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1  Introduction

The development of techniques for trapping and precisely 
manipulating single particles and molecules has catalyzed 
a revolution in diverse fields ranging from biology to soft 
condensed matter physics. For example, these techniques 
have been used for cellular chromosome manipulation 
(Vorobjev et al. 1993; Harsono et al. 2013), manufacturing 
2D and 3D nanostructures (Castelino et al. 2005), nanopat-
terning (Mcleod and Arnold 2008; Tsai et al. 2012), and for 
studying non-equilibrium statistical mechanics (Reimann 
2002). To this end, a wide variety of techniques have been 
developed and extensively studied, including those based 
on optical fields (Ashkin et al. 1986; Grier 2003; Neuman 
and Block 2004; Righini et al. 2008; Yang et al. 2009; Rox-
worthy et al. 2012), magnetic fields (Gosse and Croquette 
2002; Lee et al. 2004; Mirowski et al. 2005), microvortices 
(Lutz et al. 2006; Lin et al. 2008; Petit et al. 2012), and 
electrical fields (Cohen and Moerner 2005, 2006, 2008; 
Armani et al. 2006; Cummins et al. 2013).

Trapping techniques can be broadly classified into pas-
sive and active trapping schemes. Passive techniques con-
fine particles by generating a local minimum in a poten-
tial energy profile (i.e., a potential well) around the target 
particle position. This potential energy minimum serves as 
an attractive point for a particle. For passive traps, feed-
back control is generally not required to stabilize a trapped 
particle, because the depth of the potential well can be 
tuned to mitigate particle fluctuations due to thermal and 
environmental noise. Passive techniques include optical 
traps (Grier 2003; Neuman and Block 2004; Chiou et al. 
2005; Yang et al. 2009; Dholakia and Čižmár 2011), mag-
netic traps (Gosse and Croquette 2002; Lee et al. 2004; 
Mirowski et al. 2005), streaming microvortices or microed-
dies (Lutz et al. 2006; Lin et al. 2008; Petit et al. 2012), 
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and plasmonic traps (Pelton et al. 2006; Righini et al. 2008; 
Juan et al. 2011; Roxworthy et al. 2012).

Active traps, on the other hand, require feedback to 
achieve particle confinement at a desired set point. In active 
traps, feedback control can be used to correct for thermal 
fluctuations of a particle in an otherwise stable environ-
ment or to stabilize a particle in a semi-stable potential 
energy profile. In the first category, electric field-based traps 
(Cohen and Moerner 2005, 2006; Armani et al. 2006; Cohen 
and Moerner 2008; Cummins et al. 2013) utilize electroki-
netic flow-induced drift velocity to correct a particle’s posi-
tion due to thermal fluctuations. The hydrodynamic trap 
(Tanyeri et al. 2010, 2011a; Tanyeri and Schroeder 2013) 
is an example of the second category, wherein a particle is 
confined at a semi-stable equilibrium point in fluid flow. In 
this case, feedback control (using a simple P controller at 
a minimum) is necessary to stabilize a particle at a desired 
point. Other examples of feedback-assisted trapping plat-
forms include the macroscopic four-roll mill (Bentley and 
Leal 1986) and the planar extensional cross-slot flow device 
(Schroeder et al. 2003, 2004), in which the stagnation point 
was manipulated by manually varying the relative pressure 
difference between the two outlet channels by changing the 
hydrostatic pressure of one outlet stream.

Recently, we showed that hydrodynamic trapping 
enables the precise 2D positioning and manipulation of 
micro and nanoscale particles using the sole action of flu-
idic forces, and we have demonstrated confinement of a 
500-nm-diameter particle to within ~0.18  μm of the set 
point position (Tanyeri and Schroeder 2013). In prior ver-
sions of the hydrodynamic trap, we employed linear feed-
back controllers without a systematic study of the control 
scheme, gain constants, or system parameters. However, 

robust confinement of particles over long time scales criti-
cally requires a clear understanding of the effect of the con-
troller and system parameters on the stability of trapped 
particles. For example, in the macroscopic computer-con-
trolled four-roll mill, it was reported that trapping was dif-
ficult, if not impossible to achieve, using P and PD control, 
owing to slow response times of the fluid and the measure-
ment delay.

In this work, we implement three different control 
schemes for hydrodynamic trapping, including a propor-
tional (P), a proportional-integral (PI), and a proportional-
derivative (PD) controller. We study the effect of controller 
gain constants on the stability of trapped particles. In addi-
tion, we develop a control-based model to characterize the 
response of the hydrodynamic trap, and we use this model 
to simulate the stability of trapped particles over a wide 
range of response times and Peclet numbers. In this way, 
we use a combination of experiments and simulations to 
provide a clear understanding of the effect of feedback con-
trollers and system parameters on trap performance, which 
will facilitate the development of improved controllers for 
robust trapping under variable system conditions.

1.1 � Hydrodynamic trap: trapping mechanism

The hydrodynamic trap is based on the active feedback 
control of a stagnation point flow generated at the cross-
slot junction of a two-layer PDMS-based microfluidic 
device (Fig. 1). In the fluidic layer, fluid enters the cross-
slot through two opposing inlet streams and exits through 
two perpendicular outlet streams, as shown in Fig.  1b. A 
control layer is positioned above the fluidic layer and con-
sists of a pneumatic valve situated above one of the outlet 

Fig. 1   Microfluidic-based hydrodynamic trap. a Optical micrograph 
of the device. Particles are confined at a user-defined set point in the 
cross-slot junction (indicated by the dashed box). b Schematic of 
the cross-slot region and trap mechanism. Two inlet and two outlet 
streams are indicated by the thick arrows (green), × indicates the 
user-defined set point, the solid circle indicates the initial stagnation 

point position, and the solid arrow indicates the particle trajectory. 
To trap the particle, the stagnation point is translated along the exten-
sional axis to a new position (shown by the dashed circle), which 
directs the particle toward the set point along a new trajectory (indi-
cated by the dashed arrow). The origin is at the center of the cross-
slot (color figure online)
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streams. Control is achieved by the actuation of the inte-
grated membrane valve on the device. In this setup, the 
flow field in the cross-slot consists of a compressional axis 
along the inlet direction and an extensional axis along the 
outlet direction, with no rotational flow characteristics. 
This flow pattern is known as a planar extensional flow and 
contains a stagnation point (a point with zero velocity) in 
the cross-slot region. The local fluid velocity in the vicin-
ity of the stagnation point depends on the relative distance 
from the stagnation point, so we can express the velocity 
at a point as a superposition of velocities along the exten-
sional and compressional flow directions:

where î and ĵ are unit vectors along the compressional and 
extensional axes, respectively, ε̇ is the strain rate, and (xs, 
ys) is the stagnation point position. The flow field is charac-
terized by a set of hyperbolic streamlines within the cross-
slot junction.

From the velocity field, it can be inferred that a particle 
is attracted toward the stagnation point along the compres-
sional axis and repelled from the stagnation point along the 
extensional axis. In this work, we consider 1D particle trap-
ping at arbitrary points along the principal axis of exten-
sion in planar extensional flow; in other words, we char-
acterize trap stability along the unstable trapping direction 
(outflow direction). Due to the semi-stable nature of the 
trap potential, particles are stably confined along the com-
pressional flow axis without the need for active feedback 
control in this direction. Therefore, the stagnation point is 
a stable equilibrium point along the compressional axis and 
an unstable equilibrium position along the extensional axis. 
From this view, it is clear that feedback control is neces-
sary for particle trapping—for instance, in directing a par-
ticle toward the stagnation point in the y-direction. Follow-
ing the initial trapping phase, further disturbances due to 
Brownian motion and environmental noise necessitate the 
use of active feedback control for particle confinement.

The mechanism of hydrodynamic trapping has been 
previously described (Tanyeri et al. 2010, 2011a; Tanyeri 
and Schroeder 2013); here, we briefly review it for clarity. 
Consider a freely suspended particle entering the cross-slot 
junction (Fig. 1b) that is to be trapped at a user-defined set 
point (indicated by the ‘×’ symbol). Without control, the 
particle would simply follow the trajectory (streamline) 
shown by the solid arrow. In order to trap the particle, 
the controller moves the stagnation point in the positive 
y-direction instantaneously, which would tend to direct the 
particle to follow a new trajectory (shown by the dashed 
line) that will cause it to approach the set point. Next, the 

(1)

�v(x, y) = �vext(y)+ �vcomp(x)

�vext(y) = ε̇(y− ys)ĵ

�vcomp(x) = −ε̇(x − xs)î

updated position of the particle is acquired, and the process 
is repeated, continuously moving the stagnation point posi-
tion along the extensional axis within the cross-slot.

The motion of the stagnation point is achieved by pres-
surization or de-pressurization of the integrated mem-
brane valve (Fig. 1a). The movement of the valve enables 
a dynamic metering of the flow rate in the fluidic channel 
in the lower outlet stream. In this way, pressurizing the 
valve causes a constriction of the outlet channel under the 
valve, which increases the fluidic resistance, consequently 
decreasing fluid flow through the lower outlet channel and 
moving the stagnation point toward this channel. De-pres-
surization causes an analogous effect in the upper outlet 
flow channel. The overall control process consists of the 
following steps and is implemented using a LabVIEW pro-
gram: (1) determining the centroid position of the particle 
by performing image acquisition and analysis of the camera 
feedback data, (2) calculating the offset error between the 
set point position and current position, and (3) translating 
the stagnation point in the +y-direction (or −y-direction) 
by de-pressurizing (or pressurizing) the valve using the 
control algorithm described in the Methods section. This 
process is analogous to the balancing of a pendulum in an 
inverted position, which is an unstable equilibrium point.

1.2 � Hydrodynamic trap: control model

As discussed previously, hydrodynamic traps based on 
cross-slot microfluidic devices require feedback con-
trol only for manipulating the position of a particle in the 
y-direction (along the extensional axis). Hence, we focus 
on developing a control model for only the y-direction, 
because the x-direction (compressional flow axis) is intrin-
sically stable. Given a stagnation point position ys, the 
velocity of a particle in the y-direction is given by:

where ε̇ is the strain rate, y is the particle position, and ys 
is the current stagnation point position, where all positions 
are measured along the extensional axis.

There is a finite delay between setting a new stagnation 
point position on the computer versus the actual updating 
of the stagnation point position via valve actuation on the 
microdevice. The movement of the stagnation point from 
its prior position to the new position can be modeled as a 
first-order process:

where ys,new is the new stagnation point position set by the 
controller and tv is the system response time. Together, 
Eqs. (2) and (3) represent the uncontrolled system.

(2)
dy

dt
= ε̇(y − ys)

(3)
dys

dt
=

1

tv

(
ys,new − ys

)
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In this process, there is a second finite delay in acquiring 
and analyzing image data to determine a particle’s position, 
which is defined as the measurement delay, tm. Further-
more, the stagnation point has a limited range of movement 
due to physical constraints on the on-chip membrane valve, 
which is accounted for in the model. Finally, the particle’s 
final position yf is also influenced by Brownian motion, 
which can be modeled as:

Here, yb is the magnitude of random thermal motion super-
posed on the mean flow position y at a single time step. Fol-
lowing the fluctuation–dissipation theorem, yb is assumed 
to be a Gaussian-distributed random variable with zero 
mean value and a standard deviation given by:

where kb is the Boltzmann constant, T is the absolute tem-
perature, η is the viscosity, and d is the particle diameter. 
Also, tm and tv are the measurement delay and the system 
response times, respectively. The time scale in Eq.  (5) 
results from the implementation of the control algorithm 
for trapping a particle of diameter d. In particular, the Lab-
VIEW algorithm initiates the control process (characteristic 
time tv), after which the camera and imaging process deter-
mine the new position of the particle (characteristic time tm). 
Thus, between successive snapshots of a particle’s position, 
a time equal to (tv + tm) has elapsed, as shown in Eq. (5).

Following acquisition of an image and determination 
of particle position from image data, the error between the 
set point and the current particle position is calculated. The 
error is input to the controller, which outputs a control sig-
nal to the system. The relationship between the input and 
the output of the controller is:

where P is the input and Q is the output. In the case of the 
control model, P is the offset error (distance) and Q is the 
position of the new stagnation point. In experiments, P is 
the offset error (distance) and Q is voltage applied to the 
pressure transducer controlling the on-chip membrane 
valve, though it should be noted that the experimental con-
troller does not use the exact form described in Eq.  (6) 
(refer to the Supplementary Information for additional 
details). In Eq.  (6), Kp is the proportional gain constant, 
Ki is the integral gain constant, and Kd is the derivative 
gain constant. For implementing a proportional-only (P) 

(4)yf = y+ yb

(5)yb,std =

√

2kbT

3πηd
(tm + tv)

(6)
Q = KpP

︸︷︷︸

Proportional

+Ki

t∫

0

Pdt

︸ ︷︷ ︸

Integral

+ Kd
dP

dt
︸ ︷︷ ︸

Derivative

controller, Ki and Kd are set to zero, for a proportional-
integral (PI) controller, Kd is set to zero, and finally for a 
proportional-derivative (PD) controller, Ki is set to zero.

To facilitate analysis, parameters are converted to dimen-
sionless forms by choosing the particle diameter d and the 
diffusion time tdiff =

3πηd3

4kbT
 as the characteristic length and 

time scales, respectively. In this way, dimensionless param-
eters are denoted by variables with over-bars and defined in 
the following way:

The particle Peclet number Pe is defined as the ratio of 
the diffusive time scale of the particle tdiff to the convective 
time scale ε̇−1:

Using the characteristic length and time scales, Eqs.  (2), 
(3), and (5) are recast in dimensionless form:

where τm and τv are the dimensionless system response 
time and measurement delay.

To facilitate a control-based analysis of system response, 
we use Laplace transforms of the above equations to define 
transfer functions, assuming zero initial conditions. For 
Eqs. (8) and (9), the transfer functions are:

where s is the Laplace domain variable and W(s) and Z(s) 
are the Laplace transforms of ȳs and ȳs,new, respectively. 
If P(s) and Q(s) are the input and output quantities, then 
transfer functions for the time delay and the controller are 
given by the following equations:

ȳ =
y

d
, ȳs =

ys

d
, ȳs,new =

ys,new

d
,

t̄ =
t

tdiff
, τv =

tv

tdiff
, τm =

tm

tdiff

(7)Pe =
tdiff

tconv
=

3πηε̇d3

4kbT

(8)
dȳ

dt̄
= Pe(ȳ − ȳs)

(9)
dȳs

dt̄
=

1

τv
(ȳs,new − ȳs)

(10)ȳb,std =

√

τm + τv

2

(11)

Y(s)

W(s)
= Gp =

Pe

Pe− s

W(s)

Z(s)
= Gv =

1

τvs+ 1

(12)
Q(s)

P(s)
= e−sτm

(13)
Q(s)

P(s)
= Kp +

1

s
(Kitdiff)+

(
Kd

tdiff

)

s
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A block diagram of the control model is shown in Fig. 2. 
In general, we simulate the response of the system to a 
step change in offset error (or, analogously, particle posi-
tion). We use this model to study the effect of variation of 
the controller parameters (Kp, Ki, Kd), and system param-
eters (Pe, τm, τv) on the stability of trapped particles. Using 
dimensionless system parameters allows us to capture the 
effects of a change in several dimensional parameters. 
For example, a variation in Peclet number can represent a 
change in particle diameter, a change in viscosity, a change 
in the strain rate, or any combination of these factors.

2 � Materials and methods

2.1 � Device fabrication

The hydrodynamic trap consists of a two-layer 
poly(dimethyl siloxane) (PDMS) device mounted on a 
glass coverslip, which is fabricated using standard soft-
lithography techniques. The fluidic layer, which contains 
the sample and the six buffer channels (four inlets and two 
outlets), is sandwiched between a glass cover slip and the 
control layer. The control layer consists of an elastomeric 
membrane valve positioned above one of the outlet chan-
nels. The sample is flow focused at the confluence of the 
two inlet channels and is delivered to the center of the 
cross-slot junction. As described previously, pressurizing/
de-pressurizing the membrane valve causes changes in the 
relative flow rates through the two outlets, thereby reposi-
tioning the stagnation point. In addition, the presence of a 
constriction in the other outlet necessitates a constant off-
set pressure in the valve to maintain the stagnation point at 
the center of the cross-slot junction. This design allows the 
lower outlet channel to achieve a smaller fluidic resistance 
than the upper outlet channel, which allows for facile con-
trol of the stagnation point position about the center of the 
cross-slot junction at finite pressures.

The fluidic and control layers are individually fabricated 
using replica molding. For both layers, a mold is prepared 
by spin-coating a thin layer (~70 μm) of negative photore-
sist (SU-8) onto a 3″ diameter silicon wafer, followed by 
UV exposure using a high-resolution transparency film as 
a mask. Molds are then developed using propylene glycol 
methyl ether acetate (PGMEA). For replica molding, the 
PDMS-based mold layers are treated with trichloro (1H, 1H, 
2H, 2H-perfluorooctyl) silane vapor to facilitate straightfor-
ward peeling and removal of the PDMS layer. The fluidic 
layer is fabricated by spin-coating PDMS having a 15:1 
(w/w) base: crosslinker ratio, yielding a ~100  μm thick 
layer on the mold. The control layer is fabricated by directly 
pouring PDMS having a 5:1 (w/w) base: crosslinker ratio on 
the control layer mold. Next, both layers are partially baked 
at 65 °C, 12 min for the control layer and 20 min for the flu-
idic layer. Next, the thick control PDMS layer is peeled off, 
thoroughly cleaned using cleanroom tape, and then aligned 
and sealed onto the thin fluidic layer, followed by over-
night baking at 65 °C to yield a monolithic slab. This slab 
is then peeled off the mold, and access holes are punched 
to inlets and outlets using a needle with a blunt tip. Finally, 
the PDMS slab is bonded to a glass coverslip using plasma 
oxidation to obtain a functional device.

2.2 � Experimental setup

The microfluidic device is mounted on the stage of an 
inverted microscope (Olympus IX71) equipped with a 10× 
objective lens and a CCD camera. The four buffer inlets on 
the microdevice are connected to a single syringe mounted 
on a syringe pump (Harvard Apparatus) in order to main-
tain equal flow rates through all inlets. A separate syringe 
pump drives the flow for the sample inlet stream. The 
buffer solution is a glycerol–water solution with a viscosity 
of 0.0126 Pa-s at 298 K. The valve is pressurized using an 
electronic pressure transducer (Proportion Air) connected 
to a computer. A custom LabVIEW program developed 
for automated trapping coordinates image acquisition from 
the camera and regulates the pressure on the on-chip valve. 
The program performs the following steps: (1) acquires 
data from the camera to identify particles in the region of 
interest near the set point, (2) identifies the particle clos-
est to the set point by comparing the distances of the parti-
cles’ center of mass to the set point, (3) calculates the off-
set error between the set point and particle position for the 
selected particle, (4) calculates the current control signal 
(in volts) and communicates this signal with the pressure 
transducer to translate the position of the stagnation point, 
and (5) repeats this process to minimize the error in order 
to maintain a particle near the set point position. The image 
acquisition rate of the camera was 30  Hz throughout the 
experiments.

Fig. 2   Block diagram showing the control model for the trap. The 
model includes the stagnation point constraint, Brownian motion, and 
the feedback delay due to image acquisition by a camera. The dashed 
box represents the uncontrolled microfluidic device
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For estimating the control signal, we first determine 
whether the current voltage needs to be increased or 
decreased depending on the relative current positions of the 
stagnation point, set point, and particle position (Supple-
mentary Information). Next, to calculate the magnitude of 
the change, we use a P, PI, or PD controller. The following 
algorithm is used for calculating the voltage for the pres-
sure transducer:

where Yi is the current particle position along the exten-
sional axis, SP is the set point, Erri is the error between 
the set point and particle position, Vi is the updated volt-
age for the pressure transducer, Kp is the proportional gain 
constant, Ki is the integral gain constant, Kd is the differ-
ential gain constant, and Δt is the loop iteration time in 
LabVIEW, which is determined by the image acquisition 
rate of the camera. The loop iteration time is equal to the 
sum of the measurement delay and system response time. 
However, in our experiments, the system response time 
was generally small compared with the measurement delay 
time for a trapped particle, because minute changes in 
pressure are required to maintain a trapped particle near 
the set point. Hence, the loop iteration time reported by 
LabVIEW was roughly the same as the measurement delay 
(33 ms).

For studying the effect of the controller gains, 
2.2-μm-diameter fluorescent beads (SPHERO fluorescent 
particles, Nile Red, Spherotech Inc., IL, USA) are trapped 
at specific buffer and sample flow rates and proportional 
gain Kp. The buffer is treated with a surfactant (0.05  % 
v/v Triton-X), which minimizes aggregation of the beads. 
Next, a series of step changes in the particle position is 
applied to the system, with each step having a magnitude 
of five pixels and a duration of 40  s. In this way, a pre-
defined constant time period step is applied to the trapped 
bead for four successive steps, and its response is recorded 
using the LabVIEW program. Application of a series of 
steps for a given set of parameters allows for multiple 
experiments to be performed in a single run. The standard 
deviation of particle position in the last 10 s of each step 
is calculated and is used as a metric to assess trap perfor-
mance and stability. The time period is chosen such that 
it is sufficiently larger than the characteristic diffusion 
time of the particle, and data toward the end of the step are 
generally analyzed to suppress start-up or initial transient 
effects in the particle trajectories. This process is used 
for all steps in a single run, and the mean and standard 

(14)

Erri = Yi − SP

Vi = Vi−1 ±








KpErri + Ki

i�

k=0

(Errk ×�t)

+
Kd

�t

�
Erri − Err(i−1)

�








deviation of the standard deviation values for each step in 
a run are calculated.

3 � Results and discussion

3.1 � Experimental results

3.1.1 � P controller: effect of proportional gain, Kp

A proportional-only (P) controller is implemented by set-
ting Ki and Kd to zero. For these experiments, we apply 
a series of periodic step changes, with each step having a 
magnitude of 5 pixels or ~4.95 μm and of duration 40 s. 
The duration of the step change was chosen to be large 
enough so that all the transients had damped out. During 
each step, we maintain a constant value of Kp and sam-
ple and buffer flow rates. Following each step change, we 
track the response of the trapped particle. In addition, we 
also vary the proportional gain Kp and monitor particle tra-
jectories for different Kp values. Subsequently, this process 
is repeated for different buffer flow rates. Figure 3 shows 
the trajectory of a trapped particle during a series of step 
changes in the set point for a fixed flow rate and differ-
ent values of Kp. Upon increasing the proportional gain 
Kp, the magnitude of position fluctuations for a trapped 
particle are suppressed to values smaller than the particle 

Fig. 3   Experimental trajectories of a trapped particle’s position for a 
P controller. In all cases, a 2.2-μm-diameter particle is subjected to a 
step change of duration 40 s in set point position (constant flow rate 
of 30 and 5 μL/h for the buffer and sample, respectively). From a to 
d, the proportional gain was increased from 0.005 to 0.030
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diameter (Fig. 3a–d). A video of the trapped particle cor-
responding to Fig. 3a has been included in the Supplemen-
tary Material.

Figure 4 shows the standard deviation of particle posi-
tion as a function of proportional controller gain Kp and 
sample flow rate. A proportional controller accounts only 
for the instantaneous offset error when calculating the con-
trol signal; therefore, increasing Kp allows the stagnation 
point to move more aggressively in order to minimize the 
perturbations of a trapped particle. From Fig. 4, it is appar-
ent that larger values of Kp result in a tighter region of con-
finement for a trapped particle. However, above a certain 
limit, further increases in Kp will overcompensate for the 
error, thereby resulting in particle ‘ringing’ oscillations. For 
the conditions shown in Fig. 4a, we generally observed par-
ticle ‘ringing’ for values of Kp > 0.030.

In addition, an increase in the flow rate causes a particle 
to be advected over larger distances in the same amount of 
time. Given a constant feedback rate and gain constant, it 
follows that the controller would need to correct for larger 
errors in a particle’s trajectory. Therefore, for a constant 
controller gain Kp, the magnitude of particle position fluc-
tuations increases upon increasing the flow rate. As shown 
in Fig. 4, particle position fluctuations increase in magni-
tude upon increasing the flow rate from 20 to 40 μL/h for 
small values of Kp.

3.1.2 � PI controller: effect of integral gain, Ki

In a second set of experiments, we implemented a PI con-
troller by setting Kd = 0 in Eq. (14). The integral gain con-
stant Ki was varied over a fairly wide range of values for 
constant values of Kp and the flow rate. This process was 
repeated for a few sets of Kp values.

Overall, we observed that adding an integral control-
ler does not result in an improvement in the tightness of 
confinement vis-à-vis a simple P controller, as shown in 
Fig.  5a. Upon implementing integral control and varying 
Ki over a range of values, the magnitude of particle posi-
tion fluctuations is not improved within statistically sig-
nificant values. Differences between the magnitude of fluc-
tuations for different Kp values are primarily attributed to 
the increased stabilization provided by the higher Kp value 
alone, as evidenced in Fig. 4.

Integral controllers are commonly used to correct con-
stant offset errors present in the control variable, which 
cannot be corrected by using a P controller alone. In this 
experiment, there is no constant offset error when a sim-
ple P controller is used. In addition, the integral term in 
Eq.  (14) does not contribute significantly to the controller 
output because the standard deviation is calculated over the 
final 10 s of a step, when particles tend to fluctuate around 
the set point position. As a result, essentially no significant 

Fig. 4   Experimental data 
showing response of a trapped 
particle as a function of Kp and 
flow rate using a P controller. 
Standard deviation of trapped 
particle position is shown. 
The buffer flow rate is set to 
a 20 μL/h, b 30 μL/h, and c 
40 μL/h

Fig. 5   Experimental data show-
ing response of a trapped parti-
cle as a function of: a Ki using 
a PI controller with constant Kp 
(Kd set to 0) and b Kd using a 
PD controller with constant Kp 
(Ki set to 0). Standard devia-
tion of trapped particle position 
is shown. The experimental 
parameters are: a sample flow 
rate 10 μL/h, buffer flow rate 
10 μL/h, 30 s step duration; b 
sample flow rate 5 μL/h, buffer 
flow rate 20 μL/h, 40 s step 
duration
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improvement is observed by introducing an integral con-
troller into this process.

3.1.3 � PD controller: effect of derivative gain, Kd

We further implemented a derivative controller for the 
hydrodynamic trap. Here, we consider the effect of deriva-
tive gain on the stability of a trapped particle by implement-
ing a PD controller, as shown in Fig. 5b. The derivative gain 
Kd was varied, while setting Ki to zero and maintaining all 
other parameters constant. For these experiments, we did 
not include integral control based on the results obtained in 
Fig. 5a.

We observed that derivative control greatly stabilizes the 
position of a trapped particle and suppresses fluctuations to 
within a particle diameter for smaller values of Kp. Deriva-
tive controllers account for the rate of change of error, 
which corresponds to the particle velocity. In stochastic 
systems, such as for a trapped bead subject to Brownian 
motion, the position of a particle at later times depends 
only on current conditions and is independent of the prior 
history (in other words, a Markov process). Consequently, a 
controller that modulates its signal based on particle veloc-
ity effectively damps particle fluctuations. From this view, 
it follows that increases in the derivative gain Kd, which 
acts as a damping parameter, result in decreases in particle 
fluctuations, as demonstrated by Fig. 5b.

On the other hand, large values of Kd can amplify noise 
that causes a sudden jump in particle position, such as fluc-
tuations in the flow field. This is a significant limitation of 
a derivative controller, and therefore, the value of Kd should 
be tuned to meet the constraints dictated by noise on one 
hand and stability on the other. In this work, we manually 
varied the value of Kd, based on the response of the particle 
to high and low values of Kd.

Furthermore, the PD controller can be also be used to 
negate the effects of an increase or decrease in the tem-
perature, which would change the magnitude of Brownian 
fluctuations. For example, a 5  K increase in temperature 
(298–303  K) would induce a 20  % increase in the root-
mean-square particle displacement as a result of an increase 
in the thermal fluctuations of the particle and a decrease in 
the viscosity of the buffer solution. Under these conditions, 
the P and D components can be tuned separately to effec-
tively damp particle fluctuations.

3.2 � Control model and simulation results

3.2.1 � Comparison with experimental results

We used a control model to further understand the perfor-
mance of the hydrodynamic trap and to compare experi-
mental results directly with the model. In the model, we 

set the system parameters identical to experimental condi-
tions as described below. In the simulation, a constraint of 
±100 μm is imposed on the movement of the stagnation 
point, which closely captures experimental conditions. The 
control model is simulated using Simulink (MathWorks).

Figure  6 compares an experimental particle trajectory 
(Fig. 6a) to results from the simulation (Fig. 6b). This sim-
ulation result was generated by setting the particle diam-
eter to 2.2 μm, viscosity to 0.0126  Pa-s at 298  K, and a 
step size of ~4.95  μm. The system response time is set 
to 5  ms (based on the time required to increase the pres-
sure from 0 to 30  psi), and the measurement delay was 
chosen as 33 ms, which corresponds to the camera frame 
rate in experiments. Both experimental and simulation 
results show similar amplitudes of particle fluctuations, but 
slightly different periods, which can be attributed to dif-
ferent implementations of the controller in the simulation 
and LabVIEW. The simulation uses a controller of the form 
prescribed in Eq. (6), whereas the LabVIEW program uses 
a controller implemented according to Eq. (14). The major 
difference between the two versions is that the position 
of the stagnation point is known explicitly in the control 
model, whereas in experiments, the stagnation point posi-
tion is generally not known in real time. For this reason, 
particles are trapped in experiments using knowledge of 
the error between the current position and set point, as well 
as the rate at which this error grows (see Supplementary 
Information). In addition, the control model has a steady 

Fig. 6   Response of a 2.2-μm-trapped particle in a experiments and 
b simulations. In the experiment, the sample and buffer flow rates are 
5 and 30 μL/h. In the simulation, ε̇−1 =  0.26  s−1, Kp = −1.5, and 
Ki = −10
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state offset (when using a proportional-only controller) that 
is not present in the experiments due to the implementation 
of P-only control in the experimental system. We therefore 
added an integral control component in the control model 
to correct for the offset.

Using the control model, we simulated the effect of sys-
tem response time τv, measurement delay τm, and particle 
Peclet number Pe on the stability of a trapped particle. Simu-
lations were performed over a wide range of Pe and dimen-
sionless measurement delays while keeping other parameters 
constant, and the standard deviation of the particle was deter-
mined, analogous to the procedure used for experiments.

Using this approach, we simulated the response of a 
small trapped particle (100  nm diameter) subjected to a 
large 75 μm step change in set point in a fluid of viscos-
ity 0.001 Pa-s at 298 K (Fig. 7). In this set of simulations, 
we assessed the ability of the system to respond to large 
magnitude disturbances, such that the change in set point 
was 750× larger than the particle diameter. The Kp, Ki, and 
Kd values in the simulation are set to −20, −1.5 and −1.4, 
respectively. Moreover, the dimensionless measurement 
delay was varied between 5 and 300, and the dimensionless 
system response time was varied between 5 and 100, which 
correspond to experimental values typically encountered 
for image acquisition and for the system response time, 
respectively. It should be noted that for certain parameter 
ranges, the particle escaped the trap and the system was 
unstable; in this case, the standard deviation was set to a 
high value to differentiate it from stable parameter combi-
nations (here it was set to 2.5). Finally, we also simulate 
the response of a trapped particle under experimental con-
ditions (Fig.  8), with the particle diameter set to 2.2 μm, 
viscosity set to 0.0126 Pa-s and a step change of 4.95 μm. 

3.2.2 � Effect of measurement delay

For these simulations, the measurement delay was varied, 
while keeping the controller gains constant at the previ-
ously specified values, and the system response time set to 
5 ms. Figure 7a shows a heat map illustrating trap stability 
(quantified as the standard deviation of particle position) 
as a function of Pe and dimensionless measurement delay 
τm. The deep red region represents parameter combinations 
that result in failing to trap the particle (an unstable sys-
tem). The critical dimensionless measurement delay τm that 
causes a transition to instability remains constant across a 
wide range of particle Pe. Generally speaking, within the 
region of trap stability, the magnitude of particle fluctua-
tions decreases upon increasing Pe. However, at very high 
Pe, the critical measurement delay decreases (not shown). 
This occurs because as the Pe increases, the camera needs 
to process image data faster to account for the increased 
rate of particle advection. Of course, the stability diagram 
shown in Fig. 7a has been generated using a specific set of 
values for controller gains and step change; nevertheless, 
we have generated similar stability diagrams using a differ-
ent parameter sets, and in all cases, the qualitative trend in 
the variation is similar.

For further insight, we also simulate the response of a 
trapped particle under experimental conditions (Fig.  8a). 
Here, the particle position is always maintained within 
the accessible range of the stagnation point (i.e., particle 
displacement from the stagnation point is much less than 
100 μm). Under these conditions, the particle is stably con-
fined for the most of the parameter combinations; however, 
at high Peclet numbers and large measurement delays, an 
increase in particle fluctuations is observed. Thus, for small 

Fig. 7   Simulations showing response of a trapped particle to meas-
urement delay, system response time, and Pe. a Heat map showing 
standard deviation of trapped particle position as a function of Pe 
and dimensionless measurement delay. b Heat map showing standard 
deviation of trapped particle position as a function of Pe and dimen-

sionless system response time. The parameter values are: for calculat-
ing diffusion time: η = 0.001 Pa-s, T = 298 K, d = 100 nm, Step: 
75 μm; Controller gains: Kp = −20, Ki = −1.5, Kd = −1.4; a τm var-
ied from 5 to 300 with τv = 8.73 (corresponding to 5 ms), b τv varied 
from 5 to 100 with τm = 57.6 (corresponding to 33 ms)
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step change values, measurement delay becomes important 
only at high flow rates, and the particle trajectory is quite 
sensitive to large measurement delay values (standard devi-
ation is ~5 times the particle diameter).

3.2.3 � Effect of system response times

The system response time represents the time over which 
the trap (e.g., microfluidic device, on-chip membrane 
value, tubing, pressure transducer) effectively responds 
to changes in the stagnation point upon receiving a signal 
from the LabVIEW program. In the simulation, the Peclet 
number Pe and the dimensionless system response time τv 
were varied, and the particle stability was determined while 
maintaining other parameters such as the measurement 
delay (set to 33 ms) and controller gains constant.

Figure  7b shows a heat map illustrating trap stability 
(quantified as the standard deviation of particle position) 
as a function of Pe and system response time τv. Particle 
fluctuations increase upon increasing Pe at a constant sys-
tem response time. Analogously, particle fluctuations also 
increase upon increasing the system response time at a con-
stant Pe. We also observe that larger Pe conditions require 
relatively smaller system response times to maintain the 
same degree of particle confinement compared with lower 
Pe. Increasing both Pe and the system response time results 
in an increase in the standard deviation of particle position, 
as shown in the upper right corner of Fig. 7b.

Figure 8b shows a heat map of the dependence of par-
ticle standard deviation with Peclet number and system 
response time under experimental conditions. We note 
that the trend is similar to the case of large step changes 
such that the particle position fluctuations increase with 

increasing Peclet number and system response time. 
Hence, for large step changes, as long as the particle is sta-
bly trapped using a suitable measurement delay, the valve 
response time should be reduced to smaller values in order 
to obtain a tighter confinement because the valve response 
has a strong effect on particle oscillations. On the other 
hand, for small step changes, we see that measurement 
delay is critical and needs to be small in order to minimize 
oscillations.

4 � Conclusions

The ability to trap and manipulate individual particles is a 
key technology for science and engineering. To this end, 
the hydrodynamic trap is a simple method that allows for 
precise confinement of micro and nanoscale particles in 
free solution. In this work, we experimentally implemented 
and evaluated three different controllers—a proportional 
(P), a proportional-integral (PI), and a proportional-deriv-
ative (PD)—in order to gain an improved understanding of 
trap performance. We systematically investigated the effect 
of controller gain constants, system response times, and 
particle Peclet number on the stability of trapped particles.

Our results show that proportional and derivative con-
trollers yield improvements in trap stability, quantified by 
tightness of confinement or the magnitude of particle fluc-
tuations about the set point, which tend to agree with previ-
ous simulations of a related microflow process (Curtis et al. 
2011). On the other hand, integral control did not improve 
trap stability due to the nature of the process. Thus, P and 
PD control enhance the stability of the trapped particle in 
a microfluidic hydrodynamic trap because of the different 

Fig. 8   Simulations showing response of a trapped particle to meas-
urement delay, system response time, and Pe. a Heat map showing 
standard deviation of trapped particle position as a function of Pe 
and dimensionless measurement delay. b Heat map showing standard 
deviation of trapped particle position as a function of Pe and dimen-
sionless system response time. The parameter values are: for cal-

culating diffusion time: η =  0.0126 Pa-s, T =  298 K, d =  2.2 μm, 
Step = 4.95 μm; Controller gains: Kp = −20, Ki = −1.5, Kd = −1.4; 
a τm varied from 1 × 10−4 to 5 × 10−3 with τv = 6.5 × 10−5 (cor-
responding to 5  ms), b τv varied from 1 ×  10−4 to 5 ×  10−3 with 
τm = 4.3 × 10−4 (corresponding to 33 ms)
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time and length scales compared with the four-roll mill. In 
addition to experiments, we also developed a control model 
for simulating the response of the hydrodynamic trap, and 
we generally observed good agreement between experi-
mental and simulation results. The control model allows for 
the system response and stability to be assessed over a wide 
range of the system parameters, including response times, 
measurement delay, and Peclet numbers.

Overall, our work provides an improved understand-
ing of hydrodynamic trap stability as a function of control 
algorithms and system parameters, which will enable par-
ticle trapping under variable or uncertain experimental con-
ditions (e.g., changing flow rates, solution viscosity, valve 
response, or image acquisition rates). In addition, the imple-
mentation of more sophisticated control algorithms can be 
leveraged to stabilize particle trapping under challenging 
experimental conditions. Improved stability will broaden 
the range of applications for microfluidic-based trapping, 
which will enable the investigation of new physical phe-
nomena currently inaccessible using alternative methods.

As the field of microfluidics continues to mature, 
increasingly advanced device designs will be required 
for on-chip assays, materials processing, and flow meter-
ing applications. Indeed, future generations of integrated 
microfluidic devices will employ automated feedback con-
trollers for fluidics or pneumatic valves to achieve these 
goals (Tanyeri et al. 2011b; Moyle et al. 2013). To this end, 
our work provides a solid framework for understanding 
the response of a microfluidic-based hydrodynamic trap to 
controller type and system parameters, which will be useful 
for guiding the design of next-generation, automated on-
chip assays.
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