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Modern materials processing applications and technologies often occur far from equilibrium. To
this end, the processing of complex materials such as polymer melts and nanocomposites generally
occurs under strong deformations and flows, conditions under which equilibrium thermodynamics
does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties
of polymeric materials from measurable quantities such as heat and work is a major challenge in
the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such
as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we
determine the thermodynamic properties of DNA molecules in strong flows using a combination of
simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate
polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe
a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric
systems. In this way, our results provide an improved understanding of the energetics of flowing
polymer solutions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900880]

I. INTRODUCTION

Classical thermodynamics provides an elegant frame-
work to characterize the properties of a system at equilibrium.
In nature, however, biological processes often occur far from
equilibrium. Moreover, industrial processing of complex ma-
terials such as polymer melts generally occurs under strong
deformations and flows, conditions under which equilibrium
thermodynamics likely do not apply. From this perspective,
there is a strong need for development of methods that allow
for characterization of thermodynamic properties of flowing
systems.1–3

A wide array of processes such as flow-induced
crystallization,4 fluidic-directed self-assembly,5 and stress-
induced phase separations6 is governed by a strong interplay
between nonequilibrium thermodynamics and flow behavior.
Furthermore, fundamental molecular phenomena in soft mat-
ter processes determines the emergent macroscopic response
and corresponding materials properties. Therefore, it is cru-
cial to develop a molecular-level approach that connects the
nonequilibrium energetics of soft materials to transient flow
conditions. From this perspective, a molecular-level thermo-
dynamic framework for flowing systems will allow for a fun-
damental route to understand and design processes governed
by thermodynamics and rheology.

The ability to determine the nonequilibrium thermody-
namic properties of flowing polymer solutions from mea-
surable quantities such as work is a major challenge in the
field.4, 7–10 In prior studies in rheology, nonequilibrium ther-
modynamics has been used primarily to assess the validity of
constitutive models that relate the bulk stress in a suspension
or solution to flow behavior.11 In this way, the GENERIC for-
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malism (general equation for the nonequilibrium reversible-
irreversible coupling) was utilized to provide thermodynami-
cally valid descriptions of materials.12–14 The GENERIC ap-
proach allows for probing bulk-level constitutive models in
accordance with the second law of thermodynamics. How-
ever, this bulk-level approach does not allow for the deter-
mination of thermodynamic properties from dynamic infor-
mation that is relevant to molecular rheology and polymer
physics.

Recently, a new class of identities known as fluctua-
tion theorems (FTs) and work relations has been developed
to analyze transitions between the states of a system.3,15–19

Jarzynski derived an equality that allows for the determina-
tion of equilibrium free energy differences from nonequilib-
rium work measurements,18 and Hatano and Sasa derived a
related second law for steady-state thermodynamics.3 In ad-
dition to the development of FTs, numerical and experimental
investigations have demonstrated the validity of FTs. Several
reports have focused on equilibrium steady-states (ESSs),20–26

though recently, an expression was developed for determining
nonequilibrium thermodynamic quantities for systems near-
equilibrium.27

In this work, we report the direct determination of far-
from-equilibrium thermodynamic properties for dilute poly-
mer solutions in flow using a combination of simulations and
single molecule experiments. We apply work relations to ana-
lyze nonequilibrium steady-states (NESSs) for flowing poly-
mer systems, and we calculate quantities such as free energy
and entropy for flowing systems. We show proof-of-principle
demonstration of this approach using single DNA molecules
in fluid flow, which serves as a model system for molec-
ular rheology and polymer physics. In particular, we con-
sider polymer dynamics in an extensional flow, which dis-
plays nonequilibrium phase transition,7 and is a ubiquitous
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“strong” flow in materials processing that underlies polymer
extrusion and injection molding.28 Overall, this approach un-
covers new information regarding the fundamental flow prop-
erties of complex fluids, which can be used to study nonequi-
librium phase transitions.

II. THEORY

A. Equilibrium and nonequilibrium steady-states
for polymers in flow

A polymer can be transitioned between ESSs or NESSs
in fluid flow. Recently, a work relation was used to study poly-
mer stretching in hydrodynamic flow, wherein the terminal
states are defined as a polymer maintained at a fixed molecu-
lar extension, which corresponds to an equilibrium state.25, 26

In the present work, however, the terminal states are defined
by a polymer chain maintained at a constant flow rate, which
corresponds to a nonequilibrium state and fundamentally dis-
tinct compared to transitions between ESSs.20,21, 25, 26

We begin by differentiating between ESSs and NESSs.
Consider a classical system in contact with a heat bath at tem-
perature T, such that the evolution of the configuration prob-
ability distribution p is described by the Fokker-Planck equa-
tion. For such a system at an ESS, the transient and spatial
rates of change of the probability distribution function are ex-
actly zero. However, for a NESS, only the time derivative is
zero, while the spatial derivative is a non-zero constant. In
the context of Langevin systems, an equilibrium steady-state
is determined by a control parameter λ, and the probability
pess(x, λ) of finding the system in a given configuration x fol-
lows a Boltzmann distribution:

pess = exp [−βU (x, λ)]

Zess

, (1)

where β−1 = kBT is the Boltzmann temperature, U is the po-
tential energy function of the system, Zess = e−βF is the par-
tition function, and F(λ) is the Helmholtz free energy of the
equilibrium state (Table I). The choice of the parameter λ de-
fines the equilibrium state; for a polymeric system, λ is chosen
as the molecular extension of a polymer chain.

For a nonequilibrium steady-state, however, the distribu-
tion function pness does not generally follow a Boltzmann dis-
tribution. The partition function Zness = e−βF ∗

is not directly
related to its Helmholtz free energy, but rather to an effective
free energy F ∗ (α), where α is the set of control parameters
that define the nonequilibrium steady-state. For polymers in
flow, the control parameters may include the flow strength f
and the polymer stretch in flow λ, such that α = {λ, f }. Im-
portantly, there is a class of nonequilibrium steady-states such

that

pness = exp [−β (U + χ )]

Zness

, (2)

where χ (x, f) is an energy related to a flow potential.3 In this
case, the Helmholtz energy for the steady-state is given sim-
ply as (see Appendix A)

F = F ∗ − 〈χ〉. (3)

Examples of systems that fall into this class include free-
draining polymer solutions in steady potential flows, Hookean
(linear) dumbbells in a shear flow, and polymer melts in a
weak shear flow.4,28 Indeed, there are significantly fewer stud-
ies involving the analysis of NESSs compared to ESSs.15 In
this work, we use numerical simulations and experiments to
determine the free energy of polymer chains transitioning be-
tween states of constant flow rate (NESS) based on dynamic
data.

B. Free energy and control parameters

In general, the free energy of a given system may be de-
termined as a function of state variables, order parameters, or
control parameters.29 State variables include quantities such
as temperature, pressure, volume, or polymer stretch, whereas
order or control parameters refer to any general quantity or
collection of quantities that can be used to specify the system.
For nonequilibrium systems subjected to flow, control param-
eters include dynamic quantities such as the applied strain rate
or applied stress.

At a fundamental level, the determination of equilibrium
free energy as a function of state variables allows for the
development of equations of state that describe the system.
Moreover, the determination of equilibrium (or metastable)
free energy as a function of order or control parameters is
routinely used to study a wide range of phenomena including
equilibrium phase transitions, protein folding, and transport
phenomena in cell machinery.30,31

The thermodynamic framework of fluctuation theorems
and work relations for calculating free energies was de-
veloped in the context of control parameters at a fixed
temperature.15, 18 On the basis of this development, we de-
termine nonequilibrium free energies as a function of con-
trol parameters, in particular, the imposed flow strengths in
dilute polymer solutions under extensional flows. Therefore,
the nonequilibrium Helmholtz free energies, and related ther-
modynamic potentials, reported in this work are of the form
F (T , ε̇, L) or F (T ,Wi), where ε̇ is the strain rate, which is
a measure of the applied flow strength, L is the contour length
of the polymer, which is a measure of chain size, andWi is the
Weissenberg number (see Sec. III) that incorporates the effect

TABLE I. Thermodynamic quantities for equilibrium steady-states (ESSs) and nonequilibrium steady-states (NESSs) in potential flows.

Property ESS NESS

Steady-state distribution function, pss Z−1
ess exp [−βU ] Z−1

ness exp [−β (U + χ )]
Thermodynamic functions F, 〈U〉, S F, 〈U〉, S, F∗, 〈χ〉
Relationship between Helmholtz free energy F and partition function Z F = −β−1 ln Zess F∗ = F + 〈χ〉 = −β−1 ln Zness
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of chain size into the flow strength via the longest polymer
relaxation time.

C. Work expression for polymeric systems

In order to investigate the thermodynamics of systems
that follow the formalism given by Eq. (2), the Helmholtz free
energy must be determined with respect to the set of control
parameters α. Work relations such as the Jarzynski equality
(JE) allow for the determination of Helmholtz free energy
differences between ESSs, wherein a system is moved be-
tween equilibrium states via nonequilibrium transitions, and
repeated measurements of the work are used to determine
the free energy changes. A related equality was developed
for determining the effective free energy differences between
NESSs, however, it requires knowledge of the potential en-
ergy function of the system.3 In this work, we utilize an equal-
ity similar in spirit to the Hatano and Sasa relation,3 albeit one
that does not require explicit knowledge or characterization of
the potential energy function of the system.

To begin, we follow closely the relation given by Hatano
and Sasa,3 which was derived for equilibrium and nonequilib-
rium steady-states governed by Langevin dynamics,〈

exp

[
−

∫ τ

0
dt α̇ · ∂φ (x;α)

∂α

]〉
= 1, (4)

where 〈 · 〉 represents an ensemble averaged quantity ini-
tialized at steady-state (equilibrium or nonequilibrium),
φ = − logpss (x;α), and pss is a steady-state probability
distribution determined by the set of control parameters
α = {λ, f }, and τ is the time required to transition between
steady-states given by α1 and α2. Inserting the distribution
function pness for nonequilibrium steady-states into Eq. (4)
and considering transitions driven solely by flow f, we obtain

exp(−β	F ∗) =
〈
exp

[
−β

∫ τ

0
dt ḟ

∂χ (x; f )
∂f

]〉
. (5)

Equation (5) allows for the direct determination of the ef-
fective free energy difference 	F∗ between NESSs, which
is generally not equal to the Helmholtz free energy differ-
ence 	F (Ref. 3). In order to determine the nonequilibrium
Helmholtz free energy landscape 	F from physically mea-
surable quantities, we employ a generalized Jarzynski equal-
ity (gJE), such that 〈e−βw〉 = e−β	F , where w is the work
required to transition between states. Importantly, this rela-
tion is valid for relating both equilibrium and nonequilibrium
steady-states. By inserting Eq. (3) into Eq. (5), we find that
the gJE work done on the system in transitioning between two
NESSs is given as

w = −	〈χ〉 +
∫ τ

0
dt ḟ

∂χ (x; f )
∂f

. (6)

In this way, application of the generalized JE to the work
expression above allows for the direct determination of the
Helmholtz free energy difference between NESSs. We note
that the energy χ for polymeric systems in flow is well es-
tablished from theory.28 In this present study, χ is a simple
function of the imposed flow strength and the polymer con-
formation (see Appendices B and C).

III. RESULTS AND DISCUSSION

A. Nonequilibrium thermodynamic quantities in flow

Using a combination of Brownian dynamics (BD)
simulations32,33 and single molecule experiments, we studied
the response of lambda DNA molecules (48.5 kbp) to tran-
sitions between fixed flow rates in planar extensional flow,
which consists of an axis of pure fluid compression and an or-
thogonal axis of pure fluid extension (Figs. 1(a) and 1(b)).
In this flow, the fluid velocity is given by vx = −ε̇x and
vy = ε̇y, where x and y are the distances from the fluid stagna-
tion point (point of zero velocity at the origin) along the prin-
cipal axes of compression and extension, respectively. We de-
fine a dimensionless flow strength as the Weissenberg number
Wi = ε̇τR , defined as the product of the fluid strain rate ε̇ and
longest polymer relaxation time τR. Transitioning a polymer
between fixed Wi values in a fluid flow inherently describes
transitions between nonequilibrium steady-states in flow.

Simulations of single molecule and ensemble-averaged
molecular trajectories for this process are shown in Fig. 1(c),
where λ-DNA (48.5 kbp) molecules are transitioned from
Wi1 = 1 to Wi2 = 1.5 in extensional flow at rates r span-
ning two orders of magnitude. BD simulations are based
on a free-draining coarse-grained multi-bead-spring model,
where polymers are modeled as a series of beads (hydro-
dynamic drag centers) connected by elastic springs.34, 35 As
a consequence, our simulations do not consider intramolec-
ular hydrodynamic interactions (HI) and excluded volume
(EV) effects, which are known to be critical for long flexi-
ble chains, yet play a fairly insignificant role in the dynamics
of short semi-flexible polymer chains such as λ-DNA.36–38

In both BD simulations and experiments, single polymers
are transitioned between fixed flow rates at different transi-
tion rates (r = dWi/dt), where time t is non-dimensionalized
with respect to the characteristic timescale for a Hookean
chain, which therefore renders r dimensionless.39 In all cases,
the configuration of the system is allowed to reach steady-
state at both initial and final conditions, thereby satisfying
the conditions for the generalized JE. The work required for
this process is calculated using Eq. (6), and the correspond-
ing nonequilibrium work distributions for different transition
rates are shown in Fig. 1(d) (see Appendix C). As expected,
the work distribution for the slowest rate (r = 0.005) yields
the smallest average work and narrowest distribution. Next,
we applied the generalized JE to determine the free energy
change for this polymer solution under flow. Remarkably, re-
gardless of the irreversibility or energy losses at r = 0.05 and
r = 0.5, the gJE yields the Helmholtz free energy change
(	F = 89.4 ± 0.1 kBT) between Wi1 = 1 and Wi2 = 1.5.

We also performed a series of single molecule experi-
ments to study the dynamics of fluorescently-labeled λ-DNA
molecules in extensional flow (see Appendix D). For these ex-
periments, single DNAmolecules are “trapped” near the stag-
nation point of a planar extensional flow using a feedback-
controlled PDMS-based microfluidic device, which enables
precise control over the fluid strain rate ε̇ with simultane-
ous center-of-mass confinement during the course of an ex-
periment, as previously reported by our group.40,41 In one
case, we directly observed the dynamics of single λ-DNA
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FIG. 1. Nonequilibrium trajectories and work distributions for transitioning single λ-DNA molecules between Wi1 and Wi2 in planar extensional flow. (a) and
(b) Schematic of single polymer stretching in planar extensional flow from initial state to final state. (c) BD simulations of polymer transitions between Wi1 = 1
and Wi2 = 1.5. Individual trajectories (colored lines) and ensemble-average (black line) of transient trajectories at different transition rates: slow (left panel),
intermediate (middle panel), and fast transition rate (right panel). (d) Corresponding work distributions obtained from simulations in (c). For each transition,
the simulation ensemble consists of 500 individual molecules.

molecules transitioned between Wi1 = 3.0 and Wi2 = 7.3 at
a rate of r = 3.4 (Fig. 2(a)). For comparison, we performed
corresponding BD simulations under the same conditions,
and we find good quantitative agreement between experimen-
tal and simulated molecular stretching trajectories (Figs. 2(a)
and 2(b), and Fig. S1 in the supplementary material39). Next,
single molecule trajectories were analyzed using a hydrody-
namic model with no free parameters to determine the work
done by the fluid on the polymer during a stretching event (see
Appendix E). The application of the gJE yields the nonequi-
librium Helmholtz free energy change from the stretching
process, which was determined to be 	F = 308 ± 19 kBT
for transitioning between Wi1 = 3.0 and Wi2 = 7.3. For the
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FIG. 2. Molecular stretching trajectories of single DNA chains in planar ex-
tensional flow in response to transitions between Wi1 = 3.0 and Wi2 = 7.3
at a transition rate r = 3.4 using (a) single molecule experiments and (b) BD
simulations. Colored (thin) lines represent individual molecular stretching
trajectories, and black (thick) lines represent ensemble-average. The experi-
ment and simulation ensemble consists of 14 and 500 individual molecules,
respectively.

corresponding simulation, the application of the gJE yields
	F = 343 ± 1 kBT, which is obtained from a larger ensemble
of single molecules compared to experiments (see Fig. S2 in
the supplementary material39).

We note that, in general, nonequilibrium work distribu-
tions are a function of the transition rate r (Fig. 1(d)) and the
terminal state points or flow strengths, Wi1 and Wi2. To study
the effect of the terminal states on work distributions, we
constructed a work distribution matrix (WDM) as shown in
Fig. 3. This matrix consists of rows that correspond to a fixed
initial state, Wi1, and columns that correspond to a fixed final
state ratio, Wi2/Wi1. In this way, the elements of the matrix
represent the work distribution that corresponds to coordinate[
Wi1,Wi2/Wi1

]
at a specified transition rate.

Using BD simulations, we constructed a 3 × 5 WDM at
a transition rate r = 0.05 in planar extensional flow (Fig. 3).
We consider three initial states with respect to the coil-stretch
transition (Wi ≈ 0.5). In all cases, we find that the work dis-
tributions broaden as one moves from left to right (larger Wi2
in the final state), or from top to bottom (larger Wi1 in the
initial state) in the WDM. This observation is expected be-
cause higher flow strengths result in stretched polymer con-
formations, which in turn leads to higher energy states and a
concomitant broadening in the work distributions.

Surprisingly, in the vicinity of the coil-stretch transition
(Wi1 = 0.4, row 2 in Fig. 3), we observe a pronounced skew-
ness of the work distributions that is a strong function of
Wi2/Wi1. We attribute enhanced skewness of the work dis-
tributions in this regime to the fact that the terminal states
(Wi1 and Wi2) are defined across the coil-stretch transi-
tion (see Fig. S3 in the supplementary material39). Further-
more, for Wi1 = 0.4, we observe that the skewness of the
work distribution is negative for Wi2/Wi1 < 2.0, and pos-
itive for Wi2/Wi1 ≥ 2.5 (see Fig. S4 in the supplementary
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FIG. 3. Work distribution matrix (WDM) for studying the effect of the final
state (Wi2/Wi1) on nonequilibrium work distributions. Using BD simula-
tions, three initial states were considered (Wi1 = 0.2, 0.4, and 0.8) with five
final states for each initial state (Wi2/Wi1 = 1.25, 1.50, 1.75, 2.0, and 2.5)
at a transition rate r = 0.05. The WDM reveals both negative and positive
skewness (row 2) in the vicinity of the coil-stretch transition.

material39). This observation suggests that there exists a crit-
ical final state ratio

(
Wi2/Wi1

)
c
which corresponds to zero

skewness, and beyond which the work distribution is domi-
nated by Wi2.

For nonequilibrium steady-states in flow, thermodynamic
quantities of interest include the effective free energy F∗,
a flow energy −〈χ〉, a nonequilibrium Helmholtz free en-
ergy F, and a nonequilibrium entropy S. We directly deter-
mined these thermodynamic quantities for DNA in exten-
sional flow by transitioning single polymer chains between
fixed flow strengths (Fig. 4). First, we determined the effective
free energy difference 	F∗ based on the equality provided by
Eq. (5), as shown in Fig. 4(a). Moreover, for potential flows
such as a planar extensional flow, the flow energy −〈χ〉 can
be directly determined from polymer extension in flow (see
Appendix C), and this quantity is plotted in Fig. 4(b). Next,
the nonequilibrium Helmholtz free energy difference 	F can
be directly determined by the relation given by Eq. (3), or al-
ternatively, by defining the work done by the fluid on the poly-
mer by Eq. (6) and application of the generalized JE. These
two approaches are equivalent and yield the nonequilibrium
Helmholtz free energy difference 	F, as shown in Fig. 4(c).

Interestingly, we note that the nonequilibrium Helmholtz
free energy F determined from the generalized JE differs sig-
nificantly from the free energy determined from Marrucci’s
classic theory,9 as shown in Fig. 4(c). Similar to this study,
Marrucci’s theory considers free energies at a fixed velocity
gradient or applied strain rate, however, it assumes that the
force-extension behavior or equilibrium elasticity of polymer
chains is a linear function of extension. Based on this linear
assumption, the related nonequilibrium Helmholtz free en-

ergy is then directly related to the bulk-level stresses in the
flowing polymer solution such that

	F = 1

2
	Tr(τp), (7)

where Tr( · · · ) represents the trace operation, and τp is the
polymer contribution to the stress tensor (see the Appendix
material39). Nevertheless, we note that the disagreement be-
tween the free energy determined from the gJE and the clas-
sic theory is expected because the linear equilibrium elasticity
assumption fails in strong flows.28

The generalized JE approach also allows for determina-
tion of the nonequilibrium entropy for flowing polymer sys-
tems, as shown in Fig. 4(d). Entropy S was calculated from
the relation F = 〈U〉 − TS (Ref. 3), where the average po-
tential energy 〈U〉 is evaluated using the stored elastic poten-
tial energy of the polymer.42 Based on the nonequilibrium
Helmholtz free energy F, we also calculated a nonequilib-
rium “elasticity” as ∂	F/∂Wi as shown in Fig. 4(e). This
nonequilibrium elasticity provides a measure of the total ther-
modynamic resistance of the polymer solution to changes in
flow strength. Finally, to connect the nonequilibrium thermo-
dynamic properties to the polymer conformation, we report
the steady-state average fractional extension of the polymer as
a function of the imposed flow strength as shown in Fig. 4(f).

Strikingly, we found that all of the nonequilibrium ther-
modynamic quantities show a transition near Wi ≈ 0.5,
which is the location of the coil-stretch transition in exten-
sional flow.7,8, 28, 35 For example, flow entropy shows a peak
near the coil-stretch transition, which is physically intuitive
because entropy is a measure of disorder, and fluctuations
in polymer extension are at a maximum near the coil-stretch
transition. Our results also show that regardless of the tran-
sition rate r, work relations allow for accurate determination
of the nonequilibrium thermodynamic properties of flowing
systems.

B. Polymer relaxation time from effective free energy

As an application of the nonequilibrium thermodynamic
framework for polymers in flow, we demonstrate a new ap-
proach to determine the longest relaxation time τR for poly-
mers in solution (Fig. 5). In single polymer rheology, the
longest polymer relaxation time is generally determined in
the absence of flow, however, we were able to determine τR
from far-from-equilibrium stretching dynamics in flow. For
this analysis, consider a single-mode dumbbell model of a
polymer, which is appropriate for capturing the stretching
dynamics of polymer chains in extensional flow. For a lin-
ear dumbbell in extensional flow, kinetic theory predicts that
	F ∗ = 1

2β
−1 ln[1 − 4Wi2], where Wi = τ̃RP e, τ̃R is the di-

mensionless relaxation time defined with respect to the char-
acteristic timescale of a Hookean dumbbell, and Pe is the
Peclet number (see the supplementary material39). By analyz-
ing the near equilibrium regime where 	F∗ > −β−1, which
corresponds to Wi < 0.5 for a Hookean dumbbell, it is pos-
sible to determine τR by analyzing the effective free energy
change 	F∗.
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We applied this approach to simulations of multi-bead-
spring polymer models,43 and we determined τR for different
polymer sizes (Fig. 5). The inset of Fig. 5 shows the effec-
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FIG. 5. Relaxation time from effective free energy landscape in flow for dif-
ferent chain sizes (or molecular weights) described by the number of beads,
Nb. Longest polymer relaxation time τ̃

R
for dsDNA is given in terms of the

relaxation time for a Hookean dumbbell λH. Pe is the dimensionless flow
strength with respect to the sub-segments of the polymer chain, which is rep-
resented by the number of Kuhn segments per spring. The relaxation time
under no flow conditions was determined as the time constant obtained from
the three parameter exponential fit to the final 30% of chain extension follow-
ing the cessation of flow. (Inset) General approach for determining relaxation
time under flow conditions.

tive free energy function used to determine τR. The scaling
relationship between τR and polymer molecular weight is in
excellent agreement with Rouse theory,28 which is expected
for free-draining polymers. In addition, we find good quan-
titative agreement between τR determined from the effective
free energy under flow conditions, and τR obtained from the
traditional approach in molecular rheology under no flow con-
ditions (Fig. 5). In this way, we show that polymer relaxation
time can be determined using stretching trajectories in flow,
whereas traditional approaches prescribe determination of τR
from an exponential fit to decaying molecular extension tra-
jectories or stress (in the linear regime) following the cessa-
tion of flow.8,28, 35

C. Nonequilibrium-equilibrium equivalence
in polymeric systems

Finally, we consider the implications of the nonequi-
librium thermodynamics approach to ensemble equivalence,
which is a central concept in equilibrium thermodynamics.
In the thermodynamic limit, it is well known that optical
tweezer-based polymer “pulling” experiments carried out un-
der different conditions yield identical results. For example,
the properties obtained under a constant-extension protocol
(canonical ensemble) are equivalent to those obtained under a
constant-force protocol (Gibbs ensemble).44 Here, we explore
the possibility of an ensemble equivalence between nonequi-
librium steady-states and equilibrium steady-states in poly-
meric systems.

Consider the two different polymer systems in the inset
of Fig. 6, where the upper panel shows an ESS, defined as a
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polymer held at a constant extension λ with a correspond-
ing equilibrium Helmholtz free energy Fess(λ). The lower
panel shows a NESS, defined as a polymer held at a constant
flow strength Wi in an extensional flow with a correspond-
ing nonequilibrium Helmholtz free energy Fness (Wi). We de-
fine an equivalence such that the properties of an equilib-
rium constant extension experiment can be determined from a
nonequilibrium experiment at a constant flow strength. Using
this approach, we observe the existence of an equilibrium-
nonequilibrium equivalence between constant extension and
constant flow scenarios in single molecule polymer systems
(Fig. 6). In particular, we find that the Helmholtz free en-
ergy at a constant extension corresponds to the Helmholtz
free energy at a constant flow where the average molec-
ular extension matches the constant extension, such that
Fess (λ) = Fness (〈λ〉) = Fness (Wi). Using this equivalence
and recasting Fness as a function of extension, we determine
exactly the equilibrium stored elastic energy in the polymer,
as shown in Fig. 6. In this way, our work shows that equi-
librium properties such as stored elastic energy, and therefore
elasticity can be determined from nonequilibrium thermody-
namic properties in flowing systems.

IV. CONCLUSION

In this article, we report the determination of nonequi-
librium thermodynamic properties for polymers in flow. Our
approach utilizes work relations to determine thermodynamic
properties based on measurable experimental quantities such
as work, whereas the majority of previous studies have fo-
cused on the analysis of nonequilibrium thermodynamic po-
tentials using steady-state properties.4, 12, 14 The ability to de-
termine the thermodynamic properties of flowing systems
from work enables new routes for fundamental analysis of
soft condensed matter systems. To this end, we used this ap-

proach to calculate the longest polymer relaxation time τR,
which is a key property of viscoelastic materials traditionally
determined from stress relaxation experiments.

The determination of entropy is central to developing
a thermodynamic framework for a broad class of systems,
including granular materials.45 In this work, we further re-
port the direct determination of the entropy S of flowing
polymeric systems, which may prove useful in understand-
ing flow-induced phase behavior. In addition, we find that the
nonequilibrium Helmholtz free energy F determined from the
generalized JE differs significantly from the free energy de-
termined from the classic theories.6, 10

In the context of polymer models, we note that the
nonequilibrium thermodynamic properties reported from BD
simulations in this study are determined under the free-
draining assumption, which is appropriate for short semi-
flexible polymer chains such as λ-DNA.37 However, it is well
established that EV effects and intramolecular HI, which rep-
resent non-free-draining behavior, can significantly influence
the dynamics of long flexible polymer chains. Therefore, we
anticipate that HI and EV will have a non-trivial effect on
work distributions and corresponding thermodynamic proper-
ties of truly long flexible polymer chains in flow; this is sub-
ject of future research.

Overall, nonequilibrium thermodynamic quantities pro-
vide a powerful platform for analyzing flow-based systems.
For example, de Gennes sketched the effective free energy of
polymer chains in flow to predict the existence of a conforma-
tional hysteresis in extensional flow.7 Importantly, our work
provides a direct quantitative determination of these proper-
ties from measurable quantities in flow. With further devel-
opment, the formalism reported in the present study could be
applied to a broad class of soft materials systems including
polymer melts and active colloidal systems. In this way, the
determination of thermodynamic quantities could ultimately
allow for a more fundamental route in the design of poly-
mer processes such as flow-induced crystallization and stress-
induced phase separation.4,6
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APPENDIX A: RELATIONSHIP BETWEEN HELMHOLTZ
FREE ENERGY AND EFFECTIVE FREE ENERGY
IN POTENTIAL FLOWS

In order to derive the relationship between F and F∗

in potential flows, we used the Shannon entropy such that
S = − ∫

dxpss logpss , and the steady-state average potential
energy, 〈U〉 = ∫

dxpssU . Using these definitions, pss for po-
tential flows, and the fact that F = 〈U〉 − TS, it follows that
F = F∗ − 〈χ〉. We note that this relationship holds for any
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system where the potential energy is not an explicit function
of the control parameter.

APPENDIX B: BROWNIAN DYNAMICS SIMULATIONS

The equation of motion modeling the behavior of poly-
meric systems in flow is described by the Langevin equation
in the absence of inertia. Nonequilibrium trajectories of poly-
mer conformations in flow were simulated by a highly effi-
cient semi-implicit predictor-corrector algorithm.32 The rele-
vant coordinate of interest is the polymer (or spring) vector.
We numerically solve the Langevin equation for the spring
vectors yielding a dimensionless stochastic differential equa-
tion such that

dxk =
[
Pe(κ · xk) + 1

4

(
Fspr

k−1 − 2Fspr

k + Fspr

k+1

)]
dt

+
√
1

2
(dWk+1 − dWk), (B1)

where xk is end-to-end vector of spring k, κ ij = δi1δj1 − δi2δj2
is the dimensionless velocity gradient tensor for a planar ex-
tensional flow, Fspr = ∇kU is the spring force, dt is the time
step, dW represents a Wiener process whose components are
chosen from a real-valued Gaussian distribution with mean 0
and variance dt (see the supplementary material39 text for al-
gorithm details). At each time step, an updated value of xk is
computed, noting that Pe (and therefore, Wi = Peτ̃R) varies
systematically in time as described in the main text. Based on
xk , κ , and the expression for χ , the workw done on the system
(polymer in flow) due to the nonequilibrium transition is cal-
culated. For a transition between any two states, the total work
w done is computed and analyzed over a broad range of transi-
tion rates. DNA is modeled as a free-draining polymer, which
is appropriate for this approach because the analytical form of
the steady-state distribution function is well-known and satis-
fies the condition for which Eq. (5) is valid.28 Furthermore,
the potentials (U and χ ) that contribute to the distribution are
also well established from theory and experiments.28, 46

APPENDIX C: CALCULATION OF WORK
AND FLOW ENERGY, −〈χ〉

In order to determine the work and corresponding ener-
gies for flowing polymer solutions, we determine χ from the
configurational distribution function. In this work, we treat a
polymer molecule as beads connected by massless springs.
In potential flows, the distribution function for a dumbbell is
given as, pness = Z−1

ness exp[−βU (x) + 1
4βζκ : xx], where x

is the end-to-end vector of a polymer chain, ζ is the drag co-
efficient of a bead, and κ is the velocity gradient tensor that
describes the imposed flow field.28 A planar extensional flow
consists of an axis of extension and an orthogonal axis of fluid
compression. For this flow, the potential χ = − 1

4 ε̇ζ (x
2
1 − x2

2 ),
where 1(2) represents the extensional (compressional) axis,
and ε̇ is the strain rate. In this way, the system is defined as
a single polymer in flow, and the flow rate Wi is the control
parameter that defines the NESS of the system. As a result,
during a finite protocol, work is done on the system when

transitioning from Wi1 to Wi2, where work is defined by
Eq. (6) with f ≡ Wi. Finally, the work definition presented in
Eq. (6) is similar to those previously considered elsewhere for
systems described by Hamiltonian dynamics.47 Interestingly,
based on the steady-state average 〈 · 〉 in Eq. (6), it is clear that
the system is required to “relax” to the new steady-state in
order to completely determine the work done due to the tran-
sition. We note that this is in contrast to equilibrium states,
where equilibration or relaxation of the final steady-state is
not required for the application of the generalized JE.

APPENDIX D: SINGLE MOLECULE FLUORESCENCE
MICROSCOPY

Single polymer imaging was performed using lambda
DNA (New England Biolabs). dsDNA (6.35 pM) was stained
in the presence of 0.4 μM YOYO-1 fluorescent dye (Molec-
ular Probes) for approximately 1 h in the dark, as previously
described.8,35 We directly visualized polymer molecules us-
ing epiflourescence microscopy.41 Lambda DNA was imaged
using an Olympus IX71 inverted microscope with a 100×
oil immersion objective lens (Olympus UPlanSApo) and an
Andor Ixon EMCCD camera. A solid state laser (Crysta-
Laser) was used as an illumination source at a wavelength of
488 nm. Polymers were imaged in viewing solution contain-
ing 50 mM Tris/Tris-HCl (pH 8.0), 1 mM EDTA, 500 mg/ml
glucose, 20 mM NaCl, 62.5% sucrose by weight. In order
to reduce photobleaching and photocleaving of the YOYO-
1 dye, we added β-mercaptoethanol (140 mM), glucose oxi-
dase (65 U/ml), and catalase (1.1 kU/ml) to serve as oxygen
scavenging agents. For viewing, ∼ 1 ng of flourescently la-
belled dsDNA was added to 1.7 ml of viewing solution (yield-
ing approximately 1–10 fM dsDNA). Individual dsDNA were
visualized in a planar extensional flow generated in a PDMS-
based microfluidic device, and images were processed and an-
alyzed using custom codes in IDL and ImageJ software.

APPENDIX E: WORK ANALYSIS FOR SINGLE
MOLECULE EXPERIMENTS

In order to determine the work done by the fluid on the
polymer from experimental data, we determined χ using the
imposed strain rate ε̇, drag coefficient ζ , and the molecular
stretch in the extensional axis x1. The strain rate ε̇ was de-
termined from particle image velocimetry and a steady-state
extension master curve for λ-DNA in an extensional flow.
ζ was determined from the longest polymer relaxation time
τR, which was obtained from an exponential fit to decaying
molecular stretch trajectories following the cessation of flow.
From theory and simulations of dsDNA, it follows that τR
= 0.9λH = 0.9ζβNb2/12, where N = 159 is the number
of Kuhn segments in the polymer, and b = 132 nm is the
Kuhn segment length.25 Based on this relationship, ζ can be
computed directly from τR. x1 was determined from epiflu-
orescence microscopy. We use only x1 in our analysis be-
cause beyond the coil-stretch transition (our region of interest)
x1 
 x2.
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