeled as a free-draining dumbbell in
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Figure 8. Transient average work in housekeeping power simulations
at flow strengths ranging from Wi = 0.09 to 900. (a) Free-draining
dumbbell model of A-DNA in planar extensional flow. (b) Free-
draining dumbbell model of A-DNA in shear flow.

planar extensional flow (Figure 8a) and shear flow (Figure 8b).
The insets in parts a and b of Figure 8 show the transient
average work at short times. In both cases, we observe that the
average transient work is nonlinear at short times, thereby
indicating that the average steady-state has not be reached.
However, in all cases, we observe a linear increase in the
average transient work at long times, indicative of an average
steady-state maintained by nonconservative forces. The slope of
a transient average work trajectory yields the housekeeping
power for the corresponding flow strength.

Housekeeping power as a function of flow strength for A-
DNA is shown in Figure 9. We determined housekeeping
power for nonfree-draining behavior of A-DNA using multi-
bead—spring models with fluctuating HI. In this case, we show
housekeeping power in units of kgT/7g, which is the ratio of
thermal energy to the relaxation time of the molecule. We
observe clear power-law scalings of housekeeping power as a
function of flow strength, and we determine the scaling
exponent in different flow regimes for the non-free-draining
chains. On the basis of the scaling exponents, we observe that
the inclusion of HI plays a fairly insignificant role in the
relationship between the housekeeping power and flow
strength, especially at higher flow strengths when compared
with the free-draining scalings."

Furthermore, we systematically investigate the fundamental
relationship between housekeeping power (P) and molecular
weight (M) or number of Kuhn segments (Ni) at a given
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Figure 10. Relationship between housekeeping power and chain size
(number of springs, N;) for dsDNA in a shear flow at Wi = 0.7.
Multibead—spring chains (a) with no hydrodynamic interactions and
(b) with hydrodynamic interactions.

temperature and Weissenberg number. In determining this
relationship, we first consider the simple case of Rouse chains
in a shear flow. In particular, we note that for such a system, the
polymer contribution to the viscosity (17,) is given as’

N2 -1
= nkBTi(bi]
P 4H 3 (21)

where 7 is the number density of polymer chains. Furthermore,
based on our recent work," the housekeeping power is related
to 1, simply through P = ;'/zﬂp. The development of this
relationship is based on the Kramers-Kirkwood expression for
the stress tensor, noting that the housekeeping power is directly
related to the nonisotropic contribution of the polymer to the
solution viscosity." On the basis of this relationship, the Rouse
scaling for the longest relaxation time in the long chain limit
(N, ® N, > 1), and eq 21, we can express a simple scaling
relation for the housekeeping power for a single Rouse chain in
shear flow as:

kyT
P~ /1‘3—Wi2N,;2

H (22)

Using eq 22, we find that P ~ Wi* for a Rouse chain in shear
flow, which is in good agreement with the simulation results at
weak shear flows." In addition, based on the relationship
established in eq 22, we observe that for a constant Wi in the
long chain limit, P ~ N This result establishes the scaling
relationship between P and Ny for Rouse chains in shear flow.
We note that this relationship is expected because at a constant
Wi, the other longest available time scale is the relaxation time
Tg, and a dimensional analysis suggests that P ~ 7. Despite
this analysis, there is still need for a detailed analytical theory
that connects housekeeping power to polymer chain size.
Finally, beyond the analysis of Rouse chains in shear flow and
in order to validate our proposed scalings, we performed
simulations to determine the relationship between the
housekeeping power and chain size for dsDNA molecules.
We achieved this by determining the housekeeping power from
our simulations at a fixed Wi for chains with different contour
lengths such that the number of springs (IN,) is varied while the
number of Kuhn segments per spring (Ny,) is held constant.
Using this approach, our results for long dsDNA molecules in
shear flow at Wi = 0.7 modeled without and with hydrodynamic
interactions and in the long chain limit, we find that P ~ N,
for no HI, and P ~ N,"'* for HI as shown in Figure 10, parts a
and b, respectively. These scaling results are in good agreement
with our proposed scalings based on a dimensional analysis
noting Rouse and Zimm dynamics. Overall, from a polymer
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processing perspective, these results suggests that more
housekeeping energy per time is required to maintain lower
molecular weight polymers at an average steady-state at a given
Wi. Furthermore, this energetic effect is less pronounced for
truly flexible polymers where hydrodynamic interactions are
dominant.

B CONCLUSIONS

In this work, we demonstrate the general utility of applying
nonequilibrium work relations via the Jarzynski equality to the
dynamics of polymer chains in flow. In particular, we employ
coarse-grained dumbbell and multibead—spring models for
polymers with fluctuating HI to directly determine the stored
elastic energy from far-from-equilibrium dynamics. We further
demonstrate that our framework for determining materials
properties can be applied to linear flows with or without
vorticity. In addition, we investigate the inclusion of hydro-
dynamic interactions on the Jarzynski formalism in the context
of housekeeping power defined as the energy expended by the
fluid per time required to maintain a molecule at steady-state.
Our findings suggest that the inclusion of HI does not affect the
relationship between the housekeeping power and the applied
flow strength. Finally, we derive simple relationships that
connect the housekeeping power to polymer molecular weight
in the Rouse and Zimm limits.

Our framework to determine the elastic energy from
stretching trajectories of single polymers in flow can also
serve as a validation tool for simulation techniques employed by
rheologists. Indeed, our results demonstrate that coarse-grained
models of polymers, as are commonly used in Brownian
dynamics simulations, are thermodynamically self-consistent in
the context of nonequilibrium work theorems. Beyond this, by
relating the Jarzynski work to the housekeeping power in
flowing dilute polymer solutions at steady-state, we provide a
formalism to further distinguish between shear and extensional
flows, and free-draining and non-free-draining behavior of
polymers in terms of energy dissipation. In this way, we believe
that nonequilibrium work relations present a powerful set of
tools to investigate and deepen our understanding of soft
materials in highly nonequilibrium flows.
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